EP1894067B1 - Device for automatically adjusting the servo-controller of a mechanical motion simulator and simulator with such a device - Google Patents

Device for automatically adjusting the servo-controller of a mechanical motion simulator and simulator with such a device Download PDF

Info

Publication number
EP1894067B1
EP1894067B1 EP06743845A EP06743845A EP1894067B1 EP 1894067 B1 EP1894067 B1 EP 1894067B1 EP 06743845 A EP06743845 A EP 06743845A EP 06743845 A EP06743845 A EP 06743845A EP 1894067 B1 EP1894067 B1 EP 1894067B1
Authority
EP
European Patent Office
Prior art keywords
corrector
inertia
parameter
mechanical device
payload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06743845A
Other languages
German (de)
French (fr)
Other versions
EP1894067A1 (en
Inventor
Bernard Vau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IXMOTION
Original Assignee
Nouvelle Wuilfert Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nouvelle Wuilfert Ste filed Critical Nouvelle Wuilfert Ste
Publication of EP1894067A1 publication Critical patent/EP1894067A1/en
Application granted granted Critical
Publication of EP1894067B1 publication Critical patent/EP1894067B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41234Design, modeling of position controller

Definitions

  • the subject of the invention is that of the servocontrol of the movement of a motion simulator.
  • a motion simulator is an assembly comprising a mechanical device and electronic and software units for controlling the mechanical device.
  • the latter comprises a movable plate for receiving a load.
  • the plate is able to be moved in rotation around one or more geometric axes and / or in translation along one or more geometric axes.
  • the position of the solid that constitutes the plateau is given by the position of its center of gravity and the orientation of an axis perpendicular to the plane of the plateau.
  • a motion simulator can be an onboard positioner for positioning a given payload.
  • a motion simulator can also be a test bench for testing a load, such as an inertial system to be tested, during a sequence of controlled movements.
  • the plate is then set in motion according to a predetermined sequence comprising a temporal succession of setpoint positions.
  • the kinematic parameters of the plateau deriving from setpoint in position can be compared to the kinematic parameters measured by the inertial system to be tested.
  • FIG. 1 there is shown a general diagram of a control loop of a motion simulator along an axis of rotation.
  • the mechanical part of this servo loop comprises: the plate and its load mounted on a mechanical axis, the mechanical system 3 thus formed having a moment of inertia J with respect to its axis of rotation; the engine 2; the power amplifier 1; and, a position sensor 4.
  • the power amplifier in response to the control signal U, outputting a current I whose amplitude and step control the movement of the motor 2.
  • the motor 2 generates a torque ⁇ for rotating the mechanical system 3.
  • the sensor 4 measuring, at each instant, the effective position y of the plate 3 and emits, at the output, a measurement signal giving a measurement Y of the position of the plate 3.
  • the servo-control of a rotating machine consists in creating a feedback from the Y-measure of a magnitude y such as position, speed, etc.
  • the purpose of this feedback is to allow effective monitoring of the desired quantity r.
  • a correction or correction block 5 is generically defined as a component capable of transmitting a control signal U as a function of the setpoint r and of the measurement Y so that, for a given value of the setpoint r, the measured value Y converges to this value of the setpoint.
  • the most frequently used servo corrector is of the PID type (proportional, integral, derivative) whose principle is described on the figure 2 .
  • the measurement Y is first subtracted from the setpoint r.
  • a gap e is obtained.
  • the difference e is multiplied by a constant K P in step 101, and the result obtained is fed into the input of an adder 110.
  • the difference e is multiplied by a constant K I then the result obtained is integrated with respect to the time in step 103.
  • the result is applied to the input of the adder 110.
  • step 104 the difference e is multiplied by the constant K D , then derived with respect to time during step 105.
  • the result of step 105 is emitted towards the input of the summator 110.
  • the search for a maximum bandwidth leads to privileging the performance of the system compared to its robustness.
  • the robustness is relatively low which requires to adapt the corrector for each load.
  • the parameters of the corrector used for example the gains K P , K I and K D of the corrector of the type PID represented on the figure 2 , must be adjusted each time the load is changed.
  • the adjustment of the corrector is done "manually" by the intervention of a technician in charge of the motion simulator each time the load of the simulator is modified.
  • This setting is expensive in time and is empirical. Indeed, it requires many tests of the trial-and-error type to find the value of the adapted gains because the parameters of adjustment of the PID are dependent on each other.
  • it is difficult to guarantee that the setting obtained corresponds to the optimum setting of the system. If the servo loop operates with a wrongly set corrector, the risk that the closed loop is not stable is not zero.
  • One technique consists in realizing an automatic real-time adjustment of the corrector parameters intended to slave a rotating machine during the use of the latter.
  • This technique known under the name of self-adaptive control (“self control”), is not transposable to the case of motion simulators because it is of great complexity especially since it is about respecting the constraint of 'real time' adjustment of the corrector.
  • self control self-adaptive control
  • the article by Jouve et al. discloses a method that is actually specific to machine tools. Indeed, these last operate at high speeds, more than 5000 rpm, which are to be compared to the maximum speeds of about 500 rpm, operation of motion simulators. However, the methodology described can not be used at low speed, ie below a speed threshold, without the identification step being biased by nonlinear phenomena.
  • Li et al. [Modeling, simulation and control of a hydraulic Stewart platform, IEEE 1997 , XP010235479] have proposed a method of controlling a Stewart platform for use as a motion simulator.
  • the dynamic equations of the platform are derived from the virtual work principle, a robust and powerful controller is proposed but the on-line identification of the parameters of such a robust controller is not envisaged.
  • the subject of the invention is an adjustment method implemented in a motion simulator capable of carrying a load, the simulator comprising a mechanical device and a control unit, the mechanical device comprising drive means for setting in motion a tray capable of carrying the load; a current amplifier adapted to actuate the drive means in response to a control signal; a sensor capable of measuring a position and the control unit comprising a corrector adapted to transmit the control signal as a function of a reference signal and the measured quantity.
  • the mechanical device is able to put the board carrying a load at least in translation along an axis, the inertia parameter then being a mass of inertia.
  • the mechanical device is able to put the board carrying a load at least in rotation about an axis, the inertia parameter then being a moment of inertia.
  • the corrector is in a closed servo loop on a digital simulation of the mechanical device carrying a load having a nominal inertia parameter in the range.
  • all the test, identification and final stages are performed again at least at each load change.
  • the first modeling is a linear modeling of the dynamic behavior of the mechanical device.
  • the robust and optimal correctors are synthesized with a LQG-H2 type methodology (optimization of the corrector according to a quadratic criterion) comprise a Kalman filter based on the first model, the Kalman filter taking, as input, the control signal, the measured quantity and the setpoint to generate, at the output, an estimated state of the mechanical device, estimated state being applied as control signal after being multiplied by a vector called state feedback vector.
  • a LQG-H2 type methodology optimization of the corrector according to a quadratic criterion
  • the Kalman filter makes it possible to estimate the disturbances affecting the mechanical device by modeling them by a signal coming to add to the control signal at the input of the mechanical device to be enslaved.
  • the synthesis of robust and optimal correctors is made using a methodology called standard state control.
  • the robust or optimal correctors comprise four high-level scalar control parameters.
  • the initial step comprises first, by varying a first scalar parameter among the scalar parameters, the search for a corrector having a module margin greater than a threshold module margin for all the moment values of inertia of the range of moment of inertia, then, by varying another scalar parameter, said second parameter, among the scalar parameters, the search for a corrector having a delay margin greater than a threshold delay margin for all moment of inertia values of the moment of inertia range.
  • the final step comprises first, by varying the second parameter, the search for a corrector having a delay margin greater than the threshold delay margin, then , by still varying another scalar parameter, said third parameter, among the four scalar parameters, the search for an optimal corrector having a module margin greater than the threshold module margin.
  • the second modeling is a linear modeling of the behavior of the device.
  • the second modeling explicitly takes into account forces leading to a non-linear behavior of the device.
  • the method comprises, at the end of the testing step, a preprocessing step to reject the data for which the corresponding value of the speed of the plate is lower than a threshold speed.
  • the invention presented here uses a modeling of the axis to be enslaved. Now some disturbing forces acting on the axis, depend explicitly on the position (unbalance), which requires the absolute knowledge of this position to develop the model of the axis.
  • the synthesis of the robust corrector used is more complex.
  • the synthesis of a low gain PI corrector such as that implicitly described in the article by Jouve et al., Is not sufficient.
  • the robust corrector type LQG-H2 is synthesized by a methodology called standard state control.
  • the method according to the invention is particularly simple to use. It has the advantage of being able to be implemented by the end user of the motion simulator, which does not necessarily have to be a specialist in controlling the servo loop. The end user simply needs to specify for example the delay and module margins to be reached and to start the automatic procedure for summarizing the optimal corrector.
  • the invention also relates to a motion simulator capable of loading a load, the motion simulator comprising a mechanical device and a control unit, the simulator comprising a movable plate capable of carrying the load; drive means adapted to move the tray in at least one axis; a current amplifier adapted to actuate the drive means in response to a control signal; a sensor adapted to measure a position of the plate; the control unit comprising a corrector adapted to transmit the control signal as a function of a setpoint signal and the measured position, characterized in that the control unit is configured to implement one of the control methods. setting above to obtain an optimal corrector given a load.
  • the motion simulator is an onboard positioner, the given load being a payload.
  • the motion simulator is a test bench, the load given being a load to be tested.
  • the method according to the invention allows the automatic adjustment of a servo control loop of a motion simulator adapted to a new load. More particularly, the method according to the invention makes it possible to obtain rapidly, of the order of one minute, the optimal corrector to the new load having the desired performance / robustness compromise.
  • automatic adjustment it is necessary to understand a setting that does not require the intervention of a technician, and which can be done, for example, by means of a computer capable of performing the various steps of the method according to the invention by executing the instructions of a program stored in appropriate memory means.
  • the method according to the invention allows the synthesis of correctors adapted to the problem. These correctors are adjustable by means of a number of parameters. During the various steps of the method according to the invention, the values of these parameters are adjusted so as to determine a particular corrector that responds to the compromise sought during this step.
  • the purpose of the initial step of the method according to the invention is to lead to the determination of a robust corrector for the mechanical system to be enslaved. To do this, it is necessary to use a first physical modeling of the behavior of the mechanical device.
  • This first modeling is a linear modeling of a system that corresponds to the mechanical part of the mechanical device intervening in the servo loop.
  • the axis of the motion simulator is controlled by a motor of the DC or synchronous type autopilot ("brushless"). This motor is itself controlled by current.
  • the proportionality factor is called the torque constant K t .
  • the corrector according to the invention is based on a corrector for example type LQG-H2 said LQG.
  • the synthesis of such a corrector is performed for example using the standard state control methodology.
  • This methodology is described, for example, in the book of Mr Philippe de Larminat entitled “standard state control” published in 2000 by HERMES .
  • the robust pole placement methodology could be used, for example.
  • This methodology is described in the book by Philippe de Larminat entitled “Automatic control of linear systems” published by HERMES.
  • the corrector would then have a polynomial form and would be of RST structure which is the most general form of the correctors controlling systems having a control variable and a measured variable. It is also possible to implement the LQG corrector in RST form.
  • This methodology uses a feedback loop in which the corrector 12 itself comprises a Kalman filter 10.
  • the Kalman filter 10 takes as input the control signal U and the vector y f containing the measured position Y and the instruction r.
  • the vector x f corresponding to the estimated state of the system by the filter 10, serves as control signal U after having been multiplied by a line vector - Kc, called state return vector (block 11 on the figure 3 ).
  • the Kalman filter 10 makes it possible, as it were, to estimate the state of the system taking into account the system modeling and the input (U) and output (Y) magnitudes actually applied to the mechanical device.
  • the Kalman filter assembly 10 and state return vector makes it possible to reject disturbances that can modify the behavior of the system.
  • the servo loop is closed on a numerical simulation of the real system.
  • This numerical simulation is also based on the equations of dynamics mentioned above. Since the system has been simulated by linear equations, the disturbing couples are simulated by introducing a perturbation F applied to the input of the system. Then, the vector x f , of the estimated state of the system, has a component which is an estimate of the perturbation F.
  • the matrices Kc and Kf of the Kalman filter 10 are calculated so that the servo loop brings the system to a stable state.
  • the parameters for adjusting the corrector obtained according to the standard state control methodology are the matrix Kf and the line vector Kc , the synthesis of which is done by minimizing a quadratic criterion.
  • a PID corrector does not offer such a possibility because each of the adjustment actions of one of the constants K I , K D or K P is coupled with the other two.
  • An initial step of the method according to the invention is carried out in the factory during the manufacture of the motion simulator.
  • This initial step makes it possible to determine the parameters of a corrector which is robust to the variations of moment of inertia of the axis to be controlled. More specifically, the initial step leads to a corrector guaranteeing the stability of the axis for a range of possible moments of inertia between a minimum moment of inertia Jmin corresponding to the moment of inertia of the empty axis and a maximum moment of inertia Jmax corresponding to the moment of inertia of the axis for a maximum load.
  • the ratio of the maximum moments of inertia Jmax and minimum Jmin can, for example, reach a factor of 10.
  • the maximum moments of inertia Jmax and minimum Jmin can be evaluated during the design of the motion simulator, for example using conventionally used CAD tools.
  • This state equation can be enriched by the dynamics of the current loop (containing among others the current amplifier) to perfect the modeling and the performance of the corrector.
  • K is an overall coefficient of amplification.
  • K can be known by the calculation knowing that the motor torque constant and the gain of the amplifier are known by design.
  • the aim of the synthesis is to find a robust corrector that guarantees a good level of static margin and dynamic margin level, regardless of the load on the axis.
  • the algorithm 200 of the figure 4 represents the succession of elementary steps leading to the determination of a robust corrector.
  • the value of the parameter To is arbitrarily low.
  • the value of the parameter Tc is taken as equal to the value of To divided by a factor of, for example, 10.
  • the value of the parameter Tr is taken as equal to that of To.
  • the unit value is assigned to the parameter Ko.
  • the simulator has an electronic unit comprising storage means and calculation means.
  • the instructions of a program adapted to implement all or part of the method according to the invention are stored in the storage means.
  • the instantaneous values of the variables used are stored in a memory space whose address is predefined, and read from this space when the calculation means execute an instruction performing an operation using this variable.
  • a corrector C is calculated at step 205 by means of the so-called standard status check.
  • the execution of the program continues with the loop 210.
  • the loop 210 constitutes a first part of the algorithm 200 during which a search is sought for a corrector C ensuring a margin of module MM greater than a threshold value of module margin MMc for all the configurations of the system, that is to say for all the values of the moment of inertia J between Jmin and Jmax.
  • the threshold module margin value MMc has a predefined value, for example equal to 0.5.
  • the loop 210 proceeds iteratively as follows: in step 211, the value of the moment of inertia J is taken as being worth the minimum value Jmin. In step 212, the module MM margin of the corrector C determined in step 205 is calculated taking into account this value of the moment of inertia J. At the output of step 212, at step 213, the value the MM module margin is compared with the MMc threshold module margin.
  • the program 200 is oriented at A, to the step 220 as will be described below.
  • the module margin MM is greater than the threshold module margin MMc, then the value of the moment of inertia is increased by a predefined value ⁇ j, at the step 214.
  • the new value of the moment of inertia J is compared with the maximum value Jmax. If J is less than Jmax, the module margin MM of the corrector C is again calculated, taking into account the new value of the moment of inertia J, by performing step 212 again.
  • the loop 210 takes place as long as J is less than upper bound of the range of moment of inertia considered relevant. As soon as J is equal to Jmax, we leave B at loop 210.
  • step 213 If, in step 213, the module margin MM is smaller than the threshold module margin MMc, a new corrector C must be constructed. For this, in step 220, the current value of the parameter Ko is multiplied by one factor greater than unity, for example 1.1. Then, a new corrector C is determined in step 205. The execution of the program returns to loop 210 to check whether this new corrector C satisfies the condition 213 for all values of the moment of inertia J between Jmin and jmax. As soon as such a corrector C has been found, the program 200 passes into a second part of the algorithm 200 (point B).
  • a corrector is sought which provides a delay margin MR greater than a delay margin threshold value MRc for all the configurations of the system, that is to say for all the values of the moment. of inertia J between Jmin and Jmax.
  • the value of the threshold delay margin MRc is predefined.
  • step 230 the current value of the parameter To is multiplied by a constant greater than unity, for example 1.1.
  • steps 201, 202 and 203 are executed again to determine the value of the various parameters that will be used in step 205 to determine a new corrector C; the value Ko retains its previous value, it is not reassigned in this step.
  • the algorithm 200 follows the line indicated by the reference numeral 24. At the end of step 205, the algorithm 200 enters a loop 240.
  • the loop 240 is similar to the loop 210 except that it makes it possible to calculate the delay margin MR and to compare it with the value of the threshold delay margin MRc and this for all the values of the moment of inertia J between the minimum value Jmin and the maximum value Jmax.
  • the minimum value Jmin is associated with the current value of the moment of inertia J.
  • the delay margin MR is calculated.
  • this value is compared with the threshold value MRc. If the delay margin MR is less than the threshold value MRc, the The program 200 is oriented at B to step 230. A new value of the parameter To is calculated, the other parameters of the corrector are updated and a new corrector C is determined before the algorithm returns to the loop 240.
  • step 243 the delay margin MR is actually greater than MRc
  • the current value of the moment of inertia J is increased by a value ⁇ j predefined in step 244.
  • step 245 the new value of the moment of inertia J is compared with the maximum value Jmax. If J is different from Jmax, step 242 is executed again to calculate the new value of the delay margin MR.
  • This loop is executed as, in step 245, the moment of inertia J is less than the maximum moment of inertia Jmax. But as soon as J is equal to Jmax, the algorithm 200 ends, the corrector C thus calculated being a robust corrector for the range of moments of inertia.
  • the second part of the algorithm 200 does not significantly modify the MM module margins obtained in the first part of this same algorithm.
  • the method according to the invention continues with the use of the parameters of the robust corrector. to set an optimal corrector for the new load.
  • This process is decomposable into three successive stages: a test step, an identification step and then a final step leading to the synthesis of an optimal corrector.
  • a pseudo random binary sequence (SBPA), indicated in dotted line on the figure 5 , may alternatively be added to the signal corresponding to the setpoint profile.
  • the amplitude of the pseudo-random bit sequence is calibrated so that this signal does not call into question the direction of rotation of the motion simulator and does not cause a violation of the constraints on the acceleration of the speed and position of the motion simulator. 'axis.
  • the data corresponding to the input variables (values of the command U) and output variables (in this case the measurement of the position Y) are stored as a function of time.
  • the stored data is pretreated to make them usable for the next identification step.
  • this pretreatment consists in deriving the measured position signal Y in order to extract a measurement of the instantaneous speed of the axis of the simulator. Then, if the measured speed is less than a speed threshold value, the pretreatment then consists of eliminating the control data U and the measured position Y associated with this instant t. Thus, some nonlinear phenomena occurring at low speed, also called Stribeck effect, are not taken into account.
  • the method then comprises a step of identifying the system for a specific load. More precisely, this identification step makes it possible to determine the value of the parameters of a second physical modeling of the considered system (inertia, friction, etc.) by exploiting data recorded during the test step.
  • J is the moment of inertia of the whole system, f a coefficient of viscous friction; Fs the Coulomb modulus of dry friction; a pair of unbalance (d is zero in the case of a vertical axis); ⁇ the angle of the straight line connecting the center of gravity of the load to the axis with respect to the vertical.
  • Fs ⁇ sign ( ⁇ ) modeling dry friction has the property of not being differentiable around zero.
  • the setpoint during the test step is chosen such that sign ( ⁇ ) is constant (for example positive).
  • the parameters J and f of this second model are determined by identification using a non-linear programming algorithm such as the Levenberg-Marquardt algorithm for example.
  • the process ends with a step of synthesizing an optimal corrector for the load actually on board.
  • This corrector is the most efficient possible in the sense that it has a response time in low regulation (while maintaining margins of static robustness - margin module- and / or dynamic -marge delay sufficient).
  • the synthesis of the optimal corrector is performed according to the so-called standard state control methodology by executing the algorithm 300 of the figure 7 .
  • the optimal corrector which satisfies the target delay margin MRc, the target module margin MMc and the adjustment parameter Tr are then determined.
  • this final step uses the moment of inertia obtained by identification during the preceding identification step.
  • the algorithm 300 begins with the step 301 in which a sufficiently high multiple of the current value of the parameter MRc, for example 30 x MRc, is assigned to the value of the parameter To.
  • the algorithm continues with the step 302, during which the value of To is divided by five and the result is assigned to the parameter Tc.
  • step 305 makes it possible to determine the corresponding corrector, by means of the standard state control methodology. It should be noted that step 305 is identical to step 205 of algorithm 200 ( figure 4 ) with Ko set to the unit value.
  • step 306 is executed. It makes it possible to calculate the margin of delay MR of the corrector obtained.
  • step 307 the calculated value of the delay margin MR is compared with the threshold delay margin MRc. If the delay margin MR is indeed greater than MRc, the algorithm 300 returns to step 308 according to the path A.
  • step 308 a new value of the parameter To is calculated.
  • the new value of To is lower than the previous value, and is obtained by multiplying the previous value of To by a parameter less than unity, in this case 0.95 for example.
  • step 302 is executed again. Given the value of the new parameters, a new corrector C is calculated in step 305. The loop is executed as long as condition 307 is verified.
  • step 310 consisting simply of assigning the previous value to the value of the parameter To used in the last iteration of the loop.
  • the current value of To is divided by 0.95 for example and the result is assigned as a new value of To.
  • step 311 the algorithm 300 at B is conducted at step 311.
  • the second part of the algorithm 300 makes it possible to determine the corrector that will have the best adapted MM module margin.
  • the variable Krob which is equal to the ratio of the parameter To on the parameter Tc, takes the value 5 for example.
  • step 320 the values of the parameter To and the parameter Krob are read and the value of Tc is calculated by dividing To by Krob.
  • step 305 is executed again, taking into account the current value of the different parameters.
  • a corrector C is determined.
  • step 321 the margin module MM of this new corrector C is calculated.
  • step 322 the value of the obtained MM module margin is compared with the threshold module margin MMc.
  • step 330 When the module margin MM is less than MMc, the algorithm 300 is directed to step 330 by the link C. At step 330 a new value is calculated for the variable Krob, for example by increasing Krob by one. predetermined value of 0.1 for example. Then steps 320, 305, 321 are executed again, taking into account the new values of the various parameters. Then, the condition 322 is again tested on the value of the module margin MM of the new corrector C. The loop C takes place as long as the module margin MM remains lower than the threshold module margin MMc. As soon as condition 322 is no longer satisfied, algorithm 300 ends. At this moment, the algorithm 300 ends.
  • An optimal corrector for the load currently placed on the motion simulator plate has been obtained automatically.
  • the method for obtaining such an optimal corrector is reproducible and makes it possible to obtain a result which is reliable and which is the best possible given the values given to the adjustment parameters during the initial step.
  • Tests of implementation of the method according to the invention show that it is possible to define the corrector parameters quickly.
  • the method according to the invention applies to the case of mechanical devices allowing the movement of the plate in rotation along one or more axes, in translation along one or more axes or the combination of rotational and translational movements.
  • the modeling of the mechanical part to be enslaved and the position or positions measured to form the loop enslavement will be chosen according to this case.
  • the mass of the load will be the inertia parameter to be considered, and no longer the moment of inertia, a parameter of inertia specific to a rotation.

Abstract

A tuning method for a motion simulator embarking a payload. The simulator includes a mechanical device, a mobile plate of which is capable of carrying a payload, and a control unit including a controller capable of position feedback controlling said plate. The method enables an automatic tuning of the controller in order to feedback control the system embarking a given payload.

Description

L'invention a pour domaine celui de l'asservissement du mouvement d'un simulateur de mouvements.The subject of the invention is that of the servocontrol of the movement of a motion simulator.

Un simulateur de mouvements est un ensemble comportant un dispositif mécanique et des unités électroniques et logicielles de contrôle du dispositif mécanique. Ce dernier comporte un plateau mobile destiné à recevoir une charge. Le plateau est apte à être déplacé en rotation autour d'un ou de plusieurs axes géométriques et/ou en translation le long d'un ou de plusieurs axes géométriques. Dans un référentiel cartésien, par exemple terrestre, la position du solide que constitue le plateau est donnée par la position de son centre de gravité et l'orientation d'un axe perpendiculaire au plan du plateau.A motion simulator is an assembly comprising a mechanical device and electronic and software units for controlling the mechanical device. The latter comprises a movable plate for receiving a load. The plate is able to be moved in rotation around one or more geometric axes and / or in translation along one or more geometric axes. In a Cartesian frame, for example terrestrial, the position of the solid that constitutes the plateau is given by the position of its center of gravity and the orientation of an axis perpendicular to the plane of the plateau.

Un simulateur de mouvements peut être un positionneur embarqué pour positionner une charge utile donnée.A motion simulator can be an onboard positioner for positioning a given payload.

Un simulateur de mouvements peut également être un banc d'essai pour tester une charge, telle qu'un système inertiel à tester, lors d'une séquence de mouvements commandés. Le plateau est alors mis en mouvement selon une séquence prédéterminée comportant une succession temporelle de positions de consigne. A chaque instant, les paramètres cinématiques du plateau dérivant de consigne en position peuvent être comparés aux paramètres cinématiques mesurés par le système inertiel à tester.A motion simulator can also be a test bench for testing a load, such as an inertial system to be tested, during a sequence of controlled movements. The plate is then set in motion according to a predetermined sequence comprising a temporal succession of setpoint positions. At each instant, the kinematic parameters of the plateau deriving from setpoint in position can be compared to the kinematic parameters measured by the inertial system to be tested.

Afin que !e plateau suive de façon précise les consignes de position, il est indispensable d'avoir recours à une boucle d'asservissement en position du plateau.In order for the plate to follow precisely the position instructions, it is essential to use a servo loop in position of the plate.

Sur la figure 1, on a représenté un schéma général d'une boucle d'asservissement d'un simulateur de mouvements selon un axe de rotation. La partie mécanique de cette boucle d'asservissement comprend : le plateau et sa charge montés sur un axe mécanique, le système mécanique 3 ainsi formé ayant un moment d'inertie J par rapport à son axe de rotation ; le moteur 2 ; l'amplificateur de puissance 1 ; et, un capteur de position 4. L'amplificateur de puissance 1, en réponse au signal de commande U, émet en sortie un courant I dont l'amplitude et l'étape permettent de contrôler le mouvement du moteur 2. Le moteur 2 génère un couple ┌ permettant de mettre en rotation le système mécanique 3. Le capteur 4 mesure, à chaque instant, la position effective y du plateau 3 et émet, en sortie, un signal de mesure donnant une mesure Y de la position du plateau 3.On the figure 1 , there is shown a general diagram of a control loop of a motion simulator along an axis of rotation. The mechanical part of this servo loop comprises: the plate and its load mounted on a mechanical axis, the mechanical system 3 thus formed having a moment of inertia J with respect to its axis of rotation; the engine 2; the power amplifier 1; and, a position sensor 4. The power amplifier 1, in response to the control signal U, outputting a current I whose amplitude and step control the movement of the motor 2. The motor 2 generates a torque ┌ for rotating the mechanical system 3. The sensor 4 measuring, at each instant, the effective position y of the plate 3 and emits, at the output, a measurement signal giving a measurement Y of the position of the plate 3.

D'une manière générale, l'asservissement d'une machine tournante consiste à créer une rétroaction à partir de la mesure Y d'une grandeur y telle que la position, la vitesse, etc. Le but de cette rétroaction est de permettre un suivi effectif de la grandeur de consigne r. Un bloc de correction ou correcteur 5 est défini de manière générique comme un composant apte à émettre un signal de commande U en fonction de la consigne r et de la mesure Y de sorte que, pour une valeur donnée de la consigne r, la valeur mesurée Y converge vers cette valeur de la consigne.In general, the servo-control of a rotating machine consists in creating a feedback from the Y-measure of a magnitude y such as position, speed, etc. The purpose of this feedback is to allow effective monitoring of the desired quantity r. A correction or correction block 5 is generically defined as a component capable of transmitting a control signal U as a function of the setpoint r and of the measurement Y so that, for a given value of the setpoint r, the measured value Y converges to this value of the setpoint.

Selon l'art antérieur, le correcteur d'asservissement le plus fréquemment utilisé est du type PID (proportionnel, intégral, dérivé) dont le principe est décrit sur la figure 2. Sur cette figure, à l'étape 100, on réalise d'abord la soustraction de la mesure Y à la consigne r. En sortie de l'étape 100, on obtient un écart e. L'écart e est multiplié par une constante KP à l'étape 101, et le résultat obtenu est acheminé en entrée d'un sommateur 110. Parallèlement, à l'étape 102, l'écart e est multiplié par une constante KI, puis le résultat obtenu est intégré par rapport au temps à l'étape 103. En sortie de l'étape 103, le résultat est appliqué en entrée du sommateur 110. Parallèlement, à l'étape 104, l'écart e est multiplié par la constante KD, puis dérivé par rapport au temps au cours de l'étape 105. Le résultat de l'étape 105 est émis en direction de l'entrée du sommateur 110. Enfin, le sommateur 110 effectue la somme des différentes grandeurs qui lui parviennent pour produire en sortie le signal de commande U qui est donc de la forme : U = K P e + K I edt + d K D e / dt ,

Figure imgb0001

où les coefficients KP, KI et KD sont ajustés de sorte que l'écart e tende le plus rapidement possible vers zéro lors d'un changement de la valeur de la consigne r.According to the prior art, the most frequently used servo corrector is of the PID type (proportional, integral, derivative) whose principle is described on the figure 2 . In this figure, in step 100, the measurement Y is first subtracted from the setpoint r. At the output of step 100, a gap e is obtained. The difference e is multiplied by a constant K P in step 101, and the result obtained is fed into the input of an adder 110. At the same time, in step 102, the difference e is multiplied by a constant K I then the result obtained is integrated with respect to the time in step 103. At the output of step 103, the result is applied to the input of the adder 110. At the same time, in step 104, the difference e is multiplied by the constant K D , then derived with respect to time during step 105. The result of step 105 is emitted towards the input of the summator 110. Finally, the summator 110 is the sum of the different quantities that arrive at it to output the control signal U which is therefore of the form: U = K P e + K I edt + d K D e / dt ,
Figure imgb0001

where the coefficients K P , K I and K D are adjusted so that the distance e tends as fast as possible to zero when a change in the value of the setpoint r.

Deux notions principales permettent de caractériser l'asservissement d'une machine tournante :

  • La robustesse : il s'agit de l'insensibilité du correcteur aux incertitudes de la modélisation physique de la machine à commander. Dans le cas spécifique d'un simulateur de mouvements, il faut que le correcteur soit robuste par rapport à la variation du moment d'inertie du système mécanique 3 lors du changement de la charge. En effet, un simulateur de mouvements servant à tester différentes charges, le moment d'inertie J du système mécanique est inévitablement modifié lors du changement de la charge. On dira qu'un correcteur est robuste lorsqu'il garantit la stabilité de la boucle d'asservissement fermée en cas de variation d'un ou de plusieurs paramètres physiques de la machine à réguler. Dans le cas d'un simulateur de mouvements ce paramètre est le moment d'inertie. Pour mémoire, la stabilité est l'aptitude du système asservi à se comporter de telle sorte que l'écart e tende vers une valeur finie lorsque la consigne r est modifiée. Mais, la convergence de la variable e peut se faire au bout d'un temps très élevé. C'est pourquoi il est également nécessaire d'introduire la notion de performance pour caractériser un asservissement.
  • La performance : il s'agit de la dynamique de suivi de la consigne r et de la dynamique de rejet des perturbations pouvant affecter la machine. Dans le cas d'un simulateur de mouvements, les perturbations pouvant affecter le système sont, par exemple, constituées par un couple de freinage dû à des frottements non pris en compte.
Two main notions make it possible to characterize the servocontrol of a rotating machine:
  • Robustness: this is the insensitivity of the corrector to the uncertainties of the physical modeling of the machine to be controlled. In the specific case of a motion simulator, the corrector must be robust with respect to the variation of the moment of inertia of the mechanical system 3 during the change of the load. Indeed, a motion simulator used to test different loads, the moment of inertia J of the mechanical system is inevitably changed during the change of the load. It will be said that a corrector is robust when it guarantees the stability of the closed servo loop in case of variation of one or more physical parameters of the machine to be regulated. In the case of a motion simulator this parameter is the moment of inertia. For the record, stability is the ability of the slave system to behave such that the gap e tends to a finite value when the setpoint r is changed. But, the convergence of the variable e can be done after a very long time. This is why it is also necessary to introduce the notion of performance to characterize an enslavement.
  • Performance: this is the dynamics of monitoring the setpoint r and the dynamics of rejection of disturbances that can affect the machine. In the case of a motion simulator, the disturbances that may affect the system are, for example, constituted by a braking torque due to friction not taken into account.

D'un point de vue théorique, on montre que les objectifs de performance et de robustesse sont antagonistes. Si l'on souhaite des performances élevées, c'est-à-dire que le système rejette très rapidement les perturbations, cela se fait au détriment de la robustesse.From a theoretical point of view, it is shown that the objectives of performance and robustness are antagonistic. If one wishes high performance, that is to say that the system rejects disturbances very quickly, it is detrimental to the robustness.

Pour les simulateurs de mouvements, la recherche d'une bande passante maximale conduit à privilégier la performance du système par rapport à sa robustesse. En générale, la robustesse est relativement faible ce qui nécessite d'adapter le correcteur pour chaque charge.For the motion simulators, the search for a maximum bandwidth leads to privileging the performance of the system compared to its robustness. In general, the robustness is relatively low which requires to adapt the corrector for each load.

Ainsi, les paramètres du correcteur utilisé, par exemple les gains KP, KI et KD du correcteur du type PID représenté sur la figure 2, doivent être réglés à chaque changement de la charge.Thus, the parameters of the corrector used, for example the gains K P , K I and K D of the corrector of the type PID represented on the figure 2 , must be adjusted each time the load is changed.

Selon l'art antérieur, dans le domaine des simulateurs de mouvements, le réglage du correcteur est fait « manuellement » par l'intervention d'un technicien en charge du simulateur de mouvements à chaque fois que la charge du simulateur est modifiée. Ce réglage est coûteux en temps et est empirique. En effet, il nécessite de nombreux tests du type essai-erreur pour trouver la valeur des gains adaptés car les paramètres de réglage du PID sont dépendants les uns des autres. De plus, il est difficile de garantir que le réglage obtenu corresponde au réglage optimum du système. Si la boucle d'asservissement fonctionne avec un correcteur mal paramétré, le risque pour que la boucle fermée ne soit pas stable n'est pas nul.According to the prior art, in the field of motion simulators, the adjustment of the corrector is done "manually" by the intervention of a technician in charge of the motion simulator each time the load of the simulator is modified. This setting is expensive in time and is empirical. Indeed, it requires many tests of the trial-and-error type to find the value of the adapted gains because the parameters of adjustment of the PID are dependent on each other. In addition, it is difficult to guarantee that the setting obtained corresponds to the optimum setting of the system. If the servo loop operates with a wrongly set corrector, the risk that the closed loop is not stable is not zero.

Des procédures pour régler automatiquement un correcteur sont connues dans d'autres domaines techniques que celui des simulateurs de mouvements.Procedures for automatically adjusting a corrector are known in other technical fields than that of motion simulators.

Une technique consiste à réaliser un ajustement automatique en temps réel des paramètres du correcteur destiné à asservir une machine tournante au cours de l'utilisation de cette dernière. Cette technique, connue sous le nom de commande auto-adaptative (« self control »), n'est pas transposable au cas des simulateurs de mouvements car elle est d'une grande complexité notamment puisqu'il s'agit de respecter la contrainte d'ajustement en « temps réel » du correcteur. De plus, il ne peut y avoir de connaissance précise du mouvement puisque les paramètres du correcteur sont modifiés à chaque instant. Ceci est particulièrement vrai lors du début d'une séquence de mouvements, lorsque l'on vient de changer la charge et que la mise en oeuvre de la procédure de réglage modifie sans cesse les gains.One technique consists in realizing an automatic real-time adjustment of the corrector parameters intended to slave a rotating machine during the use of the latter. This technique, known under the name of self-adaptive control ("self control"), is not transposable to the case of motion simulators because it is of great complexity especially since it is about respecting the constraint of 'real time' adjustment of the corrector. Moreover, there can be no precise knowledge of the movement since the parameters of the corrector are modified at every moment. This is especially true at the beginning of a sequence of movements, when the load has just been changed and the implementation of the adjustment procedure constantly changes the gains.

Une autre technique utilisée dans le domaine des machines tournantes consiste à réaliser une étape initiale d'essai au cours de laquelle on règle le correcteur. Le réglage automatique d'un correcteur se fait en respectant le processus suivant :

  • Excitation du système avec un stimulus (changement du courant appliqué sur le moteur) ;
  • Acquisition de la réponse de ce système à l'excitation appliquée ;
  • Utilisation des données obtenues pour constituer un modèle mathématique du système (sous forme de fonction de transfert ou de modèle d'état) ; et,
  • Utilisation du modèle obtenu pour synthétiser le correcteur.
Another technique used in the field of rotating machines is to perform an initial test step during which the corrector is set. The automatic adjustment of a corrector is done by respecting the following process:
  • Excitation of the system with a stimulus (change of current applied to the motor);
  • Acquisition of the response of this system to the applied excitation;
  • Using the data obtained to form a mathematical model of the system (as a transfer function or as a state model); and,
  • Using the model obtained to synthesize the corrector.

Mais, la plupart du temps l'excitation est effectuée en boucle ouverte, c'est-à-dire sans rétroaction. L'utilisateur ne sait donc pas, a priori, quel va être l'accélération, la vitesse ou le débattement (excursion en position de l'axe) du mouvement.But, most of the time the excitation is done in open loop, that is to say without feedback. The user therefore does not know, a priori, what will be the acceleration, the speed or the displacement (excursion in position of the axis) of the movement.

Dans le cas d'un simulateur de mouvements, un tel essai n'est pas possible en particulier car, lors de l'étape d'excitation du système, des contraintes telles que les valeurs maximales de l'accélération, de la vitesse et de la position ne doivent pas être dépassées sous peine de détériorer l'appareil. Il est donc indispensable que cet essai se fasse de façon contrôlée, c'est-à-dire avec une rétroaction permettant d'éviter la violation des contraintes.In the case of a motion simulator, such a test is not possible in particular because, during the excitation stage of the system, constraints such as the maximum values of the acceleration, speed and the position must not be exceeded as this may damage the unit. It is therefore essential that this test be done in a controlled manner, that is to say with feedback to avoid the violation of constraints.

Jouve et al. [Autotuning of axis control systems for robots and machine tools IEEE 1991 ] ont proposé une méthode permettant d'effectuer une étape initiale d'essai en boucle fermée dans le cas d'une machine tournante qui est une machine outils équipée d'un capteur de vitesse. Il s'agit donc d'une boucle d'asservissement en vitesse. Jouve et al. IEEE 1991 Autotuning of axis control systems for robots and machine tools ] have proposed a method for performing an initial closed-loop test step in the case of a rotating machine which is a machine tool equipped with a speed sensor. It is therefore a servo loop speed.

Cette solution n'est pas applicable au cas des simulateurs de mouvements qui sont équipés de capteurs de position, extrêmement précis, et rarement de capteurs de vitesse, soit coûteux, soit bruités et peu précis.This solution is not applicable to the case of motion simulators that are equipped with position sensors, extremely accurate, and rarely speed sensors, either expensive, noisy and inaccurate.

L'utilisation d'une boucle d'asservissement en vitesse, en utilisant un capteur de vitesse, ne permettrait pas de respecter les contraintes sur la position du mouvement lors de l'étape d'essai. En effet, la position ne serait alors connue qu'à une constante d'intégration près. Cette incertitude sur la valeur de la constante implique que l'on ne sait pas où le mouvement va débuter et/ou finir, ce qui peut entraîner le franchissement de butées et endommager le simulateur de mouvements.The use of a speed control loop, using a speed sensor, would not meet the constraints on the position of the movement during the test stage. In fact, the position would then be known only at an integration constant. This uncertainty about the value of the constant implies that we do not know where the movement will start and / or finish, which can lead to the crossing of stops and damage the motion simulator.

Par ailleurs, l'article de Jouve et al. divulgue une méthode qui est en fait spécifique aux machines outils. En effet, ces dernières fonctionnent à des vitesses élevées, de plus de 5000 tours/mn, qui sont à comparer aux vitesses maximales d'environ 500 tours/mn, de fonctionnement des simulateurs de mouvements. Or la méthodologie décrite ne peut être utilisée à faible vitesse, i.e. en dessous d'un seuil de vitesse, sans que l'étape d'identification ne soit biaisée par des phénomènes non-linéraires.In addition, the article by Jouve et al. discloses a method that is actually specific to machine tools. Indeed, these last operate at high speeds, more than 5000 rpm, which are to be compared to the maximum speeds of about 500 rpm, operation of motion simulators. However, the methodology described can not be used at low speed, ie below a speed threshold, without the identification step being biased by nonlinear phenomena.

Enfin, l'article de Jouve et al. divulgue implicitement l'utilisation d'un correcteur PI à faible gain pour l'étape initiale d'essai. Or dans le cas d'un simulateur de mouvements, des gains trop faibles d'un correcteur PID (le PI n'étant pas adapté à une boucle de position) peuvent avoir pour conséquence que l'on aboutisse à une boucle fermée instable.Finally, the article by Jouve et al. implicitly discloses the use of a low gain PI corrector for the initial test step. But in the case of a motion simulator, too small gains of a PID corrector (the PI is not adapted to a position loop) may result in an unstable closed loop.

Li et al. [Modeling, simulation and control of a hydraulic Stewart platform, IEEE 1997 , XP010235479] ont proposé une méthode de commande d'une plateforme Stewart destinée à être utilisée comme simulateur de mouvements. Les équations dynamiques de la plateforme sont dérivées du principe de travail virtuel, un contrôleur robuste et performant est proposé mais l'identification en-ligne des paramètres d'un tel contrôleur robuste n'est pas envisagé. Li et al. [Modeling, simulation and control of a hydraulic Stewart platform, IEEE 1997 , XP010235479] have proposed a method of controlling a Stewart platform for use as a motion simulator. The dynamic equations of the platform are derived from the virtual work principle, a robust and powerful controller is proposed but the on-line identification of the parameters of such a robust controller is not envisaged.

Il y a donc un besoin pour un procédé de réglage automatique d'une boucle d'asservissement en position pour le cas d'un simulateur de mouvements. Il y a également un besoin pour que ce procédé de réglage automatique permette d'obtenir rapidement le compromis performance/robustesse souhaité en fonction d'une charge donnée.There is therefore a need for a method of automatically adjusting a position control loop for the case of a motion simulator. There is also a need for this automatic adjustment process to quickly achieve the desired performance / robustness compromise based on a given load.

Pour cela l'invention a pour objet un procédé de réglage mis en oeuvre dans un simulateur de mouvement pouvant embarquer une charge, le simulateur comportant un dispositif mécanique et une unité de contrôle, le dispositif mécanique comportant des moyens d'entraînement pour mettre en mouvement un plateau apte à porter la charge ; un amplificateur de courant apte à actionner les moyens d'entraînement en réponse à un signal de commande ; un capteur apte à mesurer une position et l'unité de contrôle comportant un correcteur apte à émettre le signal de commande en fonction d'un signal de consigne et de la grandeur mesurée.For this purpose, the subject of the invention is an adjustment method implemented in a motion simulator capable of carrying a load, the simulator comprising a mechanical device and a control unit, the mechanical device comprising drive means for setting in motion a tray capable of carrying the load; a current amplifier adapted to actuate the drive means in response to a control signal; a sensor capable of measuring a position and the control unit comprising a corrector adapted to transmit the control signal as a function of a reference signal and the measured quantity.

Le procédé selon l'invention se caractérise en ce qu'il permet de régler automatiquement le correcteur pour asservir selon la position du mouvement du dispositif mécanique embarquant une charge donnée, le procédé comportant :

  • une étape initiale de synthèse d'un correcteur robuste, la synthèse étant fondée sur une première modélisation physique du dispositif mécanique comportant au moins un paramètre d'inertie, le correcteur robuste obtenu permettant l'asservissement du dispositif mécanique sur une plage de valeur du paramètre d'inertie s'étendant entre un paramètre d'inertie minimum et un paramètre d'inertie maximum ; et, après avoir positionné la charge donnée sur le plateau,
  • une étape de test au cours de laquelle le dispositif mécanique, asservi au moyen du correcteur robuste déterminé lors de l'étape initiale, est actionné selon un profil de consigne de position prédéfini respectant des contraintes sur l'accélération, la vitesse et la position du mouvement, le signal de commande et la position mesurée étant mémorisés à chaque instant en tant que données de l'étape de test ;
  • une étape d'identification qui, à partir des données de l'étape de test, permet de déterminer la valeur d'une pluralité de paramètres physiques d'une deuxième modélisation du dispositif mécanique embarquant la charge donnée, la pluralité de paramètres physiques comportant au moins le paramètre d'inertie ; et,
  • une étape finale de synthèse d'un correcteur optimal adapté à la charge donnée, dans laquelle le paramètre d'inertie prend la valeur du paramètre d'inertie déterminé lors de l'étape d'identification.
The method according to the invention is characterized in that it makes it possible to automatically adjust the corrector to control the position of the movement of the mechanical device carrying a given load, the method comprising:
  • an initial step of synthesis of a robust corrector, the synthesis being based on a first physical modeling of the mechanical device comprising at least one inertial parameter, the robust corrector obtained allowing the device to be servocontrolled mechanical over a range of value of the inertia parameter extending between a minimum inertia parameter and a maximum inertia parameter; and, after positioning the load given on the board,
  • a test step during which the mechanical device, controlled by means of the robust corrector determined during the initial step, is actuated according to a predefined position reference profile respecting constraints on the acceleration, the speed and the position of the movement, the control signal and the measured position being stored at each moment as data of the test step;
  • an identification step which, from the data of the test step, makes it possible to determine the value of a plurality of physical parameters of a second modeling of the mechanical device embodying the given load, the plurality of physical parameters comprising at least one minus the inertia parameter; and,
  • a final step of synthesis of an optimal corrector adapted to the given load, in which the inertia parameter takes the value of the inertia parameter determined during the identification step.

De préférence, le dispositif mécanique est apte à mettre le plateau embarquant une charge au moins en translation le long d'un axe, le paramètre d'inertie étant alors une masse d'inertie.Preferably, the mechanical device is able to put the board carrying a load at least in translation along an axis, the inertia parameter then being a mass of inertia.

De préférence, le dispositif mécanique est apte à mettre le plateau embarquant une charge au moins en rotation autour d'un axe, le paramètre d'inertie étant alors un moment d'inertie.Preferably, the mechanical device is able to put the board carrying a load at least in rotation about an axis, the inertia parameter then being a moment of inertia.

De préférence, lors de l'étape initiale, le correcteur est dans une boucle d'asservissement fermée sur une simulation numérique du dispositif mécanique embarquant une charge ayant un paramètre d'inertie nominal dans la plage.Preferably, during the initial step, the corrector is in a closed servo loop on a digital simulation of the mechanical device carrying a load having a nominal inertia parameter in the range.

De préférence, l'ensemble des étapes de test, d'identification et finale sont exécutées à nouveau au moins à chaque changement de charge.Preferably, all the test, identification and final stages are performed again at least at each load change.

De préférence, la première modélisation est une modélisation linéaire du comportement dynamique du dispositif mécanique.Preferably, the first modeling is a linear modeling of the dynamic behavior of the mechanical device.

De préférence, les correcteurs robuste et optimal sont synthétisés avec une méthodologie de type LQG-H2 (optimisation du correcteur suivant un critère quadratique) comportent un filtre de Kalman basé sur la première modélisation, le filtre de Kalman prenant, en entrée, le signal de commande, la grandeur mesurée et la consigne pour générer, en sortie, un état estimé du dispositif mécanique, l'état estimé étant appliqué en tant que signal de commande après avoir été multipliée par un vecteur dit vecteur de retour d'état.Preferably, the robust and optimal correctors are synthesized with a LQG-H2 type methodology (optimization of the corrector according to a quadratic criterion) comprise a Kalman filter based on the first model, the Kalman filter taking, as input, the control signal, the measured quantity and the setpoint to generate, at the output, an estimated state of the mechanical device, estimated state being applied as control signal after being multiplied by a vector called state feedback vector.

De préférence, le filtre de Kalman permet d'estimer les perturbations affectant le dispositif mécanique en les modélisant par un signal venant s'additionner au signal de commande à l'entrée du dispositif mécanique à asservir.Preferably, the Kalman filter makes it possible to estimate the disturbances affecting the mechanical device by modeling them by a signal coming to add to the control signal at the input of the mechanical device to be enslaved.

De préférence, la synthèse des correcteurs robuste et optimal est faite au moyen d'une méthodologie dite de contrôle d'état standard.Preferably, the synthesis of robust and optimal correctors is made using a methodology called standard state control.

De préférence, les correcteurs robuste ou optimal comportent quatre paramètres de réglage scalaires de haut niveau.Preferably, the robust or optimal correctors comprise four high-level scalar control parameters.

De préférence, l'étape initiale comporte d'abord, en faisant varier un premier paramètre scalaire parmi les paramètres scalaires, la recherche d'un correcteur ayant une marge de module supérieure à une marge de module seuil pour toutes les valeurs de moment d'inertie de la plage de moment d'inertie, puis, en faisant varier un autre paramètre scalaire, dit deuxième paramètre, parmi les paramètres scalaires, la recherche d'un correcteur ayant une marge de retard supérieure à une marge de retard seuil pour toutes les valeurs de moment d'inertie de la plage de moment d'inertie.Preferably, the initial step comprises first, by varying a first scalar parameter among the scalar parameters, the search for a corrector having a module margin greater than a threshold module margin for all the moment values of inertia of the range of moment of inertia, then, by varying another scalar parameter, said second parameter, among the scalar parameters, the search for a corrector having a delay margin greater than a threshold delay margin for all moment of inertia values of the moment of inertia range.

De préférence, la valeur du moment d'inertie ayant été identifiée, l'étape finale comporte d'abord, en faisant varier le deuxième paramètre, la recherche d'un correcteur ayant une marge de retard supérieure à la marge de retard seuil, puis, en faisant varier encore un autre paramètre scalaire, dit troisième paramètre, parmi les quatre paramètres scalaires, la recherche d'un correcteur optimal ayant une marge de module supérieure à la marge de module seuil.Preferably, the value of the moment of inertia having been identified, the final step comprises first, by varying the second parameter, the search for a corrector having a delay margin greater than the threshold delay margin, then , by still varying another scalar parameter, said third parameter, among the four scalar parameters, the search for an optimal corrector having a module margin greater than the threshold module margin.

De préférence, lors de l'étape d'identification, la deuxième modélisation est une modélisation linéaire du comportement du dispositif.Preferably, during the identification step, the second modeling is a linear modeling of the behavior of the device.

De préférence, lors de l'étape d'identification, la deuxième modélisation tient compte de manière explicite des forces conduisant à un comportement non linéaire du dispositif.Preferably, during the identification step, the second modeling explicitly takes into account forces leading to a non-linear behavior of the device.

De préférence, le procédé comporte, à l'issue de l'étape de test, une étape de prétraitement pour rejeter les données pour lesquelles la valeur correspondante de la vitesse du plateau est inférieure à une vitesse seuil.Preferably, the method comprises, at the end of the testing step, a preprocessing step to reject the data for which the corresponding value of the speed of the plate is lower than a threshold speed.

Afin de réaliser un test d'excitation en boucle fermée de position, il est nécessaire de concevoir préalablement à cet essai une loi de commande ou correcteur permettant d'assurer la stabilité du simulateur de mouvements quelque soit l'inertie de la charge posée sur le plateau de la machine, la stabilité se caractérisant par une réponse finie du système à une variation de la consigne (absence d'oscillations ou de divergence de la position de l'axe par rapport à la consigne).In order to perform a closed-loop position excitation test, it is necessary to design before this test a control law or corrector to ensure the stability of the motion simulator regardless of the inertia of the load placed on the machine plateau, the stability being characterized by a finite response of the system to a variation of the setpoint (absence of oscillations or divergence of the position of the axis with respect to the setpoint).

Le fait d'utiliser un asservissement en position fonctionnant avec un capteur de position permet de respecter de façon certaine les contraintes d'excursion du plateau et de ne pas risquer la détérioration du simulateur de mouvements. De ce point de vue, l'invention présente l'avantage d'être sûre.The fact of using a position control operating with a position sensor makes it possible to respect certain constraints of excursion of the plateau and not to risk the deterioration of the motion simulator. From this point of view, the invention has the advantage of being safe.

De plus l'invention présentée ici utilise une modélisation de l'axe à asservir. Or certaines forces perturbatrices agissant sur l'axe, dépendent explicitement de la position (balourd), ce qui nécessite la connaissance en absolu de cette position pour élaborer le modèle de l'axe.In addition, the invention presented here uses a modeling of the axis to be enslaved. Now some disturbing forces acting on the axis, depend explicitly on the position (unbalance), which requires the absolute knowledge of this position to develop the model of the axis.

La structure du correcteur utilisé selon l'invention ainsi que la méthodologie pour le synthétiser dépendent de l'application particulière au cas des simulateurs de mouvements.The structure of the corrector used according to the invention as well as the methodology for synthesizing it depend on the particular application in the case of motion simulators.

De plus, à partir du moment où l'on utilise un asservissement en position, la synthèse du correcteur robuste utilisé est plus complexe. Par exemple, la synthèse d'un correcteur PI à gain faible, comme celui implicitement décrit dans l'article de Jouve et al., n'est pas suffisant. Avantageusement, le correcteur robuste de type LQG-H2 est synthétisé par une méthodologie dite de contrôle d'état standard.In addition, from the moment when a position control is used, the synthesis of the robust corrector used is more complex. For example, the synthesis of a low gain PI corrector, such as that implicitly described in the article by Jouve et al., Is not sufficient. Advantageously, the robust corrector type LQG-H2 is synthesized by a methodology called standard state control.

Enfin, le procédé selon l'invention est particulièrement simple d'utilisation. Il présente l'avantage de pouvoir être mis en oeuvre par l'utilisateur final du simulateur de mouvements qui ne doit donc plus forcément être un automaticien spécialiste du réglage de la boucle d'asservissement. L'utilisateur final a simplement à spécifier par exemple les marges de retard et de module à atteindre et à lancer la procédure automatique de synthèse du correcteur optimal.Finally, the method according to the invention is particularly simple to use. It has the advantage of being able to be implemented by the end user of the motion simulator, which does not necessarily have to be a specialist in controlling the servo loop. The end user simply needs to specify for example the delay and module margins to be reached and to start the automatic procedure for summarizing the optimal corrector.

L'invention a également pour objet un simulateur de mouvements apte à embarquer une charge, le simulateur de mouvements comportant un dispositif mécanique et une unité de contrôle, le simulateur comportant un plateau mobile apte à porter la charge ; des moyens d'entraînement apte à mettre en mouvement selon au moins un axe le plateau ; un amplificateur de courant apte à actionner les moyens d'entraînement en réponse à un signal de commande ; un capteur apte à mesurer une position du plateau ; l'unité de contrôle comportant un correcteur apte à émettre le signal de commande en fonction d'un signal de consigne et de la position mesurée, caractérisé en ce que l'unité de contrôle est configurée pour mettre en oeuvre l'un des procédés de réglage ci-dessus pour obtenir un correcteur optimal étant donnée une charge.The invention also relates to a motion simulator capable of loading a load, the motion simulator comprising a mechanical device and a control unit, the simulator comprising a movable plate capable of carrying the load; drive means adapted to move the tray in at least one axis; a current amplifier adapted to actuate the drive means in response to a control signal; a sensor adapted to measure a position of the plate; the control unit comprising a corrector adapted to transmit the control signal as a function of a setpoint signal and the measured position, characterized in that the control unit is configured to implement one of the control methods. setting above to obtain an optimal corrector given a load.

Dans un premier mode de réalisation, le simulateur de mouvements est un positionneur embarqué, la charge donnée étant une charge utile.In a first embodiment, the motion simulator is an onboard positioner, the given load being a payload.

Dans un deuxième mode de réalisation le simulateur de mouvements est un banc d'essai, la charge donnée étant une charge à tester.In a second embodiment, the motion simulator is a test bench, the load given being a load to be tested.

L'invention sera mieux comprise et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description d'un mode de réalisation particulier de l'invention donné uniquement à titre illustratif et non limitatif en référence aux dessins annexés. Sur ces dessins :

  • La figure 1 est un schéma général d'une boucle d'asservissement d'un simulateur de mouvements ;
  • La figure 2 est un schéma général d'un correcteur selon l'art antérieur du type PID pour une mise en oeuvre dans la boucle d'asservissement de la figure 1 ;
  • La figure 3 est un schéma-bloc représentant le principe de la méthodologie dite de contrôle d'état standard au moyen d'un correcteur intégrant un filtre de Kalman et un retour sur un état estimé du dispositif mécanique, utilisé dans le procédé selon l'invention ;
  • La figure 4 est un diagramme représentant, sous la forme d'un algorithme, l'étape initiale du procédé selon l'invention permettant d'obtenir un correcteur robuste vis-à-vis des paramètres du système à contrôler ;
  • La figure 5 représente de manière schématique la boucle d'asservissement dans l'étape de test du procédé selon l'invention ;
  • La figure 6 est un graphe représentant la position correspondant à la consigne appliquée en entrée du correcteur de la figure 5 au cours de l'étape de test ;
  • La figure 7 est un diagramme représentant, sous la forme d'un algorithme, l'étape du procédé selon l'invention permettant la détermination d'un correcteur optimal adapté à la charge.
The invention will be better understood and other objects, details, characteristics and advantages thereof will appear more clearly in the description of a particular embodiment of the invention given solely for illustrative and non-limiting purposes. in the accompanying drawings. On these drawings:
  • The figure 1 is a general diagram of a servo loop of a motion simulator;
  • The figure 2 is a general diagram of a corrector according to the prior art of the PID type for an implementation in the control loop of the figure 1 ;
  • The figure 3 is a block diagram representing the principle of the so-called standard state control method by means of a corrector incorporating a Kalman filter and a feedback on an estimated state of the mechanical device, used in the method according to the invention;
  • The figure 4 is a diagram representing, in the form of an algorithm, the initial step of the method according to the invention for obtaining a robust corrector vis-à-vis the parameters of the system to be controlled;
  • The figure 5 schematically shows the servo loop in the test step of the method according to the invention;
  • The figure 6 is a graph representing the position corresponding to the setpoint applied at the input of the corrector of the figure 5 during the test step;
  • The figure 7 is a diagram representing, in the form of an algorithm, the step of the method according to the invention for determining an optimal corrector adapted to the load.

Le procédé selon l'invention permet le réglage automatique d'une boucle d'asservissement d'un simulateur de mouvements adaptée à une nouvelle charge. Plus particulièrement, le procédé selon l'invention permet d'obtenir rapidement, de l'ordre de la minute, le correcteur optimal à la nouvelle charge présentant le compromis performances/robustesse souhaité. Par réglage automatique, il faut comprendre un réglage ne nécessitant pas l'intervention d'un technicien, et qui peut se faire, par exemple, au moyen d'un calculateur apte à réaliser les différentes étapes du procédé selon l'invention en exécutant les instructions d'un programme mémorisé dans des moyens de mémorisation adaptés.The method according to the invention allows the automatic adjustment of a servo control loop of a motion simulator adapted to a new load. More particularly, the method according to the invention makes it possible to obtain rapidly, of the order of one minute, the optimal corrector to the new load having the desired performance / robustness compromise. By automatic adjustment, it is necessary to understand a setting that does not require the intervention of a technician, and which can be done, for example, by means of a computer capable of performing the various steps of the method according to the invention by executing the instructions of a program stored in appropriate memory means.

De manière schématique, le procédé selon l'invention permet la synthèse de correcteurs adaptés au problème. Ces correcteurs sont réglables au moyen d'un certain nombre de paramètres. Au cours des différentes étapes du procédé selon l'invention, les valeurs de ces paramètres sont ajustées de manière à déterminer un correcteur particulier qui réponde au compromis recherché lors de cette étape.In a schematic manner, the method according to the invention allows the synthesis of correctors adapted to the problem. These correctors are adjustable by means of a number of parameters. During the various steps of the method according to the invention, the values of these parameters are adjusted so as to determine a particular corrector that responds to the compromise sought during this step.

L'étape initiale du procédé selon l'invention a pour but de conduire à la détermination d'un correcteur robuste pour le système mécanique à asservir. Pour ce faire, il est nécessaire d'utiliser une première modélisation physique du comportement du dispositif mécanique.The purpose of the initial step of the method according to the invention is to lead to the determination of a robust corrector for the mechanical system to be enslaved. To do this, it is necessary to use a first physical modeling of the behavior of the mechanical device.

Cette première modélisation est une modélisation linéaire d'un système qui correspond à la partie mécanique du dispositif mécanique intervenant dans la boucle d'asservissement. L'axe du simulateur de mouvements est commandé par un moteur du type à courant continu ou synchrone autopiloté (« brushless »). Ce moteur est lui-même commandé en courant. En négligeant la dynamique électrique des bobinages du moteur, le couple ┌ (mesuré en N.m) généré par le moteur est proportionnel à l'intensité I (en A) du courant appliqué : r = Kt·I This first modeling is a linear modeling of a system that corresponds to the mechanical part of the mechanical device intervening in the servo loop. The axis of the motion simulator is controlled by a motor of the DC or synchronous type autopilot ("brushless"). This motor is itself controlled by current. By neglecting the electrical dynamics of the motor windings, the torque ┌ (measured in Nm) generated by the motor is proportional to the intensity I (in A) of the applied current: r = Kt · I

Le facteur de proportionnalité est appelé constante de couple Kt. Le système considéré obéit à la loi fondamentale de la dynamique : d Ω dt = - f J Ω + K t J I

Figure imgb0002
dt = Ω
Figure imgb0003
The proportionality factor is called the torque constant K t . The system considered obeys the fundamental law of dynamics: d Ω dt = - f J Ω + K t J I
Figure imgb0002
dt = Ω
Figure imgb0003

Expression dans laquelle J (en kg.m2/rad) est le moment d'inertie du système (et donc de la charge portée par la plateau du simulateur de mouvements) ; f (exprimé en N.m/rad) est un coefficient de frottement visqueux ; Ω (en rad/s) est la vitesse de rotation du plateau ; et, θ (en rad) est la position instantanée du plateau. Il est courant de chercher à exprimer cette modélisation selon les états dans lesquels peut se trouver le système à asservir. En posant x l'état instantané du système ; U ≡ I le signal de commande appliqué en entrée du système mécanique à contrôler ; et, y ≡ θ la grandeur à contrôler, les équations ci-dessus peuvent être écrites sous la forme d'un système d'équations dites équations d'état : x ˙ = dx dt = A x + B U

Figure imgb0004
y = C x
Figure imgb0005

Avec x = Ω θ et A = - f J 0 1 0 , B = Kt J 0 ,
Figure imgb0006

et C = (0 1)Expression in which J (in kg.m 2 / rad) is the moment of inertia of the system (and thus of the load carried by the plate of the simulator of movements); f (expressed in Nm / rad) is a coefficient of viscous friction; Ω (in rad / s) is the speed of rotation of the plate; and, θ (in rad) is the instantaneous position of the plate. It is common to try to express this modeling according to the states in which the system can be enslaved. By posing x the instantaneous state of the system; U ≡ I the control signal applied at the input of the mechanical system to be controlled; and, y ≡ θ the quantity to be controlled, the above equations can be written in the form of a system of equations called state equations: x ˙ = dx dt = AT x + B U
Figure imgb0004
there = VS x
Figure imgb0005

With x = Ω θ and AT = - f J 0 1 0 , B = kt J 0 ,
Figure imgb0006

and C = (0 1)

Le correcteur selon l'invention est fondé sur un correcteur par exemple de type LQG-H2 dit LQG. La synthèse d'un tel correcteur est effectuée par exemple à l'aide de la méthodologie du contrôle d'état standard. Cette méthodologie est décrite, par exemple, dans l'ouvrage de M Philippe de Larminat intitulé « contrôle d'état standard » publié en 2000 aux éditions HERMES . En variante à la méthodologie du contrôle d'état standard, la méthodologie de placement de pôles robuste pourrait par exemple être utilisée. Cette méthodologie est décrite dans l'ouvrage de Philippe de Larminat intitulé « automatique : commande des systèmes linéaires » aux éditions HERMES. Le correcteur aurait alors une forme polynomiale et serait de structure RST qui est la forme la plus générale des correcteurs commandant des systèmes possédant une variable de commande et une variable mesurée. Il est également possible d'implémenter le correcteur LQG sous forme RST.The corrector according to the invention is based on a corrector for example type LQG-H2 said LQG. The synthesis of such a corrector is performed for example using the standard state control methodology. This methodology is described, for example, in the book of Mr Philippe de Larminat entitled "standard state control" published in 2000 by HERMES . As an alternative to the standard state control methodology, the robust pole placement methodology could be used, for example. This methodology is described in the book by Philippe de Larminat entitled "Automatic control of linear systems" published by HERMES. The corrector would then have a polynomial form and would be of RST structure which is the most general form of the correctors controlling systems having a control variable and a measured variable. It is also possible to implement the LQG corrector in RST form.

Comme cela est représenté schématiquement sur la figure 3, cette méthodologie fait appel à une boucle d'asservissement dans laquelle le correcteur 12 comporte lui-même un filtre de Kalman 10. Le filtre de Kalman 10 prend en entrée le signal de commande U et le vecteur yf contenant la position mesurée Y et la consigne r. Le vecteur f , correspondant à l'état estimé du système par le filtre 10, sert de signal de commande U après avoir été multipliée par un vecteur ligne - Kc, dit vecteur de retour d'état (bloc 11 sur la figure 3). Le filtre de Kalman 10 permet, en quelque sorte, d'estimer l'état du système compte tenu de la modélisation du système et des grandeurs d'entrée (U) et de sortie (Y) effectivement appliquées au dispositif mécanique.As shown schematically on the figure 3 This methodology uses a feedback loop in which the corrector 12 itself comprises a Kalman filter 10. The Kalman filter 10 takes as input the control signal U and the vector y f containing the measured position Y and the instruction r. The vector x f , corresponding to the estimated state of the system by the filter 10, serves as control signal U after having been multiplied by a line vector - Kc, called state return vector (block 11 on the figure 3 ). The Kalman filter 10 makes it possible, as it were, to estimate the state of the system taking into account the system modeling and the input (U) and output (Y) magnitudes actually applied to the mechanical device.

Avantageusement, l'ensemble filtre de Kalman 10 et vecteur de retour d'état permet de rejeter les perturbations qui peuvent modifier le comportement du système.Advantageously, the Kalman filter assembly 10 and state return vector makes it possible to reject disturbances that can modify the behavior of the system.

Lors de l'étape initiale, la boucle d'asservissement est fermée sur une simulation numérique du système réel. Cette simulation numérique est également fondée sur les équations de la dynamique mentionnées ci-dessus. Le système ayant été simulé par des équations linéaires, les couples perturbateurs sont simulés en introduisant une perturbation F appliquée sur l'entrée du système. Alors, le vecteur f , de l'état estimé du système, possède une composante qui est une estimation de la perturbation F.During the initial step, the servo loop is closed on a numerical simulation of the real system. This numerical simulation is also based on the equations of dynamics mentioned above. Since the system has been simulated by linear equations, the disturbing couples are simulated by introducing a perturbation F applied to the input of the system. Then, the vector x f , of the estimated state of the system, has a component which is an estimate of the perturbation F.

Les matrices Kc et Kf du filtre de Kalman 10 sont calculées de sorte que la boucle d'asservissement amène le système vers un état stable.The matrices Kc and Kf of the Kalman filter 10 are calculated so that the servo loop brings the system to a stable state.

Les paramètres permettant de régler le correcteur obtenu selon la méthodologie du contrôle d'état standard sont la matrice Kf et le vecteur ligne Kc, dont la synthèse se fait par minimisation d'un critère quadratique.The parameters for adjusting the corrector obtained according to the standard state control methodology are the matrix Kf and the line vector Kc , the synthesis of which is done by minimizing a quadratic criterion.

Avantageusement, le correcteur est exprimé non pas au moyen des paramètres Kf et Kc, dits de bas niveau, mais au moyen des quatre paramètres scalaires suivants, dits de haut niveau :

  • Un premier paramètre To est un paramètre essentiel, qui permet de gérer un compromis entre le choix d'une dynamique de rejet des perturbations à haute fréquence et une grande marge de retard ;
  • Un deuxième paramètre Tc permet d'arbitrer un compromis entre la marge de module et l'excitation de la commande ;
  • Un troisième paramètre Tr permet de régler la dynamique de suivi de la consigne ;
  • Un quatrième paramètre Ko est un facteur de forme permettant de renforcer la robustesse de la boucle d'asservissement (au détriment de la dynamique de rejet des perturbations).
Advantageously, the corrector is expressed not by means of the parameters Kf and Kc, said to be low level, but by means of the following four scalar parameters, said of high level:
  • A first parameter To is an essential parameter, which makes it possible to manage a compromise between the choice of a high-frequency disturbance rejection dynamics and a large delay margin;
  • A second parameter Tc makes it possible to arbitrate a compromise between the module margin and the excitation of the command;
  • A third parameter Tr makes it possible to adjust the tracking dynamics of the setpoint;
  • A fourth parameter Ko is a form factor making it possible to reinforce the robustness of the servocontrol loop (to the detriment of the disturbance rejection dynamics).

Un tel correcteur permet d'arbitrer facilement les compromis qui interviennent inévitablement dans n'importe quelle technique de synthèse d'un correcteur particulier. Un correcteur PID n'offre pas une telle possibilité car chacune des actions de réglage d'une des constantes KI, KD ou KP est couplée avec les deux autres.Such a corrector makes it easy to arbitrate the compromises that inevitably occur in any technique for synthesizing a particular corrector. A PID corrector does not offer such a possibility because each of the adjustment actions of one of the constants K I , K D or K P is coupled with the other two.

Une étape initiale du procédé selon l'invention est réalisée en usine lors de la fabrication du simulateur de mouvements. Cette étape initiale permet de déterminer les paramètres d'un correcteur qui est robuste aux variations de moment d'inertie de l'axe à commander. Plus précisément, l'étape initiale conduit à un correcteur garantissant la stabilité de l'axe pour toute une plage de moments d'inertie possibles entre un moment d'inertie minimum Jmin correspondant au moment d'inertie de l'axe à vide et un moment d'inertie maximum Jmax correspondant au moment d'inertie de l'axe pour une charge maximale. Le rapport des moments d'inertie maximum Jmax et minimum Jmin peut, par exemple, atteindre un facteur 10. Les moments d'inertie maximum Jmax et minimum Jmin peuvent être évalués lors de la conception du simulateur de mouvements, par exemple au moyen des outils de CAO classiquement utilisés.An initial step of the method according to the invention is carried out in the factory during the manufacture of the motion simulator. This initial step makes it possible to determine the parameters of a corrector which is robust to the variations of moment of inertia of the axis to be controlled. More specifically, the initial step leads to a corrector guaranteeing the stability of the axis for a range of possible moments of inertia between a minimum moment of inertia Jmin corresponding to the moment of inertia of the empty axis and a maximum moment of inertia Jmax corresponding to the moment of inertia of the axis for a maximum load. The ratio of the maximum moments of inertia Jmax and minimum Jmin can, for example, reach a factor of 10. The maximum moments of inertia Jmax and minimum Jmin can be evaluated during the design of the motion simulator, for example using conventionally used CAD tools.

Le moment d'inertie nominal Jnom retenu pour la synthèse d'un correcteur robuste au moyen de la méthodologie du contrôle d'état standard est telle que l'on ait : Jnom = J min J max

Figure imgb0007
The nominal moment of inertia Jnom retained for the synthesis of a robust corrector by means of the methodology of the standard state control is such that one has: Jnom = J min J max
Figure imgb0007

Les frottements visqueux f qui apparaissent dans la modélisation physique ne peuvent pas être connus aisément par le calcul. C'est la raison pour laquelle la valeur nulle est affectée à la valeur du coefficient de frottement visqueux f. Il est à souligner que ce cas correspond au cas le plus défavorable puisque les phénomènes dissipatifs ont globalement un effet stabilisant.The viscous friction f that appears in physical modeling can not be easily known by calculation. This is the reason why the zero value is assigned to the value of the viscous coefficient of friction f. It should be emphasized that this case corresponds to the most unfavorable case since dissipative phenomena generally have a stabilizing effect.

La modélisation, dite nominale, utilisée pour la synthèse du correcteur robuste se réduit donc aux équations d'état : dt = K J U

Figure imgb0008
dt = Ω
Figure imgb0009
The modeling, called nominal, used for the synthesis of the robust corrector is thus reduced to the equations of state: dt = K J U
Figure imgb0008
dt = Ω
Figure imgb0009

Cette équation d'état peut être enrichie de la dynamique de la boucle en courant (contenant entre autre l'amplificateur de courant) pour parfaire la modélisation et la performance du correcteur.This state equation can be enriched by the dynamics of the current loop (containing among others the current amplifier) to perfect the modeling and the performance of the corrector.

Dans ces expressions, K est un coefficient global d'amplification.In these expressions, K is an overall coefficient of amplification.

K peut être connu par le calcul sachant que la constante de couple du moteur et le gain de l'amplificateur sont connus par conception. Lors de l'étape initiale, le but de la synthèse est de trouver un correcteur robuste qui garantisse un niveau de marge statique et un niveau de marge dynamique corrects, et ceci quelle que soit la charge sur i'axe. L'algorithme 200 de la figure 4 représente la succession d'étapes élémentaires conduisant à la détermination d'un correcteur robuste.K can be known by the calculation knowing that the motor torque constant and the gain of the amplifier are known by design. In the initial step, the aim of the synthesis is to find a robust corrector that guarantees a good level of static margin and dynamic margin level, regardless of the load on the axis. The algorithm 200 of the figure 4 represents the succession of elementary steps leading to the determination of a robust corrector.

Au début de l'algorithme 200, la valeur du paramètre To est prise arbitrairement faible. A l'étape 201, la valeur du paramètre Tc est prise comme égale à la valeur de To divisée par un facteur valant par exemple 10. A l'étape 202, la valeur du paramètre Tr est prise comme égale à celle de To. A l'étape 203, la valeur unité est affectée au paramètre Ko. D'une manière générale, le simulateur possède une unité électronique comportant des moyens de mémorisation et des moyens de calcul. Les instructions d'un programme apte à mettre en oeuvre tout ou partie du procédé selon l'invention sont stockées dans les moyens de mémorisation. Les valeurs instantanées des variables utilisées sont stockées dans un espace mémoire dont l'adresse est prédéfinie, et lues à partir de cet espace lorsque les moyens de calcul exécutent une instruction effectuant une opération utilisant cette variable.At the beginning of the algorithm 200, the value of the parameter To is arbitrarily low. In step 201, the value of the parameter Tc is taken as equal to the value of To divided by a factor of, for example, 10. In step 202, the value of the parameter Tr is taken as equal to that of To. step 203, the unit value is assigned to the parameter Ko. In general, the simulator has an electronic unit comprising storage means and calculation means. The instructions of a program adapted to implement all or part of the method according to the invention are stored in the storage means. The instantaneous values of the variables used are stored in a memory space whose address is predefined, and read from this space when the calculation means execute an instruction performing an operation using this variable.

Puis l'algorithme 200 se poursuit selon la direction indiquée par la ligne 21. Compte tenu de la valeur de chacun des paramètres To, Tc, Tr et Ko, un correcteur C est calculé à l'étape 205 au moyen de la méthodologie dite de contrôle d'état standard.Then the algorithm 200 continues in the direction indicated by the line 21. Given the value of each of the parameters To, Tc, Tr and Ko, a corrector C is calculated at step 205 by means of the so-called standard status check.

L'exécution du programme se poursuit par la boucle 210. La boucle 210 constitue une première partie de l'algorithme 200 au cours de laquelle on recherche un correcteur C assurant une marge de module MM supérieure à une valeur seuil de marge de module MMc pour toutes les configurations du système, c'est-à-dire pour toutes les valeurs du moment d'inertie J entre Jmin et Jmax. La valeur de marge de module seuil MMc a une valeur prédéfinie, valant par exemple 0,5.The execution of the program continues with the loop 210. The loop 210 constitutes a first part of the algorithm 200 during which a search is sought for a corrector C ensuring a margin of module MM greater than a threshold value of module margin MMc for all the configurations of the system, that is to say for all the values of the moment of inertia J between Jmin and Jmax. The threshold module margin value MMc has a predefined value, for example equal to 0.5.

La boucle 210 se déroule de façon itérative de la manière suivante : à l'étape 211, la valeur du moment d'inertie J est prise comme valant la valeur minimum Jmin. A l'étape 212, la marge de module MM du correcteur C déterminé à l'étape 205 est calculée compte tenu de cette valeur du moment d'inertie J. En sortie de l'étape 212, à l'étape 213, la valeur de la marge de module MM est comparée avec la marge de module seuil MMc.The loop 210 proceeds iteratively as follows: in step 211, the value of the moment of inertia J is taken as being worth the minimum value Jmin. In step 212, the module MM margin of the corrector C determined in step 205 is calculated taking into account this value of the moment of inertia J. At the output of step 212, at step 213, the value the MM module margin is compared with the MMc threshold module margin.

Si la marge de module MM du correcteur C est inférieure à MMc, le programme 200 est orienté en A, vers l'étape 220 comme cela sera décrit ci-dessous. En revanche, si pour la valeur du moment d'inertie J, la marge de module MM est supérieure à la marge de module seuil MMc, alors la valeur du moment d'inertie est augmentée d'une valeur prédéfinie Δj, à l'étape 214. A l'étape 215, la nouvelle valeur du moment d'inertie J est comparée avec la valeur maximale Jmax. Si J est inférieur à Jmax, on calcule à nouveau la marge de module MM du correcteur C, compte tenu de la nouvelle valeur du moment d'inertie J en exécutant à nouveau l'étape 212. La boucle 210 a lieu tant que J est inférieur à la borne supérieure de la plage de moment d'inertie considérée comme pertinente. Dès que J est égal à Jmax, on sort en B de la boucle 210.If the CM module margin of the corrector C is less than MMc, the program 200 is oriented at A, to the step 220 as will be described below. On the other hand, if for the value of the moment of inertia J, the module margin MM is greater than the threshold module margin MMc, then the value of the moment of inertia is increased by a predefined value Δj, at the step 214. In step 215, the new value of the moment of inertia J is compared with the maximum value Jmax. If J is less than Jmax, the module margin MM of the corrector C is again calculated, taking into account the new value of the moment of inertia J, by performing step 212 again. The loop 210 takes place as long as J is less than upper bound of the range of moment of inertia considered relevant. As soon as J is equal to Jmax, we leave B at loop 210.

Si, à l'étape 213, la marge de module MM est inférieure à la marge de module seuil MMc, il faut construire un nouveau correcteur C. Pour cela, à l'étape 220, la valeur actuelle du paramètre Ko est multipliée par un facteur supérieur à l'unité, par exemple 1,1. Puis, un nouveau correcteur C est déterminé à l'étape 205. L'exécution du programme rentre à nouveau dans la boucle 210 pour vérifier si ce nouveau correcteur C satisfait la condition 213 pour toutes les valeurs du moment d'inertie J entre Jmin et Jmax. Dès qu'un tel correcteur C a été trouvé, le programme 200 passe dans une deuxième partie de l'algorithme 200 (point B).If, in step 213, the module margin MM is smaller than the threshold module margin MMc, a new corrector C must be constructed. For this, in step 220, the current value of the parameter Ko is multiplied by one factor greater than unity, for example 1.1. Then, a new corrector C is determined in step 205. The execution of the program returns to loop 210 to check whether this new corrector C satisfies the condition 213 for all values of the moment of inertia J between Jmin and jmax. As soon as such a corrector C has been found, the program 200 passes into a second part of the algorithm 200 (point B).

Dans une deuxième partie de l'étape initiale, on recherche un correcteur assurant une marge de retard MR supérieure à une valeur seuil de marge de retard MRc pour toutes les configurations du système, c'est-à-dire pour toutes les valeurs du moment d'inertie J entre Jmin et Jmax. La valeur de la marge de retard seuil MRc est prédéfinie.In a second part of the initial step, a corrector is sought which provides a delay margin MR greater than a delay margin threshold value MRc for all the configurations of the system, that is to say for all the values of the moment. of inertia J between Jmin and Jmax. The value of the threshold delay margin MRc is predefined.

Selon cette deuxième partie de l'algorithme 200, à l'étape 230, la valeur actuelle du paramètre To est multipliée par une constante supérieure à l'unité, par exemple 1,1. Compte tenu de cette nouvelle valeur du paramètre To, les étapes 201, 202 et 203 sont exécutées à nouveau pour déterminer la valeur des différents paramètres qui vont servir à l'étape 205 pour déterminer un nouveau correcteur C ; la valeur Ko conserve sa valeur précédente, elle n'est pas réaffectée dans cette étape. De manière schématique, l'algorithme 200 suit la ligne indiquée par le chiffre de référence 24. A l'issue de l'étape 205, l'algorithme 200 entre dans une boucle 240. La boucle 240 est similaire à la boucle 210 sauf qu'elle permet de calculer la marge de retard MR et de la comparer à la valeur de la marge de retard seuil MRc et ceci pour toutes les valeurs du moment d'inertie J entre la valeur minimum Jmin et la valeur maximum Jmax. A l'étape 241, la valeur minimum Jmin est associée à la valeur actuelle du moment d'inertie J. A l'étape 242, compte tenu du correcteur C calculé à l'étape 205 précédente, la marge de retard MR est calculée. A l'étape 243, cette valeur est comparée à la valeur seuil MRc. Si la marge de retard MR est inférieure à la valeur seuil MRc, le programme 200 est orienté en B vers l'étape 230. Une nouvelle valeur du paramètre To est calculée, les autres paramètres du correcteur sont mis à jour et un nouveau correcteur C est déterminé avant que l'algorithme ne revienne dans la boucle 240.According to this second part of the algorithm 200, in step 230, the current value of the parameter To is multiplied by a constant greater than unity, for example 1.1. Given this new value of the parameter To, steps 201, 202 and 203 are executed again to determine the value of the various parameters that will be used in step 205 to determine a new corrector C; the value Ko retains its previous value, it is not reassigned in this step. In a schematic manner, the algorithm 200 follows the line indicated by the reference numeral 24. At the end of step 205, the algorithm 200 enters a loop 240. The loop 240 is similar to the loop 210 except that it makes it possible to calculate the delay margin MR and to compare it with the value of the threshold delay margin MRc and this for all the values of the moment of inertia J between the minimum value Jmin and the maximum value Jmax. In step 241, the minimum value Jmin is associated with the current value of the moment of inertia J. In step 242, taking into account the corrector C calculated in the preceding step 205, the delay margin MR is calculated. In step 243, this value is compared with the threshold value MRc. If the delay margin MR is less than the threshold value MRc, the The program 200 is oriented at B to step 230. A new value of the parameter To is calculated, the other parameters of the corrector are updated and a new corrector C is determined before the algorithm returns to the loop 240.

Si, à l'étape 243, la marge de retard MR est effectivement supérieure à MRc, la valeur actuelle du moment d'inertie J est augmentée d'une valeur Δj prédéfinie à l'étape 244. Puis, à l'étape 245, la nouvelle valeur du moment d'inertie J est comparée à la valeur maximale Jmax. Si J est différent de Jmax, l'étape 242 est exécutée à nouveau pour calculer la nouvelle valeur de la marge de retard MR. Cette boucle est exécutée tant que, à l'étape 245, le moment d'inertie J est inférieur au moment d'inertie maximum Jmax. Mais dès que J est égal à Jmax, l'algorithme 200 se termine, le correcteur C ainsi calculé étant un correcteur robuste pour la plage de moments d'inertie.If, in step 243, the delay margin MR is actually greater than MRc, the current value of the moment of inertia J is increased by a value Δj predefined in step 244. Then, in step 245, the new value of the moment of inertia J is compared with the maximum value Jmax. If J is different from Jmax, step 242 is executed again to calculate the new value of the delay margin MR. This loop is executed as, in step 245, the moment of inertia J is less than the maximum moment of inertia Jmax. But as soon as J is equal to Jmax, the algorithm 200 ends, the corrector C thus calculated being a robust corrector for the range of moments of inertia.

Incidemment, on montre que la deuxième partie de l'algorithme 200 ne modifie pas significativement les marges de module MM obtenues dans la première partie de ce même algorithme.Incidentally, it is shown that the second part of the algorithm 200 does not significantly modify the MM module margins obtained in the first part of this same algorithm.

Puis, in situ, au cours de l'utilisation du simulateur de mouvements et à chaque fois qu'une nouvelle charge vient d'être montée sur le plateau, le procédé selon l'invention se poursuit par l'utilisation des paramètres du correcteur robuste pour définir un correcteur optimal à la nouvelle charge. Ce procédé est décomposable en trois étapes successives : une étape de test, une étape d'identification, puis une étape finale conduisant à la synthèse d'un correcteur optimal.Then, in situ, during the use of the motion simulator and each time a new load has been mounted on the plate, the method according to the invention continues with the use of the parameters of the robust corrector. to set an optimal corrector for the new load. This process is decomposable into three successive stages: a test step, an identification step and then a final step leading to the synthesis of an optimal corrector.

Au cours l'étape de test, on se trouve dans la configuration de la figure 5. Au cours de ce test qui est en boucle fermée, on réalise un mouvement de l'axe asservi par le correcteur robuste obtenu à l'issue de l'étape initiale dans le but de caractériser la charge inconnue portée par l'axe. Ce test consiste à réaliser un mouvement de l'axe suivant un profil de consigne de position prédéfini tel que celui représenté schématiquement sur la figure 6. Ce profil de consigne de position est conçu en fonction des contraintes en accélération, vitesse et position à ne pas dépasser pour ne pas détériorer la machine. D'autres profils de consigne sont possibles, mais il est néanmoins indispensable que la vitesse à laquelle se déroule le test atteigne un niveau suffisamment significatif de façon que les phénomènes non linéaires à base vitesse n'interviennent pas.During the test step, we are in the configuration of the figure 5 . During this test which is in a closed loop, a movement of the axis enslaved by the robust corrector obtained at the end of the initial step is carried out in order to characterize the unknown load carried by the axis. This test consists in making a movement of the axis along a predefined position reference profile such as that shown schematically on the figure 6 . This position set profile is designed according to the constraints in acceleration, speed and position not to be exceeded in order not to damage the machine. Other setpoint profiles are possible, but it is nevertheless essential that the speed at which the test takes place reaches a sufficiently high level. significant so that the nonlinear phenomena at base speed do not intervene.

Afin que le signal de commande soit riche et possède un spectre aussi large que possible, une séquence binaire pseudo aléatoire (SBPA), indiquée en pointillés sur la figure 5, peut, en variante, être ajoutée au signal correspondant au profil de consigne. L'amplitude de la séquence binaire pseudo aléatoire est calibrée de telle sorte que ce signal ne mette pas en cause le sens de rotation du simulateur de mouvements et n'entraîne pas une violation des contraintes sur l'accélération la vitesse et la position de l'axe.So that the control signal is rich and has a spectrum as wide as possible, a pseudo random binary sequence (SBPA), indicated in dotted line on the figure 5 , may alternatively be added to the signal corresponding to the setpoint profile. The amplitude of the pseudo-random bit sequence is calibrated so that this signal does not call into question the direction of rotation of the motion simulator and does not cause a violation of the constraints on the acceleration of the speed and position of the motion simulator. 'axis.

Au cours de cette étape de test, les données qui correspondent aux variables d'entrée (valeurs de la commande U) et de sortie (en l'occurrence la mesure de la position Y) sont mémorisées en fonction du temps.During this test step, the data corresponding to the input variables (values of the command U) and output variables (in this case the measurement of the position Y) are stored as a function of time.

Les données mémorisées subissent un prétraitement afin de les rendre utilisables à l'étape suivante d'identification. Pour un instant donné t, ce prétraitement consiste à dériver le signal de position mesurée Y afin d'extraire une mesure de la vitesse instantanée de l'axe du simulateur. Puis, si la vitesse mesurée est inférieure à une valeur seuil de vitesse, le prétraitement consiste alors à éliminer les données de commande U et de position mesurée Y associées à cet instant t. Ainsi, certains phénomènes non linéaires se produisant à basse vitesse, aussi appelés effet Stribeck, ne sont pas pris en compte.The stored data is pretreated to make them usable for the next identification step. For a given instant t, this pretreatment consists in deriving the measured position signal Y in order to extract a measurement of the instantaneous speed of the axis of the simulator. Then, if the measured speed is less than a speed threshold value, the pretreatment then consists of eliminating the control data U and the measured position Y associated with this instant t. Thus, some nonlinear phenomena occurring at low speed, also called Stribeck effect, are not taken into account.

Le procédé comporte ensuite une étape d'identification du système pour une charge spécifique. Plus précisément, cette étape d'identification permet de déterminer la valeur des paramètres d'une deuxième modélisation physique du système considéré (inertie, frottements, etc.) en exploitant des données enregistrées lors de l'étape de test.The method then comprises a step of identifying the system for a specific load. More precisely, this identification step makes it possible to determine the value of the parameters of a second physical modeling of the considered system (inertia, friction, etc.) by exploiting data recorded during the test step.

La deuxième modélisation physique du système à asservir doit tenir compte des non linéarités affectant le système à asservir. Les frottements secs et/ou le balourd peuvent être modélisés. Le balourd est le déséquilibre, selon des axes qui ne sont pas verticaux, d'une pièce mécanique qui est dû au fait que son centre de gravité n'est pas sur l'axe de rotation. Ainsi, une modélisation non linéaire de l'axe peut s'écrire : J d Ω dt = - f Ω + Γ - Fs sign Ω - d sin θ + ϕ

Figure imgb0010
dt = Ω
Figure imgb0011
The second physical modeling of the system to be enslaved must take into account the nonlinearities affecting the system to be enslaved. Dry friction and / or unbalance can be modeled. Unbalance is the unbalance, along axes that are not vertical, of a mechanical part that is due to the fact that its center of gravity is not on the axis of rotation. Thus, a nonlinear modeling of the axis can be written: J d Ω dt = - f Ω + Γ - fs sign Ω - d sin θ + φ
Figure imgb0010
dt = Ω
Figure imgb0011

Dans ce système d'équations, J est le moment d'inertie de l'ensemble du système, f un coefficient de frottements visqueux ; Fs le module de Coulomb des frottements secs ; d un couple de balourd (d est nul dans le cas d'un axe vertical) ; ϕ l'angle de la droite reliant le centre de gravité de la charge à l'axe par rapport à la verticale.In this system of equations, J is the moment of inertia of the whole system, f a coefficient of viscous friction; Fs the Coulomb modulus of dry friction; a pair of unbalance (d is zero in the case of a vertical axis); φ the angle of the straight line connecting the center of gravity of the load to the axis with respect to the vertical.

Dans un système multiaxe d'autres forces peuvent intervenir de façon non linéaire comme, par exemple, les forces de Coriolis.In a multiaxis system other forces can intervene in a non-linear way such as, for example, Coriolis forces.

Le terme Fs·sign(Ω) modélisant les frottements secs possède la propriété de ne pas être dérivable autour de zéro. Afin d'éviter les problèmes afférents à cette non dérivabilité dans l'étape d'identification, la consigne lors de l'étape d'essai est choisie de telle sorte que sign(Ω) soit constant (par exemple positif). Dans ces conditions, le modèle décrit précédemment devient : J d Ω dt = - f Ω + Γ - Fs - d sin θ + ϕ

Figure imgb0012
dt = Ω
Figure imgb0013
The term Fs · sign (Ω) modeling dry friction has the property of not being differentiable around zero. In order to avoid the problems relating to this non-differentiability in the identification step, the setpoint during the test step is chosen such that sign (Ω) is constant (for example positive). Under these conditions, the model described previously becomes: J d Ω dt = - f Ω + Γ - fs - d sin θ + φ
Figure imgb0012
dt = Ω
Figure imgb0013

Les paramètres J et f de cette deuxième modélisation sont déterminés par identification en utilisant un algorithme de programmation non linéaire tel que l'algorithme de Levenberg-Marquardt par exemple.The parameters J and f of this second model are determined by identification using a non-linear programming algorithm such as the Levenberg-Marquardt algorithm for example.

Enfin, le procédé se termine par une étape de synthèse d'un correcteur optimal pour la charge effectivement embarquée. Ce correcteur est le plus performant possible au sens où il possède un temps de réponse en régulation faible (tout en conservant des marges de robustesse statique - marge de module- et/ou dynamique -marge de retard suffisantes).Finally, the process ends with a step of synthesizing an optimal corrector for the load actually on board. This corrector is the most efficient possible in the sense that it has a response time in low regulation (while maintaining margins of static robustness - margin module- and / or dynamic -marge delay sufficient).

Comme dans l'étape initiale, lors de l'étape finale, la synthèse du correcteur optimal est réalisée selon la méthodologie dite du contrôle d'état standard en exécutant l'algorithme 300 de la figure 7. On détermine alors le correcteur optimal qui satisfait la marge de retard cible MRc, la marge de module cible MMc et le paramètre de réglage Tr. Pour cette étape finale, on utilise le moment d'inertie obtenu par identification lors de l'étape d'identification précédente.As in the initial step, during the final step, the synthesis of the optimal corrector is performed according to the so-called standard state control methodology by executing the algorithm 300 of the figure 7 . The optimal corrector which satisfies the target delay margin MRc, the target module margin MMc and the adjustment parameter Tr are then determined. this final step uses the moment of inertia obtained by identification during the preceding identification step.

L'algorithme 300 débute par l'étape 301 au cours de laquelle un multiple assez élevé de la valeur actuelle du paramètre MRc, par exemple 30 x MRc, est affectée à la valeur du paramètre To. L'algorithme se poursuit par l'étape 302, au cours de laquelle la valeur de To est divisée par cinq et le résultat est affecté au paramètre Tc. Puis, compte tenu des paramètres To, Tr et Tc actuels, l'étape 305 permet de déterminer le correcteur correspondant, au moyen de la méthodologie du contrôle d'état standard. Il est à noter que l'étape 305 est identique à l'étape 205 de l'algorithme 200 (figure 4) avec Ko fixé à la valeur unitaire. En sortie de l'étape 305, l'étape 306 est exécutée. Elle permet de calculer la marge de retard MR du correcteur obtenu. A l'étape 307, la valeur calculée de la marge de retard MR est comparée avec la marge de retard seuil MRc. Si la marge de retard MR est effectivement supérieure à MRc, l'algorithme 300 revient à l'étape 308 selon le chemin A. A l'étape 308, une nouvelle valeur du paramètre To est calculée. La nouvelle valeur de To est inférieure à la valeur précédente, et est obtenue en multipliant la valeur précédente de To par un paramètre inférieur à l'unité, en l'occurrence 0,95 par exemple. Puis l'étape 302 est une nouvelle fois exécutée. Compte tenu de la valeur des nouveaux paramètres, un nouveau correcteur C est calculé à l'étape 305. La boucle est exécutée tant que la condition 307 est vérifiée.The algorithm 300 begins with the step 301 in which a sufficiently high multiple of the current value of the parameter MRc, for example 30 x MRc, is assigned to the value of the parameter To. The algorithm continues with the step 302, during which the value of To is divided by five and the result is assigned to the parameter Tc. Then, considering the current To, Tr and Tc parameters, step 305 makes it possible to determine the corresponding corrector, by means of the standard state control methodology. It should be noted that step 305 is identical to step 205 of algorithm 200 ( figure 4 ) with Ko set to the unit value. At the output of step 305, step 306 is executed. It makes it possible to calculate the margin of delay MR of the corrector obtained. In step 307, the calculated value of the delay margin MR is compared with the threshold delay margin MRc. If the delay margin MR is indeed greater than MRc, the algorithm 300 returns to step 308 according to the path A. At step 308, a new value of the parameter To is calculated. The new value of To is lower than the previous value, and is obtained by multiplying the previous value of To by a parameter less than unity, in this case 0.95 for example. Then step 302 is executed again. Given the value of the new parameters, a new corrector C is calculated in step 305. The loop is executed as long as condition 307 is verified.

Lorsque MR est effectivement inférieur à la valeur seuil MRc, l'algorithme 300 sort et exécute l'étape 310 consistant simplement à affecter la valeur précédente à la valeur du paramètre To utilisée dans la dernière itération de la boucle. Ainsi, la valeur actuelle de To est divisée par 0,95 par exemple et le résultat est affecté comme nouvelle valeur de To.When MR is effectively below the threshold value MRc, the algorithm 300 exits and executes step 310 consisting simply of assigning the previous value to the value of the parameter To used in the last iteration of the loop. Thus, the current value of To is divided by 0.95 for example and the result is assigned as a new value of To.

Puis l'algorithme 300 en B est conduit à l'étape 311. La deuxième partie de l'algorithme 300 permet de déterminer le correcteur qui aura la marge de module MM la mieux adaptée. A l'étape 311, la variable Krob, qui est égale au rapport du paramètre To sur le paramètre Tc, prend la valeur 5 par exemple. Puis l'algorithme 300 se poursuit vers l'étape 320 où les valeurs du paramètre To et du paramètre Krob sont lues et la valeur de Tc est calculée en divisant To par Krob. Puis l'étape 305 est exécutée à nouveau, compte tenu de la valeur actuelle des différents paramètres. Un correcteur C est déterminé. A l'étape 321, le module de marge MM de ce nouveau correcteur C est calculé. A l'étape 322, la valeur de la marge de module MM obtenu est comparée avec la marge de module seuil MMc. Lorsque la marge de module MM est inférieure à MMc, l'algorithme 300 est dirigé vers l'étape 330 par le lien C. A l'étape 330 une nouvelle valeur est calculée pour la variable Krob, par exemple en augmentant Krob d'une valeur prédéterminée de 0,1 par exemple. Puis les étapes 320, 305, 321 sont à nouveau exécutées, compte tenu des nouvelles valeurs des différents paramètres. Puis, la condition 322 est encore une fois testée sur la valeur de la marge de module MM du nouveau correcteur C. La boucle C a lieu tant que la marge de module MM reste inférieure à la marge de module seuil MMc. Dès que la condition 322 n'est plus vérifiée, l'algorithme 300 se termine. A cet instant, l'algorithme 300 prend fin.Then the algorithm 300 at B is conducted at step 311. The second part of the algorithm 300 makes it possible to determine the corrector that will have the best adapted MM module margin. In step 311, the variable Krob, which is equal to the ratio of the parameter To on the parameter Tc, takes the value 5 for example. Then the algorithm 300 continues to step 320 where the values of the parameter To and the parameter Krob are read and the value of Tc is calculated by dividing To by Krob. Then step 305 is executed again, taking into account the current value of the different parameters. A corrector C is determined. In step 321, the margin module MM of this new corrector C is calculated. In step 322, the value of the obtained MM module margin is compared with the threshold module margin MMc. When the module margin MM is less than MMc, the algorithm 300 is directed to step 330 by the link C. At step 330 a new value is calculated for the variable Krob, for example by increasing Krob by one. predetermined value of 0.1 for example. Then steps 320, 305, 321 are executed again, taking into account the new values of the various parameters. Then, the condition 322 is again tested on the value of the module margin MM of the new corrector C. The loop C takes place as long as the module margin MM remains lower than the threshold module margin MMc. As soon as condition 322 is no longer satisfied, algorithm 300 ends. At this moment, the algorithm 300 ends.

Un correcteur optimal à la charge actuellement disposée sur le plateau du simulateur de mouvements a été obtenu de manière automatique. Le procédé d'obtention d'un tel correcteur optimal est reproductible et permet d'obtenir un résultat qui soit fiable et qui soit le meilleur possible compte tenu des valeurs données aux paramètres de réglages lors de l'étape initiale. Des essais de mise en oeuvre du procédé selon l'invention montrent qu'il est possible de définir les paramètres du correcteur rapidement.An optimal corrector for the load currently placed on the motion simulator plate has been obtained automatically. The method for obtaining such an optimal corrector is reproducible and makes it possible to obtain a result which is reliable and which is the best possible given the values given to the adjustment parameters during the initial step. Tests of implementation of the method according to the invention show that it is possible to define the corrector parameters quickly.

Bien que l'invention ait été décrite en référence à un mode de réalisation particulier, elle n'est nullement limitée à ce mode de réalisation. Elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons qui entrent dans le cadre de l'invention.Although the invention has been described with reference to a particular embodiment, it is not limited to this embodiment. It includes all the technical equivalents of the means described as well as their combinations which come within the scope of the invention.

Plus particulièrement, le procédé selon l'invention s'applique au cas de dispositifs mécaniques permettant le mouvement du plateau en rotation selon un ou plusieurs axes, en translation selon un ou plusieurs axes ou la combinaison de mouvements de rotation et de translation. Dans un cas particulier donné, la modélisation de la partie mécanique à asservir et la ou les positions mesurées pour former la boucle d'asservissement seront choisies en fonction de ce cas. En particulier dans le cas d'un mouvement en translation, la masse de la charge sera le paramètre d'inertie à considérer, et non plus le moment d'inertie, paramètre d'inertie spécifique à une rotation.More particularly, the method according to the invention applies to the case of mechanical devices allowing the movement of the plate in rotation along one or more axes, in translation along one or more axes or the combination of rotational and translational movements. In a particular case, the modeling of the mechanical part to be enslaved and the position or positions measured to form the loop enslavement will be chosen according to this case. In particular in the case of a translational movement, the mass of the load will be the inertia parameter to be considered, and no longer the moment of inertia, a parameter of inertia specific to a rotation.

Claims (16)

  1. A tuning method to be implemented in a motion simulator able to embark a payload, said simulator including a mechanical device and a control unit, the mechanical device including driving means in order to move a plate capable of carrying the payload ; a current amplifier capable of actuating the driving means in response to a control signal ; a sensor capable of measuring a position of said plate; and said control unit including a corrector capable of transmitting the control signal relative to a position setting signal and to said measured position,
    characterised in that it enables an automatic tuning of said corrector for a position feedback control of the motion of said plate embarking a given payload, said method including:
    - an initial step consisting in the synthesis of a robust corrector, said synthesis being based on a first physical modelling of the mechanical device including one inertia parameter, said obtained robust corrector enabling to feedback control said mechanical device over a range of values of said inertia parameter extending between a minimum inertia parameter and a maximum inertia parameter; and, after having positioned said given payload on the plate;
    - a test step during which the mechanical device, controlled by means of said robust corrector determined during the initial step is actuated according to a predefined position setting profile complying with constraints on the acceleration, the speed and the position of the motion, said control signal and said measured position being stored continuously as data of the test step;
    - an identification step which, on the basis of the data of the test step, enables to determine the value of a plurality of physical parameters of a second modelling of the mechanical device embarking said given payload, said plurality of physical parameters including at least the inertia parameter; and,
    - a final step consisting in the synthesis of an optimal corrector adapted to said given payload, wherein the inertia parameter takes the value of the inertia parameter determined during the identification step.
  2. A method according to claim 1, characterised in that said mechanical device is at least able to translate said plate embarking a payload along one axis, the inertia parameter being then a mass of inertia.
  3. A method according to claim 1, characterised in that said mechanical device is at least able to rotate said plate embarking a payload around an axis, the inertia parameter being then a moment of inertia.
  4. A method according to one of the previous claims, characterised in that during the initial step, the corrector is in a position closed feedback control loop on a digital simulation of the mechanical device embarking a payload having a nominal inertia parameter in said range.
  5. A method according to one of the previous claims, characterised in that all the test, identification and final steps are carried out again at least each time the payload is changed.
  6. A method according to one of the previous claims, characterised in that, the first modelling is a linear modelling of the dynamic behaviour of the mechanical device.
  7. A method according to one of the previous claims, characterised in that said robust and optimal correctors include a Kalman filter based on said first modelling, said Kalman filter taking, as input, the control signal, said measured position and said position setting to generate, as output, an estimated state of said mechanical device, said estimated state being applied as a control signal after having been multiplied by a vector.
  8. A method according to claim 7, characterised in that said Kalman filter enables to estimate the disturbances affecting said mechanical device by modelling them by a signal added to the control signal at the input of the mechanical device to be controlled.
  9. A method according to one of the previous claims, characterised in that the synthesis of said robust and optimal correctors is preformed by means of a standard state control methodology.
  10. A method according to one of the previous claims, characterised in that the robust or optimal correctors include four high-level scalar tuning parameters.
  11. A method according to claim 10, characterised in that said initial step comprises first of all, while varying a first scalar parameter among the scalar parameters, looking for a corrector having a modulus margin lower than a threshold modulus margin for all the values of the moment of inertia of said range of moment of inertia, and then, while varying another scalar parameter among the scalar parameters, so-called the second parameter, looking for a corrector having a delay margin lower than a threshold delay margin for all the values of the moment of inertia of said range of moment of inertia.
  12. A method according to claim 10 or claim 11, characterised in that, the value of the moment of inertia having been identified, said final step comprises first of all, while varying the second parameter, looking for a corrector having a delay margin greater than said threshold delay margin, and then, while varying still another scalar parameter among said four scalar parameters, so-called the third parameter, looking for an optimal corrector having a modulus margin greater than said threshold modulus margin.
  13. A method according to one of the previous claims, characterised in that during the identification step, the second modelling is a linear modelling of the behaviour of the device.
  14. A method according to one of the claims 1 to 12, characterised in that, during the identification step, the second modelling takes into account explicitly the forces leading to a non linear behaviour of the device.
  15. A method according to one of the previous claims, characterised in that it includes, after completion of said test step, a pre-treatment step in order to reject the data for which the corresponding value of the speed of said plate is lower than a threshold speed.
  16. A motion simulator capable of embarking a payload, said motion simulator including a mechanical device and a control unit, the simulator including a mobile plate capable of carrying said payload; driving means capable of putting said plate in motion according to at least one axis; a current amplifier capable of actuating the driving means in response to a control signal; a sensor capable of measuring a position of said plate; the control unit including a corrector capable of transmitting the control signal relative to a position setting signal and said measured position, characterised in that the control unit is configured to implement the tuning method according to any of the claims 1 to 15 to obtain an optimal corrector for a given payload.
EP06743845A 2005-06-10 2006-04-25 Device for automatically adjusting the servo-controller of a mechanical motion simulator and simulator with such a device Active EP1894067B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551576A FR2887044B1 (en) 2005-06-10 2005-06-10 DEVICE FOR AUTOMATICALLY ADJUSTING THE ASSISTANCE OF A MECHANICAL MOTION SIMULATOR AND DEVICE THEREFOR
PCT/FR2006/050388 WO2006131664A1 (en) 2005-06-10 2006-04-25 Device for automatically adjusting servo controls of a movement mechanical simulator and an associated device

Publications (2)

Publication Number Publication Date
EP1894067A1 EP1894067A1 (en) 2008-03-05
EP1894067B1 true EP1894067B1 (en) 2011-01-19

Family

ID=35748744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743845A Active EP1894067B1 (en) 2005-06-10 2006-04-25 Device for automatically adjusting the servo-controller of a mechanical motion simulator and simulator with such a device

Country Status (7)

Country Link
US (1) US7253579B2 (en)
EP (1) EP1894067B1 (en)
AT (1) ATE496324T1 (en)
DE (1) DE602006019722D1 (en)
ES (1) ES2359921T3 (en)
FR (1) FR2887044B1 (en)
WO (1) WO2006131664A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060055357A1 (en) * 2002-08-07 2006-03-16 Rijs Robertus Mathijs G Method and device for identification of the parameters of an electro-mechanical system
FR2911699A1 (en) * 2007-01-22 2008-07-25 Wuilfert Societe Par Actions S OPTIMIZATION OF THE FREQUENTIAL RESPONSE OF A MOTION SIMULATOR BY ADAPTIVE MONITORING OF SINUSOIDAL INSTRUCTIONS.
FR2931003B1 (en) * 2008-05-07 2010-06-04 Wuilfert Soc Nouv METHOD AND DEVICE FOR ROBUST REJECTION OF PERIODIC DISTURBANCES IN A AXIS POSITION CONTROL BUCKLE
US8239177B2 (en) * 2008-08-01 2012-08-07 National Instruments Corporation Simulation of a motion system including a mechanical modeler with interpolation
KR101376840B1 (en) * 2012-11-26 2014-04-01 삼성전기주식회사 Apparatus and method for controlling auto gain of sensor, and sensor apparatus
CN103231373A (en) * 2013-03-26 2013-08-07 东南大学 Exoskeleton hardware control platform
EP3312688A1 (en) 2016-10-18 2018-04-25 Siemens Aktiengesellschaft Automatic optimization of the parametrization of a motion controller
FR3074926B1 (en) 2017-12-07 2019-11-29 Ixblue METHOD OF OPTIMIZING THE PERFORMANCE OF A MECHATRONIC SYSTEM SERVICING, DEVICE ADAPTED
US10613511B2 (en) * 2017-12-22 2020-04-07 Industrial Technology Research Institute Tool machine servo control simulation device and establishing method of structure model
FR3090913B1 (en) * 2018-12-24 2021-01-22 Ixblue METHOD OF CHARACTERIZATION OF A MOVEMENT SIMULATOR, SURVEILLANCE METHOD AND CORRESPONDING DEVICE
CN110543096B (en) * 2019-09-18 2021-05-28 吉林大学 Force feedback composite control method suitable for electric simulation loading system
EP4009003A1 (en) 2020-12-02 2022-06-08 NM Numerical Modelling GmbH Sensor system and method for measuring a process value of a physical system
CN112799303B (en) * 2021-01-06 2022-06-10 西安电子科技大学 H-infinity control method of mechanical arm
CN113199473B (en) * 2021-04-21 2023-04-11 上海飒智智能科技有限公司 Multi-axis mechanical arm control parameter group self-tuning method
CN114147709B (en) * 2021-11-27 2023-08-11 深圳市优必选科技股份有限公司 Robot control method, robot control device and electronic equipment
CN114476864A (en) * 2022-01-13 2022-05-13 北京精密机电控制设备研究所 Control method of electromechanical servo flexible cable driving device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978752A (en) * 1997-08-07 1999-11-02 Seagate Technology, Inc. Model validation algorithm for characterizing parameters and uncertainty in a disc drive
US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US6381505B1 (en) * 1998-09-28 2002-04-30 Aspen Technology, Inc. Robust steady-state target calculation for model predictive control
US6445963B1 (en) * 1999-10-04 2002-09-03 Fisher Rosemount Systems, Inc. Integrated advanced control blocks in process control systems
US6826521B1 (en) * 2000-04-06 2004-11-30 Abb Automation Inc. System and methodology and adaptive, linear model predictive control based on rigorous, nonlinear process model
US6697767B2 (en) * 2000-10-18 2004-02-24 The National University Of Singapore Robust process identification and auto-tuning control
US7158840B2 (en) * 2001-06-29 2007-01-02 Cymer, Inc. Tuning control parameters of vibration reduction and motion control systems for fabrication equipment and robotic systems

Also Published As

Publication number Publication date
FR2887044B1 (en) 2007-08-10
DE602006019722D1 (en) 2011-03-03
FR2887044A1 (en) 2006-12-15
US20060284588A1 (en) 2006-12-21
WO2006131664A1 (en) 2006-12-14
ATE496324T1 (en) 2011-02-15
US7253579B2 (en) 2007-08-07
EP1894067A1 (en) 2008-03-05
ES2359921T3 (en) 2011-05-30

Similar Documents

Publication Publication Date Title
EP1894067B1 (en) Device for automatically adjusting the servo-controller of a mechanical motion simulator and simulator with such a device
EP2956276B1 (en) Method for the improved detection of the collision of a robot with its environment, system and computer program product implementing said method
EP2641134B1 (en) Method and device for active control of mechanical vibrations by implementation of a controller consisting of a central corrector and a youla parameter
EP3221757B1 (en) Method and system for adaptive compensation of dry friction
EP2116912B1 (en) Method and device for robust periodic disturbances rejection in an axis position control loop
EP3305710B1 (en) Method for controlling an anti-oscillatory crane with a third-order filter
EP3472676B1 (en) Method for compensating for coriolis, centrifugal and gravitational torques in a movement simulator and movement simulator system
WO2005062143A1 (en) Method and device for controlling displacements of the movable part of a multiaxis robot
EP3338147B1 (en) System for controlling a controlled parameter
CA2923490A1 (en) Generation process for a machining program interpretable by a physical controller on a numerically-controlled machine tool
EP2558911A2 (en) Device and method for observing or controlling a nonlinear system
EP3721300B1 (en) Method for optimising the performance of a servo control system of a mechatronic system, and suitable device
EP0085008A1 (en) Analogous control system for servoloops controlling the rotational position of a motor with a variable inertial load
WO2015040238A1 (en) Method and device for adjusting an actuated mechanical system
FR2990027A1 (en) Method for estimating pitching and rolling of object modeled by dynamic system for inclinometer, involves balancing correction of computed values of pitching and rolling according to value of given clean acceleration
WO2021229186A1 (en) Use of generalised homogeneity to improve a pid control command
EP1947534B1 (en) Optimisation of the frequency response of a movement simulator by adaptive monitoring of sinusoidal instructions
FR2665388A1 (en) PREDICTIVE CONTROL METHOD AND DEVICE APPLICABLE TO A NUMERICALLY CONTROLLED MACHINE TOOL.
CN114509247B (en) Mechanical characteristic analysis method for vertical axis load
WO2021228860A1 (en) Method for estimating angular errors of angle coders in precision rotary devices, device
EP3543808B1 (en) Method for limiting vibratory phenomena at the part/tool interface
EP4249181A1 (en) Hybrid control systems and processes position force of an industrial robot
WO2019207244A1 (en) Method and system for processing a temperature measurement signal delivered by a sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: DEVICE FOR AUTOMATICALLY ADJUSTING THE SERVO-CONTROLLER OF A MECHANICAL MOTION SIMULATOR AND SIMULATOR WITH SUCH A DEVICE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IXMOTION

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006019722

Country of ref document: DE

Date of ref document: 20110303

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006019722

Country of ref document: DE

Effective date: 20110303

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359921

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110530

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110119

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110519

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

BERE Be: lapsed

Owner name: SOC. NOUVELLE WUILFERT

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

26N No opposition filed

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006019722

Country of ref document: DE

Effective date: 20111020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006019722

Country of ref document: DE

Representative=s name: VOLLMANN & HEMMER, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 496324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110119

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120906 AND 20120912

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

Ref country code: CH

Ref legal event code: PUE

Owner name: IXBLUE

Free format text: IXMOTION#52 AVENUE DE L'EUROPE#78160 MARLY LE ROI (FR) -TRANSFER TO- IXBLUE#52 AVENUE DE L'EUROPE#78160 MARLY LE ROI (FR)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006019722

Country of ref document: DE

Owner name: IXBLUE, FR

Free format text: FORMER OWNER: LXMOTION, MARLY LE ROI, FR

Effective date: 20120827

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006019722

Country of ref document: DE

Representative=s name: VOLLMANN & HEMMER, DE

Effective date: 20120827

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006019722

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

Effective date: 20120827

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: IXBLUE

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230307

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230306

Year of fee payment: 18

Ref country code: GB

Payment date: 20230301

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230504

Year of fee payment: 18

Ref country code: DE

Payment date: 20230302

Year of fee payment: 18

Ref country code: CH

Payment date: 20230502

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006019722

Country of ref document: DE

Owner name: EXAIL SAS, FR

Free format text: FORMER OWNER: IXBLUE, MARLY LE ROI, FR