EP1878096A1 - Laser device triggered by a photonic fibre - Google Patents

Laser device triggered by a photonic fibre

Info

Publication number
EP1878096A1
EP1878096A1 EP06743856A EP06743856A EP1878096A1 EP 1878096 A1 EP1878096 A1 EP 1878096A1 EP 06743856 A EP06743856 A EP 06743856A EP 06743856 A EP06743856 A EP 06743856A EP 1878096 A1 EP1878096 A1 EP 1878096A1
Authority
EP
European Patent Office
Prior art keywords
laser
modulator
optical
resonator
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06743856A
Other languages
German (de)
French (fr)
Inventor
Philippe Metivier
Sébastien ERMENEUX
Philippe Yvernault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eolite Systems SAS
Original Assignee
Eolite Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eolite Systems SAS filed Critical Eolite Systems SAS
Publication of EP1878096A1 publication Critical patent/EP1878096A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap

Definitions

  • the present invention relates to a laser-triggered photonic fiber device.
  • the principle of producing high intensity laser pulses and short duration by triggering is known for a long time. It consists in preventing the regenerative amplification of a wave in a cavity containing a laser medium by introducing losses greater than the gain of the laser medium. After a pumping period that stores a significant energy in the gain medium, the optical transmission of the trigger is sharply increased to allow the creation of an intra-cavity wave that amplifies very rapidly and gives rise to the emission of a light pulse.
  • the duration of the pulses produced is inversely proportional to the gain of the laser medium, and proportional to the length of the laser cavity.
  • the gain medium is a laser bar and the trigger can be an acousto-optic or electro-optical modulator.
  • the possibility of producing light beams of very good quality and high average power is known by using double-sheath optical fibers whose core is doped with an ion having a laser transition. These systems have a relatively small active area (typically less than 10 microns in diameter) and therefore work mainly continuously to avoid damage to the faces of the fiber by high energy laser pulses (damage threshold about 20 to 50 J / cm 2 for pulses of 10 ns).
  • Photonic layer or MPF Multiclad Photonic Fiber
  • Jakobsen, "High-power rod- photonic crystal fiber laser type, "Opt.Express 13, 1055-1058 (2005) .MPF lasers comprise glass fiber optical amplifiers formed of a doped core and at least one peripheral sheath which provides guiding wave produced
  • the core is doped by a rare earth ion, neodymium or Ytterbium in general.
  • the guidance is provided by the implementation of a photonic structure obtained by a geometric set of channels or capillaries aqueques (holes). artificially lowers the index encountered by the wave produced and allows single-mode propagation for fiber core diameters of the order of 50 ⁇ m This large core diameter allows the energy of the wave produced to be spread over a larger diameter.
  • the fundamental limitations of fiber amplifiers such as flux resistance and non-linear effects.With such technology it is conceivable to produce relatively short laser pulses. e 1 ns at 30ns with energies of the order of 1 mJ to 1 OmJ.
  • MPF lasers can present extremely important gains thanks to the very strong confinement of the gain zone. This confinement usually imposes a long absorption length and a strong limitation in the energy produced by triggering. However, it is very difficult to maintain losses greater than the gain during the pumping period. It has, however, been found that particular photonic fibers can be used to both decrease the absorption length and increase the size of the active area. Limpert et al (Advanced SoMd State Photonics Conference, Vienna, February 2005) used one of these fibers to produce nanosecond pulses of high energy. Nevertheless, they used a very fast trigger ( ⁇ 5ns) per Pockels cell in order to block the cavity during the pumping phase.
  • the laser is then limited to rates of the order of 100 kHz and the trigger system is particularly expensive.
  • the system is sensitive to the polarization of the wave propagating in the resonator and its efficiency can be diminished by the depolarization during propagation in the fiber.
  • the present invention makes it possible to produce very short pulses ( ⁇ 30 ns), while maintaining a beam quality close to the diffraction limit and very high average powers (> 50 W, see several hundred W).
  • MPF Multiclad Photonic Fiber
  • MPF Multiclad Photonic Fiber
  • the invention relates to a device for cyclic production of short laser pulses, the device comprising a laser resonator of optical length less than 2 m comprising two reflecting ends and incorporating a laser medium pumped continuously by at least one pump wave.
  • the laser medium being a medium where an internal laser beam is guided and having a very low signal gain of greater than 10 per pass through the gain medium, the laser resonator also incorporating an optical modulator.
  • the short laser pulses are approximately less than 30 ns.
  • the optical modulator can deflect the axis of the internal laser beam, said optical modulator being actuated by an electrical control, in two stable directions, the first direction corresponding to an axis in which the internal laser beam suffers sufficient losses.
  • the device then being in an open cavity mode, and the second direction corresponding to an axis in which the internal laser beam is reflected on itself at least partially by an optical return means closing the resonator at a first end, the device then being in a closed cavity mode, the second end of the laser resonator being closed by at least partially reflecting means located on the other side of the amplifying medium , the modulator having a switching time greater than the time taken by the light to traverse the cavity and it is used in a configuration where the loss factor it introduces in the state corresponding to the open cavity mode is greater than the gain at very weak resonator signal.
  • the laser medium is a photonic fiber MPF
  • the modulator is an acousto-optic modulator
  • the modulator directly ensures the closing of the resonator in activated mode
  • the first direction corresponds to an axis in which the laser radiation suffers losses sufficient to prevent the laser effect from being triggered (blocked mode), the device then being in an open cavity mode, and the modulator then not being activated ,
  • the second direction corresponds to an axis on which the laser beam is reflected on itself at least partially by an optical return means serving to close the resonator at a first of its two ends, the device then being in a closed cavity mode , and the modulator being activated,
  • the optical return means serving to close the resonator is positioned so that the angle formed by its normal and the laser beam at the output of the non-activated modulator is equal to the angle between the order 0 and the order 1 or - 1 of the acousto-optic modulator, the optical return means for closing the resonator is a reflective treatment for the laser wave on the output face of the optical modulator,
  • the modulator hardly consumes any electrical control energy during the blocked mode of the laser
  • the modulator is mechanical and acts by mechanical displacement of an optical means
  • the modulator comprises means using the reflectivity variation of an initially transparent element
  • the means using the variation of reflectivity allow the increase of reflectivity by the excitation of a longitudinal acoustic wave whose axis of propagation is collinear with the axis of the resonator, the device is monolithic, the elements of the cavity optic being made of silica and / or glass and being joined together,
  • the first end of the fiber is perpendicular to the normal to the longitudinal axis of the fiber
  • a collimating lens is disposed between the first end of the fiber and the optical modulator,
  • the pump wave is produced by at least one laser diode and is focused by optical collimation means in the second end of the fiber,
  • the laser wave is extracted at the output of the device by a dichroic mirror disposed between the optical means of collimation,
  • the device comprises means for the pulsed laser radiation produced to be linearly polarized
  • the amplifying medium retains the state of polarization
  • the modulator introduces a different loss on two polarization states
  • the assembly comprising the modulator and the fiber retains the polarization, the device is pumped by a fiber diode device of continuous fiber or non-fiber power,
  • the coupling of the pump with the resonator is done by means of an optical collimation device or by coupling a fiber,
  • the average power is at least 10 W
  • the average power is preferably at least 50 W
  • the device comprises means making it possible to produce laser pulses of duration between 1 ns and 30 ns at rates greater than 50 kHz with a guided amplifying medium guaranteeing a laser output beam quality better than 1.5 times the diffraction,
  • the peak power of the device is at least 33 kW, (average power> 50 W, rate greater than 50 kHz, pulse duration less than or equal to 30 ns),
  • the peak power of the device is typically greater than 50 kW (the peak power is the power measurable directly on the wave at the output of the laser cavity),
  • the device comprises means for producing harmonic radiation with nonlinear crystals
  • the device comprises means for producing new temporal frequencies using non-linear effects of the 3rd order, in particular a photonic fiber,
  • the device comprises means for producing spectra covering a band much greater than 10 nm and capable of reaching several hundred nanometers,
  • a collimation lens is disposed between the first end of the fiber and the optical modulator
  • the first end of the fiber comprises an anti-reflective means for the laser wave
  • the first end of the fiber is inclined relative to the normal to the longitudinal axis of the fiber
  • the angle of inclination of the first end of the fiber with respect to the normal to the longitudinal axis of the fiber is greater than the numerical aperture of the fiber core and is between 1 ° and 60 °,
  • the angle of inclination of the first end of the fiber with respect to the normal to the longitudinal axis of the fiber is approximately 8 °
  • the anti-reflective means is a tip attached to the first end of the fiber
  • the anti-reflective means is an antireflection treatment of the first end of the fiber;
  • the laser comprises a ring resonator in which the laser wave does not travel exactly the same way in and out.
  • the laser of the invention is a high gain and guided mode (MPF fiber) triggered pulsed laser which has a short pulse duration and uses a simple optoelectronic triggering means whose triggering time is not critical. for the pulse duration and may be greater than the laser pulse duration.
  • MPF fiber high gain and guided mode
  • FIG. 1 which diagrammatically represents an MPF fiber-triggered laser device according to the invention
  • FIG. 2 which represents an example embodiment of the triggered laser device of the invention
  • Figure 3 which shows an application of the device of the invention.
  • a laser resonator is formed between a reflecting mirror 8 at the laser emission wavelength and a planar end 6 'of a photon fiber 6 MPF.
  • the second end of the MPF fiber is cut or polished to form an angle of typically 8 ° (between 1 ° and 60 °) with the longitudinal axis of the fiber.
  • the light beam emerging from the inclined end-slope fiber is collimated with a lens 14 on an acousto-optic modulator 7. This light beam is then incident on the acousto-optical modulator 7 which can output at least two different angular paths to the beam.
  • the modulator 7 is activated at the desired firing rate by an electronic module 15, which controls a high frequency acoustic wave created in the modulator during activation.
  • the mirror 8 is positioned so that its normal makes an angle ⁇ 10 corresponding to the angle between the beam incident on the modulator (and which corresponds to the unactivated modulator output beam) and the beam diffracted according to the order 1 or -1 in the activated modulator.
  • the MPF fiber is pumped continuously and longitudinally by a pump wave coming from one or more power laser diodes 13, the pump diode being preferably fibered.
  • the pump wave is focused in the MPF fiber side non-inclined end, thanks to optical collimation means 1 1, in particular by corrected lenses of spherical aberrations (doublets, triplets or aspherical lenses ).
  • optical collimation means 1 in particular by corrected lenses of spherical aberrations (doublets, triplets or aspherical lenses ).
  • the supply of the electronic module 15 is kept at rest and it does not produce any control signal and the modulator therefore behaves like a block of isotropic material, transparent.
  • the light beam from the MPF fiber passes through it without being deflected and strikes the mirror 8 at an angle ⁇ with the mirror normal and is therefore not returned to itself and can not return to the mirror. fiber.
  • a laser emission activates the electronic module 15 which causes the creation of an acoustic wave in the modulator 7.
  • This acoustic wave causes a deviation of the incident beam from the MPF fiber at an angle ⁇ which makes it arrive perpendicularly mirror 8 and the beam is then returned to itself and can be amplified in the MPF fiber.
  • the face 6 'of the fiber, opposite the inclined face of the fiber, acts as a second partially reflecting mirror and causes a resonance effect that gives rise to the laser effect and thus to the production of a light pulse.
  • a laser beam comprising pulses at a rate determined by the activation of the electronic module 15 is thus emitted through the face of the fiber MPF and is separated from the pump beam by a dichroic mirror 12.
  • the spatial quality of the pulse beam thus produced is fixed by the properties of the MPF fiber and can therefore be very close to the diffraction limit.
  • an MPF fiber with a core diameter of about 50 microns For example, it is possible to use a "double clad" fiber structure comprising a waveguiding sheath having a cross section whose area is between 10,000 and 250,000 square microns, the amplifying medium having a radio length with a high section diameter: the area of the section being between 500 and 10,000 square microns and the length of the amplifying medium between 10 cm and 1.5 m.
  • the amplifying medium of the fiber preferably has a very low signal gain typically greater than 10 per passage in the gain medium.
  • the structure of the fiber allows the guidance of the laser wave in the amplifying medium.
  • the duration of each pulse is fixed by the duration of a round trip in the laser cavity and not by the rise time of the laser. modulator. Thanks to the proposed configuration with a short MPF fiber (length less than 2 m and preferably less than 1 m), it is possible to produce pulses with a duration of less than 10 ns with a modulator whose response time is greater than 100 ns. To do this it is necessary to ensure that losses remain very high during the pumping period (otherwise the laser effect would occur independently of the trip).
  • Triggering the laser on the first diffraction order of the acoustic module optical and pumping mainly when the acousto-optics is not active ensures that the cavity will remain open (no loopback possible) in the absence of a control signal on the modulator.
  • active mode the very large gain of the fiber largely compensates for the losses caused by the fact that the modulator will work with a diffraction efficiency of less than 100%, whereas in passive mode the acousto-optic behaves like a passive optical component. and it is possible to guarantee a loss factor that is much greater than 100 (with, for example, a parasite return rate of the order of 2 per thousand).
  • the lens 14 at the inclined end of the MPF fiber must be chosen and positioned to ensure that the divergence of the beam passing through it coming from the fiber is less than the deflection angle ⁇ introduced by the acousto modulator. -optical.
  • the end of the fiber facing the modulator i.e. the sloped end, is prepared to prevent laser oscillation between the two ends of the fiber. For this, it can be given an inclination with an angle relative to the normal to the fiber which is much larger than the numerical aperture of the core of the MPF fiber.
  • the fiber In an alternative or complementary manner, it is possible to assemble on the end of the fiber, on the modulator side, a tip whose outer face (of exit) is not perpendicular to the axis of the fiber or which has received a treatment anti-reflective. Similarly, to obtain short pulses, the fiber must have a shorter length at 1 m to ensure pulses of less than 10 ns.
  • the modulator can use any other method of rapid modulation of the transmission or reflection of an optical system.
  • a micro-mechanical optical system makes it possible to obtain the angular optical switching effect necessary to trigger the pulse.
  • the reflecting mirror 8 is carried by the micromechanical optical system and can switch to move from a return position of the light beam on itself to another position.
  • the switching time of the modulator must be fast (typically less than a few hundred ns) without however having to be faster than the duration of a round trip in the laser cavity since the duration of the pulses is fixed by the gain of the amplifying medium and not by the switching speed of the switch.
  • the simple activation of most optical modulators does not allow to introduce into the cavity sufficient losses to prevent the laser effect from occurring. We can no longer frustrate the laser emission and force it to appear as a pulse. It is therefore important in the invention to use a non-activated modulator during the energy storage phase in the laser medium, taking care that the beam passing through the modulator without being modified since the latter is not activated. , can not be sent back to the amplifier medium.
  • This mode of operation is the opposite of the cavity triggering operations used in all the laser systems described before this invention, systems which traditionally uses the modification provided by an activated modulator to block the laser cavity during the storage phase.
  • the pump signal is incident on the MPF fiber by its end directly related to the modulator.
  • the modulator may be traversed by the pump wave or simply separated from the latter by a dichroic mirror disposed between the end (inclined, anti-reflection treated or having a tip) of the fiber 6 or the lens 14 and the modulator 7, allowing the longitudinal injection of the pump wave in the MPF fiber.
  • the device in a substantially monolithic manner by grouping the main elements of the optical cavity, in particular the collimation optics 14, the modulator 7 and the mirrors 8, 6 ', in a material made of silica or in a glass which allows such an assembly.
  • Figure 2 gives an example of such a monolithic assembly.
  • the modulator is an acousto-optic modulator
  • the device of the invention can be followed very advantageously by one or more non-linear crystals 16 in order to produce harmonic radiations of the fundamental wave (especially for doubling, tripling, quadrupling, frequency quintupling). ).
  • the combination of short pulses and a beam limited by diffraction makes it possible to maximize the frequency conversion efficiency and thus to produce visible or UV radiation of very high average power, which is difficult to obtain by the usual means.
  • An example of implantation of one or more nonlinear crystals followed by dichroic mirrors for the separation of harmonics is shown in FIG. 3.
  • the generation of harmonics is also possible with a monolithic device as represented in FIG. associating nonlinear crystals.

Abstract

The invention relates to a device generating laser pulses with a duration of less than 30 ns, and comprising, along the internal optical axis thereof, a laser resonator having an optical length of less than 2m and comprising two reflective ends (6', 8) and a laser medium (6) which is continuously pumped by at least one laser diode pump wave (13), the laser medium being a medium wherein the laser wave has a gain with a very weak signal higher than 10 per passage. Said resonator also comprises an optical modulator (7). According to the invention, the optical modulator can deflect the internal laser axis by means of an electrical control in two stable directions, the first direction corresponding to an axis along which the laser radiation suffers sufficient loss to prevent the laser effect, and the second direction corresponding to an axis on which the laser beam is reflected at least partially by an optical redirection means (8); the other end of the resonator is closed by an at least partially reflective means (6'); and the modulator has a switching time which is longer than the time taken by the light to pass through the cavity, and has a much higher loss factor than the gain with a very weak signal of the resonator, the amplifying medium preserving the state of polarisation.

Description

Dispositif laser déclenché à fibre photonique Photonic fiber triggered laser device
La présente invention concerne un dispositif laser déclenché à fibre photonique. Le principe de production d'impulsions lasers de forte intensité et de courte durée par déclenchement est connu de longue date. Il consiste à empêcher l'amplification régénérative d'une onde dans une cavité contenant un milieu laser en introduisant des pertes supérieures au gain du milieu laser. Après une période de pompage qui permet de stocker une énergie importante dans le milieu à gain, la transmission optique du déclencheur est brusquement augmentée afin de permettre la création d'une onde intra-cavité qui s'amplifie très rapidement et donne lieu à l'émission d'une impulsion lumineuse. La durée des impulsions produites est inversement proportionnelle au gain du milieu laser, et proportionnelle à la longueur de la cavité laser. De façon classique, le milieu à gain est un barreau laser et le déclencheur peut être un modulateur acousto-optique ou électro-optique. Par ailleurs on connaît la possibilité de produire des faisceaux lumineux de très bonne qualité et de forte puissance moyenne en utilisant des fibres optiques double gaine dont le cœur est dopé avec un ion présentant une transition laser. Ces systèmes présentent une zone active relativement petite (typiquement moins de 10 microns de diamètre) et fonctionnent donc principalement en continu afin d'éviter l'endommagement des faces de la fibre par des impulsions laser à forte énergie (seuil de dommage environ 20 à 50 J/cm2 pour des impulsions de 10 ns). On connaît également des lasers à fibres à couches photoniques ou MPF (« Multiclad Photonic Fiber ») qui ont été présentés dans l'article de J. Limpert, N. Deguil-Robin, I . Manek-Hόnninger, F. Salin, F. Rόser, A. Liem, T. Schreiber, S. Nolte, H . Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod- type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005). Les lasers MPF comportent des amplificateurs optiques à fibre en verre formée d'un cœur dopé et d'au moins une gaine périphérique qui assure le guidage d'onde produite. Le cœur est dopé par un ion de terre rare, Néodyme ou Ytterbium en général. Le guidage est assuré par la mise en œuvre d'une structure photonique obtenue par un ensemble géométrique de canaux ou capillaires aériques (trous). Cette structure abaisse artificiellement l'indice rencontré par l'onde produite et permet des propagations monomodes pour des diamètres de cœur de fibre de l'ordre de 50μm. Ce diamètre de cœur important permet d'étaler l'énergie de l'onde produite sur une plus grande surface et de repousser les deux limitations fondamentales des amplificateurs à fibre que sont la tenue au flux et les effets non-linéaires. Avec une telle technologie on peut envisager de produire des impulsions laser relativement brèves de 1 ns à 30ns avec des énergies de l'ordre de 1 mJ à 1 OmJ.The present invention relates to a laser-triggered photonic fiber device. The principle of producing high intensity laser pulses and short duration by triggering is known for a long time. It consists in preventing the regenerative amplification of a wave in a cavity containing a laser medium by introducing losses greater than the gain of the laser medium. After a pumping period that stores a significant energy in the gain medium, the optical transmission of the trigger is sharply increased to allow the creation of an intra-cavity wave that amplifies very rapidly and gives rise to the emission of a light pulse. The duration of the pulses produced is inversely proportional to the gain of the laser medium, and proportional to the length of the laser cavity. Conventionally, the gain medium is a laser bar and the trigger can be an acousto-optic or electro-optical modulator. Moreover, the possibility of producing light beams of very good quality and high average power is known by using double-sheath optical fibers whose core is doped with an ion having a laser transition. These systems have a relatively small active area (typically less than 10 microns in diameter) and therefore work mainly continuously to avoid damage to the faces of the fiber by high energy laser pulses (damage threshold about 20 to 50 J / cm 2 for pulses of 10 ns). Photonic layer or MPF ("Multiclad Photonic Fiber") fiber lasers are also known which have been presented in the article by J. Limpert, N. Deguil-Robin, I. Manek-Hennninger, F. Salin, F. Roeser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod- photonic crystal fiber laser type, "Opt.Express 13, 1055-1058 (2005) .MPF lasers comprise glass fiber optical amplifiers formed of a doped core and at least one peripheral sheath which provides guiding wave produced The core is doped by a rare earth ion, neodymium or Ytterbium in general.The guidance is provided by the implementation of a photonic structure obtained by a geometric set of channels or capillaries aqueques (holes). artificially lowers the index encountered by the wave produced and allows single-mode propagation for fiber core diameters of the order of 50 μm This large core diameter allows the energy of the wave produced to be spread over a larger diameter. the fundamental limitations of fiber amplifiers such as flux resistance and non-linear effects.With such technology it is conceivable to produce relatively short laser pulses. e 1 ns at 30ns with energies of the order of 1 mJ to 1 OmJ.
Ces lasers MPF peuvent présenter des gains extrêmement importants grâce au très fort confinement de la zone de gain. Ce confinement impose habituellement une longueur d'absorption longue et une limitation forte dans l'énergie produite par déclenchement. Toutefois il est très difficile de maintenir des pertes supérieures au gain pendant la période de pompage. On a cependant pu monter qu'on pouvait utiliser des fibres photoniques particulières pour à la fois diminuer la longueur d'absorption et augmenter la taille de la zone active. Limpert et al (Conférence Advanced SoMd State Photonics, Vienne, février 2005) ont utilisé une de ces fibres afin de produire des impulsions nanosecondes de forte énergie. Néanmoins, ils eurent recours à un déclenchement très rapide (<5ns) par cellule de Pockels afin de bloquer la cavité durant la phase de pompage. Le laser est alors limité à des cadences de l'ordre de 100 kHz et le système de déclenchement est particulièrement onéreux. De plus le système est sensible à la polarisation de l'onde se propageant dans le résonateur et son efficacité peut être diminuée par la dépolarisation lors de la propagation dans la fibre. La présente invention permet de produire des impulsions très courtes (< 30 ns), tout en maintenant une qualité de faisceau proche de la limite de diffraction et des puissances moyennes très élevées (> 50 W, voir plusieurs centaines de W). Pour cela on utilise de préférence une fibre laser à couches photoniques, dite MPF (« Multiclad Photonic Fiber ») associée à un modulateur acousto-optique fonctionnant dans une configuration particulière.These MPF lasers can present extremely important gains thanks to the very strong confinement of the gain zone. This confinement usually imposes a long absorption length and a strong limitation in the energy produced by triggering. However, it is very difficult to maintain losses greater than the gain during the pumping period. It has, however, been found that particular photonic fibers can be used to both decrease the absorption length and increase the size of the active area. Limpert et al (Advanced SoMd State Photonics Conference, Vienna, February 2005) used one of these fibers to produce nanosecond pulses of high energy. Nevertheless, they used a very fast trigger (<5ns) per Pockels cell in order to block the cavity during the pumping phase. The laser is then limited to rates of the order of 100 kHz and the trigger system is particularly expensive. In addition, The system is sensitive to the polarization of the wave propagating in the resonator and its efficiency can be diminished by the depolarization during propagation in the fiber. The present invention makes it possible to produce very short pulses (<30 ns), while maintaining a beam quality close to the diffraction limit and very high average powers (> 50 W, see several hundred W). For this purpose, it is preferable to use a photonic layer laser fiber, referred to as MPF ("Multiclad Photonic Fiber"), associated with an acousto-optical modulator operating in a particular configuration.
Ainsi , l'invention concerne un dispositif de production cyclique d'impulsions lasers de courte durée, le dispositif comportant un résonateur laser de longueur optique inférieure à 2m comprenant deux extrémités réfléchissantes et incorporant un milieu laser pompé en continu par au moins une onde de pompe issue de diodes lasers semi-conducteurs de puissances focalisée par des moyens optiques de collimation dans une extrémité du milieu laser, le milieu laser étant un milieu où un faisceau laser interne est guidé et possédant un gain à très faible signal supérieur à 10 par passage dans le milieu à gain, le résonateur laser incorporant également un modulateur optique. Les impulsions lasers de courte durée sont approximativement inférieures à 30ns.Thus, the invention relates to a device for cyclic production of short laser pulses, the device comprising a laser resonator of optical length less than 2 m comprising two reflecting ends and incorporating a laser medium pumped continuously by at least one pump wave. derived from semiconductor laser diodes of powers focused by optical means of collimation in one end of the laser medium, the laser medium being a medium where an internal laser beam is guided and having a very low signal gain of greater than 10 per pass through the gain medium, the laser resonator also incorporating an optical modulator. The short laser pulses are approximately less than 30 ns.
Selon l'invention, le modulateur optique peut défléchir l'axe du faisceau laser interne, ledit modulateur optique étant actionné par une commande électrique, selon deux directions stables, la première direction correspondant à un axe selon lequel le faisceau laser interne subit des pertes suffisantes pour empêcher que l'effet laser ne se déclenche, le dispositif étant alors dans un mode cavité ouverte, et la seconde direction correspondant à un axe selon lequel le faisceau laser interne est réfléchi sur lui-même au moins partiellement par un moyen optique de renvoi fermant le résonateur à une première de ses extrémités, le dispositif étant alors dans un mode cavité fermée, la seconde extrémité du résonateur laser étant fermée par un moyen au moins partiellement réfléchissant situé de l'autre côté du milieu amplificateur, le modulateur possédant un temps de commutation supérieur au temps mis par la lumière pour parcourir la cavité et il est utilisé dans une configuration où le facteur de perte qu'il introduit dans l'état correspondant au mode cavité ouverte est supérieur au gain à très faible signal du résonateur.According to the invention, the optical modulator can deflect the axis of the internal laser beam, said optical modulator being actuated by an electrical control, in two stable directions, the first direction corresponding to an axis in which the internal laser beam suffers sufficient losses. to prevent the laser effect from being triggered, the device then being in an open cavity mode, and the second direction corresponding to an axis in which the internal laser beam is reflected on itself at least partially by an optical return means closing the resonator at a first end, the device then being in a closed cavity mode, the second end of the laser resonator being closed by at least partially reflecting means located on the other side of the amplifying medium , the modulator having a switching time greater than the time taken by the light to traverse the cavity and it is used in a configuration where the loss factor it introduces in the state corresponding to the open cavity mode is greater than the gain at very weak resonator signal.
Dans divers modes de mise en œuvre de l'invention, les moyens suivants pouvant être utilisés seuls ou selon toutes les combinaisons techniquement possibles, sont employés :In various embodiments of the invention, the following means can be used alone or in any technically possible combination, are employed:
- le milieu laser est une fibre photonique MPF, - le modulateur est un modulateur acousto-optique,the laser medium is a photonic fiber MPF, the modulator is an acousto-optic modulator,
- le modulateur assure directement la fermeture du résonateur en mode activé,the modulator directly ensures the closing of the resonator in activated mode,
- la première direction correspond à un axe selon lequel le rayonnement laser subit des pertes suffisantes pour empêcher que l'effet laser se déclenche (mode bloqué), le dispositif étant alors dans un mode cavité ouverte, et le modulateur n'étant alors pas activé,the first direction corresponds to an axis in which the laser radiation suffers losses sufficient to prevent the laser effect from being triggered (blocked mode), the device then being in an open cavity mode, and the modulator then not being activated ,
- la seconde direction correspond à un axe sur lequel le faisceau laser est réfléchi sur lui-même au moins partiellement par un moyen optique de renvoi servant à fermer le résonateur à une première de ses deux extrémités, le dispositif étant alors dans un mode cavité fermée, et le modulateur étant activé,the second direction corresponds to an axis on which the laser beam is reflected on itself at least partially by an optical return means serving to close the resonator at a first of its two ends, the device then being in a closed cavity mode , and the modulator being activated,
- le moyen optique de renvoi servant à fermer le résonateur est positionné pour que l'angle formé par sa normale et le faisceau laser en sortie du modulateur non activé soit égal à l'angle entre l'ordre 0 et l'ordre 1 ou -1 du modulateur acousto-optique, - le moyen optique de renvoi servant à fermer le résonateur est un traitement réfléchissant pour l'onde laser sur la face de sortie du modulateur optique,the optical return means serving to close the resonator is positioned so that the angle formed by its normal and the laser beam at the output of the non-activated modulator is equal to the angle between the order 0 and the order 1 or - 1 of the acousto-optic modulator, the optical return means for closing the resonator is a reflective treatment for the laser wave on the output face of the optical modulator,
- le modulateur ne consomme quasiment aucune énergie de commande électrique pendant le mode bloqué du laser,the modulator hardly consumes any electrical control energy during the blocked mode of the laser,
(appelé aussi mode pompage ou mode non déclenché)(also called pumping mode or non triggered mode)
- le modulateur est mécanique et il agit par déplacement mécanique d'un moyen optique,the modulator is mechanical and acts by mechanical displacement of an optical means,
- le modulateur comporte des moyens utilisant la variation de réflectivité d'un élément initialement transparent,the modulator comprises means using the reflectivity variation of an initially transparent element,
- les moyens utilisant la variation de réflectivité permettent l'augmentation de réflectivité par l'excitation d'une onde acoustique longitudinale dont l'axe de propagation est colinéaire avec l'axe du résonateur, - le dispositif est monolithique, les éléments de la cavité optique étant en silice et/ou en verre et étant accolés entre- eux,the means using the variation of reflectivity allow the increase of reflectivity by the excitation of a longitudinal acoustic wave whose axis of propagation is collinear with the axis of the resonator, the device is monolithic, the elements of the cavity optic being made of silica and / or glass and being joined together,
- dans la cavité optique monolithique, la première extrémité de la fibre est perpendiculaire à la normale à l'axe longitudinal de la fibre,in the monolithic optical cavity, the first end of the fiber is perpendicular to the normal to the longitudinal axis of the fiber,
- dans la cavité optique monolithique, une lentille de collimation est disposée entre la première extrémité de la fibre et le modulateur optique,in the monolithic optical cavity, a collimating lens is disposed between the first end of the fiber and the optical modulator,
- l'onde de pompe est produite par au moins une diode laser et est focalisée par des moyens optiques de collimation dans la seconde extrémité de la fibre,the pump wave is produced by at least one laser diode and is focused by optical collimation means in the second end of the fiber,
- l'onde laser est extraite en sortie du dispositif par un miroir dichroïque disposé entre les moyens optiques de collimation,the laser wave is extracted at the output of the device by a dichroic mirror disposed between the optical means of collimation,
- le dispositif comporte des moyens pour que le rayonnement laser puisé produit soit linéairement polarisé,the device comprises means for the pulsed laser radiation produced to be linearly polarized,
- le milieu amplificateur conserve l'état de polarisation,the amplifying medium retains the state of polarization,
- le modulateur introduit une perte différente sur deux états de polarisation,the modulator introduces a different loss on two polarization states,
- l'ensemble comportant le modulateur et la fibre conserve la polarisation, - le dispositif est pompé par un dispositif à diodes lasers de puissance continues fibre ou non fibre,the assembly comprising the modulator and the fiber retains the polarization, the device is pumped by a fiber diode device of continuous fiber or non-fiber power,
- le couplage de la pompe avec le résonateur se fait grâce à un dispositif de collimation optique ou par couplage d'un fibre,the coupling of the pump with the resonator is done by means of an optical collimation device or by coupling a fiber,
- la puissance moyenne est d'au moins 10 W,- the average power is at least 10 W,
- la puissance moyenne est de préférence d'au moins 50 W,the average power is preferably at least 50 W,
- le dispositif comporte des moyens permettant de produire des impulsions lasers de durée comprises entre 1 ns et 30ns à des cadences supérieures à 5OkHz avec une milieu amplificateur guidé garantissant une qualité de faisceau en sortie laser meilleur que 1 ,5 fois la diffraction,the device comprises means making it possible to produce laser pulses of duration between 1 ns and 30 ns at rates greater than 50 kHz with a guided amplifying medium guaranteeing a laser output beam quality better than 1.5 times the diffraction,
- la puissance de crête du dispositif est d'au moins 33 kW, (puissance moyenne > 50 W, cadence supérieure à 50 kHz, durée d'impulsion inférieure ou égale à 30 ns),- the peak power of the device is at least 33 kW, (average power> 50 W, rate greater than 50 kHz, pulse duration less than or equal to 30 ns),
- la puissance de crête du dispositif est typiquement supérieure à 50 kW (la puissance de crête est la puissance mesurable directement sur l'onde en sortie de la cavité laser),the peak power of the device is typically greater than 50 kW (the peak power is the power measurable directly on the wave at the output of the laser cavity),
- le dispositif comporte des moyens de production de rayonnement harmonique avec des cristaux non-linéaires,the device comprises means for producing harmonic radiation with nonlinear crystals,
- le dispositif comporte des moyens de production de nouvelles fréquences temporelles utilisant des effets non- linéaires du 3eme ordre, notamment d'une fibre photonique,- the device comprises means for producing new temporal frequencies using non-linear effects of the 3rd order, in particular a photonic fiber,
- le dispositif comporte des moyens de production de spectres couvrant une bande largement supérieure à 10 nm et pouvant atteindre plusieurs centaines de nanomètres,the device comprises means for producing spectra covering a band much greater than 10 nm and capable of reaching several hundred nanometers,
- une lentille de collimation est disposée entre la première extrémité de la fibre et le modulateur optique,a collimation lens is disposed between the first end of the fiber and the optical modulator,
- la première extrémité de la fibre comporte un moyen anti- réfléchissant pour l'onde laser,the first end of the fiber comprises an anti-reflective means for the laser wave,
- la première extrémité de la fibre est inclinée par rapport à la normale à l'axe longitudinal de la fibre,the first end of the fiber is inclined relative to the normal to the longitudinal axis of the fiber,
- l'angle d'inclinaison de la première extrémité de la fibre par rapport à la normale à l'axe longitudinal de la fibre est supérieur à l'ouverture numérique du cœur de la fibre et est compris entre 1 ° et 60°,the angle of inclination of the first end of the fiber with respect to the normal to the longitudinal axis of the fiber is greater than the numerical aperture of the fiber core and is between 1 ° and 60 °,
- l'angle d'inclinaison de la première extrémité de la fibre par rapport à la normale à l'axe longitudinal de la fibre est d'environ 8°,the angle of inclination of the first end of the fiber with respect to the normal to the longitudinal axis of the fiber is approximately 8 °,
- le moyen anti-réfléchissant est un embout rapporté sur la première extrémité de la fibre,the anti-reflective means is a tip attached to the first end of the fiber,
- le moyen anti-réfléchissant est un traitement antiréfléchissant de la première extrémité de la fibre, - le laser comporte un résonateur en anneau dans lequel l'onde laser ne parcoure pas exactement le même chemin à l'aller et au retour.the anti-reflective means is an antireflection treatment of the first end of the fiber; the laser comprises a ring resonator in which the laser wave does not travel exactly the same way in and out.
Le laser de l'invention est un laser impulsionnel déclenché, à fort gain et à mode guidé (à fibre MPF) qui a une durée d'impulsion courte et utilise un moyen optoélectronique de déclenchement simple dont le temps de déclenchement n'est pas critique pour la durée d'impulsion et peut être supérieur à la durée d'impulsion laser.The laser of the invention is a high gain and guided mode (MPF fiber) triggered pulsed laser which has a short pulse duration and uses a simple optoelectronic triggering means whose triggering time is not critical. for the pulse duration and may be greater than the laser pulse duration.
La présente invention va maintenant être exemplifiée sans pour autant en être limitée avec la description qui suit en relation avec les figures suivantes: la Figure 1 qui représente schématiquement un dispositif laser déclenché à fibre MPF selon l'invention, la Figure 2 qui représente un exemple de réalisation du dispositif laser déclenché de l'invention, la Figure 3 qui représente une application du dispositif de l'invention.The present invention will now be exemplified without being limited thereto with the description which follows in relation to the following figures: FIG. 1 which diagrammatically represents an MPF fiber-triggered laser device according to the invention, FIG. 2 which represents an example embodiment of the triggered laser device of the invention, Figure 3 which shows an application of the device of the invention.
Sur la Figure 1 , un résonateur laser est formé entre un miroir réfléchissant 8 à la longueur d'onde d'émission laser et une extrémité plane 6' d'une fibre photonique 6 MPF. La seconde extrémité de la fibre MPF est coupée ou polie de façon à former un angle de typiquement 8° (entre 1 ° et 60°) avec l'axe longitudinal de la fibre. Le faisceau de lumière émergeant de la fibre coté extrémité inclinée est collimatée à l'aide d'une lentille 14 sur un modulateur acousto-optique 7. Ce faisceau de lumière est alors incident sur le modulateur acousto-optique 7 qui peut donner en sortie au moins deux trajets angulaires différents au faisceau. Le modulateur 7 est activé à la cadence de tir désirée par un module électronique 15, qui contrôle une onde acoustique de haute fréquence créée dans le modulateur lors de l'activation. Le miroir 8 est positionné de façon à ce que sa normale fasse un angle Θ 10 correspondant à l'angle entre le faisceau incident sur le modulateur (et qui correspond au faisceau de sortie modulateur non-activé) et le faisceau diffracté selon l'ordre 1 ou -1 dans le modulateur activé.In Fig. 1, a laser resonator is formed between a reflecting mirror 8 at the laser emission wavelength and a planar end 6 'of a photon fiber 6 MPF. The second end of the MPF fiber is cut or polished to form an angle of typically 8 ° (between 1 ° and 60 °) with the longitudinal axis of the fiber. The light beam emerging from the inclined end-slope fiber is collimated with a lens 14 on an acousto-optic modulator 7. This light beam is then incident on the acousto-optical modulator 7 which can output at least two different angular paths to the beam. The modulator 7 is activated at the desired firing rate by an electronic module 15, which controls a high frequency acoustic wave created in the modulator during activation. The mirror 8 is positioned so that its normal makes an angle Θ 10 corresponding to the angle between the beam incident on the modulator (and which corresponds to the unactivated modulator output beam) and the beam diffracted according to the order 1 or -1 in the activated modulator.
La fibre MPF est pompée en continu et longitudinalement par une onde de pompe provenant d'une ou plusieurs diodes laser de puissance 13, la/les diodes de pompage étant préférablement fibrées. L'onde de pompe est focalisée dans la fibre MPF coté extrémité non inclinée, grâce à des moyens optiques de collimation 1 1 , notamment par des lentilles corrigées des aberrations sphériques (doublets, triplets ou lentilles asphériques...). Durant toute la phase de pompage, l'alimentation du module électronique 15 est maintenue au repos et celui-ci ne produit aucun signal de commande et le modulateur se comporte donc comme un bloc de matériau isotrope, transparent. Le faisceau de lumière issu de la fibre MPF le traverse donc sans être dévié et frappe le miroir 8 en faisant un angle Θ avec la normale au miroir et il n'est donc pas renvoyé sur lui-même et ne peut donc pas retourner dans la fibre. Pour déclencher une émission laser on active le module électronique 15 qui provoque la création d'une onde acoustique dans le modulateur 7. Cette onde acoustique provoque une déviation du faisceau incident provenant de la fibre MPF d'un angle Θ ce qui le fait arriver perpendiculairement au miroir 8 et le faisceau est alors renvoyé sur lui-même et peut être amplifié dans la fibre MPF. La face 6' de la fibre, opposée à la face inclinée de la fibre, agit comme un second miroir partiellement réfléchissant et provoque un effet de résonance qui donne lieu à l'effet laser et donc à la production d'une impulsion lumineuse. Un faisceau laser comportant des impulsions à une cadence déterminée par l'activation du module électronique 15 est donc émis à travers la face de la fibre MPF et est séparé du faisceau de pompe par un miroir dichroïque 12.The MPF fiber is pumped continuously and longitudinally by a pump wave coming from one or more power laser diodes 13, the pump diode being preferably fibered. The pump wave is focused in the MPF fiber side non-inclined end, thanks to optical collimation means 1 1, in particular by corrected lenses of spherical aberrations (doublets, triplets or aspherical lenses ...). During the entire pumping phase, the supply of the electronic module 15 is kept at rest and it does not produce any control signal and the modulator therefore behaves like a block of isotropic material, transparent. The light beam from the MPF fiber passes through it without being deflected and strikes the mirror 8 at an angle Θ with the mirror normal and is therefore not returned to itself and can not return to the mirror. fiber. To trigger a laser emission activates the electronic module 15 which causes the creation of an acoustic wave in the modulator 7. This acoustic wave causes a deviation of the incident beam from the MPF fiber at an angle Θ which makes it arrive perpendicularly mirror 8 and the beam is then returned to itself and can be amplified in the MPF fiber. The face 6 'of the fiber, opposite the inclined face of the fiber, acts as a second partially reflecting mirror and causes a resonance effect that gives rise to the laser effect and thus to the production of a light pulse. A laser beam comprising pulses at a rate determined by the activation of the electronic module 15 is thus emitted through the face of the fiber MPF and is separated from the pump beam by a dichroic mirror 12.
La qualité spatiale du faisceau impulsionnel ainsi produit est fixée par les propriétés de la fibre MPF et peut donc être très proche de la limite de diffraction. On peut par exemple utiliser une fibre MPF avec un diamètre de cœur de l'ordre de 50 μm. On peut par exemple utiliser une structure de fibre "double clad" comprenant une gaine de guidage de l'onde présentant une section dont la surface est comprise entre 10.000 et 250.000 microns carrés, le milieu amplificateur ayant un radio longueur sur diamètre de section élevé: la surface de la section étant comprise entre 500 et 10.000 microns carrés et la longueur du milieu amplificateur comprise entre 10 cm et 1 ,5 m. Le milieu amplificateur de la fibre possède de préférence un gain à très faible signal typiquement supérieur à 10 par passage dans le milieu à gain. La structure de la fibre permet le guidage de l'onde laser dans le milieu amplificateur.The spatial quality of the pulse beam thus produced is fixed by the properties of the MPF fiber and can therefore be very close to the diffraction limit. One can for example use an MPF fiber with a core diameter of about 50 microns. For example, it is possible to use a "double clad" fiber structure comprising a waveguiding sheath having a cross section whose area is between 10,000 and 250,000 square microns, the amplifying medium having a radio length with a high section diameter: the area of the section being between 500 and 10,000 square microns and the length of the amplifying medium between 10 cm and 1.5 m. The amplifying medium of the fiber preferably has a very low signal gain typically greater than 10 per passage in the gain medium. The structure of the fiber allows the guidance of the laser wave in the amplifying medium.
Le gain dans la fibre étant très grand (supérieur à 10 et typiquement supérieur à 100 par passage), la durée de chaque impulsion est fixée par la durée d'un aller-retour dans la cavité laser et non pas par le temps de monté du modulateur. Grâce à la configuration proposée avec une fibre MPF courte (longueur inférieure à 2m et de préférence inférieure à 1 m), on peut produire des impulsions d'une durée inférieure à 10ns avec un modulateur dont le temps de réponse est supérieur à 100ns. Pour ce faire il est nécessaire de garantir que les pertes reste très élevée pendant la période de pompage (sinon l'effet laser se produirait indépendamment du déclenchement). Le fait de déclencher le laser sur le premier ordre de diffraction du module acousto- optique et de pomper principalement lorsque l'acousto- optique est non actif permet de garantir que la cavité restera ouverte (pas de bouclage possible) en absence de signal de commande sur le modulateur. En mode actif, le très grand gain de la fibre compense largement les pertes induites par le fait que le modulateur travaillera avec une efficacité de diffraction inférieure à 100%, par contre en mode passif l'acousto-optique se comporte comme un composant optique passif et on peut garantir un facteur de perte très supérieur à 100 (avec par exemple un taux de retour parasite de l'ordre de 2 pour mille) .Since the gain in the fiber is very large (greater than 10 and typically greater than 100 per pass), the duration of each pulse is fixed by the duration of a round trip in the laser cavity and not by the rise time of the laser. modulator. Thanks to the proposed configuration with a short MPF fiber (length less than 2 m and preferably less than 1 m), it is possible to produce pulses with a duration of less than 10 ns with a modulator whose response time is greater than 100 ns. To do this it is necessary to ensure that losses remain very high during the pumping period (otherwise the laser effect would occur independently of the trip). Triggering the laser on the first diffraction order of the acoustic module optical and pumping mainly when the acousto-optics is not active ensures that the cavity will remain open (no loopback possible) in the absence of a control signal on the modulator. In active mode, the very large gain of the fiber largely compensates for the losses caused by the fact that the modulator will work with a diffraction efficiency of less than 100%, whereas in passive mode the acousto-optic behaves like a passive optical component. and it is possible to guarantee a loss factor that is much greater than 100 (with, for example, a parasite return rate of the order of 2 per thousand).
On voit donc que l'association d'un modulateur acousto- optique fonctionnant sur l'ordre 1 ou -1 et d'une fibre photonique à large mode permet de garantir la production d'impulsions brèves, énergétiques et avec une qualité de faisceau excellente, tout en travaillant à forte puissance moyenne.It can thus be seen that the combination of an acousto-optic modulator operating on order 1 or -1 and a wide-mode photonic fiber makes it possible to guarantee the production of short, energetic pulses and with an excellent beam quality. , while working at high average power.
Pour un fonctionnement optimum, un certain nombre de conditions doivent être respectées. En particulier, la lentille 14 coté extrémité inclinée de la fibre MPF doit être choisie et positionnée afin d'assurer que la divergence du faisceau l'ayant traversé en venant de la fibre soit inférieur à l'angle de déviation Θ introduit par le modulateur acousto-optique. De même, il est préférable que l'extrémité de la fibre faisant face au modulateur, c'est-à-dire l'extrémité inclinée, soit préparée afin d'empêcher toute oscillation laser entre les deux extrémités de la fibre. Pour cela, on peut lui donner une inclinaison avec un angle par rapport à la normale à la fibre qui soit largement plus grand que l'ouverture numérique du cœur de la fibre MPF. D'une manière alternative ou complémentaire, on peut assembler sur l'extrémité de la fibre, coté modulateur, un embout dont la face extérieure (de sortie) n'est pas perpendiculaire à l'axe de la fibre ou qui a reçu un traitement anti-réfléchissant. De même, pour obtenir des impulsions courtes, la fibre doit avoir une longueur inférieure à 1 m afin de garantir des impulsions d'une durée inférieure à 10 ns.For optimum operation, a number of conditions must be met. In particular, the lens 14 at the inclined end of the MPF fiber must be chosen and positioned to ensure that the divergence of the beam passing through it coming from the fiber is less than the deflection angle Θ introduced by the acousto modulator. -optical. Likewise, it is preferable that the end of the fiber facing the modulator, i.e. the sloped end, is prepared to prevent laser oscillation between the two ends of the fiber. For this, it can be given an inclination with an angle relative to the normal to the fiber which is much larger than the numerical aperture of the core of the MPF fiber. In an alternative or complementary manner, it is possible to assemble on the end of the fiber, on the modulator side, a tip whose outer face (of exit) is not perpendicular to the axis of the fiber or which has received a treatment anti-reflective. Similarly, to obtain short pulses, the fiber must have a shorter length at 1 m to ensure pulses of less than 10 ns.
De façon plus générale, le modulateur peut utiliser toute autre méthode de modulation rapide de la transmission ou de la réflexion d'un système optique. A titre d'exemple, un système optique micro-mécanique permet d'obtenir l'effet de commutation optique angulaire nécessaire au déclenchement de l'impulsion. De préférence, dans ce dernier cas, le miroir 8 de renvoi est porté par le système optique micro-mécanique et peut basculer pour passer d'une position de renvoi du faisceau de lumière sur lui-même à une autre position.More generally, the modulator can use any other method of rapid modulation of the transmission or reflection of an optical system. By way of example, a micro-mechanical optical system makes it possible to obtain the angular optical switching effect necessary to trigger the pulse. Preferably, in the latter case, the reflecting mirror 8 is carried by the micromechanical optical system and can switch to move from a return position of the light beam on itself to another position.
On peut noter que le temps de commutation du modulateur doit être rapide (typiquement inférieur à quelques centaines de ns) sans toutefois devoir être plus rapide que la durée d'un aller-retour dans la cavité laser puisque la durée des impulsions est fixée par le gain du milieu amplificateur et non pas par la vitesse de commutation du commutateur.It should be noted that the switching time of the modulator must be fast (typically less than a few hundred ns) without however having to be faster than the duration of a round trip in the laser cavity since the duration of the pulses is fixed by the gain of the amplifying medium and not by the switching speed of the switch.
De même, il est important de réaliser que le milieu laser ayant dans l'invention un gain par passage très élevé (supérieur à 10), la simple activation de la plupart des modulateurs optiques ne permet pas d'introduire dans la cavité des pertes suffisantes pour empêcher l'effet laser de se produire. On ne peut donc plus frustrer l'émission laser et l'obliger à apparaître sous forme d'impulsion. Il est donc important dans l'invention d'utiliser un modulateur non-activé durant la phase de stockage de l'énergie dans le milieu laser, en prenant soin que le faisceau traversant le modulateur sans être modifié puisque ce dernier n'est pas activé, ne puisse pas être renvoyé vers le milieu amplificateur. Ce mode de fonctionnement est à l'opposé des fonctionnements de déclenchement de cavité utilisé dans l'ensemble des systèmes lasers décrits avant cette invention, systèmes qui utilise traditionnellement la modification apportée par un modulateur activé pour bloquer la cavité de laser durant la phase de stockage, et qui déclenche l'émission d'une impulsion en ramenant le modulateur à son état non-activé durant un temps court devant le cycle complet (configuration qui alors minimise les pertes dans le cas d'un laser à faible gain). Dans un mode de réalisation alternatif (ou complémentaire du précédent pour pompage par les deux extrémités de la fibre MPF), le signal de pompe est incident sur la fibre MPF par son extrémité directement en rapport avec le modulateur. Dans ce cas le modulateur peut être traversé par l'onde de pompe ou simplement séparée de cette dernière par un miroir dichroïque disposé entre l'extrémité (inclinée, traitée anti-réflexion ou comportant un embout) de la fibre 6 ou la lentille 14 et le modulateur 7, permettant l'injection longitudinale de l'onde de pompe dans la fibre MPF.Similarly, it is important to realize that the laser medium having in the invention a gain per pass very high (greater than 10), the simple activation of most optical modulators does not allow to introduce into the cavity sufficient losses to prevent the laser effect from occurring. We can no longer frustrate the laser emission and force it to appear as a pulse. It is therefore important in the invention to use a non-activated modulator during the energy storage phase in the laser medium, taking care that the beam passing through the modulator without being modified since the latter is not activated. , can not be sent back to the amplifier medium. This mode of operation is the opposite of the cavity triggering operations used in all the laser systems described before this invention, systems which traditionally uses the modification provided by an activated modulator to block the laser cavity during the storage phase. , and that triggers the emission of a pulse by returning the modulator to its non-activated state for a short time before the complete cycle (configuration which then minimizes the losses in the case of a low-gain laser). In an alternative embodiment (or complementary to the previous one for pumping by the two ends of the MPF fiber), the pump signal is incident on the MPF fiber by its end directly related to the modulator. In this case the modulator may be traversed by the pump wave or simply separated from the latter by a dichroic mirror disposed between the end (inclined, anti-reflection treated or having a tip) of the fiber 6 or the lens 14 and the modulator 7, allowing the longitudinal injection of the pump wave in the MPF fiber.
Il est possible de réaliser le dispositif d'une manière essentiellement monolithique par regroupement des principaux éléments de la cavité optique, notamment les optiques de collimation 14, le modulateur 7 et les miroirs 8, 6', dans un matériau en silice ou dans un verre qui permette un tel assemblage. La figure 2 donne un exemple d'un tel assemblage monolithique. Dans le cas ou le modulateur est un modulateur acousto-optique on peut tailler la face externe du modulateur pour qu'elle fasse un angle Θ avec l'axe de la fibre et traiter cette face de façon à la rendre réfléchissante à la longueur d'onde laser pour obtenir un équivalent du miroir 8 sur cette face.It is possible to realize the device in a substantially monolithic manner by grouping the main elements of the optical cavity, in particular the collimation optics 14, the modulator 7 and the mirrors 8, 6 ', in a material made of silica or in a glass which allows such an assembly. Figure 2 gives an example of such a monolithic assembly. In the case where the modulator is an acousto-optic modulator, it is possible to cut the external face of the modulator so that it makes an angle Θ with the axis of the fiber and to treat this face so as to make it reflective to the length of the fiber. laser wave to obtain an equivalent of the mirror 8 on this face.
Par ailleurs, on peut faire suivre de façon très avantageuse le dispositif de l'invention d'un ou plusieurs cristaux non-linéaires 16 afin de produire des rayonnements harmoniques de l'onde fondamentale (notamment pour doublage, triplage, quadruplage, quintuplage de fréquence). L'association d'impulsions brèves et d'un faisceau limité par la diffraction permet de maximaliser le rendement de conversion de fréquence et donc de produire des rayonnements visibles ou UV de très forte puissance moyenne, ce qui est difficile à obtenir par les moyens habituels. Un exemple d'implantation d'un ou plusieurs cristaux non-linéaires suivi de miroirs dichroïques pour la séparation des harmoniques est représenté sur la figure 3. La génération d'harmoniques est également possible avec un dispositif monolithique tel que représenté à la Figure 2 en y associant des .cristaux non-linéaires.Furthermore, the device of the invention can be followed very advantageously by one or more non-linear crystals 16 in order to produce harmonic radiations of the fundamental wave (especially for doubling, tripling, quadrupling, frequency quintupling). ). The combination of short pulses and a beam limited by diffraction makes it possible to maximize the frequency conversion efficiency and thus to produce visible or UV radiation of very high average power, which is difficult to obtain by the usual means. An example of implantation of one or more nonlinear crystals followed by dichroic mirrors for the separation of harmonics is shown in FIG. 3. The generation of harmonics is also possible with a monolithic device as represented in FIG. associating nonlinear crystals.
On comprend que d'autres dispositions des éléments du dispositif laser déclenché sont possibles sans sortir du cadre de l'invention présentée ici. It is understood that other arrangements of the elements of the triggered laser device are possible without departing from the scope of the invention presented here.

Claims

REVENDICATIONS
1 . Dispositif de production cyclique d'impulsions lasers de courte durée, typiquement inférieure à 30ns, le dispositif comportant un résonateur laser de longueur optique inférieure à 2m comprenant deux extrémités réfléchissantes et incorporant une fibre photonique MPF pompée en continu par au moins une onde de pompe issue de diodes lasers semiconducteurs de puissances focalisée par des moyens optiques de collimation de la fibre, la fibre MPF comportant un milieu où un faisceau laser interne est guidé et possédant un gain à très faible signal supérieur à 10 par passage dans le milieu à gain, le résonateur laser incorporant également un modulateur optique, le modulateur optique pouvant défléchir l'axe du faisceau laser interne, ledit modulateur optique étant actionné par une commande électrique, selon deux directions stables, la première direction correspondant à un axe selon lequel le faisceau laser interne subit des pertes suffisantes pour empêcher que l'effet laser ne se déclenche, le dispositif étant alors dans un mode cavité ouverte, et la seconde direction correspondant à un axe selon lequel le faisceau laser interne est réfléchi sur lui-même au moins partiellement par un moyen optique de renvoi fermant le résonateur à une première de ses extrémités, le dispositif étant alors dans un mode cavité fermée, la seconde extrémité du résonateur laser étant fermée par un moyen au moins partiellement réfléchissant situé de l'autre côté du milieu amplificateur, caractérisé en ce que le dispositif génère une puissance crête d'au moins 33 KW et que le modulateur possède un temps de commutation supérieur au temps mis par la lumière pour parcourir la cavité et qu'il est utilisé dans une configuration où le facteur de perte qu'il introduit dans l'état correspondant au mode cavité ouverte est supérieur au gain à très faible signal du résonateur et en ce que le milieu amplificateur conserve l'état de polarisation. 1. Device for cyclic production of laser pulses of short duration, typically less than 30ns, the device comprising a laser resonator of optical length less than 2m comprising two reflective ends and incorporating a photonic fiber MPF pumped continuously by at least one pump wave power semiconductor laser diodes focused by fiber collimating optical means, the MPF having a medium where an internal laser beam is guided and having a very low signal gain of greater than 10 by passing through the gain medium; laser resonator also incorporating an optical modulator, the optical modulator being able to deflect the axis of the internal laser beam, said optical modulator being actuated by an electrical command, in two stable directions, the first direction corresponding to an axis according to which the internal laser beam undergoes losses sufficient to prevent the effe The laser is not triggered, the device then being in an open cavity mode, and the second direction corresponding to an axis according to which the internal laser beam is reflected on itself at least partially by an optical return means closing the resonator at a minimum. first of its ends, the device then being in a closed cavity mode, the second end of the laser resonator being closed by at least partially reflecting means located on the other side of the amplifying medium, characterized in that the device generates a peak power at least 33 KW and that the modulator has a switching time greater than the time taken by the light to traverse the cavity and that it is used in a configuration where the loss factor that it introduces in the state corresponding to the open cavity mode is greater than the very low signal gain of the resonator and that the amplifying medium maintains the state of polarisat ion.
2. Dispositif selon la revendication 1 , caractérisé en ce que le modulateur assure directement la fermeture du résonateur en mode activé.2. Device according to claim 1, characterized in that the modulator directly ensures the closure of the resonator in activated mode.
3. Dispositif selon la revendication 1 , caractérisé en ce que le modulateur optique est un modulateur acousto-optique.3. Device according to claim 1, characterized in that the optical modulator is an acousto-optic modulator.
4. Dispositif selon la revendication 3, caractérisé en ce que le moyen optique de renvoi servant à fermer le résonateur est positionné pour que l'angle formé par sa normale et le faisceau laser en sortie du modulateur non activé soit égal à l'angle entre l'ordre 0 et l'ordre 1 ou -1 du modulateur acousto-optique.4. Device according to claim 3, characterized in that the optical return means for closing the resonator is positioned so that the angle formed by its normal and the laser beam output of the unactivated modulator is equal to the angle between the order 0 and the order 1 or -1 of the acousto-optic modulator.
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que le modulateur acousto-optique ne consomme quasiment aucune énergie de commande électrique pendant le mode bloqué du laser.5. Device according to claim 3 or 4, characterized in that the acousto-optic modulator consumes virtually no electrical control energy during the locked mode of the laser.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est monolithique, les éléments de la cavité optique étant en silice et/ou en verre et étant accolés entre-eux. 6. Device according to any one of the preceding claims, characterized in that it is monolithic, the elements of the optical cavity being silica and / or glass and being contiguous to each other.
7. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le modulateur optique est mécanique et qu'il agit par déplacement mécanique d'un moyen optique.7. Device according to claim 1 or 2, characterized in that the optical modulator is mechanical and acts by mechanical displacement of an optical means.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des moyens permettant de produire des impulsions lasers de durée inférieure à 30 ns à des cadences supérieures à 50 kHz avec une qualité de faisceau meilleur que 1 ,5 fois la diffraction.8. Device according to any one of the preceding claims, characterized in that it comprises means for producing laser pulses of less than 30 ns duration at rates greater than 50 kHz with a beam quality better than 1, 5 times diffraction.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'une des extrémités de la fibre MPF est inclinée par rapport à la normale à l'axe longitudinal de la fibre.9. Device according to any one of the preceding claims, characterized in that one end of the MPF fiber is inclined relative to the normal to the longitudinal axis of the fiber.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la fibre MPF est pompée à ses deux extrémités. 10. Device according to any one of the preceding claims, characterized in that the MPF fiber is pumped at both ends.
1 1 . Dispositif de production cyclique d'impulsions lasers de courte durée, typiquement inférieure à 30ns, le dispositif comportant un résonateur laser de longueur optique inférieure à 2m comprenant deux extrémités réfléchissantes et incorporant une fibre photonique MPF pompée en continu par au moins une onde de pompe issue de diodes lasers semiconducteurs de puissances focalisée par des moyens optiques de collimation de la fibre, la fibre MPF comportant un milieu où un faisceau laser interne est guidé et possédant un gain à très faible signal supérieur à 10 par passage dans le milieu à gain, le résonateur laser incorporant également un modulateur optique, le modulateur optique pouvant défléchir l'axe du faisceau laser interne, ledit modulateur optique étant actionné par une commande électrique, selon deux directions stables, la première direction correspondant à un axe selon lequel le faisceau laser interne subit des pertes suffisantes pour empêcher que l'effet laser ne se déclenche, le dispositif étant alors dans un mode cavité ouverte, et la seconde direction correspondant à un axe selon lequel le faisceau laser interne est réfléchi sur lui-même au moins partiellement par un moyen optique de renvoi fermant le résonateur à une première de ses extrémités, le dispositif étant alors dans un mode cavité fermée, la seconde extrémité du résonateur laser étant fermée par un moyen au moins partiellement réfléchissant situé de l'autre côté du milieu amplificateur, caractérisé en ce que le modulateur possède un temps de commutation supérieur au temps mis par la lumière pour parcourir la cavité et qu'il est utilisé dans une configuration où le facteur de perte qu'il introduit dans l'état correspondant au mode cavité ouverte est supérieur au gain à très faible signal du résonateur, en ce que le milieu amplificateur conserve l'état de polarisation et en ce qu'il comporte des moyens de production de rayonnement harmonique avec des cristaux non-linéaires. 1 1. Device for cyclic production of laser pulses of short duration, typically less than 30ns, the device comprising a laser resonator of optical length less than 2m comprising two reflective ends and incorporating a photonic fiber MPF pumped continuously by at least one pump wave power semiconductor laser diodes focused by fiber collimating optical means, the MPF having a medium where an internal laser beam is guided and having a very low signal gain of greater than 10 by passing through the gain medium; laser resonator also incorporating an optical modulator, the optical modulator being able to deflect the axis of the internal laser beam, said optical modulator being actuated by an electrical command, in two stable directions, the first direction corresponding to an axis according to which the internal laser beam undergoes losses sufficient to prevent the effe The laser is not triggered, the device then being in an open cavity mode, and the second direction corresponding to an axis according to which the internal laser beam is reflected on itself at least partially by an optical return means closing the resonator at a minimum. first of its ends, the device then being in a closed cavity mode, the second end of the laser resonator being closed by at least partially reflecting means situated on the other side of the amplifying medium, characterized in that the modulator has a switching greater than the time taken by the light to traverse the cavity and that it is used in a configuration where the loss factor that it introduces in the state corresponding to the open cavity mode is greater than the very low signal gain of the resonator, in that the amplifying medium maintains the state of polarization and in that it comprises means for producing radiation ha with nonlinear crystals.
EP06743856A 2005-04-28 2006-04-27 Laser device triggered by a photonic fibre Withdrawn EP1878096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551114A FR2885265B1 (en) 2005-04-28 2005-04-28 LASER DEVICE DISCHARGED WITH PHOTONIC FIBER
PCT/FR2006/050399 WO2006114557A1 (en) 2005-04-28 2006-04-27 Laser device triggered by a photonic fibre

Publications (1)

Publication Number Publication Date
EP1878096A1 true EP1878096A1 (en) 2008-01-16

Family

ID=35432838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743856A Withdrawn EP1878096A1 (en) 2005-04-28 2006-04-27 Laser device triggered by a photonic fibre

Country Status (6)

Country Link
US (1) US7558298B2 (en)
EP (1) EP1878096A1 (en)
JP (1) JP5467629B2 (en)
KR (1) KR20080002896A (en)
FR (1) FR2885265B1 (en)
WO (1) WO2006114557A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439820A1 (en) 2010-10-05 2012-04-11 Institut Franco-Allemand de Recherches de Saint-Louis Method for generating a laser beam with short duration of less than 100 ns and high frequency of more than 50 kHz

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884652B1 (en) * 2005-04-19 2009-07-10 Femlight Sa DEVICE FOR GENERATING LASER PULSES AMPLIFIED BY OPTICAL FIBERS WITH PHOTONIC LAYERS
RU2548388C1 (en) * 2013-12-30 2015-04-20 Общество с ограниченной ответственностью "Техноскан-Лаб" (ООО "Техноскан-Лаб") Fibre laser with nonlinear radiation frequency conversion in high-q resonator (versions)
US10914902B2 (en) 2014-02-26 2021-02-09 TeraDiode, Inc. Methods for altering properties of a radiation beam
US9435964B2 (en) 2014-02-26 2016-09-06 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product
WO2015200271A1 (en) * 2014-06-25 2015-12-30 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product
FI3612872T3 (en) * 2017-04-21 2023-05-08 Nuburu Inc Multi-clad optical fiber
US10352995B1 (en) 2018-02-28 2019-07-16 Nxp Usa, Inc. System and method of multiplexing laser triggers and optically selecting multiplexed laser pulses for laser assisted device alteration testing of semiconductor device
US10782343B2 (en) 2018-04-17 2020-09-22 Nxp Usa, Inc. Digital tests with radiation induced upsets

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761786A (en) * 1986-12-23 1988-08-02 Spectra-Physics, Inc. Miniaturized Q-switched diode pumped solid state laser
US5008887A (en) * 1989-04-19 1991-04-16 Kafka James D Mode-locked fiber laser
DE4441133A1 (en) * 1994-11-21 1996-05-23 Sel Alcatel Ag Mode-locked fiber laser
US6339604B1 (en) * 1998-06-12 2002-01-15 General Scanning, Inc. Pulse control in laser systems
US6236779B1 (en) * 1999-05-24 2001-05-22 Spectra Physics Lasers, Inc. Photonic crystal fiber system for sub-picosecond pulses
JP3825381B2 (en) * 2002-09-10 2006-09-27 三菱電線工業株式会社 Polarization-maintaining photonic crystal fiber
US7256930B2 (en) * 2003-04-15 2007-08-14 Jian Liu High power pulse shaping fiber laser for high data rate free space telecommunication systems
JP2005053756A (en) * 2003-08-06 2005-03-03 Mitsubishi Cable Ind Ltd Optical fiber preform
JP4554178B2 (en) * 2003-08-25 2010-09-29 三菱電線工業株式会社 Polarization-maintaining photonic crystal fiber, fiber end processing method thereof, computer program for controlling an optical fiber fusion splicing device, and readable recording medium for the program
US7120174B2 (en) * 2004-06-14 2006-10-10 Jds Uniphase Corporation Pulsed laser apparatus and method
US7526003B2 (en) * 2004-12-08 2009-04-28 Polaronyx, Inc. Nonlinear polarization pulse shaping mode locked fiber laser at one micron
US20070177642A1 (en) * 2005-10-17 2007-08-02 Polaronyx, Inc. Achieving ultra-short pulse in mode locked fiber lasers by flattening gain shape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006114557A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439820A1 (en) 2010-10-05 2012-04-11 Institut Franco-Allemand de Recherches de Saint-Louis Method for generating a laser beam with short duration of less than 100 ns and high frequency of more than 50 kHz

Also Published As

Publication number Publication date
WO2006114557A1 (en) 2006-11-02
FR2885265B1 (en) 2009-10-09
US7558298B2 (en) 2009-07-07
KR20080002896A (en) 2008-01-04
US20080187010A1 (en) 2008-08-07
JP2008539574A (en) 2008-11-13
JP5467629B2 (en) 2014-04-09
FR2885265A1 (en) 2006-11-03

Similar Documents

Publication Publication Date Title
EP1878096A1 (en) Laser device triggered by a photonic fibre
EP2676340B1 (en) Optical pumping device
EP1849029B2 (en) Composite optical fibre for a laser- and pump-wave confinement laser and use thereof in lasers
EP2929603B1 (en) System and method for generating a burst of ultra-short, high-power laser pulses
FR2645355A1 (en) POWER LASER GENERATOR WITH CONTROL OF OUTPUT BEAM TRANSMISSION DIRECTION
EP2018687B1 (en) High-power fiberoptic pulsed laser device
EP2147487B1 (en) Pulsed microchip laser
EP2497165B1 (en) Optical source implementing a doped fibre, fibre for such an optical source and method for manufacturing such a fibre
EP1966856B1 (en) Device with optical guide for producing an optical signal by optical pumping and uses of the device
EP2345117B1 (en) Optical amplifier system for pulsed laser based on a guiding gain medium and pulsed laser comprising same
CA2827445C (en) High-power optical fibre laser
FR2965674A1 (en) PROCESS FOR GENERATING SHORT-TERM LASER RADIATION (&lt;100NS) OF MEDIUM POWER P AND AT A HIGH RATE (&gt; 50KHZ)
EP3082203A1 (en) Tunable pulsed laser emission system
EP2443705B1 (en) System for emitting a polychromatic light, provided with coupled sub-cavities
WO2007028783A1 (en) Method for producing a power laser beam and device therefor
FR2858721A1 (en) Laser with intracavity pumping incorporating a laser beam expansion device between the first and second pumping crystals, notably for medical applications
FR3018144A1 (en) HYBRID OPTICAL AMPLIFICATION DEVICE
FR2691588A1 (en) Power laser source.
FR2858475A1 (en) LASER POWER SOURCE WITH HIGH SPECTRAL FINESSE
FR2858720A1 (en) Laser with intracavity pumping incorporating a laser beam expansion device between the first and second pumping crystals, notably for medical applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20080229

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201103