EP1892198A1 - Pressure control fill valve - Google Patents

Pressure control fill valve Download PDF

Info

Publication number
EP1892198A1
EP1892198A1 EP07016593A EP07016593A EP1892198A1 EP 1892198 A1 EP1892198 A1 EP 1892198A1 EP 07016593 A EP07016593 A EP 07016593A EP 07016593 A EP07016593 A EP 07016593A EP 1892198 A1 EP1892198 A1 EP 1892198A1
Authority
EP
European Patent Office
Prior art keywords
fill valve
pressure control
pressure
cavity
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07016593A
Other languages
German (de)
French (fr)
Other versions
EP1892198B1 (en
Inventor
Brian Billings
Luis B. Carpio
Steve Geerigs
Wayne R. Hurd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longwood Industries Inc
Original Assignee
Longwood Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longwood Industries Inc filed Critical Longwood Industries Inc
Publication of EP1892198A1 publication Critical patent/EP1892198A1/en
Application granted granted Critical
Publication of EP1892198B1 publication Critical patent/EP1892198B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/70Pressure relief devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/42Filling or charging means

Definitions

  • the present invention relates to a valve for a pressurized dispensing container, and more particularly to a valve allowing for the release of pressure from a container to prevent over pressurization.
  • pressurized cans for dispensing products such as lotions and creams, for example, shaving cream.
  • these cans contain a chamber containing product, for example shaving cream, and a chamber of pressurized gas adapted to expel the product out of the container.
  • a container of this type with a pressurized gas subsequent to placing the product in the container.
  • a separate opening in the bottom of the container is utilized to introduce the propellant into the propellant chamber, and a plug or fill valve is thereafter quickly inserted to close the opening and maintain the pressure level of the propellant.
  • FIGS. 1-3 illustrate the use of this two-position fill valve.
  • the two-position fill valve initially is inserted into the container to a first position. This insertion typically is done at the facility where the container is manufactured. The container with the valve inserted then is transported to a filling facility. As shown in FIG. 1, the flutes within the two-position fill valve provide an opening into the container. At the filling facility, the container is pressurized through the flutes, as shown in FIG. 2. Thereafter, as shown in FIG. 3, the valve is further inserted into the container to a second position where the valve seals the container.
  • a first aspect of a preferred embodiment of the present invention is a pressure control fill valve including a generally cylindrical body having a longitudinal axis, a first end, and a second end.
  • the body has a first section extending from said first end toward said second end and defining at least one circumferential groove.
  • the first section also defines at least one flute where the at least one flute defines a fill arc and a fill area when the pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom.
  • the body also includes a base defining a cavity, the cavity extending from the base inwardly toward the first end and a flexible wall disposed between the flute and the cavity that deforms upon the application of a suitable pressure to the first section of the body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  • a second aspect of a preferred embodiment of the present invention is another pressure control fill valve including a generally cylindrical body having a longitudinal axis, a first end, and a second end.
  • the body has a first section extending from said first end toward said second end and defining at least one circumferential groove.
  • the first section also defines at least one flute where the at least one flute defines a fill arc and a fill area when the pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom, where the fill area is greater than 15.0% of the total area of the opening.
  • the body also includes a base defining a cavity, the cavity extending from the base inwardly toward the first end and a flexible wall disposed between the flute and the cavity that deforms upon the application of a suitable pressure to the first section of the body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  • a third aspect of a preferred embodiment of the present invention is a dispensing container.
  • the container includes a container body including a propellant chamber and an opening for fluid communication with the propellant chamber and a pressure control fill valve disposed within the opening.
  • the pressure control fill valve is preferably capable of deforming to open the opening upon build up of a maximum pressure in the propellant chamber.
  • Figure 1 illustrates a prior art two-position fill valve inserted in a first position in a dispensing container.
  • Figure 2 illustrates the prior art two-position fill valve of Figure 1 during charging of the dispensing container with pressurized gas while the two-position fill valve is in the first position.
  • Figure 3 illustrates the prior art two-position fill valve of Figure 1 within the container to seal the dispensing container following charging with the pressurized gas.
  • Figure 4 is a perspective view of a fill valve according to one embodiment of the present technology.
  • Figure 5 is a side cross sectional view of the fill valve of Figure 4, shown inserted in a container.
  • Figure 6 is a perspective view of a fill valve according to another embodiment of the present technology.
  • Figure 7 is a side cross sectional view of the fill valve of Figure 6, shown inserted in a container.
  • Figure 8 is another perspective view of the fill valve of Figure 6.
  • Figure 9A is a partial schematic cross sectional view of a container with the fill valve of Figure 4 inserted in the bottom thereof.
  • Figure 9B is a partial schematic cross sectional view of a container with the fill valve of Figure 6 inserted in the bottom thereof.
  • Figures 4-8 two preferred embodiments of the present invention. These embodiments provide fill valves that prevent over pressurization of a dispensing container or canister by releasing pressure at a desired maximum point and then stopping the leakage of pressure at a desired minimum point.
  • Figures 4 and 5 show the first embodiment of a fill valve 10 in accordance with the present invention.
  • Fill valve 10 is preferably of unitary construction and formed from a deformable material, which, in a preferred embodiment may be nitrile. Other materials, however, can be utilized in constructing fill valve 10 such that fill valve 10 can be deformable for insertion into an opening of a pressurized can and exhibit the properties necessary to allow the aforementioned pressure release. This is discussed more fully below.
  • fill valve 10 has a generally cylindrical body about an axis X, a first end 12, and a second end 14.
  • Fill valve 10 is preferably adapted for insertion into a generally cylindrical opening in a pressurized dispensing container, in an insertion direction Y.
  • Fill valve 10 includes a first section 16 that includes a circumferential groove 18, an outwardly extending lip 20, , two flutes 24 (one of which is seen in Fig. 4), and a wall 26 (shown in Fig. 5).
  • Valve 10 also includes a base 22 connected to or formed integral with first section 16.
  • a cavity 28 is provided through base 22 and at least part of first section 16.
  • first section 16 extends from first end 12 towards second end 14, tapering outwardly along at least a portion of its length from a smaller diameter at first end 12 to a larger diameter where it meets base 22.
  • First section 16 includes lip 20, after which the diameter of first section 16 decreases to define circumferential groove 18.
  • Circumferential groove 18 is essentially a ridged or shouldered section adapted for securing fill valve 10 within the opening of a dispensing container.
  • a second circumferential groove 30 is also provided in first section 16, similar to groove 18.
  • second circumferential groove 30 secures fill valve 10 in a first position within the opening of a dispensing container, thereby maintaining the position of fill valve 10 in the opening of the container during filling of the container.
  • first section 16 may include additional circumferential grooves or only one such circumferential groove.
  • Base 22 is preferably a substantially circular portion with a diameter greater than that of the first section 16.
  • Base 22 can be any shape or size suitable for sealing the opening of a dispensing container.
  • Base 22 is preferably connected to first section 16 at or near circumferential groove 18 and can form a part of groove 18. In operation, the wall of a container surrounding the fill opening is contained within circumferential groove 18 such that base section 22 seals the opening when fill valve 10 is fully seated.
  • Cavity 28 is preferably a cylindrical hole that extends from second end 14 through the interior of fill valve 10 towards first end 12. Other shapes may also be employed. In a preferred embodiment cavity 28 does not extend all the way through first section 16 to first end 12. Cavity 28 aids in the placement of fill valve 10 within a container and in the manipulation of fill valve 10 with respect to the container, allowing the release of pressure from inside the container.
  • Flutes 24 preferably define passages that are useful during a fill process and which allow pressure to escape when wall 26 deforms to slightly unseat fill valve 10 from a sealed position in the opening of a container.
  • the dimensions of flutes 24 are defined by the fill arc length and fill area 34.
  • the fill arc length is defined as the total length of removed arcs 32.
  • Fill area 34 is defined as the total area of the plane perpendicular to axis X surrounded by flutes 24 and the border of the opening of the container. Fill area 34 provides two passageways into the dispensing container for filling the dispensing container with pressurized gas or other material and releasing pressure upon over pressurization of the container.
  • wall 26 (best shown in Figure 5) is disposed between flutes 24 and cavity 28.
  • the thickness, and related stiffness, of wall 26 can be varied depending on the size and dimensions of cavity 28.
  • wall 26 deforms, causing a temporary collapsing of first section 16.
  • This collapse of first section 16 changes the orientation of circumferential groove 18, allowing partial displacement of fill valve 10 within the opening of the container.
  • flutes 24 form a channel from the inside of the container to the outside of the container to release pressure from inside the container.
  • the pressure force on first end 12 is relieved and wall 26 reverts to its original position. Circumferential groove 18 then returns to its original orientation and fill valve 10 reseats, with base 22 once again sealing the opening of the container.
  • first section 16 has a diameter at first end 12 of approximately 0.183 inches and a diameter at lip 20 of approximately 0.260 inches.
  • Circumferential groove 18 has a diameter of approximately 0.240 inches.
  • Base 22 has a diameter of approximately 0.343 inches.
  • Cavity 28 has a diameter of approximately 0.127 inches. It is contemplated, however, that different sized and shaped fill valves can be utilized depending on the application, the canister, the fill hole size, etc. For example, an increase in the size of the container opening will facilitate the need for an increased sized fill valve 10. Of course, the variation of one or more dimensions may require similar variations of others.
  • FIGS. 6-8 depict fill valve 100 in accordance with another embodiment of the present technology.
  • fill valve 100 is also a generally cylindrical body having a first end 112 and a second end 114.
  • fill valve 100 includes a first section 116 which includes a circumferential groove 118, an outwardly extending lip 120, two flutes 124 defined by fill arc lengths and fill areas 134, and a wall 126.
  • a base 122 and a cavity 128 are also provided.
  • This second embodiment is substantially similar to fill valve 10, however, it includes a larger cavity 128.
  • Like reference numerals for like elements to those of the first embodiment have been utilized, but with a 100-series of numbers. Operation and use of valve 100 is also preferably substantially similar to that of valve 10.
  • first section 116 of fill valve 100 has a diameter at first end 112 of approximately 0.183 inches and a diameter at lip 120 of approximately 0.260 inches.
  • Circumferential groove 118 has a diameter of approximately 0.240 inches.
  • Base 122 has a diameter of approximately 0.343 inches.
  • Cavity 128, however, has a diameter of approximately 0.160 inches. It is again contemplated that different sized and shaped fill valves can be utilized. For example, an increase in the size of the container opening will facilitate the need for an increased sized fill valve 100.
  • Fill valves 10 and 100 provide an improved fill valve that prevents over pressurization of a dispensing container by releasing pressure at a desired maximum point and then stopping the leakage of pressure at a desired minimum point.
  • Figures 9A and 9B show the first and second embodiments, respectively, when inserted into the base of dispensing containers. While these embodiments are illustrative, it is contemplated that other embodiments may prevent over pressurization of dispensing containers by varying the profile, diameter, depth, or other pertinent features of the fill valve to accommodate different dispensing containers. Accordingly, the fill valve may be used with many different kinds of containers.
  • variations in the diameters of cavities 28 and 128 preferably results in a change in the thickness and/or stiffness of wall 126, which necessarily adjusts the maximum pressure needed to deform wall 126 and temporarily collapse first section 116.
  • Valves for use with containers openings of approximately 0.210 inches, and having cavities with diameters of 0.120 to 0.161 inches have been tested and shown to provide differing maximum pressure releases.
  • variations in the diameter of cavities 28 and 128 necessarily results in the changes of other element sizes, for similar overall sized valves. For example, as is noted above, such results in the change in thickness of wall 126.
  • larger overall valve sizes may result in different cavity sizes now providing for different maximum pressures.
  • a valve designed for use with an opening larger than 0.210 inches may include a cavity having a diameter identical to that of cavity 28.
  • the maximum pressure held by the larger valve may be greater than that of valve 10.
  • this may vary.
  • valves in accordance with the present invention may vary the maximum pressure capable of being held by the particular valve.
  • identically sized and configured valves may hold different maximum pressures when one of the valves is constructed of a stronger or stiffer material.
  • the length of cavities in valves in accordance with the present invention may serve to vary the maximum pressure held by the valve in operation. For example, longer (or deeper) cavities may result in an overall reduction in material, which may make the valve weaker and subject to being deformed under lesser pressures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Basic Packing Technique (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

A fill valve (10) for filling and sealing of a pressurized dispensing container, as well as for allowing the release of pressure from a container to prevent over pressurization. The valve (10) may include a generally cylindrical body having a first end (12) and a second end (14). The fill valve (10) prevents over pressurization of a dispensing container by releasing pressure at a desired maximum point and then stopping the leakage of pressure at a desired minimum point.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the filing date of United States Provisional Patent Application No. 60/840,215 filed August 25, 2006 , the disclosure of which is hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a valve for a pressurized dispensing container, and more particularly to a valve allowing for the release of pressure from a container to prevent over pressurization.
  • It is well known in the art to utilize pressurized cans for dispensing products such as lotions and creams, for example, shaving cream. Generally these cans contain a chamber containing product, for example shaving cream, and a chamber of pressurized gas adapted to expel the product out of the container. It has been the practice to charge a container of this type with a pressurized gas subsequent to placing the product in the container. Typically, a separate opening in the bottom of the container is utilized to introduce the propellant into the propellant chamber, and a plug or fill valve is thereafter quickly inserted to close the opening and maintain the pressure level of the propellant. Over the years, several advances in this process have occurred.
  • One such advance includes the use of a two-position plug or fill valve for performing this process. This two-position fill valve includes flutes on the side of the valve to provide access to the container when the plug is in a first position. A fill valve of this type is disclosed in U.S. Patent 3,522,900 to Nicholson , the disclosure of which is hereby incorporated herein by reference. FIGS. 1-3 illustrate the use of this two-position fill valve.
  • As shown in FIG. 1, the two-position fill valve initially is inserted into the container to a first position. This insertion typically is done at the facility where the container is manufactured. The container with the valve inserted then is transported to a filling facility. As shown in FIG. 1, the flutes within the two-position fill valve provide an opening into the container. At the filling facility, the container is pressurized through the flutes, as shown in FIG. 2. Thereafter, as shown in FIG. 3, the valve is further inserted into the container to a second position where the valve seals the container.
  • The foregoing sets forth the use of a basic fill valve. Of course, variations of such use do exist, as do other valves which improve upon their predecessors. For example, U.S. Patent No. 6,945,284 to Hurd et al. , the disclosure of which is hereby incorporated herein by reference, teaches an improved dispensing container fill valve. This design not only addresses the propensity of previous valves to become dislodged from a container during shipping or the like, but also improves upon the filling rate during charging of the container.
  • An often encountered problem with utilizing a fill valve is the over pressurization of the container. For example, containers exposed to extreme heat during transport, storage, or the like often become over pressurized. Over pressurization may be a safety hazard because it may cause the container to fail or explode. Past fill valve designs have not allowed for the release of pressure to avoid over pressurization, partly because any release in pressure could have been harmful to the environment through the release of hydrocarbons. Recently, however, the use of non-hazardous compressed gases as propellants has lessened this threat.
  • Therefore, there exists a need for an improved fill valve that prevents over pressurization of a dispensing container.
  • SUMMARY OF THE INVENTION
  • The present invention addresses this need by providing a fill valve that releases pressure once a desired maximum pressure point is achieved in the container, and then stops the leakage of pressure once the pressure drops below that point. A first aspect of a preferred embodiment of the present invention is a pressure control fill valve including a generally cylindrical body having a longitudinal axis, a first end, and a second end. The body has a first section extending from said first end toward said second end and defining at least one circumferential groove. The first section also defines at least one flute where the at least one flute defines a fill arc and a fill area when the pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom. The body also includes a base defining a cavity, the cavity extending from the base inwardly toward the first end and a flexible wall disposed between the flute and the cavity that deforms upon the application of a suitable pressure to the first section of the body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  • A second aspect of a preferred embodiment of the present invention is another pressure control fill valve including a generally cylindrical body having a longitudinal axis, a first end, and a second end. The body has a first section extending from said first end toward said second end and defining at least one circumferential groove. The first section also defines at least one flute where the at least one flute defines a fill arc and a fill area when the pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom, where the fill area is greater than 15.0% of the total area of the opening. The body also includes a base defining a cavity, the cavity extending from the base inwardly toward the first end and a flexible wall disposed between the flute and the cavity that deforms upon the application of a suitable pressure to the first section of the body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  • A third aspect of a preferred embodiment of the present invention is a dispensing container. In accordance with one embodiment of this third aspect, the container includes a container body including a propellant chamber and an opening for fluid communication with the propellant chamber and a pressure control fill valve disposed within the opening. The pressure control fill valve is preferably capable of deforming to open the opening upon build up of a maximum pressure in the propellant chamber.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 illustrates a prior art two-position fill valve inserted in a first position in a dispensing container.
  • Figure 2 illustrates the prior art two-position fill valve of Figure 1 during charging of the dispensing container with pressurized gas while the two-position fill valve is in the first position.
  • Figure 3 illustrates the prior art two-position fill valve of Figure 1 within the container to seal the dispensing container following charging with the pressurized gas.
  • Figure 4 is a perspective view of a fill valve according to one embodiment of the present technology.
  • Figure 5 is a side cross sectional view of the fill valve of Figure 4, shown inserted in a container.
  • Figure 6 is a perspective view of a fill valve according to another embodiment of the present technology.
  • Figure 7 is a side cross sectional view of the fill valve of Figure 6, shown inserted in a container.
  • Figure 8 is another perspective view of the fill valve of Figure 6.
  • Figure 9A is a partial schematic cross sectional view of a container with the fill valve of Figure 4 inserted in the bottom thereof.
  • Figure 9B is a partial schematic cross sectional view of a container with the fill valve of Figure 6 inserted in the bottom thereof.
  • DETAILED DESCRIPTION
  • Referring to the drawings, wherein like reference numerals represent like elements, there is shown in Figures 4-8, two preferred embodiments of the present invention. These embodiments provide fill valves that prevent over pressurization of a dispensing container or canister by releasing pressure at a desired maximum point and then stopping the leakage of pressure at a desired minimum point. Figures 4 and 5 show the first embodiment of a fill valve 10 in accordance with the present invention. Fill valve 10 is preferably of unitary construction and formed from a deformable material, which, in a preferred embodiment may be nitrile. Other materials, however, can be utilized in constructing fill valve 10 such that fill valve 10 can be deformable for insertion into an opening of a pressurized can and exhibit the properties necessary to allow the aforementioned pressure release. This is discussed more fully below.
  • As shown in Figure 4, fill valve 10 has a generally cylindrical body about an axis X, a first end 12, and a second end 14. Fill valve 10 is preferably adapted for insertion into a generally cylindrical opening in a pressurized dispensing container, in an insertion direction Y. Fill valve 10 includes a first section 16 that includes a circumferential groove 18, an outwardly extending lip 20, , two flutes 24 (one of which is seen in Fig. 4), and a wall 26 (shown in Fig. 5). Valve 10 also includes a base 22 connected to or formed integral with first section 16. A cavity 28 is provided through base 22 and at least part of first section 16.
  • As shown, first section 16 extends from first end 12 towards second end 14, tapering outwardly along at least a portion of its length from a smaller diameter at first end 12 to a larger diameter where it meets base 22. First section 16 includes lip 20, after which the diameter of first section 16 decreases to define circumferential groove 18. Circumferential groove 18 is essentially a ridged or shouldered section adapted for securing fill valve 10 within the opening of a dispensing container. In the embodiment shown in Figures 4 and 5, a second circumferential groove 30 is also provided in first section 16, similar to groove 18. In this embodiment, second circumferential groove 30 secures fill valve 10 in a first position within the opening of a dispensing container, thereby maintaining the position of fill valve 10 in the opening of the container during filling of the container. In other embodiments, first section 16 may include additional circumferential grooves or only one such circumferential groove.
  • Base 22 is preferably a substantially circular portion with a diameter greater than that of the first section 16. Base 22 can be any shape or size suitable for sealing the opening of a dispensing container. Base 22 is preferably connected to first section 16 at or near circumferential groove 18 and can form a part of groove 18. In operation, the wall of a container surrounding the fill opening is contained within circumferential groove 18 such that base section 22 seals the opening when fill valve 10 is fully seated.
  • The embodiment shown in Figures 4 and 5 further includes a cavity 28 and flutes 24. Cavity 28 is preferably a cylindrical hole that extends from second end 14 through the interior of fill valve 10 towards first end 12. Other shapes may also be employed. In a preferred embodiment cavity 28 does not extend all the way through first section 16 to first end 12. Cavity 28 aids in the placement of fill valve 10 within a container and in the manipulation of fill valve 10 with respect to the container, allowing the release of pressure from inside the container.
  • While the embodiment shown in Figures 4 and 5 includes two flutes 24, the present technology may include one flute, or a plurality of flutes, thereby promoting a more even and predictable collapse pressure. Flutes 24 preferably define passages that are useful during a fill process and which allow pressure to escape when wall 26 deforms to slightly unseat fill valve 10 from a sealed position in the opening of a container. The dimensions of flutes 24 are defined by the fill arc length and fill area 34. The fill arc length is defined as the total length of removed arcs 32. Fill area 34 is defined as the total area of the plane perpendicular to axis X surrounded by flutes 24 and the border of the opening of the container. Fill area 34 provides two passageways into the dispensing container for filling the dispensing container with pressurized gas or other material and releasing pressure upon over pressurization of the container.
  • In the embodiment shown in Figures 4 and 5, wall 26 (best shown in Figure 5) is disposed between flutes 24 and cavity 28. The thickness, and related stiffness, of wall 26 can be varied depending on the size and dimensions of cavity 28. In a preferred embodiment, when a maximum pressure exerts a force on first section 16 of fill valve 10, wall 26 deforms, causing a temporary collapsing of first section 16. This collapse of first section 16 changes the orientation of circumferential groove 18, allowing partial displacement of fill valve 10 within the opening of the container. Accordingly, flutes 24 form a channel from the inside of the container to the outside of the container to release pressure from inside the container. When a minimum pressure is reached within the container, the pressure force on first end 12 is relieved and wall 26 reverts to its original position. Circumferential groove 18 then returns to its original orientation and fill valve 10 reseats, with base 22 once again sealing the opening of the container.
  • In the embodiment shown in Figures 4 and 5, for an opening in a container of 0.210 inches, preferably, first section 16 has a diameter at first end 12 of approximately 0.183 inches and a diameter at lip 20 of approximately 0.260 inches. Circumferential groove 18 has a diameter of approximately 0.240 inches. Base 22 has a diameter of approximately 0.343 inches. Cavity 28 has a diameter of approximately 0.127 inches. It is contemplated, however, that different sized and shaped fill valves can be utilized depending on the application, the canister, the fill hole size, etc. For example, an increase in the size of the container opening will facilitate the need for an increased sized fill valve 10. Of course, the variation of one or more dimensions may require similar variations of others.
  • Figures 6-8 depict fill valve 100 in accordance with another embodiment of the present technology. As best shown in Figure 6, fill valve 100 is also a generally cylindrical body having a first end 112 and a second end 114. In the embodiment shown, fill valve 100 includes a first section 116 which includes a circumferential groove 118, an outwardly extending lip 120, two flutes 124 defined by fill arc lengths and fill areas 134, and a wall 126. A base 122 and a cavity 128 are also provided. This second embodiment is substantially similar to fill valve 10, however, it includes a larger cavity 128. Like reference numerals for like elements to those of the first embodiment have been utilized, but with a 100-series of numbers. Operation and use of valve 100 is also preferably substantially similar to that of valve 10.
  • Preferably, for an opening in a canister of 0.210 inches, first section 116 of fill valve 100 has a diameter at first end 112 of approximately 0.183 inches and a diameter at lip 120 of approximately 0.260 inches. Circumferential groove 118 has a diameter of approximately 0.240 inches. Base 122 has a diameter of approximately 0.343 inches. Cavity 128, however, has a diameter of approximately 0.160 inches. It is again contemplated that different sized and shaped fill valves can be utilized. For example, an increase in the size of the container opening will facilitate the need for an increased sized fill valve 100.
  • Fill valves 10 and 100 provide an improved fill valve that prevents over pressurization of a dispensing container by releasing pressure at a desired maximum point and then stopping the leakage of pressure at a desired minimum point. Figures 9A and 9B show the first and second embodiments, respectively, when inserted into the base of dispensing containers. While these embodiments are illustrative, it is contemplated that other embodiments may prevent over pressurization of dispensing containers by varying the profile, diameter, depth, or other pertinent features of the fill valve to accommodate different dispensing containers. Accordingly, the fill valve may be used with many different kinds of containers.
  • As discussed above in relation to valves 10 and 100, variations in the diameters of cavities 28 and 128 preferably results in a change in the thickness and/or stiffness of wall 126, which necessarily adjusts the maximum pressure needed to deform wall 126 and temporarily collapse first section 116. Valves for use with containers openings of approximately 0.210 inches, and having cavities with diameters of 0.120 to 0.161 inches have been tested and shown to provide differing maximum pressure releases. Of course, variations in the diameter of cavities 28 and 128 necessarily results in the changes of other element sizes, for similar overall sized valves. For example, as is noted above, such results in the change in thickness of wall 126. In addition, it is noted that larger overall valve sizes may result in different cavity sizes now providing for different maximum pressures. For instance, a valve designed for use with an opening larger than 0.210 inches may include a cavity having a diameter identical to that of cavity 28. However, because of the larger overall size of the valve, the maximum pressure held by the larger valve may be greater than that of valve 10. Of course, as other elements of valves in accordance with the present invention change, this may vary.
  • It is also noted that the particular material utilized in forming a valve in accordance with the present invention may vary the maximum pressure capable of being held by the particular valve. For example, identically sized and configured valves may hold different maximum pressures when one of the valves is constructed of a stronger or stiffer material. Finally, it is noted that the length of cavities in valves in accordance with the present invention, such as cavities 28 and 128, may serve to vary the maximum pressure held by the valve in operation. For example, longer (or deeper) cavities may result in an overall reduction in material, which may make the valve weaker and subject to being deformed under lesser pressures.
  • Although the technology herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and application of the present technology. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

  1. A pressure control fill valve comprising:
    a generally cylindrical body having a longitudinal axis, a first end, and a second end, said body comprising
    a first section extending from said first end toward said second end and defining at least one circumferential groove, said first section also defining at least one flute wherein said at least one flute defines a fill arc and a fill area when said pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom;
    a base defining a cavity, said cavity extending from said base inwardly toward said first end; and
    a flexible wall disposed between said flute and said cavity that deforms upon the application of a suitable pressure to the first section of said body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  2. The pressure control fill valve set forth in claim 1, wherein said circumferential groove has an outwardly extending lip.
  3. The pressure control fill valve set forth in claim 1, wherein the first section includes a plurality of flutes.
  4. The pressure control fill valve set forth in claim 3, wherein the first section includes two flutes symmetrically spaced approximately 180º apart about the longitudinal axis.
  5. The pressure control fill valve set forth in claim 1, wherein said cavity has a diameter of 0.160 inches.
  6. The pressure control fill valve set forth in claim 1, wherein said cavity has a diameter of 0.127 inches.
  7. The pressure control fill valve set forth in claim 1, wherein the fill valve is constructed of nitrile.
  8. The pressure control fill valve set forth in claim 1, wherein said first section is tapered outwardly along at least a portion of its length from a smaller diameter at said first end to a larger diameter at said second end.
  9. A pressure control fill valve comprising
    a generally cylindrical body having a longitudinal axis, a first end, and a second end, said body comprising
    a first section extending from said first end toward said second end and defining at least one circumferential groove, said first section also defining at least one flute, wherein said at least one flute defines a fill arc and a fill area when said pressure control fill valve is disposed in a dispensing container opening for filling the dispensing container and releasing pressure therefrom, said fill area being greater than 15.0% of the total area of the opening;
    a base defining a cavity, said cavity extending from said base inwardly toward said first end; and
    a flexible wall disposed between said flute and said cavity that deforms upon the application of a suitable pressure to the first section of said body and reverts substantially to its original position upon a drop in pressure below the suitable pressure.
  10. The pressure control fill valve set forth in claim 9, wherein said circumferential groove has an outwardly extending lip.
  11. The pressure control fill valve set forth in claim 9, wherein the first section includes a plurality of flutes.
  12. The pressure control fill valve set forth in claim 11, wherein the first section includes two flutes symmetrically spaced approximately 180º apart about the longitudinal axis.
  13. The pressure control fill valve set forth in claim 9, wherein said cavity has a diameter of 0.160 inches.
  14. The pressure control fill valve set forth in claim 9, wherein said cavity has a diameter of 0.127 inches.
  15. The pressure control fill valve set forth in claim 9, wherein the fill valve is constructed of nitrile.
  16. A dispensing container comprising:
    a container body including a propellant chamber and an opening for fluid communication with the propellant chamber; and
    a pressure control fill valve disposed within the opening,
    wherein the pressure control fill valve is capable of deforming to open the opening upon build up of a maximum pressure in the propellant chamber.
  17. The dispensing container of claim 16, wherein the pressure control fill valve can be situated in first and second positions with respect to the container body, the first position allowing for filling of the propellant chamber with a propellant, and the second position allowing for sealing of the opening.
  18. The dispensing container of claim 17, wherein the pressure control fill valve includes
    a generally cylindrical body having a longitudinal axis, a first end, and a second end, the body having
    a first section extending from the first end toward the second end and defining at least one circumferential groove, the first section also defining at least one flute, wherein the at least one flute defines a fill arc and a fill area when the pressure control fill valve is in the first position for filling the dispensing container;
    a base defining a cavity, the cavity extending from the base inwardly toward the first end; and
    a flexible wall disposed between the flute and the cavity that deforms upon the build up of the maximum pressure in the propellant chamber and reverts substantially to its original position upon a drop in pressure below the maximum pressure.
  19. The dispensing container of claim 16, the fill valve is constructed of nitrile.
  20. The dispensing container of claim 16, wherein the fill valve is capable of reverting to is original shape upon a drop in pressure in the propellant chamber below the maximum pressure.
EP07016593A 2006-08-25 2007-08-23 Pressure control fill valve Not-in-force EP1892198B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84021506P 2006-08-25 2006-08-25

Publications (2)

Publication Number Publication Date
EP1892198A1 true EP1892198A1 (en) 2008-02-27
EP1892198B1 EP1892198B1 (en) 2012-01-04

Family

ID=38645765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016593A Not-in-force EP1892198B1 (en) 2006-08-25 2007-08-23 Pressure control fill valve

Country Status (4)

Country Link
US (1) US20080128047A1 (en)
EP (1) EP1892198B1 (en)
AT (1) ATE539980T1 (en)
CA (1) CA2598826C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083511A1 (en) 2012-11-27 2014-06-05 I.P.S. Research And Development B.V. Pressure control fill valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259923A1 (en) * 2010-04-26 2011-10-27 John Geoffrey Chan Plug And Valve System
US20120018031A1 (en) * 2010-07-23 2012-01-26 Scheindel Christian T Sealing Grommet And Method Of Filling
US11591151B2 (en) * 2021-07-02 2023-02-28 Owens-Brockway Glass Container Inc. Pressure relief blow-out plugs and related packages
US12030206B2 (en) 2021-08-12 2024-07-09 Owens-Brockway Glass Container Inc. Producing holes in glass containers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1499739A (en) * 1965-11-15 1967-10-27 Device for spraying liquids by means of a propellant gas
US3357601A (en) * 1966-02-18 1967-12-12 Impact Container Corp Pressurized container assembly
US6945284B1 (en) * 2004-05-25 2005-09-20 Longwood Engineered Products, Inc. Dispensing container fill valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522900A (en) * 1967-10-18 1970-08-04 Continental Can Co Valve for product dispensing container
US3880187A (en) * 1971-05-17 1975-04-29 Crown Cork & Seal Co Plug relief valve for pressure containers
US4350272A (en) * 1971-09-15 1982-09-21 Petterson Tor H Product isolated aerosol container and method of manufacture
US4658979A (en) * 1986-01-13 1987-04-21 American Can Company Propellant filling and sealing valve
US4750314A (en) * 1986-01-13 1988-06-14 American National Can Company Method for propellant filling and sealing of a container
US5232124A (en) * 1992-03-10 1993-08-03 Advanced Monobloc Corporation Pressure relief device and method
US6729362B2 (en) * 2002-10-03 2004-05-04 Christian T. Scheindel Sealing grommet
CA2559019C (en) * 2004-01-30 2010-01-12 Phil Regan Pressure control device
US7225839B2 (en) * 2005-01-21 2007-06-05 United States Can Company Grommet or fill valve for an aerosol container
US7958919B2 (en) * 2008-10-31 2011-06-14 Ball Corporation Fill valve for an aerosol container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1499739A (en) * 1965-11-15 1967-10-27 Device for spraying liquids by means of a propellant gas
US3357601A (en) * 1966-02-18 1967-12-12 Impact Container Corp Pressurized container assembly
US6945284B1 (en) * 2004-05-25 2005-09-20 Longwood Engineered Products, Inc. Dispensing container fill valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083511A1 (en) 2012-11-27 2014-06-05 I.P.S. Research And Development B.V. Pressure control fill valve

Also Published As

Publication number Publication date
ATE539980T1 (en) 2012-01-15
CA2598826A1 (en) 2008-02-25
CA2598826C (en) 2011-09-27
US20080128047A1 (en) 2008-06-05
EP1892198B1 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
EP1892198B1 (en) Pressure control fill valve
KR200490671Y1 (en) Cosmetic container using eco pump
EP3333096A1 (en) Stopper
EP2724789B1 (en) Fluid dispensing assemblies and methods of dispensing fluids from containers
JP6963106B2 (en) Piston with flexible closure for aerosol container
EP2605980B1 (en) High flow aerosol valve
EP2682354B1 (en) Residual quantity reduction member
DE2822115A1 (en) VACUUM ACTUATED PRESSURE SEAL LIQUID DISPENSER
US5236420A (en) Bypass, pressurizing piston for chambers
US10093461B2 (en) Tube with throttle insert
EP2925634B1 (en) Pressure control fill valve
CA2567811C (en) Dispensing container fill valve
DE10222749B4 (en) pressure vessel
BR112016019651B1 (en) STABILIZATION MEMBER, VALVE AND AEROSOL CONTAINER, AND METHOD FOR PROVIDING AN AEROSOL CONTAINER
ITMI972688A1 (en) CONTAINER FOR UNDER PRESSURE FLUID OF LOST OR DISPOSABLE PACKAGING TYPE
JP2008062279A (en) Method for forming can body with rib
EP0227049A2 (en) Single stage aerosol pressurization grommet
JP2007069931A (en) Storing container for content
US10117495B2 (en) Refillable liquid dispensing device
US20010018936A1 (en) Method and device for filling double-wall receptacles
JP4070757B2 (en) Impact resistant coating device for non-volatile liquid storage
EP2857736B1 (en) Liquefied gas tank with rupture means for inflating sealed compartments and bag for sealing ducts for cables which includes said tank
JP3771237B2 (en) Container that presses fluid with pneumatic piston pusher
EP4410706A1 (en) Piston for a packaging container, packaging container and method of making thereof
JP3180052U (en) Levitation gas filling equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CARPIO, LUIS B.

Inventor name: HURD, WAYNE R.

Inventor name: GEERLIGS, STEVE

Inventor name: BILLINGS, BRIAN

17Q First examination report despatched

Effective date: 20080530

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 539980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007019771

Country of ref document: DE

Effective date: 20120301

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120405

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 539980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

26N No opposition filed

Effective date: 20121005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007019771

Country of ref document: DE

Effective date: 20121005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 8

Ref country code: NL

Payment date: 20140809

Year of fee payment: 8

Ref country code: CH

Payment date: 20140812

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140808

Year of fee payment: 8

Ref country code: GB

Payment date: 20140820

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007019771

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831