EP1895023B1 - Agents for the surface treatment of zinc or zinc alloy products - Google Patents

Agents for the surface treatment of zinc or zinc alloy products Download PDF

Info

Publication number
EP1895023B1
EP1895023B1 EP20060254533 EP06254533A EP1895023B1 EP 1895023 B1 EP1895023 B1 EP 1895023B1 EP 20060254533 EP20060254533 EP 20060254533 EP 06254533 A EP06254533 A EP 06254533A EP 1895023 B1 EP1895023 B1 EP 1895023B1
Authority
EP
European Patent Office
Prior art keywords
zinc
zinc alloy
surface treatment
agent
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060254533
Other languages
German (de)
French (fr)
Other versions
EP1895023A1 (en
Inventor
Takashi Arai
Ro Bo Shin
Takahisa Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP20060254533 priority Critical patent/EP1895023B1/en
Publication of EP1895023A1 publication Critical patent/EP1895023A1/en
Application granted granted Critical
Publication of EP1895023B1 publication Critical patent/EP1895023B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the invention concerns agents for the surface treatment of zinc or zinc alloy products and a method for the surface treatment of zinc or zinc alloy products in which these agents are used.
  • JP-A-2001 279 462 , JP-A- 63161176 and GB-A-1 042 108 all disclose antimony-containing conversion coating solutions.
  • Zinc or zinc alloy products can be provided with excellent corrosion resistance at low cost by means of this invention.
  • An agent for the surface treatment of zinc or zinc alloy products as described includes at least one water-soluble compound which contains antimony, bismuth, tellurium or tin. Ideally it also includes nickel salts and/or manganese salts, and most desirably it also includes tannins and/or thioureas.
  • Die-cast zinc products and zinc plated products where zinc has been plated on steel or the like are included among the zinc or zinc alloy products, and at least the surface of the product should comprise zinc or zinc alloy.
  • the water-soluble compounds which contain antimony, bismuth, tellurium or tin are soluble in water under acidic or alkaline conditions, and they include, for example, antimony pentachloride, antimony pentoxide, antimony sulphate, antimony tribromide, antimony trichloride, antimony trioxide, antimony trisulphide, antimony benzoate, antimony tartrate, bismuth chloride, bismuth citrate, bismuth fluoride, bismuth hydroxide, bismuth tri-iodide, bismuth sulphate, bismuth oxychloride, bismuth acetate, bismuth benzoate, bismuth tartrate, bismuth carbonate, bismuth nitrate, bismuth salicylate, bismuth trisulphide, potassium tellurate, potassium tellutite, potassium stannate and tin sulphate.
  • the amounts compounded differ according to the type of water-soluble compound, but generally the amounts compound
  • the agents for the surface treatment of zinc or zinc alloy products as described include at least one of these water-soluble compounds which contain antimony, bismuth, tellurium or tin, but antimony or bismuth are especially desirable since they are reactive again on being wetted with water after a film has been formed on the surface of a zinc or zinc alloy product and a new film is formed so that the corrosion resistance life expectancy is prolonged. Furthermore, by using two, three or all four of antimony, bismuth, tellurium and tin conjointly the adhesion, hardness and smoothness of the film are improved and it is also possible to control the colour effectively. From these points of view the most ideal combinations in the case of conjoint use are those combinations of two or more including antimony and/or bismuth. In connection with the colour there is a tendency towards increased blackness, greyness, whiteness and whiteness as more antimony, bismuth, tellurium or tin, respectively, is compounded.
  • the inclusion in the agents for the surface treatment of zinc or zinc alloy products as described in addition to at least one of these water-soluble compounds which contains antimony, bismuth, tellurium or tin of a nickel salt and/or a manganese salt is ideal for reinforcing the corrosion resistance.
  • the amount compounded is generally of the order of from 1 to 20 g/L, and preferably of the order of from 5 to 10 g/L.
  • Salts selected from among the sulphates, chlorides, nitrates and phosphates are preferred for the nickel salts and manganese salts. These nickel salts and manganese salts can reinforce the corrosion resistance and, for example, manganese sulphate is most desirable for improving the corrosion resistance by improving adhesion, and in the case of the nickel salts, and especially nickel sulphate, the conjoint use of the hypophosphite is especially desirable for improving the hardness in addition to the corrosion resistance.
  • the amount of hypophosphite compounded is generally of the order of from 1 to 20 g/L and preferably of the order of from 5 to 10 g/L.
  • tannins such as tannic acid and the like and/or thioureas such as thiourea or salts thereof the dispersion properties are improved and the corrosion resistance is improved even more, and the gloss is increased and a beautiful colour can be obtained.
  • the amounts in which these materials are compounded are generally of the order of from 5 to 50 g/L and preferably of the order of from 10 to 30 g/L.
  • additives can be added to the agents for the surface treatment of zinc or zinc alloy products as described in accordance with the intended purpose.
  • examples include inorganic additives selected from among the inorganic acids, except for sulphuric acid and hydrochloric acid, and iodine compounds such as iodine and potassium iodide, and organic additives selected from among the amino acids, starch, cellulose, gelatin, rosin and poly(vinyl alcohol).
  • the amounts compounded are generally of the order of from 0.5 to 10 g/L, and preferably of the order of from 1 to 5 g/L.
  • the agents for the surface treatment of zinc or zinc alloy products of this invention may be used as acidic or alkaline baths.
  • the reaction rate is greater on the acidic side and tends to be low on the alkaline side and so they are preferably used at a pH of from 4 to 5 to obtain the optimum reactivity, but they are not limited to this pH range.
  • additives other than those indicated above such as dispersing agents, dispersion promoters and compounding ingredients for imparting an intended colour can be added appropriately to the agents for the surface treatment of zinc or zinc alloy products as described in accordance with the intended purpose.
  • the zinc or zinc alloy product When carrying out the surface treatment of a zinc or zinc alloy product using an agent for the surface treatment of zinc or zinc alloy products of this invention the zinc or zinc alloy product is immersed in an aqueous solution which contains this surface treatment agent and a corrosion resistant film is formed on the surface of the zinc or zinc alloy product.
  • the thickness of this film can be determined appropriately according to the intended purposes but it is generally from 0.5 to 2 ⁇ m.
  • the oxide which is attached to the surface has preferably been removed beforehand by the usual means such as de-greasing, acid washing, neutralization, etching and the like.
  • the immersion treatment of the zinc or zinc alloy product is generally carried out at a temperature of from 15 to 40°C, and preferably of from 20 to 30°C, and for a period of about 5 minutes. For example, if a temperature exceeding 40°C is used then the rate of formation of the film is increased and so more rigorous quality control is desirable.
  • the immersion treated zinc or zinc alloy product is then washed and dried in the usual way.
  • the colour of the film which is formed on the surface of the zinc or zinc alloy product in this way differs according to the components of the agent for surface treatment purposes.
  • the zinc or zinc alloy products which have been immersion treated in the way outlined above are preferably also immersed in an aqueous solution which contains a sealing treatment agent to seal the pinholes.
  • the sealing treatment agent is preferably selected in accordance with the colour of the zinc or zinc alloy product, and examples include (yellow) boric acid, ammonium oxalate; (yellow-brown) chromic acid, citric acid, tartaric acid, phthalic acid, malic acid; (whitish-yellow) succinic acid and (greyish-yellow) maleic acid.
  • the sealing treatment is preferably carried out by immersion in an aqueous solution which contains some 5 to 10 g/L of a sealing treatment agent as indicated above generally at a temperature of from 20 to 40°C for a period of the order of from 1 to 5 minutes. Then the product is preferably washed in pure water at a temperature of from 50 to 60°C and dried.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 35°C in an aqueous solution (pH 3 to 5) which contained 2 g/L of tin sulphate, 5 g/L of manganese sulphate, 2 g/L of iodine, 5 g/L of potassium iodide and 10 g/L of tannic acid and a green coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 35°C in an aqueous solution (pH 5 to 6) which contained 2 g/L of tin sulphate, 5 g/L of manganese sulphate, 1 g/L of selenous acid, 8 g/L of sulphuric acid and 10 g/L of tannic acid and a gold coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH about 5) which contained 2 g/L of tin sulphate, 25 g/L of nickel sulphate, 20 g/L of sodium hypophosphite, 30 g/L of ammonium sulphate, 15 g/L of boric acid and 15 g/L of glycerine and a bronze coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH about 10) which contained 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 2 g/L of pyrophosphoric acid, 25 g/L of caustic soda, 5 g/L of thiourea and 5 g/L of potassium permanganate and a yellow coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 25°C in an aqueous solution (pH about 10) which contained 3 g/L of bismuth chloride, 25 g/L of manganese sulphate, 25 g/L of caustic soda, 5 g/L of thiourea and 2 g/L of potassium permanganate and a brown coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 3 minutes at 25°C in an aqueous solution (pH about 11) which contained 6 g/L of antimony dioxide, 25 g/L of manganese sulphate, 30 g/L of caustic soda, 5 g/L of thiourea and 5 g/L of potassium perchlorate and a coffee coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 40°C in an aqueous solution (pH about 11) which contained 5 g/L of bismuth nitrate, 25 g/L of manganese sulphate, 30 g/L of caustic soda, 40 g/L of zinc nitrate and 50 g/L of diethylene glycol and a grey coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of potassium tellurate, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • a zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of antimony tartrate, 5 g/L of bismuth chloride, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • the immersion treated bolts obtained in Examples 1 to 10 described above were immersed generally at about 30°C for from 2 to 3 minutes in an aqueous solution which contained from 5 to 10 g/L of a sealing treatment agent as indicated below according to the colour, and then they were washed in pure water at from 50 to 60°C and dried and a further improvement in corrosion resistance was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

    Field of the Invention
  • The invention concerns agents for the surface treatment of zinc or zinc alloy products and a method for the surface treatment of zinc or zinc alloy products in which these agents are used.
  • Background to the Invention
  • In the past zinc die-cast products, or zinc plated products where zinc has been plated on steel or the like, have been used in various fields. Chromate treatments have been widely used as surface treatments for imparting corrosion resistance to these products, but replacement methods have been investigated from various points of view since hexavalent chromium is toxic. However, there are great expectations of a method of surface treatment which is equivalent to chromate treatment in terms of low cost and corrosion resistance.
  • Hence the inventors have carried out various investigations with a view to obtaining an agent for the surface treatment of zinc or zinc alloy products which provides excellent corrosion resistance at low cost and the present invention has been realized. JP-A-2001 279 462 , JP-A- 63161176 and GB-A-1 042 108 all disclose antimony-containing conversion coating solutions.
  • Summary of the Invention
  • The present invention is defined by the claims forming part of this specification which also discloses the following:
    1. (1) An agent for the surface treatment of zinc or zinc alloy products which is characterized in that it includes at least one water-soluble compound which contains antimony, bismuth, tellurium or tin.
    2. (2) An agent for the surface treatment of zinc or zinc alloy products which is characterized in that it includes at least one water-soluble compound which contains antimony, bismuth, tellurium or tin, and a nickel salt and/or a manganese salt.
    3. (3) An agent for the surface treatment of zinc or zinc alloy products which is characterized in that it includes at least one water-soluble compound which contains antimony, bismuth, tellurium or tin, a nickel salt and/or a manganese salt, and tannins and/or thioureas.
    4. (4) An agent for the surface treatment of zinc or zinc alloy products according to (2) or (3) above in which the nickel and manganese salts are selected from among the sulphates, chlorides, nitrates and phosphates.
    5. (5) An agent for the surface treatment of zinc or zinc alloy products according to any of (1) to (4) above which also includes inorganic additives selected from among the inorganic acids and iodine compounds.
    6. (6) An agent for the surface treatment of zinc or zinc alloy products according to any of (1) to (5) above which also includes organic additives selected from among the amino acids, starch, cellulose, gelatin, rosin and poly(vinyl alcohol).
    7. (7) A method for the surface treatment of zinc or zinc alloy products which is characterized in that a zinc or zinc alloy product is immersed in an aqueous solution which contains an agent for the surface treatment of zinc or zinc alloy products as disclosed in any of (1) to (6) above.
    8. (8) A method for the surface treatment of zinc or zinc alloy products according to (7) above which is characterized in that the zinc or zinc alloy product is also immersed in an aqueous solution which contains a sealing treatment agent.
    9. (9) A method for the surface treatment of zinc or zinc alloy products according to (8) above in which the sealing treatment agent is selected according to the colour of the zinc or zinc alloy product.
  • Zinc or zinc alloy products can be provided with excellent corrosion resistance at low cost by means of this invention.
  • An agent for the surface treatment of zinc or zinc alloy products as described includes at least one water-soluble compound which contains antimony, bismuth, tellurium or tin. Ideally it also includes nickel salts and/or manganese salts, and most desirably it also includes tannins and/or thioureas.
  • Die-cast zinc products and zinc plated products where zinc has been plated on steel or the like are included among the zinc or zinc alloy products, and at least the surface of the product should comprise zinc or zinc alloy.
  • The water-soluble compounds which contain antimony, bismuth, tellurium or tin are soluble in water under acidic or alkaline conditions, and they include, for example, antimony pentachloride, antimony pentoxide, antimony sulphate, antimony tribromide, antimony trichloride, antimony trioxide, antimony trisulphide, antimony benzoate, antimony tartrate, bismuth chloride, bismuth citrate, bismuth fluoride, bismuth hydroxide, bismuth tri-iodide, bismuth sulphate, bismuth oxychloride, bismuth acetate, bismuth benzoate, bismuth tartrate, bismuth carbonate, bismuth nitrate, bismuth salicylate, bismuth trisulphide, potassium tellurate, potassium tellutite, potassium stannate and tin sulphate. The amounts compounded differ according to the type of water-soluble compound, but generally the amounts compounded are of the order of from 0.5 to 50 g/L, and preferably of the order of from 1 to 20 g/L.
  • The agents for the surface treatment of zinc or zinc alloy products as described include at least one of these water-soluble compounds which contain antimony, bismuth, tellurium or tin, but antimony or bismuth are especially desirable since they are reactive again on being wetted with water after a film has been formed on the surface of a zinc or zinc alloy product and a new film is formed so that the corrosion resistance life expectancy is prolonged. Furthermore, by using two, three or all four of antimony, bismuth, tellurium and tin conjointly the adhesion, hardness and smoothness of the film are improved and it is also possible to control the colour effectively. From these points of view the most ideal combinations in the case of conjoint use are those combinations of two or more including antimony and/or bismuth. In connection with the colour there is a tendency towards increased blackness, greyness, whiteness and whiteness as more antimony, bismuth, tellurium or tin, respectively, is compounded.
  • The inclusion in the agents for the surface treatment of zinc or zinc alloy products as described in addition to at least one of these water-soluble compounds which contains antimony, bismuth, tellurium or tin of a nickel salt and/or a manganese salt is ideal for reinforcing the corrosion resistance. The amount compounded is generally of the order of from 1 to 20 g/L, and preferably of the order of from 5 to 10 g/L.
  • Salts selected from among the sulphates, chlorides, nitrates and phosphates are preferred for the nickel salts and manganese salts. These nickel salts and manganese salts can reinforce the corrosion resistance and, for example, manganese sulphate is most desirable for improving the corrosion resistance by improving adhesion, and in the case of the nickel salts, and especially nickel sulphate, the conjoint use of the hypophosphite is especially desirable for improving the hardness in addition to the corrosion resistance. The amount of hypophosphite compounded is generally of the order of from 1 to 20 g/L and preferably of the order of from 5 to 10 g/L.
  • Furthermore, by including tannins such as tannic acid and the like and/or thioureas such as thiourea or salts thereof the dispersion properties are improved and the corrosion resistance is improved even more, and the gloss is increased and a beautiful colour can be obtained. The amounts in which these materials are compounded are generally of the order of from 5 to 50 g/L and preferably of the order of from 10 to 30 g/L.
  • Moreover, various other additives can be added to the agents for the surface treatment of zinc or zinc alloy products as described in accordance with the intended purpose. Examples include inorganic additives selected from among the inorganic acids, except for sulphuric acid and hydrochloric acid, and iodine compounds such as iodine and potassium iodide, and organic additives selected from among the amino acids, starch, cellulose, gelatin, rosin and poly(vinyl alcohol). The amounts compounded are generally of the order of from 0.5 to 10 g/L, and preferably of the order of from 1 to 5 g/L. By including these additives the film is made more dense, the hardness is improved and it is possible to prolong the life expectancy of the corrosion resistance.
  • The agents for the surface treatment of zinc or zinc alloy products of this invention may be used as acidic or alkaline baths. The reaction rate is greater on the acidic side and tends to be low on the alkaline side and so they are preferably used at a pH of from 4 to 5 to obtain the optimum reactivity, but they are not limited to this pH range.
  • Moreover, various additives other than those indicated above, such as dispersing agents, dispersion promoters and compounding ingredients for imparting an intended colour can be added appropriately to the agents for the surface treatment of zinc or zinc alloy products as described in accordance with the intended purpose.
  • When carrying out the surface treatment of a zinc or zinc alloy product using an agent for the surface treatment of zinc or zinc alloy products of this invention the zinc or zinc alloy product is immersed in an aqueous solution which contains this surface treatment agent and a corrosion resistant film is formed on the surface of the zinc or zinc alloy product. The thickness of this film can be determined appropriately according to the intended purposes but it is generally from 0.5 to 2 µm. At the time of the immersion treatment of the zinc or zinc alloy product the oxide which is attached to the surface has preferably been removed beforehand by the usual means such as de-greasing, acid washing, neutralization, etching and the like. The immersion treatment of the zinc or zinc alloy product is generally carried out at a temperature of from 15 to 40°C, and preferably of from 20 to 30°C, and for a period of about 5 minutes. For example, if a temperature exceeding 40°C is used then the rate of formation of the film is increased and so more rigorous quality control is desirable. The immersion treated zinc or zinc alloy product is then washed and dried in the usual way. The colour of the film which is formed on the surface of the zinc or zinc alloy product in this way differs according to the components of the agent for surface treatment purposes.
  • In this invention the zinc or zinc alloy products which have been immersion treated in the way outlined above are preferably also immersed in an aqueous solution which contains a sealing treatment agent to seal the pinholes. The sealing treatment agent is preferably selected in accordance with the colour of the zinc or zinc alloy product, and examples include (yellow) boric acid, ammonium oxalate; (yellow-brown) chromic acid, citric acid, tartaric acid, phthalic acid, malic acid; (whitish-yellow) succinic acid and (greyish-yellow) maleic acid. The sealing treatment is preferably carried out by immersion in an aqueous solution which contains some 5 to 10 g/L of a sealing treatment agent as indicated above generally at a temperature of from 20 to 40°C for a period of the order of from 1 to 5 minutes. Then the product is preferably washed in pure water at a temperature of from 50 to 60°C and dried.
  • The invention is described in more detail below by means of illustrative examples, in which examples 4, 5, 7 and 10 arc agents in accordance with the invention, whereas examples 1-3 use other agents.
  • Example 1
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 35°C in an aqueous solution (pH 3 to 5) which contained 2 g/L of tin sulphate, 5 g/L of manganese sulphate, 2 g/L of iodine, 5 g/L of potassium iodide and 10 g/L of tannic acid and a green coloured film was obtained.
  • Example 2
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 35°C in an aqueous solution (pH 5 to 6) which contained 2 g/L of tin sulphate, 5 g/L of manganese sulphate, 1 g/L of selenous acid, 8 g/L of sulphuric acid and 10 g/L of tannic acid and a gold coloured film was obtained.
  • Example 3
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH about 5) which contained 2 g/L of tin sulphate, 25 g/L of nickel sulphate, 20 g/L of sodium hypophosphite, 30 g/L of ammonium sulphate, 15 g/L of boric acid and 15 g/L of glycerine and a bronze coloured film was obtained.
  • Example 4
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • Example 5
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH about 10) which contained 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 2 g/L of pyrophosphoric acid, 25 g/L of caustic soda, 5 g/L of thiourea and 5 g/L of potassium permanganate and a yellow coloured film was obtained.
  • Example 6
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 25°C in an aqueous solution (pH about 10) which contained 3 g/L of bismuth chloride, 25 g/L of manganese sulphate, 25 g/L of caustic soda, 5 g/L of thiourea and 2 g/L of potassium permanganate and a brown coloured film was obtained.
  • Example 7
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 3 minutes at 25°C in an aqueous solution (pH about 11) which contained 6 g/L of antimony dioxide, 25 g/L of manganese sulphate, 30 g/L of caustic soda, 5 g/L of thiourea and 5 g/L of potassium perchlorate and a coffee coloured film was obtained.
  • Example 8
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 40°C in an aqueous solution (pH about 11) which contained 5 g/L of bismuth nitrate, 25 g/L of manganese sulphate, 30 g/L of caustic soda, 40 g/L of zinc nitrate and 50 g/L of diethylene glycol and a grey coloured film was obtained.
  • Example 9
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of potassium tellurate, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • Example 10
  • A zinc-plated steel bolt (length about 70 mm) was immersed and treated for 2 minutes at 20°C in an aqueous solution (pH 4 to 5) which contained 15 g/L of antimony tartrate, 5 g/L of bismuth chloride, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea and a black coloured film was obtained.
  • Good corrosion resistance was observed on spraying salt water for 72 hours onto the immersion treated bolts obtained in Examples 1 to 10 described above and testing the corrosion resistance in respect of salt water.
  • The immersion treated bolts obtained in Examples 1 to 10 described above were immersed generally at about 30°C for from 2 to 3 minutes in an aqueous solution which contained from 5 to 10 g/L of a sealing treatment agent as indicated below according to the colour, and then they were washed in pure water at from 50 to 60°C and dried and a further improvement in corrosion resistance was observed.
  • (Green) Iodine; (Gold) Selenous acid; (Bronze) Boric acid; (Black) Ammonium oxalate; (Yellow) Picric acid; (Brown) Potassium permanganate; (Coffee coloured) Potassium perchlorate; (Grey) Maleic acid.
  • By means of the present invention it is possible to provide an agent for surface treatment which can impart excellent corrosion resistance to zinc or zinc alloy products at low cost.

Claims (6)

  1. An agent for the surface treatment of zinc or zinc alloy products, comprising an aqueous solution of at least one water-soluble compound which contains antimony, characterised in that the solution contains:
    (a) 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 10 g/L of ammonium oxalate and 5 g/L of thiourea, and has a pH of 4 to 5; or
    (b) 15 g/L of antimony tartrate, 25 g/L of manganese sulphate, 2 g/L of pyrophosphoric acid, 25 g/L of caustic soda and 5 g/L of potassium permanganate, 5 g/L of thiourea, and has a pH of about 10; or
    (c) 6 g/l of antimony dioxide, 25 g/L of manganese sulphate, 30 g/L of caustic soda, 5 g/L of thiourea and 5 g/L potassium perchlorate, and has a pH of about 11,
  2. An agent according to claim 1, characterised in that the solution that contains 15 g/L antimony tartrate, 25 g/L of manganese sulphate, 10 g/L ammonium oxalate and 5 g/L of thiourea also contains 5 g/L of bismuth chloride.
  3. A method for the surface treatment of a zinc or zinc alloy products, by immersing the zinc or zinc alloy product in an agent for the surface treatment of zinc or zinc alloy products characterised in that the agent is an agent in accordance with any preceding claim.
  4. A method according to claim 3, characterized in that the zinc or zinc alloy product is also immersed in an aqueous solution which contains a sealing treatment agent.
  5. A method according to claim 3 or 4 when dependent from claim 1(c) or 4, characterised in that the zinc or zinc alloy product is immersed in the agent for the surface treatment of zinc or zinc alloy products for 3 minutes at a temperature of 25°C.
  6. A method according to claim 3 or 4 characterised in that the zinc or zinc alloy product is immersed in the agent for the surface treatment of zinc or zinc alloy products for 2 minutes at a temperature of 20°C.
EP20060254533 2006-08-31 2006-08-31 Agents for the surface treatment of zinc or zinc alloy products Expired - Fee Related EP1895023B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20060254533 EP1895023B1 (en) 2006-08-31 2006-08-31 Agents for the surface treatment of zinc or zinc alloy products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060254533 EP1895023B1 (en) 2006-08-31 2006-08-31 Agents for the surface treatment of zinc or zinc alloy products

Publications (2)

Publication Number Publication Date
EP1895023A1 EP1895023A1 (en) 2008-03-05
EP1895023B1 true EP1895023B1 (en) 2013-05-01

Family

ID=37670633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060254533 Expired - Fee Related EP1895023B1 (en) 2006-08-31 2006-08-31 Agents for the surface treatment of zinc or zinc alloy products

Country Status (1)

Country Link
EP (1) EP1895023B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6629979B2 (en) * 2016-01-19 2020-01-15 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to the method
JP7347751B2 (en) * 2019-06-21 2023-09-20 日本表面化学株式会社 Metal surface treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE316668B (en) * 1963-09-23 1969-10-27 Parker Ste Continentale
DE2150143A1 (en) * 1971-05-24 1972-12-07 Cons Foods Corp Black coatings on iron and zinc - produced by treatment with acid solns contg tellurium cations
JPS62174386A (en) * 1986-01-27 1987-07-31 Nippon Parkerizing Co Ltd Treating solution for forming oxalate film and chemical conversion treatment of stainless steel material with said solution
JPS63161176A (en) * 1986-12-23 1988-07-04 Nkk Corp Treatment liquid for blackening zinc or zinc alloy and its method
JPH0293077A (en) * 1988-09-27 1990-04-03 Kobe Steel Ltd Production of black plated steel sheet
US5089349A (en) * 1989-06-05 1992-02-18 Calgon Corporation Compositions and method for applying coatings to metallic surfaces
KR100567176B1 (en) * 1999-10-22 2006-04-03 제이에프이 스틸 가부시키가이샤 Composition for metal surface treatment and surface treated metallic material
JP2001279462A (en) * 2000-03-30 2001-10-10 Boshin Ro Surface treating agent and surface treating method for zinc or zinc alloy

Also Published As

Publication number Publication date
EP1895023A1 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
EP1995348B1 (en) Treatment solution for forming of black trivalent chromium chemical coating on zinc or zinc alloy and method of forming black trivalent chromium chemical coating on zinc or zinc alloy
EP0776384B1 (en) Improved non-chromated oxide coating for aluminium substrates
JPS6352114B2 (en)
CN101356301B (en) Aqueous reaction solution and method of passivating workpieces having zinc or zinc alloy surfaces
EP0038122A1 (en) Forming corrosion-resistant coatings upon the surfaces of metals, especially zinc
EP0347420A1 (en) A method of forming a corrosion resistant coating
US20110070429A1 (en) Corrosion-resistant coating for active metals
EP3456865B1 (en) Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy base and chemical conversion treatment method using the same
US9797044B2 (en) Aqueous acidic composition for forming chromium-containing chemical conversion coating on iron-based member, and iron-based member having chemical conversion coating formed using the composition
CN102011118A (en) Trivalent chromium passivating agent for zinc and zinc alloy coatings
US5178690A (en) Process for sealing chromate conversion coatings on electrodeposited zinc
US4444601A (en) Metal article passivated by a bath having an organic activator and a film-forming element
EP1895023B1 (en) Agents for the surface treatment of zinc or zinc alloy products
US20080113102A1 (en) Agents for the surface treatment of zinc or zinc alloy products
CN101139707A (en) Surface processing agent for zinc or zinc alloy product
JP3584937B1 (en) Hexavalent chromium-free black rust-proof coating, surface treatment solution and treatment method
EP3239355B1 (en) Trivalent chromium chemical conversion liquid for zinc or zinc alloy bases
US7204871B2 (en) Metal plating process
JP5669848B2 (en) Treatment solution for producing black conversion coatings free from chromium and cobalt
EP4108805B1 (en) Chemical conversion treatment liquid, and method for manufacturing member in which chemical conversion film is provided on surface
JP4794248B2 (en) Surface treatment agent for zinc or zinc alloy products
US3090710A (en) Method and solution for producing chromate coatings on zinc and zinc alloys
JP4436885B1 (en) Chemical conversion treatment liquid and chemical film forming method
JP4883923B2 (en) Surface treatment agent for zinc or zinc alloy products
EP3771748A1 (en) Chromium (vi) and cobalt-free black passivation for zinc nickel surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20090402

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006036006

Country of ref document: DE

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006036006

Country of ref document: DE

Effective date: 20140204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006036006

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301