EP1893869A1 - Method for controlling heater plug in diesel engines - Google Patents

Method for controlling heater plug in diesel engines

Info

Publication number
EP1893869A1
EP1893869A1 EP06805737A EP06805737A EP1893869A1 EP 1893869 A1 EP1893869 A1 EP 1893869A1 EP 06805737 A EP06805737 A EP 06805737A EP 06805737 A EP06805737 A EP 06805737A EP 1893869 A1 EP1893869 A1 EP 1893869A1
Authority
EP
European Patent Office
Prior art keywords
engine
cold
voltage
running phase
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06805737A
Other languages
German (de)
French (fr)
Other versions
EP1893869B1 (en
Inventor
Bernd Stoller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Ludwigsburg GmbH
Original Assignee
Beru AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beru AG filed Critical Beru AG
Publication of EP1893869A1 publication Critical patent/EP1893869A1/en
Application granted granted Critical
Publication of EP1893869B1 publication Critical patent/EP1893869B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/022Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the invention is based on a method having the features specified in the preamble of claim 1. Such a method is known in the article "The electronically controlled glow system ISS for diesel engines, published in DE-Z MTZ Motortechnische Zeitschrift 61, (2000) 10, pp. 668-675.
  • FIG. 1 shows the block diagram of a glow plug control unit 1 for carrying out the known method.
  • This control unit includes a microprocessor 2 with integrated digital-to-analog converter, a number of MOSFET power semiconductor 3 for switching on and off an equal number of glow plugs 4, an electrical interface 5 for connection to a motor control unit 6 and an internal power supply 7 for the microprocessor 2 and for the interface 5.
  • the internal power supply 7 has connection with the vehicle battery via the "terminal 15" of the vehicle.
  • the microprocessor 2 controls the power semiconductors 3, reads their status information and communicates via the electrical interface 5 with the engine control unit 6.
  • the interface 5 adjusts the signals required for communication between the engine control unit 6 and the microprocessor 2.
  • the power supply 7 supplies a stable voltage for the microprocessor 2 and for the interface 5.
  • a glow plug should maintain a constant temperature (steady-state temperature), for which approx. 1000 ° C is a typical value.
  • steady-state temperature modern glow plugs do not require the full voltage from the vehicle electrical system, but only a voltage of typically 5 volts to 6 volts.
  • the microprocessor 2 controls the power semiconductors 3 for this purpose by a method of pulse width modulation, with the result that the voltage from the electrical system, which is the power semiconductors 3 via the "terminal 30" of the vehicle is modulated so that the desired voltage is applied to the glow plugs in the time average.
  • the controller 1 supplies the glow plugs 4 with a higher heating voltage of e.g. 11 volts in order to reach as quickly as possible a temperature of the glow plugs in the amount of the steady-state temperature or - preferably - still some 10 ° C more.
  • the engine After a cold start, the engine is in the so-called cold running phase for a certain period of time, which is characterized by an idle speed, which is above the idle speed with warm engine.
  • the effective voltage applied to the glow plugs ie, the voltage applied as a result of pulse width modulation
  • the initial heating voltage eg 11 volts (the "initial value"
  • the steady-state temperature of the glow plugs can be maintained at, for example, 1000 ° C, (the "Final value" of the voltage). Fluctuations in the vehicle electrical system voltage can be compensated by changing the switch-on time in the pulse width modulation.
  • the glow plugs are cooled to varying degrees.
  • the electric power supplied to the glow plugs is adapted to the changing conditions. This takes place in accordance with the specifications from the engine control unit 6 by raising or lowering the final value of the voltage applied to the glow plugs 4 over the time average.
  • the stepwise lowering of the voltage applied to the glow plugs 4 in the time average takes place in the cold running phase during a predetermined period of time according to empirical values which are stored in the microprocessor 2.
  • the period of time during which the effective stress is raised in the cold-running phase is at most as long as the cold-running phase itself, preferably shorter than this.
  • the time span is determined by the time until a preselected number of revolutions of the motor is reached.
  • the preselected number of revolutions of the engine is preferably preselected as a function of the engine temperature measured during cold starting, wherein the number of revolutions is expediently chosen to be greater the colder the engine is during the cold start.
  • the dependency of the number of revolutions of the motor on the motor temperature measured during the cold start is most easily specified linearly.
  • the engine temperature can be assumed to remain constant during the entire cold running phase to a good approximation. It is conveniently measured in the coolant of the engine.
  • the increase in effective voltage during the cold-start phase of the engine is increased by an additional time-varying amount for a predetermined period of time, which is derived from an empirically derived characteristic which depends on the temperature of the engine measured at the start of the engine, is the additional amount of increase of the effective voltage during the course of the cold-running phase and is formed so that the increase of the effective voltage by the additional amount reduces or eliminates the difference between the effective voltage in the course of the cold-running phase and the effective voltage at the beginning of the cold-running phase ,
  • the characteristic can for a selected diesel engine are obtained empirically, with different characteristics are recorded for different engine start temperatures. How many characteristics are recorded depends on the accuracy that is sought for the constancy of the temperature of the glow plugs in the cold running phase.
  • the combustion behavior and the idling behavior of the engine are stabilized.
  • the idling becomes more even, the cold running phase with increased idle speed can be shortened.
  • the emission of unburned or incompletely combusted constituents of the fuel is reduced.
  • the engine is quieter. Especially with frost, the cold start behavior of the diesel engine is improved.
  • the additional amount by which the increase in the effective stress in the cold-running phase is preferably increased is best chosen to be small at the beginning of the cold-start phase, then to increase, to go through a maximum and at the latest at the end of the cold-running phase , preferably even before the conclusion of the cold-running phase, disappears.
  • FIG. 2 shows a flow chart for a software with which the method according to the invention can be exercised in a circuit arrangement according to FIG.
  • the software is loaded into the memory of the microprocessor 2.
  • the microprocessor 2 calculates a boost 11 for the effective voltage applied to the glow plugs 4.
  • the increase 11 consists of three contributions.
  • a first contribution is taken from a lifting matrix 12 stored in the microprocessor.
  • the boosting matrix is a characteristic field for determining the effective voltage with which the glow plugs 4 are driven, as a function of the rotational speed of the engine, if necessary also as a function of the fuel quantity injected in the time unit.
  • a second contribution 14 represents a correction of the contribution taken from the boosting matrix 12, which depends on the measured starting temperature of the engine (see box 10).
  • This article is to be taken as a function of the starting temperature of the motor of a stored in the microprocessor 2 characteristic.
  • the starting temperature of the engine can be supplied to the microprocessor 2 via the interface 5 either directly from a coolant thermometer or indirectly via the engine control unit 6 as an input variable.
  • a third contribution to the elevation 11 is taken from an empirically obtained and stored in the microprocessor 2 characteristic - see box 16.
  • several empirically derived characteristics for different engine starting temperatures are stored in the microprocessor 2. These curves contain contributions to increase 11 the effective voltage, which change over the course of the cold start phase, using as time base field 17 not the time itself, but the progressive number of revolutions the engine has performed since its launch. The change of the contribution according to the invention to increase 11 of the effective voltage thus takes place when preselected numbers of revolutions of the motor are reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The invention describes a method for controlling glow plugs in diesel engines by varying the effective electric voltage applied to the glow plugs between an initial value and a target value, which is obtained at the end of a cold start phase determined by an engine control unit and which is smaller than the initial value, wherein the increase in voltage, i.e. the voltage difference by which the effective voltage applied to the glow plugs in the cold start phase is higher than its target value, is reduced by steps from a maximum value to zero. The invention provides that the effective electric voltage is increased in the cold start phase of the engine over a predetermined period or time, which is determined by the time elapsed until a preselected number of revolutions of the engine is reached.

Description

Verfahren zum Ansteuern von Glühkerzen in Dieselmotoren Method for controlling glow plugs in diesel engines
Beschreibung:Description:
Die Erfindung geht von einem Verfahren mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen aus. Ein solches Verfahren ist in dem Aufsatz "Das elekt- ronisch gesteuerte Glühsystem ISS für Dieselmotoren, veröffentlicht in der DE-Z MTZ Motortechnische Zeitschrift 61 , (2000) 10, S. 668-675, bekannt.The invention is based on a method having the features specified in the preamble of claim 1. Such a method is known in the article "The electronically controlled glow system ISS for diesel engines, published in DE-Z MTZ Motortechnische Zeitschrift 61, (2000) 10, pp. 668-675.
Figur 1 zeigt das Blockschaltbild eines Glühkerzen-Steuergerätes 1 zum Durchführen des bekannten Verfahrens. Dieses Steuergerät enthält einen Mikroprozessor 2 mit integriertem Digital-Analog-Wandler, eine Anzahl MOSFET-Leistungshalbleiter 3 zum Ein- und Ausschalten einer gleichen Anzahl von Glühkerzen 4, eine elektrische Schnittstelle 5 zur Verbindung mit einem Motorsteuergerät 6 und eine interne Spannungsversorgung 7 für den Mikroprozessor 2 und für die Schnittstelle 5. Die interne Spannungsversorgung 7 hat über die "Klemme 15" des Fahrzeuges Verbindung mit der Fahrzeugbatterie. Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 an, liest deren Statusinformationen und kommuniziert über die elektrische Schnittstelle 5 mit dem Motorsteuergerät 6. Die Schnittstelle 5 nimmt eine Anpassung der Signale vor, die zur Kommunikation zwischen dem Motorsteuergerät 6 und dem Mikroprozessor 2 benö- tigt werden. Die Spannungsversorgung 7 liefert eine stabile Spannung für den Mikroprozessor 2 und für die Schnittstelle 5.FIG. 1 shows the block diagram of a glow plug control unit 1 for carrying out the known method. This control unit includes a microprocessor 2 with integrated digital-to-analog converter, a number of MOSFET power semiconductor 3 for switching on and off an equal number of glow plugs 4, an electrical interface 5 for connection to a motor control unit 6 and an internal power supply 7 for the microprocessor 2 and for the interface 5. The internal power supply 7 has connection with the vehicle battery via the "terminal 15" of the vehicle. The microprocessor 2 controls the power semiconductors 3, reads their status information and communicates via the electrical interface 5 with the engine control unit 6. The interface 5 adjusts the signals required for communication between the engine control unit 6 and the microprocessor 2. The power supply 7 supplies a stable voltage for the microprocessor 2 and for the interface 5.
Spätestens bei betriebswarmem Motor soll eine Glühkerze eine gleichbleibende Temperatur (Beharrungstemperatur) beibehalten, für welche ca. 1000° C ein typi- scher Wert ist. Um die Beharrungstemperatur beizubehalten, wird bei modernen Glühkerzen nicht die volle Spannung aus dem Bordnetz des Fahrzeugs benötigt, sondern lediglich eine Spannung von typisch 5 Volt bis 6 Volt. Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 zu diesem Zweck durch ein Verfahren der Pulsweiten-Modulation, was zur Folge hat, dass die Spannung aus dem Bordnetz, welche den Leistungshalbleitern 3 über die "Klemme 30" des Fahrzeugs zugeführt wird, so moduliert wird, dass die gewünschte Spannung an den Glühkerzen im zeitlichen Mittel anliegt.At the latest when the engine is warm, a glow plug should maintain a constant temperature (steady-state temperature), for which approx. 1000 ° C is a typical value. In order to maintain the steady-state temperature, modern glow plugs do not require the full voltage from the vehicle electrical system, but only a voltage of typically 5 volts to 6 volts. The microprocessor 2 controls the power semiconductors 3 for this purpose by a method of pulse width modulation, with the result that the voltage from the electrical system, which is the power semiconductors 3 via the "terminal 30" of the vehicle is modulated so that the desired voltage is applied to the glow plugs in the time average.
Wird der Dieselmotor kalt gestartet, dann versorgt das Steuergerät 1 die Glühkerzen 4 mit einer höheren Aufheizspannung von z.B. 11 Volt, um möglichst rasch eine Temperatur der Glühkerzen in Höhe der Beharrungstemperatur oder - vorzugsweise - noch einige 10° C mehr zu erreichen.When the diesel engine is started cold, the controller 1 supplies the glow plugs 4 with a higher heating voltage of e.g. 11 volts in order to reach as quickly as possible a temperature of the glow plugs in the amount of the steady-state temperature or - preferably - still some 10 ° C more.
Nach einem Kaltstart befindet sich der Motor für eine gewisse Zeitspanne in der so- genannten Kaltlaufphase, welche durch eine Leerlaufdrehzahl gekennzeichnet ist, welche über der Leerlaufdrehzahl bei betriebswarmem Motor liegt. In der Kaltlaufphase wird die an den Glühkerzen liegende effektive Spannung, d.h., die infolge der Pulsweitenmodulation im zeitlichen Mittel anliegende Spannung, von der anfänglichen Aufheizspannung von z.B. 11 Volt (der "Anfangswert") stufenweise abgesenkt auf die Spannung von z.B. 6 Volt, mit welcher bei betriebswarmem Motor die Beharrungstemperatur der Glühkerzen von z.B. 1000° C gehalten werden kann, (der "Endwert" der Spannung). Schwankungen der Bordnetzspannung können durch Verändern der Einschaltzeit bei der Pulsweitenmodulation ausgeregelt werden.After a cold start, the engine is in the so-called cold running phase for a certain period of time, which is characterized by an idle speed, which is above the idle speed with warm engine. In the cold running phase, the effective voltage applied to the glow plugs, ie, the voltage applied as a result of pulse width modulation, is gradually reduced from the initial heating voltage of eg 11 volts (the "initial value") to the voltage of, for example, 6 volts When the engine is warm, the steady-state temperature of the glow plugs can be maintained at, for example, 1000 ° C, (the "Final value" of the voltage). Fluctuations in the vehicle electrical system voltage can be compensated by changing the switch-on time in the pulse width modulation.
Je nach Motordrehzahl und Motorlast bzw. Motordrehmoment werden die Glühker- zen unterschiedlich stark abgekühlt. Um dennoch bei betriebswarmem Motor die Glühkerzentemperatur konstant zu halten, wird die den Glühkerzen zugeführte elektrische Leistung den sich ändernden Bedingungen angepaßt. Dies geschieht entsprechend den Vorgaben aus dem Motorsteuergerät 6 durch Anheben oder Absenken des Endwertes der im zeitlichen Mittel an den Glühkerzen 4 anliegenden Span- nung.Depending on the engine speed and engine load or engine torque, the glow plugs are cooled to varying degrees. In order nevertheless to keep the glow plug temperature constant when the engine is warm, the electric power supplied to the glow plugs is adapted to the changing conditions. This takes place in accordance with the specifications from the engine control unit 6 by raising or lowering the final value of the voltage applied to the glow plugs 4 over the time average.
Das stufenweise Absenken der im zeitlichen Mittel an den Glühkerzen 4 anliegenden Spannung erfolgt in der Kaltlaufphase während einer vorgegebenen Zeitspanne nach Erfahrungswerten, die im Mikroprozessor 2 gespeichert sind. Die Zeitspanne, während welcher die effektive Spannung in der Kaltlaufphase angehoben wird, ist höchstens so lang wie die Kaltlaufphase selbst, vorzugsweise kürzer als diese.The stepwise lowering of the voltage applied to the glow plugs 4 in the time average takes place in the cold running phase during a predetermined period of time according to empirical values which are stored in the microprocessor 2. The period of time during which the effective stress is raised in the cold-running phase is at most as long as the cold-running phase itself, preferably shorter than this.
Ein während der Kaltlaufphase beobachtetes Absinken der Temperatur der Glühkerzen 4 auf eine Temperatur, die niedriger liegt als die Temperatur beim Start selbst, führt zu einem instabilen Verbrennungsverlauf und dadurch zu Zündaussetzern und Drehzahlschwankungen, die sich durch eine besondere Geräuschentwicklung des Motors bemerkbar machen und die Anteile unverbrannten oder unvollständig verbrannten Kraftstoffs im Abgas des Motors erhöhen.An observed during the cold running phase drop in the temperature of the glow plugs 4 to a temperature lower than the temperature at the start itself, resulting in an unstable combustion process and thereby misfires and speed fluctuations, which are noticeable by a special noise of the engine and the shares Increase unburned or incompletely burned fuel in the exhaust of the engine.
Dieser Nachteil soll durch die vorliegende Erfindung vermindert werden.This disadvantage is to be reduced by the present invention.
Diese Aufgabe wird gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Anstatt für die Anhebung der elektrischen Spannung eine Zeitspanne fest vorzugeben, wird erfindungsgemäß die Zeitspanne durch die Zeit bis zum Erreichen einer vorgewählten Anzahl von Umdrehungen des Motors bestimmt. Durch Vorgeben einer Umdrehungszahl, bis zu deren Erreichen die Anhebung der Spannung in der Kaltlaufphase gesteuert wird, erreicht man eine Anhebung, die für unterschiedliche Motorbelastungen automatisch eine optimale Dauer hat, die von der Belastung des Motors abhängt. Bei höherer Drehzahl, wie sie auftritt, wenn man nach einem Kaltstart sogleich losfährt, erreicht man einen gleichmäßig runden Lauf des Motors früher als bei niedrigerer Drehzahl. Läßt man den Motor die Kaltlaufphase im Stand durchlaufen, benötigt man dafür eine längere Zeit und die Dauer der Anhebung der Spannung verlängert sich erfindungsgemäß automatisch, verglichen mit dem Fall, in welchem man nach einem Kaltstart sogleich losfährt. Die vorgewählte Anzahl von Umdrehungen des Motors wird vorzugsweise in Abhängigkeit von der beim Kaltstart gemessenen Motortemperatur vorgewählt, wobei die Umdrehungszahl zweckmäßi- gerweise um so größer gewählt wird, je kälter der Motor beim Kaltstart ist. Die Abhängigkeit der Anzahl von Umdrehungen des Motors von der beim Kaltstart gemessenen Motortemperatur wird am einfachsten linear vorgegeben.This object is achieved by a method having the features specified in claim 1. Advantageous developments of the invention are the subject of the dependent claims. Instead of predetermining a period of time for the increase of the electrical voltage, according to the invention the time span is determined by the time until a preselected number of revolutions of the motor is reached. By setting a number of revolutions to reach which the increase of the voltage in the cold-running phase is controlled, one achieves an increase which automatically has an optimal duration for different engine loads, which depends on the load of the engine. At higher engine speeds, as occurs when you drive off immediately after a cold start, you will achieve a smoothly round run of the engine earlier than at lower rpm. If you let the engine go through the cold running phase in the state, you need for a longer time and the duration of the increase in voltage extended automatically according to the invention, compared to the case in which you immediately drove off after a cold start. The preselected number of revolutions of the engine is preferably preselected as a function of the engine temperature measured during cold starting, wherein the number of revolutions is expediently chosen to be greater the colder the engine is during the cold start. The dependency of the number of revolutions of the motor on the motor temperature measured during the cold start is most easily specified linearly.
Die Motortemperatur kann während der gesamten Kaltlaufphase in guter Näherung als gleichbleibend angenommen werden. Sie wird zweckmäßigerweise in der Kühlflüssigkeit des Motors gemessen.The engine temperature can be assumed to remain constant during the entire cold running phase to a good approximation. It is conveniently measured in the coolant of the engine.
Vorzugsweise wird die Anhebung der effektiven Spannung während der Kaltlaufphase des Motors während einer vorgegebenen Zeitspanne um einen zusätzlichen, zeit- lieh veränderlichen, Betrag angehoben, welcher sich aus einer empirisch gewonnenen Kennlinie ergibt, die von der beim Start des Motors gemessenen Temperatur des Motors abhängt, den zusätzlichen Betrag der Anhebung der effektiven Spannung im Verlauf der Kaltlaufphase angibt und so gebildet wird, dass das Anheben der effektiven Spannung um den zusätzlichen Betrag den Unterschied zwischen der effektiven Spannung im Verlauf der Kaltlaufphase und der effektiven Spannung am Beginn der Kaltlaufphase verkleinert oder verschwinden läßt. Die Kennlinie kann für einen ausgewählten Dieselmotor empirisch gewonnen werden, wobei für unterschiedliche Motorstarttemperaturen unterschiedliche Kennlinien aufgenommen werden. Wie viele Kennlinien aufgenommen werden, hängt von der Genauigkeit ab, welche für die Konstanz der Temperatur der Glühkerzen in der Kaltlaufphase ange- strebt wird. Für den vor allem infrage kommenden Temperaturbereich von -40° C bis +30° C für die Motorstarttemperatur genügt es, Kennlinien in Abständen von 5° C bis 10° C aufzunehmen. Eine dichtere Lage der Kennlinien bringt keine entscheidende Verbesserung mehr.Preferably, the increase in effective voltage during the cold-start phase of the engine is increased by an additional time-varying amount for a predetermined period of time, which is derived from an empirically derived characteristic which depends on the temperature of the engine measured at the start of the engine, is the additional amount of increase of the effective voltage during the course of the cold-running phase and is formed so that the increase of the effective voltage by the additional amount reduces or eliminates the difference between the effective voltage in the course of the cold-running phase and the effective voltage at the beginning of the cold-running phase , The characteristic can for a selected diesel engine are obtained empirically, with different characteristics are recorded for different engine start temperatures. How many characteristics are recorded depends on the accuracy that is sought for the constancy of the temperature of the glow plugs in the cold running phase. For the above-mentioned temperature range from -40 ° C to + 30 ° C for the engine starting temperature, it is sufficient to record characteristic curves at intervals of 5 ° C to 10 ° C. A denser position of the characteristics no longer brings any significant improvement.
Diese Ausgestaltung der Erfindung hat wesentliche Vorteile:This embodiment of the invention has significant advantages:
Das Verbrennungsverhalten und das Leerlaufverhalten des Motors werden stabilisiert. Der Leerlauf wird gleichmäßiger, die Kaltlaufphase mit erhöhter Leerlaufdrehzahl kann verkürzt werden. Die Emission unverbrannter oder unvollständig verbrann- ter Bestandteile des Kraftstoffes wird verringert. Der Motor wird leiser. Insbesondere bei Frost wird das Kaltstartverhalten des Dieselmotors verbessert.The combustion behavior and the idling behavior of the engine are stabilized. The idling becomes more even, the cold running phase with increased idle speed can be shortened. The emission of unburned or incompletely combusted constituents of the fuel is reduced. The engine is quieter. Especially with frost, the cold start behavior of the diesel engine is improved.
Es wurde herausgefunden, dass der zusätzliche Betrag, um den die Anhebung der effektiven Spannung in der Kaltlaufphase vorzugsweise erhöht wird, am besten so gewählt wird, dass er zu Beginn der Kaltlaufphase klein ist, dann ansteigt, ein Maximum durchläuft und spätestens am Schluß der Kaltlaufphase, vorzugsweise schon vor Abschluß der Kaltlaufphase, verschwindet.It has been found that the additional amount by which the increase in the effective stress in the cold-running phase is preferably increased is best chosen to be small at the beginning of the cold-start phase, then to increase, to go through a maximum and at the latest at the end of the cold-running phase , preferably even before the conclusion of the cold-running phase, disappears.
Auf diese Weise läßt sich in der Kaltlaufphase eine gleichbleibende Temperatur der Glühkerze erreichen.In this way, a constant temperature of the glow plug can be achieved in the cold running phase.
Figur 2 zeigt ein Fließdiagramm für eine Software, mit welcher das erfindungsgemäße Verfahren in einer Schaltungsanordnung gemäß Figur 1 ausgeübt werden kann. Die Software wird in den Speicher des Mikroprozessors 2 geladen. Der Mikroprozessor 2 errechnet eine Anhebung 11 für die effektive Spannung, die an die Glühkerzen 4 gelegt wird. Die Anhebung 11 setzt sich aus drei Beiträgen zusammen. Ein erster Beitrag wird aus einer im Mikroprozessor gespeicherten Anhe- bungsmatrix 12 entnommen. Bei der Anhebungsmatrix handelt es sich um ein Kenn- feld zur Bestimmung der effektiven Spannung, mit welcher die Glühkerzen 4 angesteuert werden, in Abhängigkeit von der Drehzahl des Motors, ggfs. auch in Abhängigkeit von der in der Zeiteinheit eingespritzten Kraftstoffmenge. Diese Daten - Drehzahl und eingespritzte Kraftstoffmenge (siehe Feld 13 in Figur 2) - werden dem Mikroprozessor 2 vom Motorsteuergerät 6 über die Schnittstelle 5 als Eingangsdaten übermittelt.FIG. 2 shows a flow chart for a software with which the method according to the invention can be exercised in a circuit arrangement according to FIG. The software is loaded into the memory of the microprocessor 2. The microprocessor 2 calculates a boost 11 for the effective voltage applied to the glow plugs 4. The increase 11 consists of three contributions. A first contribution is taken from a lifting matrix 12 stored in the microprocessor. The boosting matrix is a characteristic field for determining the effective voltage with which the glow plugs 4 are driven, as a function of the rotational speed of the engine, if necessary also as a function of the fuel quantity injected in the time unit. These data - speed and injected fuel quantity (see box 13 in FIG. 2) - are transmitted to the microprocessor 2 by the engine control unit 6 via the interface 5 as input data.
Ein zweiter Beitrag 14 stellt eine Korrektur des aus der Anhebungsmatrix 12 entnommenen Beitrags dar, welcher von der gemessenen Starttemperatur des Motors (siehe Feld 10) abhängt. Dieser Beitrag ist in Abhängigkeit von der Starttemperatur des Motors einer im Mikroprozessor 2 abgespeicherten Kennlinie zu entnehmen. Die Starttemperatur des Motors kann dem Mikroprozessor 2 über die Schnittstelle 5 entweder direkt von einem Kühlmittelthermometer oder indirekt über das Motorsteuergerät 6 als Eingangsgröße zugeführt werden.A second contribution 14 represents a correction of the contribution taken from the boosting matrix 12, which depends on the measured starting temperature of the engine (see box 10). This article is to be taken as a function of the starting temperature of the motor of a stored in the microprocessor 2 characteristic. The starting temperature of the engine can be supplied to the microprocessor 2 via the interface 5 either directly from a coolant thermometer or indirectly via the engine control unit 6 as an input variable.
Ein dritter Beitrag zur Anhebung 11 wird aus einer empirisch gewonnenen und im Mikroprozessor 2 gespeicherten Kennlinie entnommen - siehe Feld 16. Zu diesem Zweck sind im Mikroprozessor 2 mehrere empirisch gewonnene Kennlinien für unterschiedliche Motorstarttemperaturen abgelegt. Diese Kennlinien enthalten Beiträge zur Anhebung 11 der effektiven Spannung, welche sich im zeitlichen Verlauf der Kaltstartphase ändern, wobei als Zeitbasis - Feld 17 - nicht die Zeit selbst verwendet wird, sondern die fortschreitende Anzahl der Umdrehungen, die der Motor seit seinem Start vollführt hat. Die Änderung des erfindungsgemäßen Beitrages zur Anhebung 11 der effektiven Spannung erfolgt also dann, wenn vorgewählte Umdrehungszahlen des Motors erreicht werden. A third contribution to the elevation 11 is taken from an empirically obtained and stored in the microprocessor 2 characteristic - see box 16. For this purpose, several empirically derived characteristics for different engine starting temperatures are stored in the microprocessor 2. These curves contain contributions to increase 11 the effective voltage, which change over the course of the cold start phase, using as time base field 17 not the time itself, but the progressive number of revolutions the engine has performed since its launch. The change of the contribution according to the invention to increase 11 of the effective voltage thus takes place when preselected numbers of revolutions of the motor are reached.

Claims

Patentansprüche: claims:
1. Verfahren zum Ansteuern von Glühkerzen in Dieselmotoren durch Ändern der an den Glühkerzen liegenden effektiven elektrischen Spannung zwischen einem Anfangswert und einem Endwert, welcher am Ende einer durch ein Motorsteuergerät bestimmten Kaltlaufphase vorliegt und kleiner ist als der Anfangswert, wobei die Anhebung der Spannung, das ist der Spannungsunterschied, um welchen die an den Glühkerzen liegende effektive Spannung in der Kaltlaufphase höher ist als ihr Endwert, schrittweise von einem Höchstwert auf Null vermindert wird, dadurch gekennzeichnet, dass die effektive elektrische Spannung in der Kaltlaufphase des Motors während einer vorgegebenen Zeitspanne angehoben wird, welche durch die Zeit bis zum Erreichen einer vorgewählten Anzahl von Umdrehungen des Motors bestimmt wird.A method of controlling glow plugs in diesel engines by changing the effective on the glow plugs effective electrical voltage between an initial value and a final value, which is at the end of a determined by an engine control unit cold running phase and smaller than the initial value, wherein the increase of the voltage is the voltage difference by which the effective voltage applied to the glow plugs in the cold running phase is higher than their final value, is gradually reduced from a maximum value to zero, characterized in that the effective electrical voltage in the cold running phase of the engine is increased during a predetermined period of time , which is determined by the time to reach a preselected number of revolutions of the engine.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Anzahl von Umdrehungen fest vorgegeben wird.2. The method according to claim 1, characterized in that the number of revolutions is fixed.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die vorge- wählte Anzahl von Umdrehungen des Motors in Abhängigkeit von der beim Kaltstart gemessenen Motortemperatur vorgewählt wird.3. The method according to claim 1 or 2, characterized in that the preselected number of revolutions of the engine is selected in dependence on the engine temperature measured during cold start.
4. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die vorgewählte Anzahl von Umdrehungen um so länger gewählt wird, je kälter der Motor beim Kaltstart ist.4. The method according to claim 4, characterized in that the preselected number of revolutions is chosen the longer, the colder the engine is at cold start.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Motortemperatur in der Kühlflüssigkeit gemessen wird.5. The method according to any one of the preceding claims, characterized in that the engine temperature is measured in the cooling liquid.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die effektive elektrische Spannung in der Kaltlaufphase um einen zusätzli- chen, zeitlich veränderlichen Betrag angehoben wird, welcher sich aus einer empirisch gewonnenen Kennlinie ergibt, die von der beim Start des Motors gemessenen Temperatur des Motors abhängt, den zusätzlichen Betrag der Anhebung der effektiven Spannung im Verlauf der Kaltlaufphase angibt und so gebildet wird, dass das Anheben der effektiven Spannung um den zusätzlichen Betrag den Unterschied zwischen der effektiven Spannung in der Kaltlaufphase und der effektiven Spannung am Beginn der Kaltlaufphase verkleinert oder verschwinden läßt.6. The method according to any one of the preceding claims, characterized in that the effective electrical voltage in the cold running phase to an additional is increased, which results from an empirically derived characteristic which depends on the temperature of the engine measured at the start of the engine, the additional amount of increase in the effective voltage during the course of the cold-running phase is indicated and is formed so that Raising the effective voltage by the additional amount makes the difference between the effective voltage in the cold-running phase and the effective voltage at the beginning of the cold-running phase smaller or disappear.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der zusätzliche Betrag so gewählt wird, dass er zu Beginn der Kaltlaufphase klein ist, dann ansteigt, ein Maximum durchläuft und spätestens am Schluß der Kaltlaufphase verschwindet.7. The method according to any one of the preceding claims, characterized in that the additional amount is chosen so that it is small at the beginning of the cold running phase, then increases, passes through a maximum and disappears at the latest at the end of the cold running phase.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Anhebung der effektiven Spannung in Abhängigkeit von der Motortemperatur und/oder von der Motordrehzahl bzw. von der in der Zeiteinheit eingespritzten Kraftstoffmenge und/oder von der Motorlast bzw. dem Drehmoment des Motors durch Vorgaben aus dem Motorsteuergerät angepaßt wird.8. The method according to any one of the preceding claims, characterized in that the increase of the effective voltage in dependence on the engine temperature and / or from the engine speed or by the fuel injected in the unit time amount of fuel and / or by the engine load or the torque of the engine is adjusted by specifications from the engine control unit.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der zusätzliche Beitrag zur Anhebung der Spannung nicht von der in der Zeiteinheit eingespritzten Kraftstoffmenge abhängig gemacht wird. 9. The method according to claim 8, characterized in that the additional contribution to the increase of the voltage is not made dependent on the amount of fuel injected in the time unit.
EP06805737A 2005-09-16 2006-09-16 Method for controlling heater plug in diesel engines Not-in-force EP1893869B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005044359A DE102005044359A1 (en) 2005-09-16 2005-09-16 Method for controlling glow plugs in diesel engines
PCT/EP2006/009034 WO2007031341A1 (en) 2005-09-16 2006-09-16 Method for controlling heater plug in diesel engines

Publications (2)

Publication Number Publication Date
EP1893869A1 true EP1893869A1 (en) 2008-03-05
EP1893869B1 EP1893869B1 (en) 2009-02-11

Family

ID=37546709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805737A Not-in-force EP1893869B1 (en) 2005-09-16 2006-09-16 Method for controlling heater plug in diesel engines

Country Status (8)

Country Link
US (1) US7658174B2 (en)
EP (1) EP1893869B1 (en)
JP (1) JP5154421B2 (en)
KR (1) KR100948991B1 (en)
AT (1) ATE422612T1 (en)
DE (2) DE102005044359A1 (en)
ES (1) ES2321983T3 (en)
WO (1) WO2007031341A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007014677B4 (en) * 2006-03-29 2017-06-01 Ngk Spark Plug Co., Ltd. Device and method for controlling the power supply of a glow plug
DE102006021285B4 (en) * 2006-05-05 2023-05-17 Borgwarner Ludwigsburg Gmbh Process for operating glow plugs in diesel engines
DE102007044003A1 (en) * 2007-06-28 2009-01-02 Robert Bosch Gmbh Method and apparatus for controlling an afterglow temperature in a diesel internal combustion engine
EP2123902B1 (en) * 2008-05-21 2011-10-12 GM Global Technology Operations LLC A method and an apparatus for controlling glow plugs in a diesel engine, particularly for motor-vehicles
JP4956486B2 (en) * 2008-05-30 2012-06-20 日本特殊陶業株式会社 Glow plug energization control device and glow plug energization control system
KR101298516B1 (en) * 2008-07-03 2013-08-22 봇슈 가부시키가이샤 Drive control method for glow plugs
GB2471889B (en) * 2009-07-17 2014-03-26 Gm Global Tech Operations Inc A glow plug for a diesel engine
GB2472813B (en) * 2009-08-19 2014-02-05 Gm Global Tech Operations Inc Glowplug temperature control method and device for the reduction of emissions from a diesel engine
JP5852644B2 (en) * 2011-05-19 2016-02-03 ボッシュ株式会社 Glow plug drive control method and glow plug drive control apparatus
WO2013042488A1 (en) * 2011-09-20 2013-03-28 ボッシュ株式会社 Glow plug diagnostic method and glow plug drive control device
US9388787B2 (en) 2013-02-19 2016-07-12 Southwest Research Institute Methods, devices and systems for glow plug operation of a combustion engine
JP6271915B2 (en) * 2013-08-28 2018-01-31 日本特殊陶業株式会社 Internal combustion engine equipped with glow plug with combustion pressure sensor and glow plug without sensor
US9784235B2 (en) * 2015-06-16 2017-10-10 Ford Global Technologies, Llc Pilot fuel injection adaptation
CN111946525A (en) * 2020-07-29 2020-11-17 蔡梦圆 Rotating speed variable voltage type power supply for two-stroke gasoline engine hot fire head

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226620Y2 (en) * 1981-04-10 1987-07-08
US4478181A (en) * 1981-10-27 1984-10-23 Nippon Soken, Inc. After glow control system for engine
US6009369A (en) * 1991-10-31 1999-12-28 Nartron Corporation Voltage monitoring glow plug controller
US6148258A (en) * 1991-10-31 2000-11-14 Nartron Corporation Electrical starting system for diesel engines
WO1993009346A1 (en) * 1991-10-31 1993-05-13 Nartron Corporation Glow plug controller
US5241929A (en) * 1992-08-19 1993-09-07 Navistar International Transportation Corp. Electronic engine control module incorporating glow plug and glow plug lamp control
US6164258A (en) * 1998-02-23 2000-12-26 The United States Of America As Represented By The Secretary Of The Army Diesel engine starting controller and method
KR20000066049A (en) * 1999-04-13 2000-11-15 정몽규 Engine control method for water temperature senser fail of vehicle
KR100337355B1 (en) * 1999-12-28 2002-05-22 이계안 Cooling start control method for diesel vehicle
KR100380069B1 (en) * 2000-09-20 2003-04-14 현대자동차주식회사 A method for controlling glow plugs for diesel engine
JP4419880B2 (en) * 2005-03-17 2010-02-24 株式会社デンソー Glow plug energization control method and apparatus
ITBO20050326A1 (en) * 2005-05-06 2006-11-07 Magneti Marelli Powertrain Spa INTERNAL COMBUSTION ENGINE PROVIDED WITH A HEATING DEVICE IN A COMBUSTION CHAMBER AND METHOD OF CHECKING THE HEATING DEVICE
US7188597B2 (en) * 2005-06-07 2007-03-13 International Engine Intellectual Property Company, Llc Engine cold start aid malfunction alert
JP4654964B2 (en) * 2006-04-13 2011-03-23 株式会社デンソー Glow plug energization control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007031341A1 *

Also Published As

Publication number Publication date
DE102005044359A1 (en) 2007-03-29
JP2009508050A (en) 2009-02-26
JP5154421B2 (en) 2013-02-27
US7658174B2 (en) 2010-02-09
DE502006002830D1 (en) 2009-03-26
WO2007031341A1 (en) 2007-03-22
ATE422612T1 (en) 2009-02-15
KR100948991B1 (en) 2010-03-23
EP1893869B1 (en) 2009-02-11
ES2321983T3 (en) 2009-06-15
KR20080044799A (en) 2008-05-21
US20080210186A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
EP1893869B1 (en) Method for controlling heater plug in diesel engines
DE102006021285B4 (en) Process for operating glow plugs in diesel engines
DE102007031613B4 (en) Method of operating glow plugs in diesel engines
EP2024634B1 (en) Method for controlling a glow plug in a diesel engine
WO2007033825A1 (en) Method for controlling a group of glow plugs for a diesel engine
DE102007058697B4 (en) Glow plug learning and control system
DE102006010083B4 (en) Method for driving a group of glow plugs in a diesel engine
DE19803653B4 (en) Control device for direct injection engines
DE102008040971B4 (en) Method and device for regulating the temperature of glow plugs in an internal combustion engine
WO2008110143A1 (en) Method and device for glowplug ignition control
DE102010047631A1 (en) A fuel supply control apparatus for an internal combustion engine and associated fuel supply control method
DE4231711A1 (en) CONTROL DEVICE FOR A CATALYST WITH AN ELECTRIC Heater
DE102009041749A1 (en) Method for operating a heating element in a motor vehicle by pulse width modulation
WO2009000614A1 (en) Method and apparatus for controlling an afterglow temperature in a diesel internal combustion engine
DE102006000357B4 (en) Fuel injection control device
DE102006010082B4 (en) Method for driving a group of glow plugs in a diesel engine
DE102006010081B4 (en) Method for driving a group of glow plugs in a diesel engine
DE3914446A1 (en) METHOD AND DEVICE FOR CONTROLLING THE TEMPERATURE OF A GLOW PLUG
DE102007009105B4 (en) Method for controlling the engine of a diesel engine and engine control system
DE102017109071B4 (en) Method of controlling the temperature of glow plugs
WO2010012344A1 (en) Method for supplying current to a glow plug
DE10329617B4 (en) Method for driving a piezoelectric actuator of a device, in particular a fuel injection device of an internal combustion engine
DE102010001662B4 (en) Method and device for operating a glow plug in an internal combustion engine of a motor vehicle
EP2085608A1 (en) Method for controlling a plurality of glow plugs in a combustion engine and engine control unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006002830

Country of ref document: DE

Date of ref document: 20090326

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321983

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

BERE Be: lapsed

Owner name: BERU A.G.

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090916

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100916

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120924

Year of fee payment: 7

Ref country code: IT

Payment date: 20120926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121008

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002830

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002830

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

Effective date: 20130828

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006002830

Country of ref document: DE

Owner name: BORGWARNER BERU SYSTEMS GMBH, DE

Free format text: FORMER OWNER: BERU AG, 71636 LUDWIGSBURG, DE

Effective date: 20130828

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006002830

Country of ref document: DE

Owner name: BORGWARNER LUDWIGSBURG GMBH, DE

Free format text: FORMER OWNER: BERU AG, 71636 LUDWIGSBURG, DE

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130916

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002830

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006002830

Country of ref document: DE

Owner name: BORGWARNER LUDWIGSBURG GMBH, DE

Free format text: FORMER OWNER: BORGWARNER BERU SYSTEMS GMBH, 71636 LUDWIGSBURG, DE

Effective date: 20141216

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002830

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

Effective date: 20141216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160818

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002830

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404