EP1896773A1 - Burner - Google Patents

Burner

Info

Publication number
EP1896773A1
EP1896773A1 EP06778673A EP06778673A EP1896773A1 EP 1896773 A1 EP1896773 A1 EP 1896773A1 EP 06778673 A EP06778673 A EP 06778673A EP 06778673 A EP06778673 A EP 06778673A EP 1896773 A1 EP1896773 A1 EP 1896773A1
Authority
EP
European Patent Office
Prior art keywords
tube
channel
burner according
pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778673A
Other languages
German (de)
French (fr)
Inventor
Jean-Claude Pillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Pillard SA
Original Assignee
EGCI Pillard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGCI Pillard filed Critical EGCI Pillard
Publication of EP1896773A1 publication Critical patent/EP1896773A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • F23C7/006Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/005Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/007Regulating fuel supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices

Definitions

  • the present invention relates to an annular pipe and a burner comprising such a pipe, the burner being a primary air burner, a total air burner, a gas burner ...
  • An annular pipe of the type delimited by two tubes whose axes are parallel and which are axially movable relative to each other is known, a first tube carrying deflection members adapted to impart a tangential component to a moving fluid. in driving.
  • Such a pipe is commonly used in burners, especially in primary air burners such as those described in application EP 967 434. Indeed, in modern burners such as those described in this application, to improve combustion, the fuel supply pipes are surrounded by two peripheral primary air supply pipes generating a vortex flow (or helical flow), one of these pipes having no deflection members so that the air which therein circulates out according to an axial flow, while the other comprises such bodies so that the air flowing therethrough in a rotating flow around the axis of the burner.
  • the quality of the improvement provided by these two peripheral pipes depends on the adjustments that must be made, especially with regard to the primary air flows they provide: on the one hand the total flow of air brought these two peripheral pipes with respect to the flows of the other constituents (fuels and central primary air), and, on the other hand, the ratio of these two peripheral primary air flow rates that modulates the swirling effect.
  • the setting of the two flow rates is particularly delicate and requires the user to be particularly qualified.
  • these burners are particularly heavy, bulky, complex (at the upstream portion of the pipes to allow their supply) and expensive.
  • these burners have a relatively large loss of charge because the peripheral primary air rubs against four walls (two per pipe).
  • a first solution consisted in eliminating the axial flow primary air supply peripheral pipe. However, in this case, it is no longer possible to adjust the importance of the tangential component of the vortex flow.
  • a second solution was to improve the first solution by decomposing the single peripheral primary air supply pipe into an upstream section (without a deflection member), a downstream section (without a deflection member), and flexible pipes arranged between the two sections and regularly distributed around the axis of the burner. Relative rotation of the two sections causes torsion of the flexible pipes which thus make it possible to confer a greater or lesser tangential component to the fluid at the outlet of the downstream section.
  • the main problem of this solution concerns flexible pipes which are moving and deformable parts in a zone hot, which are subject to wear and rupture, especially when the circulating air is loaded with dust.
  • the present invention aims to provide, on the one hand, a burner offering the same possibility of adjusting the swirling flow as the burners having two peripheral air supply lines, without having the aforementioned drawbacks, and, on the other hand, a annular conduit for having such a burner.
  • the second tube is shaped so that the tangential deflection angle of the fluid at the downstream end of the pipe depends on the axial position of the second tube relative to the first.
  • FIG. 1 is an axial sectional view of the downstream portion of a pipe according to a first embodiment of the present invention, the first tube being in an advanced position;
  • FIG. 2 is a view similar to FIG. the first tube being in a retracted position, 77
  • FIG. 3 is a view similar to FIG. 1, of a pipe according to a second embodiment of the present invention.
  • FIG. 4 is a view similar to FIG. 3, the first tube being in a retracted position
  • FIG. 5 is a view taken from the downstream part of the first tube
  • FIG. 6 is a partial axial sectional view of a portion of the first tube and deflection members
  • Figure 7 is a partial view of a burner in axial section with an annular conduit according to the second embodiment of the present invention.
  • An annular pipe 1 according to the present invention is delimited by two tubes 2,3 whose axes 4 are parallel (in this case, the two tubes 2,3 are coaxial) and which are movable in the axial direction 5 one compared to each other.
  • a first tube 2 (in this case the inner tube 2) carries deflection members 6 which are adapted to impart a component in the tangential direction 7 to a fluid moving in the pipe.
  • the second tube 3 (in this case the outer tube 3) is shaped so that the tangential deflection angle of the fluid at the downstream end 8 of the pipe 1 depends on the axial position of the second tube 3 relative to the first 2.
  • the second tube 3 comprises a drive portion 9 which is adapted to allow the fluid to be driven out of the deflection members 6, and thus to allow the fluid to have at the end downstream 8 of the pipe 1 substantially the same tangential deflection as its output of the deflection members 6.
  • the change of the tangential deflection angle of the fluid is achieved by the axial displacement of the driving portion 9 relative to the organs bypass 6.
  • the driving portion 9 is oriented, in the radial direction 10, in the direction of a distance from the first tube 2 for displacement in the axial direction 5 from upstream to downstream (because the second tube 3 is the outer tube, the driving portion 9 is divergent).
  • the driving portion 9 is a conical portion 9.
  • the modification of the tangential deflection angle of the fluid is facilitated by the application of the Coanda effect.
  • the second tube 3 is shaped so as to allow a plating of the fluid threads against its wall by Coanda effect.
  • the half-angle 11 at the top of the cone is less than 15 °.
  • Each channel 6 is delimited by a bottom wall 13 and by two longitudinal walls 14.
  • the bottom wall 13 extends in the axial 5 and tangential directions 7 and, therefore, is cylindrical.
  • the two longitudinal walls 14 extend in the axial 5 and radial 10 directions and they have, with respect to the axis 4 of the first tube 2, a tangential deflection angle 15 as can be seen in FIG.
  • the angle of the tangential deflection 15 is less than 45 °.
  • the angle of the tangential deflection 15 at a point taken along the axial direction 5 varies as a function of the distance from this point with the downstream end 16 of the first tube 2. And more specifically, for each channel 6, the tangential deflection angle 15 increases from the upstream end 17 of the channel 6 to its downstream end 18.
  • each channel 6 so that its tangential deflection angle 15 is zero (or substantially zero) at its upstream end 17, it is possible to have, at the outlet of the pipe 1, an axial flow fluid.
  • the longitudinal walls 14 have, in the radial direction 10 a dimension such that their free radial end 19 does not rub against the second tube 3,
  • the radial distance between the radial end free 19 longitudinal walls 14 and the portion 20 of the second tube 3 upstream of the upstream end 12 of the drive portion 9 is at least equal to 0.5 mm.
  • the part of the channels 6 which is downstream of the axial point of release 20 is inuti (for a relative axial position of the two tubes 2,3 given).
  • the bottom surface 13 has a downstream end portion 21 which is oriented, in the radial direction 10, in the direction of a coming together of the second tube 3 for a displacement in the axial direction 5 from upstream to downstream.
  • this orientation is such that at the downstream end 18 of the channels 6, the bottom wall 13 reaches the free radial end 19 of the longitudinal walls 14 so that the radial dimension of the longitudinal walls is zero.
  • each channel 6 opens at the downstream end 16 of the first tube 2 (which is then also the downstream end 18 of the channels 6), as illustrated elsewhere in FIG. elsewhere, the radial distance between the free radial end 19 of the longitudinal walls 14 and the portion 20 of the second tube 3 upstream of the upstream end 12 of the driving portion 9 may be relatively large (both in absolute terms). , for example at least equal to 10 mm, only relative to the radial dimension of the longitudinal walls). Therefore, it is possible to have, at the outlet of the pipe 1, a portion of the fluid whose flow is axial, regardless of the relative axial position of the two tubes 2,3.
  • This part is that which has not been channeled (or which has been channeled over the axial portion of the channels 6 whose tangential deflection angle is zero), ie the portion of the fluid which upstream of the the upstream end 12 of the drive portion 9, was between the second tube 3 and the free radial end 19 of the longitudinal walls 14.
  • the flow rate of the fluid at the outlet of the channels 6 varies as a function of the relative axial position of the two tubes 2, 3 (as a function of the tangential deflection angle at the outlet of the channel 6).
  • each channel 6 is configured so that the spacing between its two longitudinal walls 14 at a point taken along the axis 4 of the first tube 2, varies according to the tangential deflection angle 15 at this point so as to have a useful section 22 for output of the channel 6 at the upstream end 12 of the portion 9 substantially constant drive.
  • the useful section 22 being equal to the product of the cross section 23 by the cosine of the tangential deflection angle 15.
  • the second tube 3 comprises a cylindrical portion 24 extending the downstream end 25 of the drive portion 9.
  • this portion has a sufficient rectifying effect, its length is at least greater than three times the distance separating the two tubes 2,3 at this downstream cylindrical portion 24.
  • Such a pipe 1 can be integrated in any burner comprising several pipes substantially concentric because it makes it possible to vary in a very simple manner the tangential component of the output fluid as a function of the relative axial position of the two tubes 2,3 delimiting this pipe 1, and this variation may not cause a change in flow rate in the case where the deflection members 6 are in a suitable configuration.
  • the burner may be of the partial air type. It may for example comprise at least four substantially coaxial pipes, these four pipes comprising a central fuel supply pipe, a central primary air supply pipe surrounding the central fuel supply pipe, a peripheral feed pipe. in fuel surrounding the central primary air supply pipe, and a primary air supply annular pipe according to the present invention located outside all the fuel supply pipes, the burner having a central stabilizer which covers the outlet of the primary central air supply pipe, and which has openings through which the primary air coming from the central duct supplying primary air.
  • this burner corresponds to that described in application EP 967 434, the pipe according to the present invention replacing the two external pipes.
  • It may also comprise at least four substantially coaxial lines, these four lines comprising a central fuel supply pipe, a pulverized solid fuel supply annular pipe surrounding the pipe a fuel supply unit, a central annular primary air supply line surrounding the pulverized solid fuel supply line, and a primary annular primary air supply line according to the present invention which surrounds the central annular line.
  • primary air supply unit the burner comprising a central stabilizer, placed at the outlet of the annular central primary air supply pipe, and which has openings through which the primary air coming from the central duct primary air supply. This burner then corresponds to that described in application EP 1 445 535, the pipe according to the present invention replacing the two external pipes.
  • the burner may also be of the total air type, the annular primary air supply pipe according to the present invention being surrounded by at least one secondary air supply line.
  • the burner may also be of the gas type comprising at least two substantially coaxial conduits, both of which comprise a peripheral annular gas supply line according to the present invention which surrounds the other conduit.
  • the present invention is not limited to the embodiment previously described.
  • the first tube that carrying the deflection members
  • the second tube then being the inner tube.
  • the channels it would be possible for the channels to be made by fixing longitudinal walls (for example by welding) to the first tube.

Abstract

The invention relates to a burner comprising several substantially concentric channels, one (1) of which is arranges outside of all fuel supply conduits and is delimited by two pipes (2, 3), whose axes (4) are placed in a parallel position and which are movable with respect to each other. According to said invention, diverting members (6) used for imparting a tangential component (7) to a fluid flowing in the channel (1) are carried by the first pipe (2) and are fixed thereto, the second pipe (3) comprises a drive portion (9) for driving the fluid outside the diverting members (6) and the angle of tangential deviation of the fluid at the downstream end (8) of the channel (1) depends on the axial position of the second pipe (3) with respect to the first pipe (2).

Description

BRULEUR BURNER
La présente invention concerne une conduite annulaire ainsi qu'un brûleur comprenant une telle conduite, le brûleur pouvant être un brûleur à air primaire, un brûleur à air total, un brûleur à gaz...The present invention relates to an annular pipe and a burner comprising such a pipe, the burner being a primary air burner, a total air burner, a gas burner ...
On connaît une conduite annulaire du type délimitée par deux tubes dont les axes sont parallèles et qui sont mobiles axialement l'un par rapport à l'autre, un premier tube portant des organes de déviation adaptés à conférer une composante tangentielle à un fluide se déplaçant dans la conduite .An annular pipe of the type delimited by two tubes whose axes are parallel and which are axially movable relative to each other is known, a first tube carrying deflection members adapted to impart a tangential component to a moving fluid. in driving.
Une telle conduite est couramment utilisée dans des brûleurs, notamment dans des brûleurs à air primaire tels que ceux décrits dans la demande EP 967 434. En effet, dans les brûleurs modernes tels que ceux décrits dans cette demande, afin d'améliorer la combustion, les conduites d'alimentation en combustible sont entourées de deux conduites périphériques d'alimentation en air primaire générant un flux tourbillonnaire (ou hélicoïdal) , l'une de ces conduites ne comportant pas d'organes de déviation de sorte que l'air qui y circule en sort selon un flux axial, alors que l'autre comporte de tels organes de sorte que l'air qui y circule en sort selon un flux rotatif autour de l'axe du brûleur. La qualité de l'amélioration apportée par ces deux conduites périphériques dépend des réglages qu'il convient de faire, notamment en ce qui concerne les débits d'air primaire qu'elles apportent : d'une part le débit total de l'air apporté par ces deux conduites périphériques par rapport aux débits des autres constituants (combustibles et air primaire central), et, d'autre part, le rapport de ces deux débits d'air primaire périphérique qui permet de moduler l'effet tourbillonnaire. Le réglage des deux débits est particulièrement délicat et nécessite que l'utilisateur soit particulièrement qualifié. De plus, du fait de la présence des deux conduites périphériques d'alimentation en air, ces brûleurs sont particulièrement lourds, volumineux, complexes (au niveau de la partie en amont des conduites pour permettre leur alimentation) et coûteux. Par ailleurs, ces brûleurs ont une perte de charge relativement importante du fait que l'air primaire périphérique frotte contre quatre parois (deux par conduites) .Such a pipe is commonly used in burners, especially in primary air burners such as those described in application EP 967 434. Indeed, in modern burners such as those described in this application, to improve combustion, the fuel supply pipes are surrounded by two peripheral primary air supply pipes generating a vortex flow (or helical flow), one of these pipes having no deflection members so that the air which therein circulates out according to an axial flow, while the other comprises such bodies so that the air flowing therethrough in a rotating flow around the axis of the burner. The quality of the improvement provided by these two peripheral pipes depends on the adjustments that must be made, especially with regard to the primary air flows they provide: on the one hand the total flow of air brought these two peripheral pipes with respect to the flows of the other constituents (fuels and central primary air), and, on the other hand, the ratio of these two peripheral primary air flow rates that modulates the swirling effect. The setting of the two flow rates is particularly delicate and requires the user to be particularly qualified. In addition, because of the presence of two peripheral air supply lines, these burners are particularly heavy, bulky, complex (at the upstream portion of the pipes to allow their supply) and expensive. Moreover, these burners have a relatively large loss of charge because the peripheral primary air rubs against four walls (two per pipe).
Une première solution a consisté à supprimer la conduite périphérique d'alimentation en air primaire à flux axial. Cependant, dans ce cas, il n'est plus possible de régler l'importance de la composante tangentielle du flux tourbillonnaire.A first solution consisted in eliminating the axial flow primary air supply peripheral pipe. However, in this case, it is no longer possible to adjust the importance of the tangential component of the vortex flow.
Une seconde solution a consisté à améliorer la première solution en décomposant l'unique conduite d'alimentation périphérique en air primaire en un tronçon amont (sans organe de déviation) , un tronçon aval (sans organe de déviation) , et des conduites flexibles disposées entre les deux tronçons et régulièrement réparties autour de l'axe du brûleur. Une rotation relative des deux tronçons entraîne une torsion des conduites flexibles qui permettent ainsi de conférer une composante tangentielle plus ou moins importante au fluide en sortie du tronçon aval. Le problème principal de cette solution concerne les conduites flexibles qui sont des pièces mobiles et déformables dans une zone chaude, qui sont soumises à l'usure et à la rupture, notamment quand l'air circulant est chargé de poussières. La présente invention vise à réaliser, d'une part, un brûleur offrant la même possibilité de réglage du flux tourbillonnaire que les brûleurs ayant deux conduites périphériques d'alimentation en air, sans avoir les inconvénients précités, et, d'autre part, une conduite annulaire permettant d'avoir un tel brûleur.A second solution was to improve the first solution by decomposing the single peripheral primary air supply pipe into an upstream section (without a deflection member), a downstream section (without a deflection member), and flexible pipes arranged between the two sections and regularly distributed around the axis of the burner. Relative rotation of the two sections causes torsion of the flexible pipes which thus make it possible to confer a greater or lesser tangential component to the fluid at the outlet of the downstream section. The main problem of this solution concerns flexible pipes which are moving and deformable parts in a zone hot, which are subject to wear and rupture, especially when the circulating air is loaded with dust. The present invention aims to provide, on the one hand, a burner offering the same possibility of adjusting the swirling flow as the burners having two peripheral air supply lines, without having the aforementioned drawbacks, and, on the other hand, a annular conduit for having such a burner.
Selon l'invention, dans la conduite annulaire du type précité, le deuxième tube est conformé de sorte que l'angle de déviation tangentielle du fluide à l'extrémité aval de la conduite dépend de la position axiale du second tube par rapport au premier.According to the invention, in the annular pipe of the aforementioned type, the second tube is shaped so that the tangential deflection angle of the fluid at the downstream end of the pipe depends on the axial position of the second tube relative to the first.
Ainsi, selon l'invention, pour un débit donné d'air circulant dans la conduite, il est possible de modifier la composante tangentielle du fluide par un simple déplacement axial relatif des deux tubes, sans que la conduite ne comprenne d'éléments mobiles par rapport à ces deux tubes. De plus, la mobilité axiale des deux tubes ne présente pas les inconvénients des tubes flexibles antérieurement proposés.Thus, according to the invention, for a given flow rate of air flowing in the pipe, it is possible to modify the tangential component of the fluid by a simple relative axial displacement of the two tubes, without the pipe comprising mobile elements by compared to these two tubes. In addition, the axial mobility of the two tubes does not have the disadvantages of the previously proposed flexible tubes.
D'autres particularités et avantages apparaîtront dans la description détaillée du mode de réalisation donné à titre d'exemple non limitatif et illustré dans les dessins annexés.Other features and advantages will appear in the detailed description of the embodiment given by way of non-limiting example and illustrated in the accompanying drawings.
La figure 1 est une vue en coupe axiale de la partie aval d'une conduite conforme à un premier mode de réalisation de la présente invention, le premier tube étant dans une position avancée, La figure 2 est une vue similaire à la figure 1, le premier tube étant dans une position reculée, 77FIG. 1 is an axial sectional view of the downstream portion of a pipe according to a first embodiment of the present invention, the first tube being in an advanced position; FIG. 2 is a view similar to FIG. the first tube being in a retracted position, 77
La figure 3 est une vue similaire à la figure 1, d'une conduite conforme à un second mode de réalisation de la présente invention,FIG. 3 is a view similar to FIG. 1, of a pipe according to a second embodiment of the present invention,
La figure 4 est une vue similaire à la figure 3, le premier tube étant dans une position reculée,FIG. 4 is a view similar to FIG. 3, the first tube being in a retracted position,
La figure 5 est une vue déroulée de la partie aval du premier tube ,FIG. 5 is a view taken from the downstream part of the first tube,
La figure 6 est une vue de coupe axiale partielle d'une partie du premier tube et des organes de déviation, etFIG. 6 is a partial axial sectional view of a portion of the first tube and deflection members, and
La figure 7 est une vue partielle d'un brûleur en coupe axiale comportant une conduite annulaire conforme au second mode de réalisation de la présente invention.Figure 7 is a partial view of a burner in axial section with an annular conduit according to the second embodiment of the present invention.
Une conduite annulaire 1 conforme à la présente invention est délimitée par deux tubes 2,3 dont les axes 4 sont parallèles (en l'occurrence, les deux tubes 2,3 sont coaxiaux) et qui sont mobiles selon la direction axiale 5 l'un par rapport à l'autre.An annular pipe 1 according to the present invention is delimited by two tubes 2,3 whose axes 4 are parallel (in this case, the two tubes 2,3 are coaxial) and which are movable in the axial direction 5 one compared to each other.
Un premier tube 2 (en l'occurrence le tube interne 2) porte des organes de déviation 6 qui sont adaptés à conférer une composante selon la direction tangentielle 7 à un fluide se déplaçant dans la conduite. Le deuxième tube 3 (en l'occurrence le tube externe 3) est conformé de sorte que l'angle de déviation tangentielle du fluide à l'extrémité aval 8 de la conduite 1 dépend de la position axiale du second tube 3 par rapport au premier 2.A first tube 2 (in this case the inner tube 2) carries deflection members 6 which are adapted to impart a component in the tangential direction 7 to a fluid moving in the pipe. The second tube 3 (in this case the outer tube 3) is shaped so that the tangential deflection angle of the fluid at the downstream end 8 of the pipe 1 depends on the axial position of the second tube 3 relative to the first 2.
Comme on peut le voir aux figures 1 et 2, dans les présents exemples, le second tube 3 comprend une portion d'entraînement 9 qui est adaptée à permettre l'entraînement du fluide hors des organes de déviation 6, et ainsi à permettre au fluide d'avoir à l'extrémité aval 8 de la conduite 1 sensiblement la même déviation tangentielle qu'à sa sortie des organes de déviation 6. La modification de l'angle de déviation tangentielle du fluide est réalisée par le déplacement axial de la portion d'entraînement 9 par rapport aux organes de déviation 6.As can be seen in Figures 1 and 2, in the present examples, the second tube 3 comprises a drive portion 9 which is adapted to allow the fluid to be driven out of the deflection members 6, and thus to allow the fluid to have at the end downstream 8 of the pipe 1 substantially the same tangential deflection as its output of the deflection members 6. The change of the tangential deflection angle of the fluid is achieved by the axial displacement of the driving portion 9 relative to the organs bypass 6.
La portion d'entraînement 9 est orientée, selon la direction radiale 10, dans le sens d'un éloignement du premier tube 2 pour un déplacement selon la direction axiale 5 de l'amont vers l'aval (du fait que le second tube 3 est le tube externe, la portion d'entraînement 9 est divergente) . Ici, la portion d'entraînement 9 est une portion conique 9.The driving portion 9 is oriented, in the radial direction 10, in the direction of a distance from the first tube 2 for displacement in the axial direction 5 from upstream to downstream (because the second tube 3 is the outer tube, the driving portion 9 is divergent). Here, the driving portion 9 is a conical portion 9.
Dans les présents modes de réalisation, la modification de l'angle de déviation tangentielle du fluide est facilitée par l'application de l'effet Coanda. Plus précisément, le second tube 3 est conformé de façon à permettre un plaquage des filets du fluide contre sa paroi par effet Coanda. Afin de pouvoir utiliser cet effet, dans les présents modes de réalisation, le demi angle 11 au sommet du cône est inférieur à 15°. De ce fait, à partir de l'extrémité amont 12 de la portion d'entraînement 9, le fluide suit la paroi du second tube 3 et, vu son orientation, se libère des organes de déviation 6 du premier tube 2. Ainsi, en fonction de la position axiale de l'extrémité amont 12 de la portion d'entraînement 9 par rapport aux organes de déviation 6, le fluide acquiert une composante tangentielle plus ou moins importante . Les organes de déviation 6 sont fixes par rapport au premier tube 2, et, dans le présent cas, ils sont formés par des canaux 6 réalisés par usinage (par exemple, par fraisage) du premier tube 2. Ce tube peut comporter, par exemple entre 8 et 36 canaux 6.In the present embodiments, the modification of the tangential deflection angle of the fluid is facilitated by the application of the Coanda effect. More specifically, the second tube 3 is shaped so as to allow a plating of the fluid threads against its wall by Coanda effect. In order to be able to use this effect, in the present embodiments, the half-angle 11 at the top of the cone is less than 15 °. As a result, from the upstream end 12 of the driving portion 9, the fluid follows the wall of the second tube 3 and, in view of its orientation, releases the deflection members 6 of the first tube 2. Thus, as a function of the axial position of the upstream end 12 of the driving portion 9 with respect to the deflection members 6, the fluid acquires a more or less significant tangential component. The deflection members 6 are fixed relative to the first tube 2, and in this case they are formed by channels 6 made by machining (for example, by milling) of the first tube 2. This tube may comprise, for example between 8 and 36 channels 6.
Chaque canal 6 est délimité par une paroi de fond 13 et par deux parois longitudinales 14. La paroi de fond 13 s'étend selon les directions axiale 5 et tangentielle 7 et, de ce fait, est de forme cylindrique. Les deux parois longitudinales 14 s'étendent selon les directions axiale 5 et radiale 10 et elles présentent, par rapport à l'axe 4 du premier tube 2, un angle de déviation tangentielle 15 comme on peut le voir à la figure 3.Each channel 6 is delimited by a bottom wall 13 and by two longitudinal walls 14. The bottom wall 13 extends in the axial 5 and tangential directions 7 and, therefore, is cylindrical. The two longitudinal walls 14 extend in the axial 5 and radial 10 directions and they have, with respect to the axis 4 of the first tube 2, a tangential deflection angle 15 as can be seen in FIG.
Afin d'avoir en sortie de la conduite 1 un fluide ayant un bon comportement tourbillonnaire dans le cas où il est utilisé dans un brûleur, pour chaque canal 6, en tout point dans la direction axiale 5, l'angle de la déviation tangentielle 15 est inférieure à 45°.In order to have at the outlet of the pipe 1 a fluid having a good swirling behavior in the case where it is used in a burner, for each channel 6, at any point in the axial direction 5, the angle of the tangential deflection 15 is less than 45 °.
Afin de pouvoir avoir une large amplitude de flux tangentiel en sortie de la conduite 1, pour chaque canal 6, l'angle de la déviation tangentielle 15 en un point pris selon la direction axiale 5 varie en fonction de la distance de ce point avec l'extrémité aval 16 du premier tube 2. Et plus précisément, pour chaque canal 6, l'angle de déviation tangentielle 15 croît de l'extrémité amont 17 du canal 6 à son extrémité aval 18. De ce fait, en fonction de la position de la portion d'entraînement 9 par rapport au canal 6, il est possible de modifier très simplement la composante tangentielle du fluide en sortie de la conduite, plus ce fluide ayant été libéré des canaux 6 en amont, plus sa composante tangentielle est faible (et correspond à l'angle de déviation tangentielle 15 du canal 6 au point axial où le fluide sort de ce dernier (le canal 6 étant « ouvert » en direction du second tube 3) . De plus, en configurant chaque canal 6 de sorte que son angle de déviation tangentielle 15 soit nul (ou sensiblement nul) à son extrémité amont 17, il est possible d'avoir, en sortie de la conduite 1, un fluide à flux axial. Comme on peut le voir aux figures 1 à 4, les parois longitudinales 14 ont, dans la direction radiale 10 une dimension telle que leur extrémité radiale libre 19 ne frotte pas contre le second tube 3, Ainsi, la distance radiale entre l'extrémité radiale libre 19 des parois longitudinales 14 et la portion 20 du second tube 3 en amont de l'extrémité amont 12 de la portion d'entraînement 9 est au moins égale à 0,5 mm.In order to be able to have a large tangential flow amplitude at the outlet of the pipe 1, for each channel 6, the angle of the tangential deflection 15 at a point taken along the axial direction 5 varies as a function of the distance from this point with the downstream end 16 of the first tube 2. And more specifically, for each channel 6, the tangential deflection angle 15 increases from the upstream end 17 of the channel 6 to its downstream end 18. As a result, depending on the position of the driving portion 9 with respect to the channel 6, it is possible to very simply modify the tangential component of the fluid leaving the pipe, the more this fluid has been released from the channels 6 upstream, the lower its tangential component ( and corresponds to the tangential deflection angle of the channel 6 at the axial point where the fluid leaves the latter (the channel 6 being "open" in the direction of the second tube 3). each channel 6 so that its tangential deflection angle 15 is zero (or substantially zero) at its upstream end 17, it is possible to have, at the outlet of the pipe 1, an axial flow fluid. As can be seen in Figures 1 to 4, the longitudinal walls 14 have, in the radial direction 10 a dimension such that their free radial end 19 does not rub against the second tube 3, Thus, the radial distance between the radial end free 19 longitudinal walls 14 and the portion 20 of the second tube 3 upstream of the upstream end 12 of the drive portion 9 is at least equal to 0.5 mm.
On comprend que, par du fait de l'application de l'effet Coanda, quelle que soit la position axiale relative des deux tubes 2,3, à partir de l'extrémité amont 12 de la portion d'entraînement 9, en ce qui concerne la partie du fluide jusqu'alors canalisée (la partie du fluide qui en amont de l'extrémité amont 12 de la portion d'entraînement 9, était entre les parois longitudinales 14) , une portion (la portion la plus proche de l'extrémité radiale libre 19) se libère du canal 6 , et cette portion devient de plus en plus importante au fur et à mesure que le fluide longe la portion d'entraînement 9, jusqu'à atteindre un point axial de libération 20 où sensiblement l'ensemble de la partie du fluide jusqu'alors canalisée quand la distance radiale séparant la portion d'entraînement 9 de l'extrémité radiale libre 19 atteint la dimension radiale des parois longitudinales 14. En conséquence, la partie des canaux 6 qui est en aval du point axial de libération 20 est inutilisée (pour une position axiale relative des deux tubes 2,3 donnée) . Dans le premier exemple illustré aux figures 1 et 2, pour chaque canal 6, la surface de fond 13 présente une partie extrême aval 21 qui est orientée, selon la direction radiale 10, dans le sens d'un rapprochement du second tube 3 pour un déplacement selon la direction axiale 5 de l'amont vers l'aval. Ici, cette orientation est telle qu'à l'extrémité aval 18 des canaux 6, la paroi de fond 13 atteint l'extrémité radiale libre 19 des parois longitudinales 14 de sorte que, la dimension radiale des parois longitudinales y est nulle.It is understood that, due to the application of the Coanda effect, regardless of the relative axial position of the two tubes 2, 3, from the upstream end 12 of the driving portion 9, with respect to the part of the fluid hitherto canalized (the part of the fluid which upstream of the upstream end 12 of the drive portion 9, was between the longitudinal walls 14), a portion (the portion closest to the free radial end 19) is released from the channel 6, and this portion becomes increasingly important as the fluid along the driving portion 9, until reaching an axial release point 20 where substantially the all of the part of the fluid hitherto channeled when the radial distance between the driving portion 9 of the free radial end 19 reaches the radial dimension of the longitudinal walls 14. Consequently, the part of the channels 6 which is downstream of the axial point of release 20 is inuti (for a relative axial position of the two tubes 2,3 given). In the first example illustrated in Figures 1 and 2, for each channel 6, the bottom surface 13 has a downstream end portion 21 which is oriented, in the radial direction 10, in the direction of a coming together of the second tube 3 for a displacement in the axial direction 5 from upstream to downstream. Here, this orientation is such that at the downstream end 18 of the channels 6, the bottom wall 13 reaches the free radial end 19 of the longitudinal walls 14 so that the radial dimension of the longitudinal walls is zero.
Dans le second exemple illustré aux figures 3 et 4, chaque canal 6 débouche à l'extrémité aval 16 du premier tube 2 (qui est alors également l'extrémité aval 18 des canaux 6), comme illustré par ailleurs à la figure 7. Par ailleurs, la distance radiale entre l'extrémité radiale libre 19 des parois longitudinales 14 et la portion 20 du second tube 3 en amont de l'extrémité amont 12 de la portion d'entraînement 9 peut être relativement importante (aussi bien dans l'absolu, par exemple au moins égale à 10 mm, que relativement à la dimension radiale des parois longitudinales) . De ce fait, il est possible d'avoir, en sortie de la conduite 1, une partie du fluide dont le flux est axial, quelle que soit la position axiale relative des deux tubes 2,3. Cette partie est celle qui n'a pas été canalisée (ou qui a été canalisée sur la portion axiale des canaux 6 dont l'angle de déviation tangentielle 15 est nulle), c'est à dire la partie du fluide qui en amont de l'extrémité amont 12 de la portion d'entraînement 9, était entre le second tube 3 et l'extrémité radiale libre 19 des parois longitudinales 14. De plus, du fait de la variation de l'angle de déviation tangentielle 15 le long de l'axe 4 du premier tube 2, si l'écartement entre les deux parois longitudinales 14 d'un canal 6 est constant sur toute la longueur du canal 6, le débit de fluide en sortie des canaux 6 varie en fonction de la position axiale relative des deux tubes 2,3 (en fonction de l'angle de déviation tangentielle 15 à la sortie du canal 6) . Aussi, afin d'avoir un débit constant quelle que soit la position axiale relative des deux tubes 2,3, comme on peut le voir à la figure 5, chaque canal 6 est configuré de sorte que l'écartement entre ses deux parois longitudinales 14 en un point pris selon l'axe 4 du premier tube 2, varie en fonction de l'angle de déviation tangentielle 15 en ce point de façon à avoir une section utile 22 de sortie du canal 6 à l'extrémité amont 12 de la portion d'entraînement 9 sensiblement constante. La section utile 22 étant égale au produit de la section droite 23 par le cosinus de l'angle de déviation tangentielle 15. En outre, afin d'avoir en sortie de la conduite 1 un flux ne déviant pas par rapport à l'axe 4 de la conduite 1 (en l'occurrence, le second tube 3 étant le tube externe, afin que le flux ne soit pas divergent) , le second tube 3 comprend une portion cylindrique 24 prolongeant l'extrémité aval 25 de la portion d'entraînement 9. De préférence, afin que cette portion ait un effet de redressement suffisant, sa longueur est au moins supérieure à trois fois la distance séparant les deux tubes 2,3 au niveau de cette portion cylindrique aval 24.In the second example illustrated in FIGS. 3 and 4, each channel 6 opens at the downstream end 16 of the first tube 2 (which is then also the downstream end 18 of the channels 6), as illustrated elsewhere in FIG. elsewhere, the radial distance between the free radial end 19 of the longitudinal walls 14 and the portion 20 of the second tube 3 upstream of the upstream end 12 of the driving portion 9 may be relatively large (both in absolute terms). , for example at least equal to 10 mm, only relative to the radial dimension of the longitudinal walls). Therefore, it is possible to have, at the outlet of the pipe 1, a portion of the fluid whose flow is axial, regardless of the relative axial position of the two tubes 2,3. This part is that which has not been channeled (or which has been channeled over the axial portion of the channels 6 whose tangential deflection angle is zero), ie the portion of the fluid which upstream of the the upstream end 12 of the drive portion 9, was between the second tube 3 and the free radial end 19 of the longitudinal walls 14. In addition, because of the variation of the tangential deflection angle along the axis 4 of the first tube 2, if the spacing between the two longitudinal walls 14 of a channel 6 is constant over the entire length of the In channel 6, the flow rate of the fluid at the outlet of the channels 6 varies as a function of the relative axial position of the two tubes 2, 3 (as a function of the tangential deflection angle at the outlet of the channel 6). Also, in order to have a constant flow regardless of the relative axial position of the two tubes 2,3, as can be seen in Figure 5, each channel 6 is configured so that the spacing between its two longitudinal walls 14 at a point taken along the axis 4 of the first tube 2, varies according to the tangential deflection angle 15 at this point so as to have a useful section 22 for output of the channel 6 at the upstream end 12 of the portion 9 substantially constant drive. The useful section 22 being equal to the product of the cross section 23 by the cosine of the tangential deflection angle 15. In addition, in order to have at the outlet of the pipe 1 a flow that does not deviate with respect to the axis 4 of the pipe 1 (in this case, the second tube 3 being the outer tube, so that the flow is not divergent), the second tube 3 comprises a cylindrical portion 24 extending the downstream end 25 of the drive portion 9. Preferably, so that this portion has a sufficient rectifying effect, its length is at least greater than three times the distance separating the two tubes 2,3 at this downstream cylindrical portion 24.
Une telle conduite 1 peut être intégrée dans tout brûleur comportant plusieurs conduites sensiblement concentriques du fait quelle permet de pouvoir faire varier de façon très simple la composante tangentielle du fluide en sortie en fonction de la position axiale relative des deux tubes 2,3 délimitant cette conduite 1, et cette variation pouvant ne pas entraîner de variation de débit dans le cas où les organes de déviation 6 sont dans une configuration qui s'y prête.Such a pipe 1 can be integrated in any burner comprising several pipes substantially concentric because it makes it possible to vary in a very simple manner the tangential component of the output fluid as a function of the relative axial position of the two tubes 2,3 delimiting this pipe 1, and this variation may not cause a change in flow rate in the case where the deflection members 6 are in a suitable configuration.
Le brûleur peut être du type à air partiel. Il peut par exemple comprendre au moins quatre conduites sensiblement coaxiales, ces quatre conduites comprenant une conduite centrale d'alimentation en combustible, une conduite centrale d'alimentation en air primaire entourant la conduite centrale d' alimentation en combustible, une conduite périphérique d'alimentation en combustible entourant la conduite centrale d'alimentation en air primaire, et une conduite annulaire d'alimentation en air primaire conforme à la présente invention située à l'extérieur de toutes les conduites en alimentation en combustible, le brûleur comportant un stabilisateur central qui recouvre la sortie de la conduite centrale d'alimentation en air primaire, et qui comporte des ouvertures au travers desquelles débouchent l'air primaire provenant de la conduite centrale d'alimentation en air primaire. En fait ce brûleur correspond à celui décrit dans la demande EP 967 434, la conduite conforme à la présente invention remplaçant les deux conduites externes .The burner may be of the partial air type. It may for example comprise at least four substantially coaxial pipes, these four pipes comprising a central fuel supply pipe, a central primary air supply pipe surrounding the central fuel supply pipe, a peripheral feed pipe. in fuel surrounding the central primary air supply pipe, and a primary air supply annular pipe according to the present invention located outside all the fuel supply pipes, the burner having a central stabilizer which covers the outlet of the primary central air supply pipe, and which has openings through which the primary air coming from the central duct supplying primary air. In fact, this burner corresponds to that described in application EP 967 434, the pipe according to the present invention replacing the two external pipes.
Il peut également comprendre au moins quatre conduites sensiblement coaxiales, ces quatre conduites comprenant une conduite centrale d'alimentation en combustible, une conduite annulaire d'alimentation en combustible solide pulvérisé entourant la conduite centrale d'alimentation en combustible, une conduite annulaire centrale d'alimentation en air primaire entourant la conduite d'alimentation en combustible solide pulvérisé, et une conduite annulaire périphérique d'alimentation en air primaire conforme à la présente invention qui entoure la conduite annulaire centrale d'alimentation en air primaire, le brûleur comportant un stabilisateur central, placé à la sortie de la conduite centrale annulaire d'alimentation en air primaire, et qui comportant des ouvertures au travers desquelles débouchent l ' air primaire provenant de la conduite centrale d'alimentation en air primaire. Ce brûleur correspond alors à celui décrit dans la demande EP 1 445 535, la conduite conforme à la présente invention remplaçant les deux conduites externes.It may also comprise at least four substantially coaxial lines, these four lines comprising a central fuel supply pipe, a pulverized solid fuel supply annular pipe surrounding the pipe a fuel supply unit, a central annular primary air supply line surrounding the pulverized solid fuel supply line, and a primary annular primary air supply line according to the present invention which surrounds the central annular line. primary air supply unit, the burner comprising a central stabilizer, placed at the outlet of the annular central primary air supply pipe, and which has openings through which the primary air coming from the central duct primary air supply. This burner then corresponds to that described in application EP 1 445 535, the pipe according to the present invention replacing the two external pipes.
Le brûleur peut être également du type à air total, la conduite annulaire d'alimentation en air primaire conforme à la présente invention étant entourée d'au moins une conduite d'alimentation en air secondaire. Le brûleur peut également du type à gaz comprenant au moins deux conduites sensiblement coaxiales, ces deux conduites comprenant une conduite annulaire périphérique d'alimentation en gaz conforme à la présente invention qui entoure l ' autre conduite . La présente invention n'est pas limitée au mode de réalisation précédemment décrit.The burner may also be of the total air type, the annular primary air supply pipe according to the present invention being surrounded by at least one secondary air supply line. The burner may also be of the gas type comprising at least two substantially coaxial conduits, both of which comprise a peripheral annular gas supply line according to the present invention which surrounds the other conduit. The present invention is not limited to the embodiment previously described.
Il serait ainsi possible que le premier tube (celui portant les organes de déviation) soit le tube externe, le second tube étant alors le tube interne. II serait possible que les canaux soient réalisés par fixation de parois longitudinales (par exemple par soudage) au premier tube. It would thus be possible for the first tube (that carrying the deflection members) to be the outer tube, the second tube then being the inner tube. It would be possible for the channels to be made by fixing longitudinal walls (for example by welding) to the first tube.

Claims

REVENDICATIONS
1. Brûleur comportant plusieurs conduites sensiblement concentriques, dont l'une (1) , située à l'extérieur de toutes les conduites en alimentation en combustible, est délimitée par deux tubes (2,3) dont les axes (4) sont parallèles et qui sont mobiles axialement (5) l'un par rapport à l'autre, caractérisé en ce que des organes de déviation (6) adaptés à conférer une composante tangentielle (7) à un fluide se déplaçant dans la conduite (1) sont portés par un premier tube (2) et sont fixes par rapport à ce dernier, le deuxième tube (3) comprenant une portion d'entraînement (9) adaptée à permettre l'entraînement du fluide hors des organes de déviation (6), l'angle de déviation tangentielle du fluide à l'extrémité aval (8) de la conduite (1) dépendant de la position axiale du second tube (3) par rapport au premier (2) .Burner comprising a plurality of substantially concentric pipes, one (1) of which, located outside all fuel supply pipes, is delimited by two tubes (2, 3) whose axes (4) are parallel and which are axially movable (5) relative to one another, characterized in that deflection members (6) adapted to impart a tangential component (7) to a fluid moving in the pipe (1) are carried by a first tube (2) and are fixed relative to the latter, the second tube (3) comprising a drive portion (9) adapted to allow the fluid to be driven out of the deflection members (6), tangential deflection angle of the fluid at the downstream end (8) of the pipe (1) depending on the axial position of the second tube (3) relative to the first (2).
2. Brûleur selon la revendication 1, caractérisé en ce que le second tube (3) est conformé de façon à permettre un plaquage des filets du fluide contre sa paroi par effet Coanda.2. Burner according to claim 1, characterized in that the second tube (3) is shaped to allow a plating of the fluid threads against its wall by Coanda effect.
3. Brûleur selon la revendication 2, caractérisé en ce que la portion d'entraînement (9) est orientée, selon la direction radiale (10) , dans le sens d'un éloignement du premier tube (2) pour un déplacement selon la direction axiale (5) de l'amont vers l'aval.Burner according to claim 2, characterized in that the drive portion (9) is oriented, in the radial direction (10), in the direction of a distance from the first tube (2) for movement in the direction axial (5) from upstream to downstream.
4. Brûleur selon la revendication 3 , caractérisé en ce que la portion d'entraînement (9) est une portion conique (9) , le demi angle (11) au sommet du cône étant inférieur à 15° . 4. Burner according to claim 3, characterized in that the driving portion (9) is a conical portion (9), the half angle (11) at the top of the cone being less than 15 °.
5. Brûleur selon la revendication 3 ou 4 , caractérisé en ce que le second tube (3) comprend une portion cylindrique (24) prolongeant l'extrémité aval (25) de la portion d'entraînement (9) . 5. Burner according to claim 3 or 4, characterized in that the second tube (3) comprises a cylindrical portion (24) extending the downstream end (25) of the driving portion (9).
6. Brûleur selon l'une des revendications 1 à 5, caractérisé en ce que les organes de déviation (6) sont formés par des canaux (6) , chaque canal (6) étant délimité, d'une part, par une paroi de fond (13), et, d'autre part, deux parois longitudinales (14) qui s'étendent selon les directions axiale (5) et radiale (10) et présentent, par rapport à l'axe (4) du premier tube (2) , une déviation tangentielle (15) .6. Burner according to one of claims 1 to 5, characterized in that the deflection members (6) are formed by channels (6), each channel (6) being delimited, on the one hand, by a wall of base (13), and on the other hand, two longitudinal walls (14) which extend in the axial (5) and radial (10) directions and have, with respect to the axis (4) of the first tube ( 2), a tangential deflection (15).
7. Brûleur selon la revendication 6, caractérisé en ce que, pour chaque canal (6), l'angle de la déviation tangentielle (15) est sensiblement nulle à son extrémité amont (17) .7. Burner according to claim 6, characterized in that, for each channel (6), the angle of the tangential deflection (15) is substantially zero at its upstream end (17).
8. Brûleur selon la revendication 6 ou 7, caractérisé en ce que, pour chaque canal (6), l'angle de la déviation tangentielle (15) croît de l'extrémité amont (17) du canal (6) à son extrémité aval (18) .Burner according to Claim 6 or 7, characterized in that, for each channel (6), the angle of the tangential deflection (15) increases from the upstream end (17) of the channel (6) to its downstream end. (18).
9. Brûleur selon l'une des revendications 6 à 8, caractérisé en ce que, pour chaque canal (6) , en tout point selon la direction axiale (5), l'angle de la déviation tangentielle (15) est inférieure à 45°. 9. Burner according to one of claims 6 to 8, characterized in that, for each channel (6), at any point in the axial direction (5), the angle of the tangential deflection (15) is less than 45 °.
10. Brûleur selon l'une des revendications 6 à 9, caractérisé en ce que chaque canal (6) débouche à l'extrémité aval (16) du premier tube (2).10. Burner according to one of claims 6 to 9, characterized in that each channel (6) opens at the downstream end (16) of the first tube (2).
11. Brûleur selon l'une des revendications 6 à 9, caractérisé en ce que, pour chaque canal (6) , la surface de fond (13) de sa partie extrême aval (21) est orientée, selon la direction radiale (10), dans le sens d'un rapprochement du second tube (3) pour un déplacement selon la direction axiale (5) de l'amont vers l'aval.11. Burner according to one of claims 6 to 9, characterized in that, for each channel (6), the bottom surface (13) of its downstream end portion (21) is oriented in the radial direction (10). , in the sense of a approaching the second tube (3) for displacement in the axial direction (5) from upstream to downstream.
12. Brûleur selon l'une des revendications 6 à 11, caractérisé en ce que, pour la partie des canaux (6) en amont de l'extrémité amont (12) de la portion d'entraînement (9), la dimension radiale des parois longitudinales (14) est telle que leur extrémité radiale libre (19) est a une distance comprise entre 0,5 et 10 mm du second tube (3) . 12. Burner according to one of claims 6 to 11, characterized in that, for the part of the channels (6) upstream of the upstream end (12) of the drive portion (9), the radial dimension of the longitudinal walls (14) is such that their free radial end (19) is at a distance of between 0.5 and 10 mm from the second tube (3).
13. Brûleur selon l'une des revendications 6 à 12, caractérisé en ce que, pour chaque canal, l'écartement entre les deux parois longitudinales (14) en un point varie en fonction de l'angle de déviation tangentielle (15) en ce point de façon à avoir une section de sortie utile du canal (6) à l'extrémité amont (12) de la portion d'entraînement (9) sensiblement constante quelle que soit la position axiale relative des deux tubes (2,3) . 13. Burner according to one of claims 6 to 12, characterized in that, for each channel, the spacing between the two longitudinal walls (14) at a point varies as a function of the tangential deflection angle (15) in this point so as to have a useful output section of the channel (6) at the upstream end (12) of the substantially constant drive portion (9) regardless of the relative axial position of the two tubes (2,3) .
EP06778673A 2005-06-27 2006-06-26 Burner Withdrawn EP1896773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506519A FR2887597B1 (en) 2005-06-27 2005-06-27 ANNULAR CONDUIT AND BURNER COMPRISING SUCH A CONDUCT
PCT/FR2006/001477 WO2007000512A1 (en) 2005-06-27 2006-06-26 Burner

Publications (1)

Publication Number Publication Date
EP1896773A1 true EP1896773A1 (en) 2008-03-12

Family

ID=36051403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778673A Withdrawn EP1896773A1 (en) 2005-06-27 2006-06-26 Burner

Country Status (6)

Country Link
US (1) US9011141B2 (en)
EP (1) EP1896773A1 (en)
CN (1) CN101208559B (en)
BR (1) BRPI0612123A8 (en)
FR (1) FR2887597B1 (en)
WO (1) WO2007000512A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887597B1 (en) * 2005-06-27 2010-04-30 Egci Pillard ANNULAR CONDUIT AND BURNER COMPRISING SUCH A CONDUCT
FR2915989B1 (en) * 2007-05-10 2011-05-20 Saint Gobain Emballage LOW NOX MIXED INJECTOR
FR2919043A1 (en) * 2007-07-20 2009-01-23 Pillard Chauffage BURNER COMPRISING AN ANNULAR AIR SUPPLY PIPE
FR2930626B1 (en) * 2008-04-28 2010-05-21 Fives Pillard BURNER WITH PERIPHERAL AIR FLOW INJECTION POINTS
US20120088201A1 (en) * 2010-10-06 2012-04-12 General Electric Company Apparatus and method for modifying a combustor nozzle
JP5985315B2 (en) * 2012-03-26 2016-09-06 株式会社Roki Ventilation duct
CN102877949B (en) * 2012-09-20 2014-09-17 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Active control mechanism for broadening lean burn flameout boundary of combustion chamber of heavy duty gas turbine
CN105509051B (en) * 2016-01-25 2018-07-17 中国船舶重工集团公司第七�三研究所 Orifice-plate type pipeline gas combustion-compensating device
JP6580710B2 (en) * 2016-07-26 2019-09-25 Jfeスチール株式会社 Auxiliary burner for electric furnace

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1344029A (en) * 1912-01-24 1920-06-22 Alien Property Custodian Apparatus for burning oil
GB323578A (en) * 1928-10-17 1930-01-09 William Albert White Improvements in and relating to furnace fronts
FR777246A (en) * 1933-11-03 1935-02-14 Fire extinguisher device
US2368178A (en) * 1943-01-26 1945-01-30 Hauck Mfg Co Combination burner for liquid and gaseous fuels
US2793686A (en) * 1952-03-18 1957-05-28 Rubye W Phillips Axially adjustable fuel burner for furnaces
US4383820A (en) * 1980-10-10 1983-05-17 Technology Application Services Corporation Fuel gas burner and method of producing a short flame
GB8331128D0 (en) * 1983-11-22 1983-12-29 Babcock Prod Eng Axial swirl generators
EP0445938B1 (en) * 1990-03-07 1996-06-26 Hitachi, Ltd. Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
US5199355A (en) * 1991-08-23 1993-04-06 The Babcock & Wilcox Company Low nox short flame burner
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
EP0656509A4 (en) * 1993-05-21 1996-11-04 Tatarskoe Proizv Ob Energetiki Device for regulating a flame.
DE4325643A1 (en) * 1993-07-30 1995-02-02 Lentjes Kraftwerkstechnik Burners for burning dusty fuel
US5415539A (en) * 1994-02-09 1995-05-16 Cedarapids, Inc. Burner with dispersing fuel intake
DK0836048T3 (en) * 1996-10-08 2001-12-17 Enel Spa Burner
US5829369A (en) * 1996-11-12 1998-11-03 The Babcock & Wilcox Company Pulverized coal burner
KR100330538B1 (en) * 1996-12-27 2002-10-19 스미토모 오사카 시멘트 가부시키가이샤 Device and method for combustion of fuel
US5807094A (en) * 1997-08-08 1998-09-15 Mcdermott Technology, Inc. Air premixed natural gas burner
DE19738054C2 (en) * 1997-09-01 2002-06-20 Heinrich Koehne Method and device for changing the swirl number of the combustion air of a burner during operation
FR2772888B1 (en) * 1997-12-24 2000-03-10 Pillard Chauffage IMPROVEMENT TO SOLID FUEL BURNERS
ITFI980069A1 (en) * 1998-03-25 1999-09-25 Enel Spa INNOVATIVE BURNER FOR LIQUID AND GASEOUS FUELS WITH LOW PRODUCTION OF NITROGEN OXIDES
FR2780489B1 (en) 1998-06-24 2000-09-08 Pillard Chauffage IMPROVEMENT IN BURNERS COMPRISING AT LEAST THREE AIR SUPPLY DUCTS, OF WHICH TWO AXIAL AND ROTATING, CONCENTRIC WITH AT LEAST ONE FUEL-SUPPLY, AND A CENTRAL STABILIZER
JP2000257811A (en) * 1999-03-03 2000-09-22 Hitachi Ltd Method and device for burning pulverized coal, and pulverized coal burning burner
US6315551B1 (en) * 2000-05-08 2001-11-13 Entreprise Generale De Chauffage Industriel Pillard Burners having at least three air feed ducts, including an axial air duct and a rotary air duct concentric with at least one fuel feed, and a central stabilizer
AU776725B2 (en) * 2000-08-04 2004-09-16 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner and combustion method using solid fuel burner
US7267809B2 (en) * 2000-11-27 2007-09-11 The Linde Group Burner and method for the chemical reaction of two gas streams
FR2851032B1 (en) * 2003-02-06 2005-11-11 Pillard Chauffage BURNER IMPROVEMENT COMPRISING A FLAME STABILIZER AND AT LEAST TWO PRIMARY, AXIAL AND ROTATING AIR DUCTS, CONCENTRIC AROUND AT LEAST ONE FUEL SUPPLY
US7028622B2 (en) * 2003-04-04 2006-04-18 Maxon Corporation Apparatus for burning pulverized solid fuels with oxygen
JP4150968B2 (en) * 2003-11-10 2008-09-17 株式会社日立製作所 Solid fuel burner and combustion method of solid fuel burner
US7367798B2 (en) * 2005-06-08 2008-05-06 Hamid Sarv Tunneled multi-swirler for liquid fuel atomization
FR2887597B1 (en) * 2005-06-27 2010-04-30 Egci Pillard ANNULAR CONDUIT AND BURNER COMPRISING SUCH A CONDUCT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007000512A1 *

Also Published As

Publication number Publication date
US20090208889A1 (en) 2009-08-20
FR2887597B1 (en) 2010-04-30
CN101208559B (en) 2011-04-06
US9011141B2 (en) 2015-04-21
WO2007000512A1 (en) 2007-01-04
CN101208559A (en) 2008-06-25
BRPI0612123A8 (en) 2017-04-11
BRPI0612123A2 (en) 2010-10-19
FR2887597A1 (en) 2006-12-29

Similar Documents

Publication Publication Date Title
EP1896773A1 (en) Burner
EP1621744B1 (en) A turbine engine assembly of a nose cone and a shaft with fan blades
FR2927984A1 (en) POWER SUPPLY ARM FOR FUEL INJECTOR WITH MULTIPLE CIRCUITS
EP1967716B1 (en) Aircraft engine equipped with heat exchange system
CA2864629C (en) Fuel injector for a turbomachine
EP0421903B1 (en) Process for operating a burner and burners for rotary drum furnace
EP0014812B1 (en) Burners for solid fuels combined with liquid and/or gaseous fuels
FR2967238A1 (en) AIR FLOW DIRECTION SYSTEM IN A FUEL INJECTOR ASSEMBLY
EP0969239B1 (en) Disconnection device for pressure fluid handling installation
CA2864637A1 (en) Fuel injector for a turbomachine
EP1862735B1 (en) Annular conduit with double flow and burner comprising such a conduit
BE897189A (en) CONTROL VALVE MOUNTED IN A DRILL ROD TRAIN,
FR3011619A1 (en) FUEL INJECTOR FOR A TURBOMACHINE
WO2015170042A1 (en) Decompression insert for rotary valve and rotary valve provided with such an insert
FR2855559A1 (en) SYSTEM FOR SEALING THE SECONDARY FLOW AT THE ENTRY OF A PIPE OF A TURBOMACHINE WITH A POST-COMBUSTION CHAMBER
FR2901313A1 (en) Degassing device for e.g. turboprop engine of aircraft, has titanium degassing tube mounted inside hollow turbine shaft, and cylindrical rings which are mounted on cylindrical tube of degassing tube and immobilized on cylindrical tube
EP2283278B1 (en) Burner with peripheral injection points for an axial air flow
EP0012057A1 (en) Connection of two pipes
EP2017529B1 (en) Burner
FR2887950A1 (en) Gas e.g. oxygen, supply valve for medical application, has valve body made of stainless steel, radial bores that open out in notch communicating with gas inlet channels if valve is open, and throttle valve movable to valve closing position
EP1746343A1 (en) Burner with several annular ducts
WO2016027034A2 (en) Connection device comprising several curved concentric tubes
EP2941553A1 (en) Motor vehicle exhaust line comprising an improved ball-and-socket joint
EP0970325B1 (en) Premix burner with a flow rate of more than 1000 litres/hour
FR2998946A1 (en) CHARCOAL BURNER WITH DOUBLE FLOW

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FIVES PILLARD

17Q First examination report despatched

Effective date: 20160205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180626