EP1884646A2 - Method for controlling a combustion machine - Google Patents

Method for controlling a combustion machine Download PDF

Info

Publication number
EP1884646A2
EP1884646A2 EP07012743A EP07012743A EP1884646A2 EP 1884646 A2 EP1884646 A2 EP 1884646A2 EP 07012743 A EP07012743 A EP 07012743A EP 07012743 A EP07012743 A EP 07012743A EP 1884646 A2 EP1884646 A2 EP 1884646A2
Authority
EP
European Patent Office
Prior art keywords
injection
pressure
measured
pressure curve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07012743A
Other languages
German (de)
French (fr)
Other versions
EP1884646A3 (en
Inventor
Albert Kloos
Andreas Kunz
Günther Schmidt
Ralf Speetzen
Michael Willmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1884646A2 publication Critical patent/EP1884646A2/en
Publication of EP1884646A3 publication Critical patent/EP1884646A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation

Definitions

  • the invention relates to a method for controlling an internal combustion engine with common rail system according to the preamble of claim one.
  • the start of injection, the injected fuel mass and the end of the injection decisively determine the quality of the combustion and the composition of the exhaust gas.
  • the start of injection and the end of injection are usually controlled by an electronic control unit.
  • Another uncertainty is that in practice the fuel mass is not measured directly but is calculated from other measured quantities.
  • a method for controlling an internal combustion engine with a common rail system is known in which the rail pressure as a direct measurement detected and the fuel mass is calculated via a mathematical function, such as a linear or root function, or via a map.
  • the method should be real-time capable by directly determining the fuel mass from the current rail pressure.
  • the injection frequency and the delivery frequency of the high-pressure pump are superimposed as disturbance variables, so that the fuel mass calculated in real time is faulty or the rail pressure must first be filtered, as described in US Pat DE 31 18 425 A1 is shown.
  • the method illustrated is intended for a conventional common rail system.
  • the method is not directly applicable to a common rail system with individual memories.
  • the common rail system with individual memories differs from a conventional common rail system in that the fuel to be injected is removed from the individual memory.
  • the supply line from the rail to the individual memory is designed in practice so that a feedback of interference frequencies is damped in the rail.
  • just enough fuel flows out of the rail that the individual accumulator is refilled at the beginning of the injection.
  • the hydraulic resistance of the individual memory and the supply line are matched, ie the connection line from the rail to the individual memory has the highest possible hydraulic resistance.
  • the hydraulic resistance between the rail and the injector should be as low as possible to achieve an unimpeded injection.
  • a method for controlling an internal combustion engine in which the pressure level in a line connecting the injection pump and the injection nozzle, is measured.
  • the fuel mass is calculated by normalizing the pressure curve, forming the area integral and evaluating it by means of a proportionality constant.
  • the method illustrated therein is not applicable in a common rail system with individual memories due to the structural differences.
  • an injection nozzle controlled by an injection pump is a passive element, while the injector can be actively activated in the case of a common rail system.
  • the invention is based on the object of designing a control system for a common rail system with individual memories in which the fuel mass is taken into account.
  • the fuel mass is calculated by the pressure curve of a single memory is measured, a modeled pressure curve over a hydraulic model is modeled on the measured pressure curve and then from the hydraulic model, the fuel mass is calculated.
  • a deviation from the measured Pressure curve of the individual memory is calculated to the modeled pressure curve and the model parameters are adjusted until the deviation is smaller than a limit.
  • the deviation is determined from the variables characterizing the injection. These are the start of injection, the end of injection, a pressure difference from start of injection pressure level to the end of injection pressure level and a spraying angle region alternatively an injection duration.
  • FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1.
  • the fuel is injected via a common rail system.
  • This comprises the following components: a low-pressure pump 2 for fuel delivery from a fuel tank 3, a suction throttle 4 for determining a volume flow, a High-pressure pump 5 for conveying the fuel with pressure increase in a rail 6, individual memory 7 for temporarily storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine.
  • a low-pressure pump 2 for fuel delivery from a fuel tank 3
  • a suction throttle 4 for determining a volume flow
  • a High-pressure pump 5 for conveying the fuel with pressure increase in a rail 6
  • individual memory 7 for temporarily storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine.
  • the common rail system with individual memories differs from a conventional common rail system in that the fuel to be injected is removed from the individual memory 7.
  • the supply line from the rail 6 to the individual memory 7 is designed in practice so that a feedback of interference frequencies in the rail 6 is attenuated. During the injection break just enough fuel flows from the rail 6 that the individual memory 7 is filled again at the beginning of the injection.
  • the hydraulic resistance of the individual storage 7 and the supply line are matched, i. the connecting line from the rail 6 to the individual memory 7 has the highest possible hydraulic resistance.
  • the hydraulic resistance between the rail 6 and the injector 8 should be as low as possible in order to achieve unimpeded injection.
  • the operation of the internal combustion engine 1 is controlled by an electronic control unit (ADEC) 9.
  • the electronic control unit 9 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic Control unit 9 from the input variables, the output variables.
  • the following input variables are shown by way of example in FIG. 1: a rail pressure pCR which is measured by means of a rail pressure sensor 10, a speed signal nMOT of the internal combustion engine 1, pressure signals pE of the individual memory 7 and an input variable EIN.
  • the input quantity EIN subsumes the charge air pressure of a turbocharger and the temperatures of the coolant / lubricant and of the fuel.
  • the outputs of the electronic control unit 9 are a signal PWM for controlling the intake throttle 4, a power-determining signal ve, for example an injection quantity for displaying a desired torque in a torque-based control, and an output variable AUS.
  • the output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1.
  • FIG. 2 shows a diagram of a measured pressure curve pE in a single memory and a modeled pressure curve pEMOD.
  • the measured pressure curve pE is shown as a solid line.
  • the modeled pressure curve pEMOD is shown as a dot-dash line.
  • the modeled pressure curve pEMOD after the first calculation pass is shown, d. H. the modeled pressure curve pEMOD differs significantly from the measured pressure curve pE.
  • crankshaft angle Phi is plotted.
  • the pressure curve in the individual memory is measured and stored over a measuring interval.
  • the measuring interval may correspond to a working cycle of the internal combustion engine, ie 720 degrees crankshaft angle.
  • the measuring interval shown in FIG. 2 includes by way of example the range of 320 to 460 degrees crankshaft angle.
  • the parameters of the injection are determined from the measured pressure curve pE.
  • the characteristics are the injection start SB, the injection end SE, a pressure difference dp and a spray angle range dPhi.
  • the pressure difference is calculated from the difference between injection start pressure level pE (SB) minus injection end pressure level pE (SE).
  • the spray angle range dPhi is calculated from the difference of injection end angle Phi (SE) minus peak start angle Phi (SB).
  • the injection start SB can also be determined from the injection end SE via a mathematical function. A corresponding method is from the DE 103 44 181 A1 known.
  • the modeled pressure curve pEMOD is modeled on the measured pressure curve pE on the basis of the setpoint variables for the injection via the hydraulic model issued by the electronic control unit.
  • the parameters characterizing the modeled pressure curve are preferably the modeled injection start SBMOD, the modeled injection end SEMOD, the modeled pressure difference dpMOD and the modeled angular range dPhiMOD.
  • a difference of the parameters of the measured pressure curve pE to the modeled pressure curve pEMOD is then formed.
  • the reference symbols dSB, dSE, ddp and ddPhi correspond to the respective difference.
  • ddp is calculated from the modeled pressure difference dpMOD minus the pressure difference dp.
  • ddPhi is calculated from dSE minus dSB.
  • a fourth step the model parameters of the hydraulic model are then adjusted until the deviation becomes smaller than a limit value GW, for example GW ⁇ 0.5 ° crankshaft angle. If this is the case, then the fuel mass calculated from the hydraulic model corresponds to the actual fuel mass. The fuel mass calculated from the model is then set as decisive for the further control of the internal combustion engine.
  • GW limit value
  • FIG. 2 shows the pressure curve pE and the modeled pressure curve pEMOD over the crankshaft angle Phi.
  • the pressure curve can also be displayed over time.
  • the references in the text are to be understood as references to the time.
  • the input variables are a first pressure p1, which corresponds to the pressure level provided by the high-pressure pump 5, and a first mass flow m1.
  • the output quantities are a second pressure p2, a second mass flow m2, a third pressure p3 and a third mass flow m3.
  • the second pressure p2 corresponds to the pressure level in the low pressure range.
  • the second Mass flow m2 stands for the leakage of the system.
  • the third pressure p3 corresponds to the cylinder pressure and is approximately constant.
  • the third mass flow m3 stands for the injected fuel mass.
  • Reference D1 stands for a first, D2 for a second and D3 for a third throttle. The latter corresponds to the Einspitzdüse.
  • Reference numeral 11 denotes the single-storage volume.
  • the hydraulic characteristics of the first throttle point D1 are known from test bench measurements and remain constant during operation.
  • the hydraulic characteristics of the second throttle point D2 are variable, but can be determined from the pressure rise phase in the individual storage pressure and its deviation.
  • the hydraulic characteristics of the third throttle point D3, so the injection nozzle, change with the needle stroke. Their temporal changes can be measured on a component test bench, for example by means of one of the DE 198 50 221 C1 known method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The method involves computing a fuel mass from a measured fuel-pressure curve using a common-rail system, with which the mass is set as representation for controlling injection. A pressure curve (PE) of a single memory (7) is measured and a modeled pressure curve is reproduced to the curve by a hydraulic model, where the mass is computed from a hydraulic model. Deviations from the curve of the memory are computed for the modeled pressure curve and model parameters are adjusted until the deviations are smaller than a threshold value.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer Brennkraftmaschine mit Common-Railsystem nach dem Oberbegriff von Anspruch eins.The invention relates to a method for controlling an internal combustion engine with common rail system according to the preamble of claim one.

Bei einer Brennkraftmaschine bestimmen der Spritzbeginn, die eingespritzte Kraftstoffmasse und das Spritzende maßgeblich die Güte der Verbrennung und die Zusammensetzung des Abgases. Um die gesetzlichen Grenzwerte einzuhalten, werden der Spritzbeginn und das Spritzende üblicherweise von einem elektronischen Steuergerät geregelt. Zwischen dem Bestromungsbeginn des Injektors, dem Nadelhub des Injektors und dem tatsächlichen Spritzbeginn besteht ein zeitlicher Versatz, so dass sich der Ist-Spritzbeginn vom Soll-Spritzbeginn unterscheidet. Dies verursacht ungleiche zylinderspezifische Betriebswerte und Abgaswerte der Brennkraftmaschine für ein und denselben Betriebspunkt. Für das Spritzende gilt dies entsprechend. Eine weitere Unsicherheit besteht darin, dass in der Praxis die Kraftstoffmasse nicht direkt gemessen sondern aus anderen Messgrößen berechnet wird.In an internal combustion engine, the start of injection, the injected fuel mass and the end of the injection decisively determine the quality of the combustion and the composition of the exhaust gas. To comply with the legal limits, the start of injection and the end of injection are usually controlled by an electronic control unit. There is a time offset between the start of energization of the injector, the needle stroke of the injector and the actual injection start, so that the actual injection start differs from the desired injection start. This causes unequal cylinder-specific operating values and exhaust gas values of the internal combustion engine for one and the same operating point. For the injection end this applies accordingly. Another uncertainty is that in practice the fuel mass is not measured directly but is calculated from other measured quantities.

Aus der DE 197 26 756 A1 ist ein Verfahren zur Steuerung einer Brennkraftmaschine mit einem Common-Railsystem bekannt, bei dem der Raildruck als direkte Messgröße erfasst und die Kraftstoff-Masse über eine mathematische Funktion, beispielsweise einer linearen oder Wurzelfunktion, oder über ein Kennfeld berechnet wird. Entsprechend den Angaben dieser Fundstelle soll das Verfahren echtzeitfähig sein, indem aus dem aktuellen Raildruck unmittelbar die Kraftstoffmasse bestimmt wird. Systembedingt sind dem Raildrucksignal jedoch beispielsweise die Einspritzfrequenz und die Förderfrequenz der Hochdruckpumpe als Störgrößen überlagert, so dass die in Echtzeit berechnete Kraftstoffmasse fehlerbehaftet ist oder der Raildruck zuvor gefiltert werden muss, wie dies in der DE 31 18 425 A1 dargestellt ist.From the DE 197 26 756 A1 a method for controlling an internal combustion engine with a common rail system is known in which the rail pressure as a direct measurement detected and the fuel mass is calculated via a mathematical function, such as a linear or root function, or via a map. According to the information in this reference, the method should be real-time capable by directly determining the fuel mass from the current rail pressure. However, due to the system, for example, the injection frequency and the delivery frequency of the high-pressure pump are superimposed as disturbance variables, so that the fuel mass calculated in real time is faulty or the rail pressure must first be filtered, as described in US Pat DE 31 18 425 A1 is shown.

Das in der DE 197 26 756 A1 dargestellte Verfahren ist für ein konventionelles Common-Railsystem vorgesehen. Das Verfahren ist bei einem Common-Railsystem mit Einzelspeichern nicht unmittelbar anwendbar. Das Common-Railsystem mit Einzelspeichern unterscheidet sich von einem konventionellen Common-Railsystem darin, dass der einzuspritzende Kraftstoff aus dem Einzelspeicher entnommen wird. Die Zulaufleitung vom Rail zum Einzelspeicher ist in der Praxis so ausgelegt, dass eine Rückkoppelung von Störfrequenzen in das Rail gedämpft wird. Während der Einspritzpause fließt gerade soviel Kraftstoff aus dem Rail nach, dass der Einzelspeicher zu Beginn der Einspritzung wieder gefüllt ist. Der hydraulische Widerstand des Einzelspeichers und der Zulaufleitung sind aufeinander abgestimmt, d.h. die Verbindungsleitung vom Rail zum Einzelspeicher besitzt einen möglichst hohen hydraulischen Widerstand. Bei einem konventionellen Common-Railsystem ohne Einzelspeicher soll der hydraulische Widerstand zwischen dem Rail und dem Injektor möglichst gering sein um eine ungehinderte Einspritzung zu erreichen.That in the DE 197 26 756 A1 The method illustrated is intended for a conventional common rail system. The method is not directly applicable to a common rail system with individual memories. The common rail system with individual memories differs from a conventional common rail system in that the fuel to be injected is removed from the individual memory. The supply line from the rail to the individual memory is designed in practice so that a feedback of interference frequencies is damped in the rail. During the injection break, just enough fuel flows out of the rail that the individual accumulator is refilled at the beginning of the injection. The hydraulic resistance of the individual memory and the supply line are matched, ie the connection line from the rail to the individual memory has the highest possible hydraulic resistance. In a conventional common rail system without single memory, the hydraulic resistance between the rail and the injector should be as low as possible to achieve an unimpeded injection.

Aus der DE 195 16 923 A1 ist ebenfalls ein Verfahren zur Steuerung einer Brennkraftmaschine bekannt, bei dem das Druckniveau in einer Leitung, welche die Einspritzpumpe und die Einspritzdüse verbindet, gemessen wird. Die Kraftstoff-Masse wird berechnet indem die Druckverlaufskurve normiert, das Flächenintegral gebildet und über eine Proportionalitäts-Konstante bewertet wird. Das darin dargestellte Verfahren ist bei einem Common-Railsystem mit Einzelspeichern auf Grund der Strukturunterschiede nicht anwendbar. Beispielsweise handelt es sich bei einer von einer Einspritzpumpe angesteuerten Einspritzdüse um ein passives Element, während der Injektor bei einem Common-Railsystem aktiv ansteuerbar ist.From the DE 195 16 923 A1 Also, a method for controlling an internal combustion engine is known, in which the pressure level in a line connecting the injection pump and the injection nozzle, is measured. The fuel mass is calculated by normalizing the pressure curve, forming the area integral and evaluating it by means of a proportionality constant. The method illustrated therein is not applicable in a common rail system with individual memories due to the structural differences. By way of example, an injection nozzle controlled by an injection pump is a passive element, while the injector can be actively activated in the case of a common rail system.

Der Erfindung liegt die Aufgabe zu Grunde, für ein Common-Railsystem mit Einzelspeichern ein Steuerungsverfahren zu entwerfen bei dem die Kraftstoff-Masse mit berücksichtigt wird.The invention is based on the object of designing a control system for a common rail system with individual memories in which the fuel mass is taken into account.

Die Aufgabe wird durch die Merkmale des ersten Anspruchs gelöst. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.The object is solved by the features of the first claim. The embodiments are shown in the subclaims.

Erfindungsgemäß wird die Kraftstoff-Masse berechnet, indem der Druckverlauf eines Einzelspeichers gemessen wird, ein modellierter Druckverlauf über ein hydraulisches Modell dem gemessenen Druckverlauf nachgebildet wird und anschließend aus dem hydraulischen Modell die Kraftstoff-Masse berechnet wird.According to the fuel mass is calculated by the pressure curve of a single memory is measured, a modeled pressure curve over a hydraulic model is modeled on the measured pressure curve and then from the hydraulic model, the fuel mass is calculated.

Zur Erzielung einer möglichst exakten Kraftstoff-Berechnung ist vorgesehen, dass eine Abweichung aus dem gemessenen Druckverlauf des Einzelspeichers zum modellierten Druckverlauf berechnet wird und die Modellparameter solange angepasst werden bis die Abweichung kleiner einem Grenzwert wird. Hierbei wird die Abweichung aus den die Einspritzung kennzeichnenden Größen bestimmt. Dies sind der Spritzbeginn, das Spritzende, einer Druckdifferenz von Spritzbeginn-Druckniveau zum Spritzende-Druckniveau und einem Spritzwinkelbereich alternativ einer Spritzdauer.To achieve the most accurate fuel calculation is provided that a deviation from the measured Pressure curve of the individual memory is calculated to the modeled pressure curve and the model parameters are adjusted until the deviation is smaller than a limit. In this case, the deviation is determined from the variables characterizing the injection. These are the start of injection, the end of injection, a pressure difference from start of injection pressure level to the end of injection pressure level and a spraying angle region alternatively an injection duration.

Da das hydraulische Modell ein redundantes System zur Sollwert-Vorgabe einer Einspritzung darstellt, kann auf dieses im Fehlerfall zurückgegriffen werden. Für die Berechnung wird der ungefilterte Einzelspeicher-Druck verwendet, wodurch das System robust ist. Selbstverständlich ist dadurch auch eine genauere Injektorbewertung möglich.Since the hydraulic model represents a redundant system for setpoint specification of an injection, this can be used in the event of an error. The calculation uses the unfiltered single-store pressure, which makes the system robust. Of course, this also allows a more accurate injector evaluation.

In den Zeichnungen ist ein bevorzugtes Ausführungsbeispiel dargestellt.In the drawings, a preferred embodiment is shown.

Es zeigen:

Figur 1
ein Systemschaubild;
Figur 2
ein Zeitdiagramm einer Einspritzung;
Figur 3
das Modell.
Show it:
FIG. 1
a system diagram;
FIG. 2
a timing diagram of an injection;
FIG. 3
the model.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1. Bei dieser wird der Kraftstoff über ein Common-Railsystem eingespritzt. Dieses umfasst folgende Komponenten: eine Niederdruck-Pumpe 2 zur Kraftstoff-Förderung aus einem Kraftstofftank 3, eine Saugdrossel 4 zur Festlegung eines Volumenstroms, eine Hochdruck-Pumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung in ein Rail 6, Einzelspeicher 7 zum Zwischenspeichern des Kraftstoffs und Injektoren 8 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1.1 shows a system diagram of an electronically controlled internal combustion engine 1. In this, the fuel is injected via a common rail system. This comprises the following components: a low-pressure pump 2 for fuel delivery from a fuel tank 3, a suction throttle 4 for determining a volume flow, a High-pressure pump 5 for conveying the fuel with pressure increase in a rail 6, individual memory 7 for temporarily storing the fuel and injectors 8 for injecting the fuel into the combustion chambers of the internal combustion engine. 1

Das Common-Railsystem mit Einzelspeichern unterscheidet sich von einem konventionellen Common-Railsystem darin, dass der einzuspritzende Kraftstoff aus dem Einzelspeicher 7 entnommen wird. Die Zulaufleitung vom Rail 6 zum Einzelspeicher 7 ist in der Praxis so ausgelegt, dass eine Rückkoppelung von Störfrequenzen in das Rail 6 gedämpft wird. Während der Einspritzpause fließt gerade soviel Kraftstoff aus dem Rail 6 nach, dass der Einzelspeicher 7 zu Beginn der Einspritzung wieder gefüllt ist. Der hydraulische Widerstand des Einzelspeichers 7 und der Zulaufleitung sind aufeinander abgestimmt, d.h. die Verbindungsleitung vom Rail 6 zum Einzelspeicher 7 besitzt einen möglichst hohen hydraulischen Widerstand. Bei einem konventionellen Common-Railsystem ohne Einzelspeicher soll der hydraulische Widerstand zwischen dem Rail 6 und dem Injektor 8 möglichst gering sein um eine ungehinderte Einspritzung zu erreichen.The common rail system with individual memories differs from a conventional common rail system in that the fuel to be injected is removed from the individual memory 7. The supply line from the rail 6 to the individual memory 7 is designed in practice so that a feedback of interference frequencies in the rail 6 is attenuated. During the injection break just enough fuel flows from the rail 6 that the individual memory 7 is filled again at the beginning of the injection. The hydraulic resistance of the individual storage 7 and the supply line are matched, i. the connecting line from the rail 6 to the individual memory 7 has the highest possible hydraulic resistance. In a conventional common rail system without individual storage, the hydraulic resistance between the rail 6 and the injector 8 should be as low as possible in order to achieve unimpeded injection.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ADEC) 9 geregelt. Das elektronische Steuergerät 9 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 9 aus den Eingangsgrößen die Ausgangsgrößen. In Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: ein Raildruck pCR, der mittels eines Rail-Drucksensors 10 gemessen wird, ein Drehzahl-Signal nMOT der Brennkraftmaschine 1, Drucksignale pE der Einzelspeicher 7 und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind beispielsweise der Ladeluftdruck eines Turboladers und die Temperaturen der Kühl-/Schmiermittel und des Kraftstoffs subsumiert.The operation of the internal combustion engine 1 is controlled by an electronic control unit (ADEC) 9. The electronic control unit 9 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic Control unit 9 from the input variables, the output variables. The following input variables are shown by way of example in FIG. 1: a rail pressure pCR which is measured by means of a rail pressure sensor 10, a speed signal nMOT of the internal combustion engine 1, pressure signals pE of the individual memory 7 and an input variable EIN. For example, the input quantity EIN subsumes the charge air pressure of a turbocharger and the temperatures of the coolant / lubricant and of the fuel.

In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 9 ein Signal PWM zur Steuerung der Saugdrossel 4, ein leistungsbestimmendes Signal ve, beispielsweise eine Einspritzmenge zur Darstellung eines Sollmoments bei einer momentenbasierten Regelung, und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1.In FIG. 1, the outputs of the electronic control unit 9 are a signal PWM for controlling the intake throttle 4, a power-determining signal ve, for example an injection quantity for displaying a desired torque in a torque-based control, and an output variable AUS. The output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1.

Die Figur 2 zeigt ein Diagramm eines gemessenen Druckverlaufs pE in einem Einzelspeicher und eines modellierten Druckverlaufs pEMOD. Der gemessene Druckverlauf pE ist als durchgezogene Linie eingezeichnet. Der modellierte Druckverlauf pEMOD ist als strichpunktierte Linie eingezeichnet. Hierbei ist der modellierte Druckverlauf pEMOD nach dem ersten Berechnungsdurchgang dargestellt, d. h. der modellierte Druckverlauf pEMOD unterscheidet sich noch wesentlich vom gemessenen Druckverlauf pE.FIG. 2 shows a diagram of a measured pressure curve pE in a single memory and a modeled pressure curve pEMOD. The measured pressure curve pE is shown as a solid line. The modeled pressure curve pEMOD is shown as a dot-dash line. Here, the modeled pressure curve pEMOD after the first calculation pass is shown, d. H. the modeled pressure curve pEMOD differs significantly from the measured pressure curve pE.

Auf der Abszisse ist der Kurbelwellen-Winkel Phi aufgetragen. Auf der Ordinate ist der gemessene Einzelspeicher-Druck pE bzw. der modellierte Einzelspeicher-Druck pEMOD aufgetragen. Der Druckverlauf im Einzelspeicher wird über ein Messintervall gemessen und gespeichert. Das Messintervall kann hierbei einem Arbeitsspiel der Brennkraftmaschine entsprechen, d. h. 720 Grad Kurbelwellen-Winkel. Das in Figur 2 dargestellte Messintervall umfasst exemplarisch den Bereich von 320 bis 460 Grad Kurbelwellen-Winkel.On the abscissa, the crankshaft angle Phi is plotted. On the ordinate is the measured single memory pressure pE or the modeled Single memory pressure pEMOD applied. The pressure curve in the individual memory is measured and stored over a measuring interval. The measuring interval may correspond to a working cycle of the internal combustion engine, ie 720 degrees crankshaft angle. The measuring interval shown in FIG. 2 includes by way of example the range of 320 to 460 degrees crankshaft angle.

Das Verfahren läuft folgendermaßen ab, wobei die beschriebenen Schritte einem Programm-Ablauf eines ausführbaren Programms entsprechen:The procedure is as follows, wherein the steps described correspond to a program sequence of an executable program:

In einem ersten Schritt werden aus dem gemessenen Druckverlauf pE die Kenngrößen der Einspritzung bestimmt. Die Kenngrößen sind der Spritzbeginn SB, das Spritzende SE, eine Druckdifferenz dp und ein Spritzwinkelbereich dPhi. Die Druckdifferenz berechnet sich aus dem Unterschied von Spritzbeginn-Druckniveau pE(SB) minus Spritzende-Druckniveau pE(SE). Der Spritzwinkelbereich dPhi berechnet sich aus dem Unterschied von Spritzende-Winkel Phi(SE) minus Spitzbeginn-Winkel Phi(SB). Der Spritzbeginn SB kann auch aus dem Spritzende SE über eine mathematische Funktion bestimmt werden. Ein entsprechendes Verfahren ist aus der DE 103 44 181 A1 bekannt.In a first step, the parameters of the injection are determined from the measured pressure curve pE. The characteristics are the injection start SB, the injection end SE, a pressure difference dp and a spray angle range dPhi. The pressure difference is calculated from the difference between injection start pressure level pE (SB) minus injection end pressure level pE (SE). The spray angle range dPhi is calculated from the difference of injection end angle Phi (SE) minus peak start angle Phi (SB). The injection start SB can also be determined from the injection end SE via a mathematical function. A corresponding method is from the DE 103 44 181 A1 known.

In einem zweiten Schritt wird anhand der vom elektronischen Steuergerät ausgegebenen Sollgrößen für die Einspritzung über das hydraulische Modell der modellierte Druckverlauf pEMOD dem gemessenen Druckverlauf pE nachgebildet. Die den modellierten Druckverlauf kennzeichnenden Größen sind vorzugsweise der modellierte Spritzbeginn SBMOD, das modellierte Spritzende SEMOD, die modellierte Druckdifferenz dpMOD und der modellierte Winkelbereich dPhiMOD.In a second step, the modeled pressure curve pEMOD is modeled on the measured pressure curve pE on the basis of the setpoint variables for the injection via the hydraulic model issued by the electronic control unit. The parameters characterizing the modeled pressure curve are preferably the modeled injection start SBMOD, the modeled injection end SEMOD, the modeled pressure difference dpMOD and the modeled angular range dPhiMOD.

In einem dritten Schritt wird dann eine Differenz der Kenngrößen des gemessenen Druckverlaufs pE zum modellierten Druckverlauf pEMOD gebildet. Die Bezugszeichen dSB, dSE, ddp und ddPhi entsprechen der jeweiligen Differenz. Hierbei berechnet sich ddp aus der modellierten Druckdifferenz dpMOD minus der Druckdifferenz dp. Entsprechend berechnet sich ddPhi aus dSE minus dSB.In a third step, a difference of the parameters of the measured pressure curve pE to the modeled pressure curve pEMOD is then formed. The reference symbols dSB, dSE, ddp and ddPhi correspond to the respective difference. Here, ddp is calculated from the modeled pressure difference dpMOD minus the pressure difference dp. Accordingly, ddPhi is calculated from dSE minus dSB.

In einem vierten Schritt werden dann die Modellparameter des hydraulischen Modells solange angepasst bis die Abweichung kleiner einem Grenzwert GW wird, beispielsweise GW < 0,5° Kurbelwellenwinkel. Ist dies der Fall, so entspricht die aus dem hydraulischen Modell berechnete Kraftstoff-Masse der tatsächlichen Kraftstoff-Masse. Die aus dem Modell berechnete Kraftstoff-Masse wird dann als maßgeblich für die weitere Steuerung der Brennkraftmaschine gesetzt.In a fourth step, the model parameters of the hydraulic model are then adjusted until the deviation becomes smaller than a limit value GW, for example GW <0.5 ° crankshaft angle. If this is the case, then the fuel mass calculated from the hydraulic model corresponds to the actual fuel mass. The fuel mass calculated from the model is then set as decisive for the further control of the internal combustion engine.

In der Figur 2 wurde der Druckverlauf pE und der modellierte Druckverlauf pEMOD über dem Kurbelwellen-Winkel Phi dargestellt. Alternativ kann der Druckverlauf auch über der Zeit dargestellt werden. In diesem Fall sind die Bezugnahmen im Text als Bezugnahme auf die Zeit zu verstehen.FIG. 2 shows the pressure curve pE and the modeled pressure curve pEMOD over the crankshaft angle Phi. Alternatively, the pressure curve can also be displayed over time. In this case, the references in the text are to be understood as references to the time.

In Figur 3 ist das hydraulische Modell dargestellt. Die Eingangsgrößen sind ein erster Druck p1, welcher dem von der Hochdruckpumpe 5 bereitgestellten Druckniveau entspricht, und ein erster Massenstrom m1. Die Ausgangsgrößen sind ein zweiter Druck p2, ein zweiter Massenstrom m2, ein dritter Druck p3 und ein dritter Massenstrom m3. Der zweite Druck p2 entspricht dem Druckniveau im Niederdruckbereich. Der zweite Massenstrom m2 steht für die Leckage des Systems. Der dritte Druck p3 entspricht dem Zylinderdruck und ist in etwa konstant. Der dritte Massenstrom m3 steht für die eingespritzte Kraftstoff-Masse. Das Bezugszeichen D1 steht für eine erste, D2 für eine zweite und D3 für eine dritte Drosselstelle. Letztere entspricht der Einspitzdüse. Das Bezugszeichen 11 kennzeichnet das Einzelspeichervolumen. Die hydraulischen Kenngrößen der ersten Drosselstelle D1 sind aus Prüfstands-Messungen bekannt und bleiben im Betrieb konstant. Die hydraulischen Kenngrößen der zweiten Drosselstelle D2 sind veränderlich, können jedoch aus der Druckanstiegsphase im Einzelspeicherdruck und dessen Abweichung bestimmt werden. Die hydraulischen Kenngrößen der dritten Drosselstelle D3, also der Einspritzdüse, verändern sich mit dem Nadelhub. Deren zeitliche Veränderung können auf einem Komponentenprüfstand gemessen werden, zum Beispiel mittels eines aus der DE 198 50 221 C1 bekannten Verfahrens.In Figure 3, the hydraulic model is shown. The input variables are a first pressure p1, which corresponds to the pressure level provided by the high-pressure pump 5, and a first mass flow m1. The output quantities are a second pressure p2, a second mass flow m2, a third pressure p3 and a third mass flow m3. The second pressure p2 corresponds to the pressure level in the low pressure range. The second Mass flow m2 stands for the leakage of the system. The third pressure p3 corresponds to the cylinder pressure and is approximately constant. The third mass flow m3 stands for the injected fuel mass. Reference D1 stands for a first, D2 for a second and D3 for a third throttle. The latter corresponds to the Einspitzdüse. Reference numeral 11 denotes the single-storage volume. The hydraulic characteristics of the first throttle point D1 are known from test bench measurements and remain constant during operation. The hydraulic characteristics of the second throttle point D2 are variable, but can be determined from the pressure rise phase in the individual storage pressure and its deviation. The hydraulic characteristics of the third throttle point D3, so the injection nozzle, change with the needle stroke. Their temporal changes can be measured on a component test bench, for example by means of one of the DE 198 50 221 C1 known method.

Aus der vorstehenden Beschreibung bietet das erfindungsgemäße Verfahren folgende Vorteile:

  • über die Modellierung des Einzelspeicherverlaufs kann die Kraftstoff-Masse genau bestimmt werden;
  • der hydraulische Zustand des Injektors wird abgebildet;
  • das hydraulische Modell stellt ein redundantes System dar und kann daher einen Weiterbetrieb im Fehlerfall gewährleisten.
From the above description, the method according to the invention offers the following advantages:
  • the modeling of the individual storage history allows the fuel mass to be determined precisely;
  • the hydraulic condition of the injector is displayed;
  • the hydraulic model represents a redundant system and can therefore ensure continued operation in the event of a fault.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
Niederdruck-PumpeLow pressure pump
33
KraftstofftankFuel tank
44
Saugdrosselinterphase
55
Hochdruck-PumpeHigh pressure pump
66
RailRail
77
EinzelspeicherSingle memory
88th
Injektorinjector
99
elektronisches Steuergerät (ADEC)electronic control unit (ADEC)
1010
Rail-DrucksensorRail pressure sensor
1111
EinzelspeichervolumenSingle storage volume

Claims (4)

Verfahren zur Steuerung einer Brennkraftmaschine (1) mit Common-Railsystem, bei dem eine Kraftstoff-Masse aus einem gemessenen Kraftstoff-Druckverlauf berechnet wird und bei dem die Kraftstoff-Masse als maßgeblich für die Steuerung einer Einspritzung gesetzt wird,
dadurch gekennzeichnet,
dass die Kraftstoff-Masse berechnet wird, indem der Druckverlauf (pE) eines Einzelspeichers (7) gemessen wird, ein modellierter Druckverlauf (pEMOD) über ein hydraulisches Modell dem gemessenen Druckverlauf (pE) nachgebildet wird und aus dem hydraulischen Modell die Kraftstoff-Masse berechnet wird.
Method for controlling an internal combustion engine (1) with a common rail system, in which a fuel mass is calculated from a measured fuel pressure curve and in which the fuel mass is set as decisive for the control of an injection,
characterized,
that the fuel mass is calculated by the pressure profile (PE) of a single memory (7) is measured, a modeled pressure curve (pEMOD) via a hydraulic model to the measured pressure variation (pE) is simulated, and calculates the fuel mass from the hydraulic model becomes.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass Abweichungen aus dem gemessenen Druckverlauf des Einzelspeichers (pE) zum modellierten Druckverlauf (pEMOD) berechnet werden und die Modellparameter solange angepasst werden bis die Abweichungen kleiner einem Grenzwert (GW) werden.
Method according to claim 1,
characterized,
that deviations from the measured pressure curve of the individual memory (pE) to the modeled pressure curve (pEMOD) are calculated and the model parameters are adjusted until the deviations become smaller than a limit value (GW).
Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass die Abweichungen für die die Einspritzung kennzeichnenden Größen bestimmt werden.
Method according to claim 2,
characterized,
that the deviations are determined for the variables characterizing the injection.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
dass die Größen einem Spritzbeginn (SB), einem Spritzende (SE), einer Druckdifferenz (dp) von Spritzbeginn-Druckniveau (pSB) zum Spritzende-Druckniveau (pSE) und einem Spritzwinkelbereich (dPhi) alternativ einer Spritzdauer (dt) entsprechen.
Method according to claim 3,
characterized,
in that the variables correspond to an injection start (SB), an injection end (SE), a pressure difference (dp) from injection start pressure level (pSB) to injection end pressure level (pSE) and a spray angle range (dPhi) alternatively to an injection duration (dt).
EP07012743.6A 2006-07-26 2007-06-29 Method for controlling a combustion machine Withdrawn EP1884646A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006034514.2A DE102006034514B4 (en) 2006-07-26 2006-07-26 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1884646A2 true EP1884646A2 (en) 2008-02-06
EP1884646A3 EP1884646A3 (en) 2013-08-07

Family

ID=38596024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07012743.6A Withdrawn EP1884646A3 (en) 2006-07-26 2007-06-29 Method for controlling a combustion machine

Country Status (3)

Country Link
US (1) US8214131B2 (en)
EP (1) EP1884646A3 (en)
DE (1) DE102006034514B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221465A1 (en) * 2009-02-23 2010-08-25 Ifp Method to inject fuel in an internal combustion engine taking into account the time monitoring of the injectors variation
WO2014198388A1 (en) * 2013-06-12 2014-12-18 Mtu Friedrichshafen Gmbh Determining start of injection of an injector of an internal combustion engine
WO2015022057A1 (en) * 2013-08-14 2015-02-19 Mtu Friedrichshafen Gmbh Method for determining at least one injection parameter of an internal combustion engine, and internal combustion engine
WO2019042787A1 (en) * 2017-08-29 2019-03-07 Continental Automotive Gmbh Method and device for determining the injection quantity or the injection rate of a fluid injected into a reaction space by means of an injector

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045606B3 (en) * 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
DE102009002793B4 (en) * 2009-05-04 2011-07-07 MTU Friedrichshafen GmbH, 88045 Common rail fuel injection system and internal combustion engine, electronic device and method for controlling and / or regulating an internal combustion engine
JP5126295B2 (en) 2010-06-18 2013-01-23 株式会社デンソー Fuel injection state detection device
DE102010042736B4 (en) 2010-10-21 2022-08-25 Robert Bosch Gmbh Method for quantity compensation control in an internal combustion engine
DE102012203097B3 (en) * 2012-02-29 2013-04-11 Continental Automotive Gmbh Method for determining error of pressure measured by pressure sensor in pressure accumulator for storing fluid in automobile, involves determining two three-tuples of pressures and of time period
FR2996600B1 (en) 2012-10-05 2014-11-21 Continental Automotive France METHOD FOR MANAGING THE FUEL MASS INJECTED IN AN ENGINE
DE102013211731B4 (en) 2013-06-20 2024-06-13 Rolls-Royce Solutions GmbH Method for correcting the injection duration of injectors of an internal combustion engine and control device
DE102013216255B3 (en) * 2013-08-15 2014-11-27 Mtu Friedrichshafen Gmbh Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device
DE102013218841B4 (en) * 2013-09-19 2015-04-02 Continental Automotive Gmbh Determining the amount of fuel flowing through a fuel injector based on a heating of the fuel by means of an electric heater
JP6381970B2 (en) * 2014-05-30 2018-08-29 日立オートモティブシステムズ株式会社 Drive device for fuel injection device
EP3165745A1 (en) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Internal combustion engine with injection amount control
DE102022205734A1 (en) 2022-06-07 2023-12-07 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling an injector, control device
DE102022212772A1 (en) 2022-11-29 2024-05-29 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling an injector, control unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2098334A (en) * 1981-05-09 1982-11-17 Bosch Gmbh Robert Determining injected fuel quantities in a diesel engine
EP0742361A2 (en) * 1995-05-09 1996-11-13 Robert Bosch Gmbh Method for determining the fuel quantity fed by an injection pump to fuel injectors in a diesel engine
DE19740608A1 (en) * 1997-09-16 1999-03-18 Daimler Benz Ag Fuel injection parameters calculation method for common-rail fuel injection system
US20030121501A1 (en) * 2002-01-02 2003-07-03 Barnes Travis E. Utilization of a rail pressure predictor model in controlling a common rail fuel injection system
WO2005031138A1 (en) * 2003-09-24 2005-04-07 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33270E (en) * 1982-09-16 1990-07-24 Bkm, Inc. Pressure-controlled fuel injection for internal combustion engines
US5678521A (en) * 1993-05-06 1997-10-21 Cummins Engine Company, Inc. System and methods for electronic control of an accumulator fuel system
DE19726756C2 (en) 1997-06-24 2002-03-07 Bosch Gmbh Robert System for operating an internal combustion engine, in particular a motor vehicle
DE19850221C1 (en) * 1998-10-31 2000-05-04 Mtu Friedrichshafen Gmbh Method for testing a throttle point, in particular a throttle point of an injector
DE10157135B4 (en) * 2001-11-21 2004-03-11 Man B & W Diesel Ag Fuel supply system in the form of a common rail system of an internal combustion engine with several cylinders
DE10222895A1 (en) * 2002-05-23 2003-12-11 Bosch Gmbh Robert High pressure accumulator for fuel injection systems with integrated pressure control valve
DE10302806B4 (en) * 2003-01-24 2004-12-09 Siemens Ag Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine working with direct fuel injection and for controlling its injection valves
DE102004006896A1 (en) * 2004-02-12 2005-09-15 Mtu Friedrichshafen Gmbh Method for control and regulation of an IC engine with common-rail system uses calculation of injection end and injection begin deviations to evaluate fuel injectors
DE102004011599B4 (en) * 2004-03-10 2006-03-02 Mtu Friedrichshafen Gmbh Method for torque-oriented control of an internal combustion engine
DE102005029138B3 (en) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
WO2007009279A1 (en) * 2005-07-18 2007-01-25 Ganser-Hydromag Ag Accumulator injection system for an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2098334A (en) * 1981-05-09 1982-11-17 Bosch Gmbh Robert Determining injected fuel quantities in a diesel engine
EP0742361A2 (en) * 1995-05-09 1996-11-13 Robert Bosch Gmbh Method for determining the fuel quantity fed by an injection pump to fuel injectors in a diesel engine
DE19740608A1 (en) * 1997-09-16 1999-03-18 Daimler Benz Ag Fuel injection parameters calculation method for common-rail fuel injection system
US20030121501A1 (en) * 2002-01-02 2003-07-03 Barnes Travis E. Utilization of a rail pressure predictor model in controlling a common rail fuel injection system
WO2005031138A1 (en) * 2003-09-24 2005-04-07 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221465A1 (en) * 2009-02-23 2010-08-25 Ifp Method to inject fuel in an internal combustion engine taking into account the time monitoring of the injectors variation
FR2942506A1 (en) * 2009-02-23 2010-08-27 Inst Francais Du Petrole FUEL INJECTION METHOD IN AN INTERNAL COMBUSTION ENGINE TAKING INTO ACCOUNT THE EVOLUTION OF INJECTORS DURING TIME
WO2014198388A1 (en) * 2013-06-12 2014-12-18 Mtu Friedrichshafen Gmbh Determining start of injection of an injector of an internal combustion engine
CN105308298A (en) * 2013-06-12 2016-02-03 Mtu腓特烈港有限责任公司 Determining start of injection of an injector of an internal combustion engine
CN105308298B (en) * 2013-06-12 2018-04-06 Mtu 腓特烈港有限责任公司 The determination of the beginning of injection of the injector of internal combustion engine
WO2015022057A1 (en) * 2013-08-14 2015-02-19 Mtu Friedrichshafen Gmbh Method for determining at least one injection parameter of an internal combustion engine, and internal combustion engine
CN105612334A (en) * 2013-08-14 2016-05-25 Mtu腓特烈港有限责任公司 Method for determining at least one injection parameter of an internal combustion engine, and internal combustion engine
US10107223B2 (en) 2013-08-14 2018-10-23 Mtu Friedrichshafen Gmbh Method for determining at least one injection parameter of an internal combustion engine, and internal combustion engine
WO2019042787A1 (en) * 2017-08-29 2019-03-07 Continental Automotive Gmbh Method and device for determining the injection quantity or the injection rate of a fluid injected into a reaction space by means of an injector
US11203960B2 (en) 2017-08-29 2021-12-21 Vitesco Technologies GmbH Method and device for determining the injection quantity or the injection rate of a fluid injected into a reaction space by means of an injector

Also Published As

Publication number Publication date
US8214131B2 (en) 2012-07-03
DE102006034514A1 (en) 2008-01-31
DE102006034514B4 (en) 2014-01-16
EP1884646A3 (en) 2013-08-07
US20080027624A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
DE102006034514B4 (en) Method for controlling an internal combustion engine
DE102007028900B4 (en) Method and device for diagnosing an injection valve of an internal combustion engine that is in communication with a fuel rail
DE102010007171B4 (en) Adaptive fuel control for direct injection engines
DE102006023468B3 (en) Fuel injection valve controlling method for use in e.g. gasoline engine, involves correcting controlling of selected fuel injection valve by correction factor, and using small amount of fuel to be detected for test injection
EP1255926B1 (en) Method and device for calibrating a pressure sensor
EP1303693B1 (en) Method and device for controlling an internal combustion engine
DE102011052138B4 (en) Control device for pressure reducing valves
DE102005004423B3 (en) Fuel injection system`s operability monitoring method for use in internal combustion engine, involves identifying source of defect based on difference of measured temporal behavior of pressure and desired value characteristic
DE102009002793B4 (en) Common rail fuel injection system and internal combustion engine, electronic device and method for controlling and / or regulating an internal combustion engine
DE19757655A1 (en) Method and device for monitoring the function of a pressure sensor
DE102013220589B3 (en) Method for operating an internal combustion engine and device for controlling and regulating an internal combustion engine, injection system and internal combustion engine
DE102012102336B4 (en) Apparatus for estimating a fuel injection condition
EP2148070A2 (en) Method for determining the injected fuel mass of a single injection and device for carrying out the method
DE102005036192A1 (en) Fuel injection system e.g. high pressure-based fuel injection system, controlling method for e.g. self-ignition internal combustion engine, involves implementing compression wave correction based on periodic model that models masses wave
DE102010017368A1 (en) Data storage device
DE102006007365B3 (en) Method for controlling and regulating an internal combustion engine, involves setting of minimum pressurization level from maximum individual accumulator pressure in first step
DE102006034513B3 (en) Detection method for pre-injection in IC engines with common-rail system comprises following pressure change in intermediate storage tanks over fixed interval, detecting end of main injection stage and calculating virtual starting point
WO2008092779A1 (en) Method and device for correcting fuel injection
EP2173995A1 (en) Method for the determination of an injected fuel mass of a preinjection
WO2012103991A1 (en) Method for determining a control volume of an injector
DE10123035A1 (en) Method and device for controlling an internal combustion engine
DE10036772A1 (en) Operating fuel allocation system of a direct-injection internal combustion engine, involves using value defining conveyance characteristic curve of high-pressure pumps for defect diagnosis
DE102014211314A1 (en) A method for correcting a pump-caused deviation of an actual injection quantity from a desired injection quantity
DE102006034515B3 (en) Pressure-measuring device for a common-rail system has single-shot reservoirs, chambers and a measuring cell for detecting pressure levels
DE102013201780B3 (en) Method for determining the fuel temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070629

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/00 20060101ALI20130628BHEP

Ipc: F02D 41/38 20060101AFI20130628BHEP

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20140701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160920