EP1881570B1 - Elektronischer Verbinder und Verfahren zur Ausführung einer elektronischen Verbindung - Google Patents

Elektronischer Verbinder und Verfahren zur Ausführung einer elektronischen Verbindung Download PDF

Info

Publication number
EP1881570B1
EP1881570B1 EP07018256A EP07018256A EP1881570B1 EP 1881570 B1 EP1881570 B1 EP 1881570B1 EP 07018256 A EP07018256 A EP 07018256A EP 07018256 A EP07018256 A EP 07018256A EP 1881570 B1 EP1881570 B1 EP 1881570B1
Authority
EP
European Patent Office
Prior art keywords
conductor
electronic connector
connecting device
housing
compliant pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP07018256A
Other languages
English (en)
French (fr)
Other versions
EP1881570A2 (de
EP1881570A3 (de
Inventor
Andrew Ciezak
David A. Dylkiewicz
Michael V. Doorhy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panduit Corp
Original Assignee
Panduit Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/721,523 external-priority patent/US7052328B2/en
Application filed by Panduit Corp filed Critical Panduit Corp
Publication of EP1881570A2 publication Critical patent/EP1881570A2/de
Publication of EP1881570A3 publication Critical patent/EP1881570A3/de
Application granted granted Critical
Publication of EP1881570B1 publication Critical patent/EP1881570B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/60Contacts spaced along planar side wall transverse to longitudinal axis of engagement
    • H01R24/62Sliding engagements with one side only, e.g. modular jack coupling devices
    • H01R24/64Sliding engagements with one side only, e.g. modular jack coupling devices for high frequency, e.g. RJ 45
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6461Means for preventing cross-talk
    • H01R13/6467Means for preventing cross-talk by cross-over of signal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6473Impedance matching
    • H01R13/6474Impedance matching by variation of conductive properties, e.g. by dimension variations

Definitions

  • the invention relates to electronic connectors and methods for performing electronic connection. More particularly, the invention relates to a modular jack assembly that can be connected to an electrical cable and can be used in connection with any type of electronic equipment, such as communication equipment, for example.
  • Module jack assemblies Electronic connectors are used to connect many types of electronic equipment, such as communications equipment. Some communications connectors utilize modular designs, which are hereinafter referred to as "modular jack assemblies”.
  • Telephone jack assemblies constitute one example of such modular jack assembles. Some of these jack assemblies may be required to handle increasing signal transmission rates of various communication equipment.
  • US 6120330 discloses an arrangement of contact pairs for compensating near end crosstalk for an electric patch plug.
  • the contact pairs are interlaced with one another and the crossing point of the contact pairs is placed in an elastically mounted part of the contacts.
  • a modular jack assembly may be beneficial for a modular jack assembly to exhibit various characteristics.
  • a modular jack assembly may facilitate the obtainment of a desired level of electrical characteristics, such as near-end cross-talk (NEXT), far-end cross-talk (FEXT), return loss (RL) and insertion loss (IL), to adhere to or substantially adhere to past, present and/or future specifications and/or requirements. It may also be beneficial to provide a modular jack assembly that facilitates enhanced and consistent cross-talk performance.
  • NEXT near-end cross-talk
  • FXT far-end cross-talk
  • RL return loss
  • IL insertion loss
  • An electrical cable such as a cable containing four twisted pairs of wires, for example, can be connected to a modular jack assembly. If the twisted pairs are untwisted or distorted in a non consistent manner when this connection is made, the electrical characteristics of the combination of the cable and the connector will be inconsistent and the electrical signals transmitted through them will be degraded.
  • plug interface contacts (PICs) of any modular jack assembly need to mate, both mechanically and electromagnetically, with a set of contacts from a modular plug.
  • the design of the PICs, for example, as part of the modular jack assembly needs to compensate for independent NEXT vectors and/or FEXT vectors with frequency dependant magnitudes, (measured in decibels (dB)) and frequency dependant phases (measured in degrees).
  • Matching the magnitude and phase of such vectors that exist in a modular plug may often be a factor in the design and/or usage of a modular jack assembly. It may therefore be beneficial to design a modular jack assembly that compensates for NEXT and/or FEXT vectors of a plurality of twisted pairs of wire combinations. For example, it may also be beneficial to design a modular jack assembly that compensates for NEXT and/or FEXT vectors across an electrical cable having four or six twisted pairs of wire combinations.
  • PIC lengths may add a time delay to a signal passing along the contacts.
  • the time delay factor makes compensating for the magnitude and phase of the plug NEXT and/or FEXT vector difficult at higher frequencies. Accordingly, it may therefore be beneficial to provide a modular jack assembly that matches the magnitude and phase of such vectors within the shortest allowable length for each of the PICs.
  • the physical design of the jack PICs used in a modular jack assembly can be used to change the NEXT and/or FEXT vector performance by changing the inductive and/or capacitive coupling in the PICs.
  • a modular jack assembly may use a printed circuit board to mechanically and electrically mate the PICs and insulation displacement contacts (IDC) of a modular jack assembly. Accordingly, it may be beneficial to provide the printed circuit board to strategically add additional capacitive coupling to maximize component and channel performance.
  • IDC insulation displacement contacts
  • the physical design of the printed circuit board may be made to reduce or minimize the NEXT and/or FEXT within the printed circuit board. Therefore, it may be beneficial to provide a printed circuit that minimizes or reduces the NEXT and/or FEXT by taking into consideration the capacitive imbalances and inductive imbalances present.
  • a modular jack assembly may use IDCs to mechanically and electrically mate the modular jack to an electrical cable or a transmission line conductor.
  • IDCs may be beneficial to configure the IDCs in an orientation so as to minimize or reduce the cross-talk that is introduced by the IDCs.
  • Size and spacing requirements may often be a factor in the design and/or usage of a modular jack assembly. It may therefore be beneficial to provide a modular jack assembly that is relatively compact and/or small in size.
  • the general utility of a modular jack assembly may also be a factor to be considered. For example, it may be beneficial to provide a modular jack assembly that is relatively easy to connect to cable and/or other electronic equipment, and/or that can be quickly connected to such cable and/or other electronic equipment. For example, it may be beneficial to provide a modular jack assembly that facilitates simple field installation.
  • Production costs may be a factor to be considered for a modular jack assembly.
  • it may be beneficial to provide a modular jack assembly that can be quickly, easily and/or economically manufactured.
  • a modular jack assembly is provided, for example, that addresses and/or achieves at least one of the above characteristics and/or other characteristics not specifically or generally discussed above.
  • the invention is not limited to addressing and/or achieving any of the above characteristics.
  • An exemplary modular jack assembly includes plug interface contacts, a printed circuit board and insulation displacement contacts that optimize performance of the modular jack assembly.
  • Another exemplary modular jack assembly includes plug interface contacts that mate with a set of contacts from a modular plug both electrically and mechanically.
  • the PICs have the shortest allowable length while matching the magnitude and phase of the plug NEXT and/or FEXT vector.
  • Another exemplary modular jack assembly includes the printed circuit board that mechanically and electrically mate the PICs and the IDCs.
  • the printed circuit board may also be used to strategically add additional capacitive coupling to maximize the component and channel performance of the modular jack assembly.
  • Another exemplary modular jack assembly includes IDCs used to mechanically and electrically mate the modular jack assembly to electrical cable or transmission line conductors.
  • the IDCs are of the shortest allowable length without introducing additional NEXT and/or FEXT.
  • An exemplary modular jack assembly includes a wire containment cap that is connectable to wires of a cable that includes a cable jack external multiple twisted pairs of wires and receives a rear sled.
  • the rear sled may be a molded thermoplastic component designed to accommodate and restrain the insulation displacement contacts.
  • the modular jack assembly includes a PIC sled assembly to position the PICs for insertion into the printed circuit board and provide proper alignment to mate with a set of contacts from the modular plug both mechanically and electromagnetically.
  • the rear sled mates to a housing by a stirrup-type snaps and a cantilever snap.
  • the housing is of a shape to receive a modular plug.
  • the rear sled mates to a housing by a hoop-type snap and a cantilever snap.
  • the housing is of a shape to receive a modular plug.
  • Fig. 1 is an exploded perspective view of a modular jack assembly in accordance with an exemplary embodiment
  • Fig. 2 is a perspective view of an exemplary embodiment of the plug interface contacts
  • Fig. 3 is a front view of an exemplary embodiment of the plug interface contacts
  • Fig. 4 is a side view of the plug interface contacts according to an exemplary embodiment
  • Fig. 5 is a top view of the plug interface contacts according to an exemplary embodiment
  • Fig. 6 is a schematic of a top layer of a printed circuit board according to an exemplary embodiment
  • Fig. 7 is a schematic that shows the bottom layer of a printed circuit board according to an exemplary embodiment
  • Fig. 8 is a perspective view of the insulation displacement contacts according to an exemplary embodiment
  • Fig. 9 is a back view of the insulation displacement contacts according to an exemplary embodiment
  • Fig. 10 is a perspective view of an insulation displacement contact according to an exemplary embodiment and a rear sled.
  • Fig. 11a is a sectional perspective view of the insulation displacement contacts inserted in a rear sled, according to an exemplary embodiment
  • Fig. 11b is a sectional top view of the insulation displacement contacts inserted in a slot of a rear sled showing a narrowed portion of the slot, according to an exemplary embodiment
  • Fig. 12 is an exploded perspective view of a modular jack assembly having plug interface contacts installed in the front sled, and a hoop-type snap on the rear sled, in accordance with an exemplary embodiment.
  • Fig. 1 is an exploded perspective view of a modular jack assembly in accordance with an exemplary embodiment of the invention.
  • the modular jack assembly 2 includes a housing 4.
  • the housing 4 is substantially hollow and defines a housing opening 6 at its rear end.
  • a female-type receptacle 8 is defined at the front end of the housing 4.
  • a PIC sled subassembly 10 is insertable into the housing opening 6.
  • the PIC sled subassembly 10 provides an electrical and mechanical interface between PICs 100 ( Fig. 2 ) and a male-type plug (not shown) receivable in the female-type receptacle 8.
  • the PIC sled subassembly 10 is defined in pan by multiple slots formed in the PIC sled subassembly 10 that receive the PICs 100.
  • the invention is intended to cover any method of holding the PICs 100 in place.
  • the PICs 100 can be clamped to the PIC sled subassembly 10
  • the invention is also intended to cover any type of electrical convection device other than the female-type receptacle 8 shown in Fig. 1 .
  • the female-type receptacle 8 can be replaced with a male plug, or any other currently known or later developed type of electrical connection device, to receive a female-type plug.
  • the housing 4 and the PIC sled subassembly 10 can be manufactured of any material or materials.
  • the PIC sled subassembly 10 is synthetic resin which enables the slots of the PIC sled subassembly 10 to be substantially insulated from each other.
  • the housing 4 and the PIC sled subassembly 10 can be manufactured by any currently known or later developed method, such as by molding, for example.
  • the PICs 100 are insertable into the PIC sled subassembly 10 to provide contact points for a male plug (not shown) when inserted into the female-type receptacle 8.
  • the PICs 100 further contact a printed circuit board 200 to mechanically and electrically male the PICs 100 and insulation displacement contacts (IDCs) 300.
  • the printed circuit board 200 is also used to strategically add additional capacitive and/or capacitive coupling to maximize the component and channel performance of the modular jack assembly 2.
  • the compliant pins 302 ( Fig. 8 ) of the IDCs 300 are insertable into the printed circuit board 200.
  • a rear end 305 of the IDCs 300 are insertable into a rear sled 12,
  • the rear sled 12 includes a plurality of IDC containment slots 14 to receive the IDCs 300.
  • the rear sled 12 mates to the housing 4 by two stirrup-type snaps 16 and one cantilever snap (not shown).
  • PIC sled subassembly 10 PICs 100, printed circuit board 200 and IDCs 300, are held securely in place to form the modular jack assembly 2.
  • the above exemplary embodiment is described having the rear sled 12 mated to the housing 4 by two stirrup-type snaps 16 and one cantilever snap (not shown), other snaps may be used to mate the rear sled 12 to the housing 4.
  • the rear sled 12 mated to the housing 4 by a hoop-type snap 17 and one cantilever snap (not shown).
  • a wire containment cap 18 is attachable to a rear side of the rear sled 12.
  • the wire containment cap 18 is connectable to wires of an electrical cable or transmission line that includes a cable jacket surrounding multiple twisted pairs of wires.
  • the wire containment cap 18 is hollow and defines a channel therein, such that the cable is insertable into a rear end opening of the channel.
  • the wire containment cap 18 may include a structure, such as a stepped portion, for example, to prevent the cable jacket from extending into the channel beyond a certain distance from the rear end opening. This feature would enable the twisted pairs of wires to extend beyond the cable jacket through a substantial portion of the channel in a manner which enhances electrical characteristics.
  • the rear sled 12 and the wire containment cap 18 can be manufactured of any material or materials.
  • the rear sled 12 and the wire containment cap 18 are synthetic resin which enables the rear sled 12 and the wire containment cap 18 to be substantially insulated from each other.
  • the rear sled 12 and the wire containment cap 18 can be manufactured by any currently known or later developed method, such as by molding, for example.
  • Fig. 2 is a perspective view of an exemplary embodiment of the PICs according to the invention.
  • the PICs 100 include a plurality of integrally formed compliant pins 102 and rows of contact points 114,116.
  • the PICs 100 mate with a set of contacts from a modular plug at a front portion 104 of the PICs when such a plug is inserted into the female-type receptacle 8 of the housing 4.
  • Each of the integrally formed compliant pins 102 are insertable into the PIC sled subassembly 10 to contact the male-type plug.
  • the PICs 100 contact the printed circuit board 200 at a rear portion 106.
  • the compliant pins 102 provide a conductor to electrically and mechanically mate a modular plug to the printed circuit board 200.
  • the PICs 100 include 8 compliant pins 102.
  • a top row 114 of PICs 100 are numbered as pins 1a, 3a, 5a and 7a
  • a bottom row 116 of PICs 100 are numbered as pins 2a, 4a, 6a and 8a, respectively, for reference purposes.
  • the pins 1a-8a contact the printed circuit board 200 at predetermined positions to correspond to pairs of wires connectable to the modular jack assembly 2 discussed below.
  • the PICs 100 define eight integrally formed PICs 100, which would correspond to four pairs of wires connectable to the modular jack assembly 2.
  • the invention is not limited to this structure and is intended to cover any number (including just one) of rows of PICs 100.
  • the PICs 100 can include any number of PICs 100, arranged in one or a plurality of rows.
  • Fig. 3 is a front view of an exemplary embodiment of the PICs 100 according to the invention.
  • Fig. 4 is a side view of the plug interface contacts according to an exemplary embodiment of the invention.
  • Fig. 5 is a top view of the plug interface contacts according to an exemplary embodiment of the invention.
  • the physical design of the PICs is used to change NEXT and/or FEXT vectors by changing the inductive and/or capacitive coupling.
  • the PICs 100 are formed to create three compensation layers, including a top compensation layer 108, a middle compensation layer 110 and a bottom compensation layer 112.
  • the three compensation layers 108, 110, 112 provide better symmetry between pair combinations to minimize potential differences in performance of different pairs.
  • the physical design of the PICs 100 provides for shorter plug interface lengths and shorter total electrical lengths to minimize undesired capacitive and/or inductive imbalances.
  • compensation layer sections C, D and E may be altered to compensate for capacitive and/or inductive imbalances between pair combinations by changing the length of the compensation sections C. D and E.
  • Capacitive and ⁇ or inductive imbalances may also be compensated for by changing the distances between the compensation layers 108,110, 112, as well as by changing the separation between sections C, D and E, as shown in Fig. 4 .
  • the length of the compensation section D may be altered.
  • the change in distance between the compensation layers 108, 110, 112 in sections D and E may also be changed, as may the separation between the compensation sections C, D and E.
  • capacitive and ⁇ or inductive imbalances are compensated for by changing the distance between the compensation layers 108, 110, 112, as well as by changing the separation between sections C, D and E.
  • the invention is not limited to this structure and is intended to cover any variations in the distance between any of the compensation layers 108, 110, 112, as well as the separation of any of the sections C, D,E among any of the compensation layers 108, 110, 112.
  • cross-talk interactions in compensation layer section A include capacitive imbalance only within each pair combination as there is no current flow through section A of the PICs 100.
  • the cross-talk vectors include capacitive and/or inductive imbalance within each pair combination.
  • the NEXT and/or FEXT values calculated with each exemplary pair combination may be adjusted in sections A, C, D and E such that the contact pair combination vectors are at an optimum magnitude and phase to compensate for the plug vector.
  • the design of the PICs 100 provides NEXT and/or FEXT magnitude and phase performance that allows the printed circuit board 200 to provide additional overall modular jack assembly performance above known standards for electrical connectors and/or communications equipment.
  • NEXT and /or FEXT magnitude and phase performance may be provided in Table 2 below.
  • Table 2 NEXT FEXT Magnitude Phase Magnitude Phase Pair 45,36 49 dB +90 deg. 49 dB -90 deg. Pair 45,12 60 dB +90 deg. 60 dB -90 deg. Pair 45,78 60 dB +90 deg. 60 dB -90 deg.
  • the PICs 100 with a plurality of compliant pins 102, that are formed with a bend having a rear portion 106 that contacts the printed circuit board 200 and a front portion 104 that is insertable in the PIC sled subassembly 10.
  • the invention is not limited to this structure.
  • the PICs 100 can be of any possible shape which provides for electrical connection between the printed circuit board 200 and a male-type plug insertable into the female-type receptacle 8.
  • the PICs 100 can also be structured to include resilient contact portions at their front portions, for example.
  • the PICs 100 do not have to be disposed in slots defined in the PIC sled subassembly 10. Instead, the PICs 100 can be attached to the PIC sled subassembly 10 in accordance with any currently known or later developed method. In fact, the invention is intended to cover a modular jack assembly 2 that does not even include a PIC sled subassembly 10 and which utilizes another component, such as the housing 4, for example, to hold the PICs 100 in place.
  • the PICs 100 can also be formed in any shape and of any suitable currently known or later developed material or materials.
  • the PICs 100 can be formed of any electrically conductive, substantially electrically conductive, or semi-electrically conductive material, such as copper.
  • the PICs 100 can be manufactured by any currently known or later developed method.
  • Figs. 6 and 7 show a top layer 202 and a bottom layer 204 respectively, of a printed circuit board according to an exemplary embodiment of the invention.
  • the printed circuit board 200 mechanically and electrically mates the PICs and the IDCs by conductive traces 210.
  • the printed circuit board 200 may also be used to strategically add additional capacitive coupling to enhance, increase or maximize the component and channel performance.
  • the printed circuit board 200 may have a plurality of inner layers disposed between the top layer 202 and the bottom layer 204. Integrated capacitors (not shown) may be disposed in the printed circuit board 200 to improve the performance of the modular jack assembly 2.
  • the physical design of the printed circuit board can be made to reduce or minimize the near end cross-talk (NEXT) and the far end cross-talk (FEXT) within the printed circuit board.
  • the NEXT and/or FEXT are made up of capacitive imbalances and/or inductive imbalances.
  • the top layer 202 and bottom layer 204 of the printed circuit board 200 define a plurality of lower apertures 212 and a plurality of upper apertures 214.
  • the compliant pins 102, numbered 1a-8a, of the PICs 100 extend at least partially inside of each of the respective lower apertures 212 to engage the printed circuit board 200.
  • a conductive material at least in part surrounds the entrance end and exit end of each of the lower apertures 212 and coats the interior of each aperture, such that the PICs 100 contact the conductive material when the compliant pins 102 engage the lower apertures 212 of the printed circuit board 200.
  • the conductive material also at least in part surrounds the entrance end and exit end of each of the upper apertures 214 and coats the interior of each aperture, such that the IDCs 300 contact the conductive material when the compliant pins 302 engage the upper apertures 214 of the printed circuit board 200.
  • the lower apertures 212 of the printed circuit board 200 are numbered 1b-8b to provide reference marks for proper insertion of the corresponding pins 102 into the printed circuit board 200, which as discussed below, correspond to respective twisted pairs of wires connectable to the jack assembly 2.
  • the upper apertures 214 may be numbered to provide reference locations for proper insertion of the compliant pins 302 of the IDCs 300.
  • the top layer 202 and the bottom layer 204 of the printed circuit board 200 show conductive traces 210 formed on the printed circuit board 200 to allow predetermined transmission pairs to electrically communicate.
  • the conductive traces 210 are formed so that the differential impedance is maintained at about 100 ohms.
  • the NEXT and/or FEXT between the pair combinations are reduced or minimized to control return loss and NEXT and/or FEXT.
  • the lower apertures 212 provide through-hole PIC pad locations 208.
  • the upper apertures 214 provide through-hole IDC pad locations 206.
  • the conductive traces 210 on the top layer 202 and on the bottom layer 204 may be etched, or otherwise formed, on the printed circuit board 200 to electrically connect the PIC pad locations 208 and the IDC pad locations 206.
  • the top layer 202 and bottom layer 204 of the printed circuit board 200 define a plurality of lower apertures 212 and a plurality of upper apertures 214.
  • the compliant pins 102, numbered 1 a-8a, of the PICs 100 extend at least partially inside of each of the respective lower apertures 212 to engage the printed circuit board 200.
  • the through-hole IDC pad locations 206 and through-hole PIC pad locations 208 define a plurality of apertures.
  • the compliant pins 102 of the PICs 100 engage the printed circuit board 200 at the PIC pad through-hole locations 208 at their respective locations.
  • Each of the compliant pins 102 extends at least partially inside of the PIC pad through-hole locations 208 so as to engage the printed circuit board 200.
  • the conductive material surrounding each of the PIC pad through-hole locations 208 provides for electrical communication between the pins 102.
  • the cross-talk on the printed circuit board for six transmission pair combinations is less than about 55 decibels (dB) and the component performance is optimized with minimal additional capacitance.
  • the combination of PIC NEXT/FEXT magnitude and phase and the printed circuit board capacitance may be optimized at 100 ohms.
  • Table 3 provides the NEXT and FEXT vectors for these PICs in the exemplary embodiment.
  • Table 3 NEXT FEXT Magnitude Phase Magnitude Phase Pair 45,36 50 dB +90 deg. 49 dB -90 deg. Pair 45,12 53 dB +90 deg. 59 dB -90 deg. Pair 45,78 55 dB +90 deg. 70 dB -90 deg. Pair 36 12 54 dB +90 deg. 63 dB -90 deg. Pair 36.78 56 dB +90 deg. 57 dB -90 deg. Pair 12,78 76 dB +90 deg. 75 dB -90 deg.
  • Table 3 shows NEXT and FEXT vectors for PICs in an exemplary embodiment
  • additional embodiments may have differing vectors from those provided in Table 3.
  • the invention is not limited to the printed circuit board 200 discussed above and shown in the figures, In fact, the invention is intended to cover any printed circuit board structure.
  • a six layered structure that includes conductive traces and inner layers may be used.
  • the printed circuit board may include sixteen capacitors for cross-talk reduction, all in the inner layer. Further, the conductive traces for each pair of apertures corresponding to a twisted pair of wires can be provided to be as long as needed and be provided to extend near each other to obtain a proper or substantially proper impedance for return/loss performance.
  • the capacitance provided by the capacitors can be added to the printed circuit board in order to compensate for, or substantially compensate for, the NEXT and/or FEXT which occurs between adjacent conductors of different pairs throughout the connector arrangement.
  • the capacitance can be provided in accordance with any currently known or later developed technology.
  • the capacitance can be added as chips to the printed circuit board, or alternatively can be integrated into the printed circuit board using pads or finger capacitors.
  • any other printed circuit board structure can be used.
  • the invention is intended to cover a printed circuit board having a single layer or any number of layers.
  • the modular jack assembly 2 in accordance with the invention does not even have to include a printed circuit board 200, and instead can utilize any currently known or later developed structure or method to electrically and mechanically connect the PICs 100 and the IDCs 300.
  • Fig. 8 shows a three dimensional view of the insulation displacement contacts (IDCs), and Fig. 9 is a rear view of the IDCs, according to an exemplary embodiment of the invention.
  • the transmission pairs are as short as allowable without introducing additional cross-talk.
  • NEXT and/or FEXT is less than about 55 decibels (dB) on one or more pair combinations.
  • the IDCs 300 mechanically and electrically mate the modular jack assembly 2 to electrical cable or transmission line conductors (not shown).
  • the IDCs 300 are also configured in an orientation to reduce or minimize the cross-talk that may be induced by the IDCs 300.
  • the NEXT and/or FEXT include capacitive imbalances and/or inductive imbalances.
  • the physical design and configuration of the IDCs 300 reduces or minimizes the NEXT and/or FEXT within the IDCs 300.
  • the NEXT and/or FEXT of the IDCs for six transmission pair combinations is less than about 55 dB and the component performance is optimized, or substantially optimized, with reduced or minimal additional capacitance required on the printed circuit board 200.
  • the IDCs 300 can also be formed in any shape and of any suitable currently known or later developed material or materials.
  • the IDCs 300 can be formed of any electrically conductive, substantially electrically conductive, or semi-electrically conductive material, such as copper.
  • the IDCs 300 can be manufactured by any currently known or later developed method.
  • an exemplary embodiment of the modular jack assembly 2 includes a plurality of IDCs 300.
  • the IDCs 300 each include a compliant pin 302 at a front end and a rear sled engaging portion 304 at a rear end 305.
  • the rear end 305 may be bifurcated, for example, to displace the insulation on the conductor placed on the contact.
  • the pin 302 of each of the IDCs 300 When inserted into an upper aperture 214 of the printed circuit board 200, the pin 302 of each of the IDCs 300, extends at least partially within the IDC pad through-hole locations 206 in the printed circuit board 200.
  • the engaging portion 304 of each IDC 300 engages with the rear sled 12 in a containment slot 14 ( Fig. 10 ).
  • the pins 302 of the IDCs 300 are arranged to engage the upper apertures 214 of the printed circuit board 200 at the IDC pad through-hole locations 206, at their respective locations.
  • Each of the pins 302 extends at least partially inside of the IDC pad through-hole locations 206 so as to engage the printed circuit board 200.
  • the conductive material surrounding each of the IDC pad through-hole locations 206 provides for electrical communication between the pins 302 and pins 102 by the conductive traces 210.
  • Fig. 10 is a perspective view of an IDC according to an exemplary embodiment of this invention and the rear sled 12.
  • the rear end 305 of an IDCs 300 is inserted into the rear sled 12 at a containment slot 14 of the rear sled 12.
  • the engaging portion 304 of the IDCs 300 may be widened to positively retain the IDC 300 in the containment slot 14.
  • Fig. 11a is a sectional perspective view of an IDC 300 inserted in the rear sled 12. according to an exemplary embodiment of the invention.
  • Fig. 11b is a sectional top view of an IDC 300 inserted in a slot 14 of a rear sled 12 showing a narrowed portion of the slot 14. according to an exemplary embodiment of the invention.
  • the slot 14 includes a narrowed portion 316 that engages rear sled engaging portion 304 and provides retention for holding the IDC 300 in the rear sled 12 and prevents the IDC 300 from being pulled out.
  • an exemplary embodiment of the invention also includes a wire containment cap 18.
  • the wire containment cap 18 is hollow and defines a channel that extends from its front end to its rear end.
  • An electrical cable or transmission wire (not shown) that includes a jacket, which may be substantially round in cross-section, and which surrounds a plurality of twisted pairs of wires, such as four twisted pairs of wires, for example, extends into the wire containment cap 18 and contacts the rear end 305 of the IDCs 300 inserted in the rear sled 12 to allow the modular jack assembly 2 to communicate with a transmission wire.
  • a signal from an electrical cable or transmission line that extends into the wire containment cap 18 is transmitted through the IDCs 300.
  • a rear end 305 of the IDCs contact the electrical cable or transmission line and a front end 302 of the IDCs 300 is transmitted through the printed circuit board 200.
  • the IDCs 300 provide an electrical and mechanically interface between the electrical cable or transmission line and printed circuit board 200.
  • the PICs 100 also contact the printed circuit board 200 at the back end 106 of the PICs 100.
  • the rear end of the PICs 100 contact a male-type plug when inserted into the female-type receptacle 8 of the housing 4.
  • a signal traveling from an electrical cable or transmission line may communicate through the IDCs 300 to the printed circuit board 200 to the PICs 100 to a plug inserted into the modular jack assembly 2.
  • the above exemplary embodiment describes a signal traveling from an electrical cable or transmission line to a plug
  • the invention provides for bidirectional communication between a plug and an electrical cable or transmission line.
  • an electronic connector for use with an electrical connection device, the electronic connector comprising at least one first conductor providing an interface with the electrical connection device, the at least one first conductor having a shape that provides a predetermined capacitive and inductive balance in the electronic connector; and a conductor support device to support the at least one first conductor.
  • the shape of the at least one first conductor compensates for at least one of a capacitive and an inductive imbalance.
  • the at least one first conductor comprises a plurality of integrally formed compliant pins, each of the compliant pins comprising: a bent portion that provides the interface with the electrical connection device; a contact point opposite the bent portion; and at least one compensation section disposed between the bent portion and the contact point.
  • the plurality of compliant pins are formed in at least one layer, and preferably wherein the at least one layer includes at least two layers, and the shape of the at least one first conductor may be changed to provide the desired electrical characteristics by altering a distance between the at least two layers or wherein the at least one layer includes at least two layers, the at least one compensation section includes at least two compensation sections, and the shape of the at least one first conductor may be changed to provide the desired electrical characteristics by altering a distance between the at least two layers and the at least two compensation sections.
  • the contact points are arranged in parallel rows, or wherein the shape of the at least one first conductor may be changed to provide the desired electrical characteristics by altering a distance between the at least two compensation sections.
  • the shape of the at least one first conductor reduces at least one of near-end cross-talk, far-end cross-talk, return loss and insertion loss.
  • the conductor support device includes a conductor carrying sled or conductor housing, each of the plurality of integrally formed compliant pins being attached to the conductor carrying sled or conductor housing to contact the electrical connection device.
  • the at least one first conductor includes at least one of an electrically conductive material, a substantially electrically conductive material, and a semi-electrically conductive material.
  • the electronic connector further comprises a housing defining a contact connecting portion to house the conductor support device; a connecting device connected to the compliant pins at the contact points; at least one second conductor having a contact portion and a bifurcated portion, the at least one second conductor being connected to the connecting device at the contact portion; a rear sled portion having at least one slot to receive the bifurcated portion at the at least one second conductor, the rear sled being engageable with the housing; and a wire containment fixture to position at least one wire for engagement with the bifurcated portion of the at least one second conductor, the wire containment fixture being engageable with the rear sled.
  • the connecting device electrically and mechanically mates the at least one first conductor and the at least one second conductor, or wherein the connecting device reduces at least one of a capacitive and an inductive imbalance, or wherein the connecting device reduces at least one of near-end cross-talk, far-end cross-talk, return loss and insertion loss, or wherein the connecting device includes at least three layers that includes outer layers containing a plurality of conductive traces that interconnect the at least one first conductor and the at least one second conductor, or wherein the connecting device is a printed circuit board.
  • the at least one second conductor reduces at least one of a capacitive and an inductive imbalance, or wherein the at least one second conductor electrically and mechanically mates the at least one wire and the connecting device, or wherein the at least one second conductor includes at least one of an electrically conductive material, a substantially electrically conductive material, and a semi-electrically conductive material.
  • the rear sled portion is connected to the housing by at least one of a hoop snap and a stirrup snap.
  • At least one of the housing, the conductor support device, the rear sled portion and the wire containment fixture include a synthetic resin, or wherein the wire containment fixture includes a stepped portion to prevent a portion of the wires from extending into the electronic connector beyond a desired position.
  • the bent portion reduces an amount of cross-talk.
  • the electronic connector further comprises a straight portion extending from the bent portion, the straight portion extending away from the bent portion at an angle, and preferably wherein the straight portion reduces an amount of cross-talk.
  • the electronic connector further comprises a transition area being located between the bent portion and the at least one compensation section, or wherein the inductance is added at the at least one compensation section.
  • at least one of the predetermined capacitive and inductive balance is added to compensate for at least one of NEXT and FEXT.
  • a method of providing a predetermined capacitive and inductive balance in an electronic connector comprising: providing an electronic connector having at least one first conductor, the at least one first conductor having a plurality of integrally formed compliant pins, wherein each of the compliant pins includes a bent portion, a contact point opposite the bent portion, and at least one compensation section disposed between the bent portion and the contact point; the at least one first conductor having a shape that further compensates for the at least one magnitude and phase of the unwanted electric phenomenon.
  • a method of providing a predetermined capacitive and inductive balance in an electronic connector comprising: providing an electronic connector having at least one first conductor, the at least one first conductor having a plurality of integrally formed compliant pins, wherein each of the compliant pins includes a bent portion, a contact point opposite the bent portion, and at least one compensation section disposed between the bent portion and the contact point; measuring at least one of magnitude and phase of an unwanted electric phenomenom; altering a distance between compensation sections to compensate for the at least one magnitude and phase; and providing a connecting device connected to the at least one first conductor, wherein the connecting device further compensates for the at least one magnitude and phase of the unwanted electric phenomenon.
  • the method further comprises providing at least one second conductor, connected to the connecting device and at least one wire, the at least one second conductor having a shape that further compensates for the at least one magnitude and phase of the unwanted electric phenomenon.
  • the method further comprises altering a distance between compensation sections to compensate for the at least one magnitude and phase.
  • an electronic connector for use with a modular plug, the electronic connector comprising: a conductor; a printed circuit board; and a conductor sled assembly to position the conductor for insertion into the printed circuit board and provide proper alignment to mechanically and electromagnetically mate the conductor with the modular plug.
  • an electronic connector for use with a modular plug, the electronic connector comprising: a housing; and a rear sled having at least one of a hoop-type or stirrup-type snap and a cantilever snap, the rear sled being engageable with the housing and mateable to the housing by at least one of the hoop-type or stirrup-type snap and the cantilever snap, wherein the housing is of a shape to receive a modular plug.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Claims (21)

  1. Elektronischer Verbinder (2) zur Verwendung mit einer elektrischen Verbindungseinrichtung, mit:
    zumindest einem ersten Leiter (100), der eine Schnittstelle mit der elektrischen Verbindungseinrichtung vorsieht, einer Leiter-Trageinrichtung (10), um den zumindest einen ersten Leiter (100) zu tragen, und einer Verbindungseinrichtung (200), die mit dem zumindest einen ersten Leiter (100) verbunden ist, wobei der zumindest eine erste Leiter (100) eine Mehrzahl von integral ausgebildeten, nachgiebigen Stiften (102) aufweist, wobei jeder nachgiebige Stift (102)::
    einen gebogenen Abschnitt (104), der die Schnittstelle mit der elektrischen Verbindungseinheit vorsieht; und
    eine Kontaktstelle (106) hat, die dem gebogenen Abschnitt (104) gegenüberliegt und eine Verbindung zur Verbindungseinrichtung (200) vorsieht;
    wobei die nachgiebigen Stifte (102) eine Form aufweisen, die einen vorbestimmten kapazitiven und induktiven Ausgleich im elektronischen Leiter zum Kompensieren von kapazitivem und/oder induktivem Ungleichgewicht, zumindest von einem hievon, vorsieht, wobei die Form zumindest einen Kompensationsabschnitt aufweist, der zwischen dem gebogenen Abschnitt (104) und der Kontaktstelle (106) angeordnet ist, wobei die nachgiebigen Stifte (102) ausgebildet sind, um obere, mittlere und untere Kompensationsschichten (108, 110, 112) zu bilden, die zumindest eines von kapazitivem und induktivem Ungleichgewicht kompensieren, und wobei die nachgiebigen Stifte (102) weiters derart ausgebildet sind, dass sich jeder der Mehrzahl von nachgiebigen Stiften mit der Verbindungseinrichtung (200) in einer gemeinsamen vertikalen Ebene verbindet.
  2. Elektronischer Verbinder (2) nach Anspruch 1, wobei die Mehrzahl von nachgiebigen Stiften in zumindest einer Schicht ausgebildet sind, und wobei die zumindest eine Schicht (114, 116) der nachgiebigen Stifte (102) zumindest zwei Schichten (114, 116) enthalten und die Form des zumindest einen ersten Leiters (100) durch Verändern eines Abstands zwischen den zumindest zwei Schichten (114, 116) verändert werden kann, um die gewünschten elektrischen Eigenschaften zu liefern, oder wobei die zumindest eine Schicht (114, 116) zumindest zwei Schichten (114, 116) enthält, wobei der zumindest eine Kompensationsabschnitt zumindest zwei Kompensationsabschnitte enthält, und wobei die Form des zumindest einen ersten Leiters (100) durch Verändern eines Abstands zwischen den zumindest zwei Schichten (114, 116) und den zumindest zwei Kompensationsabschnitten verändert werden kann, um die gewünschten elektrischen Eigenschaften zu liefern.
  3. Elektronischer Verbinder (2) nach Anspruch 1, wobei die Kontaktstellen in parallelen Reihen (106) angeordnet sind, oder wobei die Form des zumindest einen ersten Leiters (100) durch Verändern eines Abstands zwischen den zumindest zwei Kompensationsabschnitten verändert werden kann, um die gewünschten elektrischen Eigenschaften zu liefern.
  4. Elektronischer Verbinder (2) nach Anspruch 1, wobei die Form des zumindest einen ersten Leiters (100) zumindest eines von Nahnebensprechen, Fernnebensprechen, Echodämpfung und Einfügungsdämpfung reduziert.
  5. Elektronischer Verbinder (2) nach Anspruch 1, wobei die Leiter-Trageinrichtung (10) einen leitertragenden Schlitten oder ein Leitergehäuse (4) aufweist, wobei jeder der Mehrzahl von integral ausgebildeten, nachgiebigen Stiften (102) am leitertragenden Schlitten oder Leitergehäuse (4) befestigt ist, um die elektrische Verbindungseinrichtung zu kontaktieren.
  6. Elektronischer Verbinder (2) nach Anspruch 1, wobei der zumindest eine erste Leiter (100) zumindest ein Material von: elektrisch leitfähigem Material, im Wesentlichen elektrisch leitfähigem Material und halbelektrisch leitfähigem Material enthält.
  7. Elektronischer Verbinder (2) nach Anspruch 1, weiters mit:
    einem Gehäuse (4), das einen Kontakt-Verbindungsabschnitt definiert, um die Leiter-Trageinrichtung (10) aufzunehmen;
    zumindest einem zweiten Leiter (300) mit einem Kontaktabschnitt (302) und einem gegabelten Abschnitt (305), wobei der zumindest eine zweite Leiter (300) mit der Verbindungseinrichtung (200) am Kontaktabschnitt (302) verbunden ist;
    einem hinteren Schlittenabschnitt (12) mit zumindest einem Schlitz (14) zur Aufnahme des gegabelten Abschnitts (305) am zumindest einen zweiten Leiter (300), wobei der hintere Schlitten (12) mit dem Gehäuse (4) in Eingriff gelangen kann; und
    einer Drahthalterung (18) zum Positionieren zumindest eines Drahts zum Eingriff mit dem gegabelten Abschnitt (305) des zumindest einen zweiten Leiters (300), wobei die Drahthalterung (18) mit dem hinteren Schlitten (12) in Eingriff bringbar ist.
  8. Elektronischer Verbinder (2) nach Anspruch 7, wobei die Verbindungseinrichtung (200) mit dem zumindest einen ersten Leiter (100) und zumindest einen zweiten Leiter (300) elektrisch und mechanisch zusammenpasst, oder wobei die Verbindungseinrichtung (200) zumindest eines, kapazitives und/oder induktives Ungleichgewicht, reduziert, oder wobei die Verbindungseinrichtung (200) zumindest eines von Nahnebensprechen, Fernnebensprechen, Echodämpfung und Einfügungsdämpfung reduziert, oder wobei die Verbindungseinrichtung (200) zumindest drei Schichten (202, 204) enthält, die Außenschichten mit zumindest einer Mehrzahl von Leiterzügen aufweist, die den zumindest einen ersten Leiter (100) und den zumindest einen zweiten Leiter (300) miteinander verbinden, oder wobei die Verbindungseinrichtung (200) eine Leiterplatte ist.
  9. Elektronischer Verbinder (2) nach Anspruch 7, wobei der zumindest eine zweite Leiter zumindest eines, kapazitivse und/oder induktives Ungleichgewicht, reduziert, oder wobei der zumindest eine zweite Leiter (300) mit dem zumindest einen Draht und mit der Verbindungseinrichtung (200) elektrisch und mechanisch zusammenpasst, oder wobei der zumindest eine zweite Leiter (200) zumindest eines von elektrisch leitfähigem Material, im Wesentlichen elektrisch leitfähigem Material und halbelektrisch leitfähigem Material enthält.
  10. Elektronischer Verbinder (2) nach Anspruch 7, wobei der hintere Schlittenabschnitt (12) über ein Reifen-Schnappteil (17) und/oder Bügel-Schnappteil (16) mit dem Gehäuse (4) verbunden ist.
  11. Elektronischer Verbinder (2) nach Anspruch 7, wobei zumindest eines von Gehäuse (4), Leiter-Trageinrichtung (10), hinterem Schlittenabschnitt (12) und Drahthalterung (18) ein synthetisches Harz enthält, oder wobei die Drahthalterung (18) einen gestuften Abschnitt enthält, um zu verhindern, dass sich ein Teil der Drähte in den elektronischen Verbinder (2) über eine gewünschte Position hinaus erstreckt.
  12. Elektronischer Verbinder (2) nach Anspruch 1, wobei der gebogene Abschnitt (104) einen Teil von Nebensprechen reduziert.
  13. Elektronischer Verbinder (2) nach Anspruch 1, weiters mit einem geraden Abschnitt, der sich vom gebogenen Abschnitt erstreckt, wobei sich der gerade Abschnitt in einem Winkel vom gebogenen Abschnitt weg erstreckt, und vorzugsweise wobei der gerade Abschnitt einen Teil von Nebensprechen reduziert.
  14. Elektronischer Verbinder (2) nach Anspruch 1, weiters mit einem Übergangsbereich, der zwischen dem gebogenen Abschnitt (104) und dem zumindest einen Kompensationsabschnitt angeordnet ist, oder wobei Induktivität im zumindest einen Kompensationsabschnitt hinzugefügt ist.
  15. Elektronischer Verbinder (2) nach Anspruch 1, wobei zumindest eines von vorbestimmtem kapazitiven und induktiven Ausgleich hinzugefügt ist, um zumindest eines von Nahnebensprechen (NEXT, "near-end crosstalk") und Fernnebensprechen (FEXT, "far-end crosstalk") zu kompensieren.
  16. Verfahren zum Bereitstellen eines vorbestimmten kapazitiven und induktiven Ausgleichs in einem elektronischen Verbinder (2), umfassend:
    Bereitstellen eines elektronischen Verbinders (2) mit zumindest einem ersten Leiter (100) und einer Verbindungseinrichtung (200), die mit dem zumindest einen ersten Leiter (100) verbunden ist, wobei der zumindest eine erste Leiter (100) eine Mehrzahl von integral ausgebildeten, nachgiebigen Stiften (102) aufweist, wobei jeder der nachgiebigen Stifte (102) einen gebogenen Abschnitt (104) und eine dem gebogenen Abschnitt (104) gegenüberliegende Kontaktstelle (106) enthält, wobei die nachgiebigen Stifte (102) eine Form aufweisen, die einen vorbestimmten kapazitiven und induktiven Ausgleich im elektronischen Leiter zum Kompensieren zumindest eines von kapazitivem und induktivem Ungleichgewicht bereitstellen, wobei die Form zumindest einen Kompensationsabschnitt aufweist, der zwischen dem gebogenen Abschnitt (104) und der Kontaktstelle (106) angeordnet ist,
    wobei die nachgiebigen Stifte (102) ausgebildet sind, um obere, mittlere und untere Kompensationsschichten (108, 110, 112) zu bilden und das durch die Stifte (102) vorgesehene, vorbestimmte kapazitive und induktive Ungleichgewicht durch Verändern des Abstands zwischen den Kompensationsschichten (108, 110, 112) verändert werden kann, und wobei die nachgiebigen Stifte (102) weiters derart ausgebildet sind, dass sich jeder der Mehrzahl von nachgiebigen Stiften mit der Verbindungseinrichtung (200) in einer gemeinsamen vertikalen Ebene verbindet.
  17. Verfahren nach Anspruch 16, weiters umfassend:
    Messen der Größe und/oder Phase eines unerwünschten elektrischen Phänomens; und
    Verändern eines Abstands zwischen Kompensationsabschnitten, um die Größe und/oder Phase zu kompensieren;
    wobei die Verbindungseinrichtung (200) weiters die Größe und/oder Phase des unerwünschten elektrischen Phänomens kompensiert.
  18. Verfahren nach Anspruch 17, weiters umfassend das Bereitstellen zumindest eines zweiten Leiters (300), der mit der Verbindungseinrichtung (200) und zumindest einem Draht verbunden ist, wobei der zumindest eine zweite Leiter (300) eine Form aufweist, die die Größe oder/oder Phase des unerwünschten elektrischen Phänomens zusätzlich kompensiert.
  19. Verfahren nach Anspruch 16 oder 17, weiters umfassend das Verändern eines Abstands zwischen Kompensationsabschnitten, um die Größe und/oder Phase zu kompensieren.
  20. Elektronischer Verbinder (2) nach Anspruch 1, weiters mit:
    einem Leiter (100, 300); und
    einer Leiter-Schlitten-Baugruppe (110) zum Positionieren des Leiters zum Einsetzen in die Verbindungseinrichtung (200) und zum Vorsehen einer korrekten Ausrichtung, so dass der Leiter (100, 300) mechanisch und elektrisch zu einem Modulstecker passt, und wobei die Verbindungseinrichtung (200) eine Leiterplatte ist.
  21. Elektronischer Verbinder (2) nach Anspruch 1, weiters mit:
    einem Gehäuse (4); und
    einem hinteren Schlitten (12), der einen Reifen-Schnappteil (17) und/oder Bügel-Schnappteil (16) und einen auskragenden Schnappteil hat, wobei der hintere Schlitten (12) mit dem Gehäuse (4) in Eingriff bringbar ist und mit dem Gehäuse (4) über den Reifen-Schnappteil (17) und/oder Bügel-Schnappteil (16) und den auskragenden Schnappteil verbindbar ist, wobei das Gehäuse (4) eine Form zur Aufnahme eines Modulsteckers aufweist.
EP07018256A 2002-11-27 2003-11-27 Elektronischer Verbinder und Verfahren zur Ausführung einer elektronischen Verbindung Expired - Lifetime EP1881570B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42934302P 2002-11-27 2002-11-27
US10/721,523 US7052328B2 (en) 2002-11-27 2003-11-25 Electronic connector and method of performing electronic connection
EP03257501A EP1435679B1 (de) 2002-11-27 2003-11-27 Elektronischer Verbinder und Methode zur Herstellung einer elektronischen Verbindung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP03257501A Division EP1435679B1 (de) 2002-11-27 2003-11-27 Elektronischer Verbinder und Methode zur Herstellung einer elektronischen Verbindung

Publications (3)

Publication Number Publication Date
EP1881570A2 EP1881570A2 (de) 2008-01-23
EP1881570A3 EP1881570A3 (de) 2008-03-26
EP1881570B1 true EP1881570B1 (de) 2009-07-29

Family

ID=38817986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07018256A Expired - Lifetime EP1881570B1 (de) 2002-11-27 2003-11-27 Elektronischer Verbinder und Verfahren zur Ausführung einer elektronischen Verbindung

Country Status (1)

Country Link
EP (1) EP1881570B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822630C1 (de) * 1998-05-20 2000-09-07 Krone Gmbh Anordnung von Kontaktpaaren zur Kompensation des Nahnebensprechens für eine elektrische Steckverbindung
US5975960A (en) * 1998-10-06 1999-11-02 The Whitaker Corporation Modular connector with capacitive plates
US6334792B1 (en) * 1999-01-15 2002-01-01 Adc Telecommunications, Inc. Connector including reduced crosstalk spring insert
US6464541B1 (en) * 2001-05-23 2002-10-15 Avaya Technology Corp. Simultaneous near-end and far-end crosstalk compensation in a communication connector

Also Published As

Publication number Publication date
EP1881570A2 (de) 2008-01-23
EP1881570A3 (de) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1435679B1 (de) Elektronischer Verbinder und Methode zur Herstellung einer elektronischen Verbindung
US9991653B2 (en) Method for reducing crosstalk in electrical connectors
EP0971459B1 (de) Datenstecker mit niedriger Verzögerung des komplementären Übersprechsignals
US6923673B2 (en) Low crosstalk modular communication connector
US6007368A (en) Telecommunications connector with improved crosstalk reduction
US5639266A (en) High frequency electrical connector
US6113400A (en) Modular plug having compensating insert
AU736959B2 (en) Crosstalk reducing electrical jack and plug connector
EP2089889B1 (de) Modularer steckverbinder mit verminderter anschlussvariabilität
US5431584A (en) Electrical connector with reduced crosstalk
EP1923970A2 (de) Stecker für eine modulare Kommunikation mit geringem Übersprechen
US7568950B2 (en) High speed modular jack including multiple contact blocks and method for assembling same
EP1881570B1 (de) Elektronischer Verbinder und Verfahren zur Ausführung einer elektronischen Verbindung
US20170098911A1 (en) Method for Reducing Crosstalk in Electrical Connectors
US9281622B2 (en) Communications jacks having low-coupling contacts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070925

AC Divisional application: reference to earlier application

Ref document number: 1435679

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOORHY, MICHAEL V.

Inventor name: DYLKIEWICZ, DAVID A.

Inventor name: CIEZAK, ANDREW

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1435679

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60328640

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211126

Year of fee payment: 19

Ref country code: GB

Payment date: 20211129

Year of fee payment: 19

Ref country code: FR

Payment date: 20211124

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60328640

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130