EP1874803A2 - Carrier for targeting nerve cells - Google Patents

Carrier for targeting nerve cells

Info

Publication number
EP1874803A2
EP1874803A2 EP06724595A EP06724595A EP1874803A2 EP 1874803 A2 EP1874803 A2 EP 1874803A2 EP 06724595 A EP06724595 A EP 06724595A EP 06724595 A EP06724595 A EP 06724595A EP 1874803 A2 EP1874803 A2 EP 1874803A2
Authority
EP
European Patent Office
Prior art keywords
transport protein
amino acid
neurotoxin
protein
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06724595A
Other languages
German (de)
French (fr)
Inventor
Andreas Rummel
Tanja Weil
Aleksandrs Gutaits
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merz Pharma GmbH and Co KGaA
Toxogen GmbH
Original Assignee
Merz Pharma GmbH and Co KGaA
Toxogen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merz Pharma GmbH and Co KGaA, Toxogen GmbH filed Critical Merz Pharma GmbH and Co KGaA
Priority to EP18212034.5A priority Critical patent/EP3511338A3/en
Priority to PL17154062T priority patent/PL3181578T3/en
Priority to EP17154062.8A priority patent/EP3181578B1/en
Priority to EP20100011509 priority patent/EP2345666A1/en
Publication of EP1874803A2 publication Critical patent/EP1874803A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/26Psychostimulants, e.g. nicotine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24069Bontoxilysin (3.4.24.69), i.e. botulinum neurotoxin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a transport protein that binds to higher or lower affinity neurons than the neurotoxin produced by Clostridium botulinum.
  • the transport protein is preferably taken up by receptor-mediated endocytosis.
  • This protein finds utility as a transporter that translocates other chemical substances (e.g., proteases) from the acidic endosomal compartment into the cytosol of neurons that can not penetrate physiologically through the plasma membrane into the cytosol of nerve cells.
  • the present invention relates to the use of a transport protein for the introduction of inhibitors of neurotransmitter secretion.
  • Exocytosis refers to the fusion of the membranes of intracellular vesicles with the plasma membrane. In this process, the vesicular content is simultaneously released into the synaptic cleft. The fusion of the two membranes is regulated by calcium, which reacts with the protein synaptotagmin. Together with other cofactors, synaptotagmin controls the status of three so-called fusion proteins, SNAP-25, synaptobrevin 2 and syntaxin IA. While syntaxin IA and synaptobrevin 2 are integrated into the plasma and vesicle membranes, SNAP-25 is only weakly bound to the plasma membrane.
  • the above-mentioned fusion proteins are the target molecules (substrates) of the light chain (LC) of the clostridial neurotoxins formed by the bacteria C. botulinum, C. butyricum, C. baratii and C. tetani.
  • the anaerobic, gram-positive bacterium C. botulinum produces seven different serotypes of clostridial neurotoxins. These are referred to as the botulinum neurotoxins (BoNT / A to BoNT / G). Of these, BoNT / A and BoNT / B in particular cause a neuroparalytic disorder in humans and animals called botulism.
  • the spores of C. botulinum are found in the soil, but may develop into improperly sterilized and sealed home-grown canned foods, which are responsible for many of the botulism cases.
  • BoNT / A is the most active of all known biological substances. Only about 5-6 pg of purified BoNT / A represents an MLD (median lethal dose).
  • a Unit (U) of BoNT / A is defined as the MLD, which after intraperitoneal injection kills half of female Swiss Webster mice weighing 18-20 g each. Seven immunologically different BoNTs were characterized. They bear the names BoNT / A, B, Cl, D, E, F and G and can be distinguished by neutralization with serotype-specific antibodies. The different serotypes of BoNT differ in affected species with regard to the severity and duration of the caused paralysis. So z. B. in the rat with regard to the paralysis BoNT / A 500 times more effective than BoNT / B.
  • BoNT / B has been found to be non-toxic in primates at a dose of 480 U / kg body weight. The same amount of BoNT / A is equivalent to 12 times the lethal dose of this substance in primates. On the other hand, in mice the paralysis time after injection of BoNT / A is 10 times longer than after injection of BoNT / E.
  • BoNTs are used to treat neuromuscular disorders caused by hyperactivity in skeletal muscle caused by pathologically overactive peripheral nerves are characterized.
  • BoNT / A is approved by the US Food and Drug Administration for the treatment of blepharospasm, strabismus, hyperhidrosis, wrinkles and hemifacial spasm.
  • the remaining BoNT serotypes apparently have a lower potency and shorter duration of action.
  • Clinical effects of peripheral intramuscularly administered BoNT / A usually occur within one week.
  • the duration of symptom suppression by a single intramuscular injection of BoNT / A is usually about three to six months.
  • BoNT / A, Cl and E cleave SNAP-25, while BoNT / B, D, F, G and tetanus neurotoxin (TeNT) attack the vesicle-associated membrane protein (VAMP) 2 - also called synaptobrevin 2.
  • VAMP vesicle-associated membrane protein
  • BoNT / Cl also splits syntaxin IA.
  • Clostridia bacteria release the neurotoxins as single-chain polypeptides, each with 1251 to 1315 amino acids. Subsequently, endogenous proteases of each of these proteins cleave at a given site in two chains ('nicking'), but the two chains remain connected by a disulfide bridge. These two-chain proteins are referred to as holotoxins (see Shone et al., (1985) Eur. J. Biochem., 151, 75-82). The two chains have different functions. While the smaller segment, the light chain (LC), represents a Zn 2+ -dependent endoprotease, the heavy chain (HC) is the light chain transporter.
  • LC light chain
  • HC heavy chain transporter
  • the HC binds with the Hc fragment to neuronal gangliosides, is taken up by the receptor-mediated endocytosis into the cell interior and reaches the natural vesicle circulation via the endosomal compartment.
  • the H N fragment invades the vesicle membrane and forms a pore. Any substance (X) that is linked to the HC through a disulfide bridge will be separated from the HC by intracellular redox systems that gain access to and reduce the disulfide bond. Ultimately, X will appear in the cytosol.
  • the HC is the carrier of an LC, which in the final step cleaves its specific substrate in the cytosol.
  • the cycle of complex formation and dissociation of the fusion proteins is interrupted and thus inhibited the release of acetylcholine.
  • striped muscles are paralyzed, and sweat glands cease their secretion.
  • the duration of action of the individual BoNT serotypes varies and depends on the presence of intact LC in the cytosol.
  • the preferential blocking of cholinergic transmission can be explained by the HC entering the neuron at the periphery. Central synapses are protected by the blood-brain barrier, which proteins can not overcome.
  • BoNT / A complex also called progenitor toxin A, has been used in the recent past to treat motor dystonia, as well as to attenuate excessive sympathetic activity (see Benecke et al., 1995, Act Neurol., 22, 209ff) and for alleviation pain and migraine (see Sycha et al., 2004, J. Neurol., 251, 19-30).
  • This complex consists of the neurotoxin, various hemagglutinins, and a non-toxic, non-hemagglutinating protein. Under physiological pH, the complex dissociates in a few minutes. The resulting neurotoxin is the only component of the complex that is therapeutically relevant and causes symptom relief. Since the underlying neurological disease is not cured, the complex must be re-injected at intervals of three to four months. Depending on the amount of injected foreign protein, some patients will form specific BoNT / A antibodies. These patients become resistant to the neurotoxin. Once antigen-sensitive cells have recognized the neurotoxin and antibodies have been generated, the memory cells in question will remain for years. Therefore, it is important to treat the patients with drugs of highest activity in the lowest possible dosage.
  • the preparations should also contain no further proteins of bacterial origin, since they can act as immune adjuvants. Such substances attract macrophages that recognize both the immune adjuvants and the neurotoxins and present to the lymphocytes, which then respond to the formation of immunoglobulins. Consequently, only products of the highest purity, which do not contain foreign proteins, should be used for therapy.
  • the resistance of the patients to the neurotoxin is based, on a molecular level, predominantly on the presence of neutralizing antibodies.
  • a transport protein (Trapo) is now presented, which can overcome the above-described problems of the previously known methods.
  • This object has been achieved with a novel transport protein obtainable by modifying the heavy chain of the neurotoxin produced by Clostridium botulinum, wherein
  • the protein binds to higher or lower affinity nerve cells than the native neurotoxin
  • the protein has increased or decreased neurotoxicity compared to the native neurotoxin; preferably, the neurotoxicity is determined in the hemidiaphragm assay; and or
  • the protein has a lower affinity for neutralizing antibodies compared to the native neurotoxin.
  • a transport protein which binds to nerve cells with higher or lower affinity than the native neurotoxin produced by C. botulinum.
  • a transport protein obtained by modifying the HC of the neurotoxin produced by C. botulinum, wherein the protein having higher or lower affinity than the native neurotoxin binds specifically to nerve cells.
  • the transport protein from these cells is taken up by endocytosis.
  • a transport protein is also obtained which is obtained by modifying the HC of the neurotoxin formed by C. botulinum, the protein no longer being accessible by exchanging surface-exposed amino acids, in particular at the ganglioside and protein receptor binding pockets of the binding neutralizing antibodies is.
  • terms are defined as they are to be understood in the context of the present application.
  • “Native neurotoxin is the native neurotoxin of C. botulinum, preferably the botulinum neurotoxin A and / or botulinum neurotoxin B and / or botulinum neurotoxin G from C. botulinum The recombinantly produced botulinum neurotoxin from E.
  • the transport protein specifically binds to plasma membrane associated molecules, transmembrane proteins, synaptic vesicle proteins, a synaptotagin family protein or synaptic vesicle glycoproteins 2 (S V2), preferably synaptotagmin I and / or synaptotagmin II and / or SV2A, SV2B or SV2C, more preferably human synaptotagmin I and / or human synaptotagmin II and / or human SV2A, SV2B or SV2C.
  • the binding is preferably determined in vitro. Most preferably, the determination is made by using a GST pull-down assay detailed in the Examples.
  • the native neurotoxin is the native novotoxin of C. botulinum.
  • the native neurotoxin is preferably the botulinum neurotoxin A and / or botulinum neurotoxin B and / or botulinum neurotoxin G from C. botulinum.
  • the recombinantly produced botulinum neurotoxin from E. coli which contains, among other things, the amino acid sequence identical to the native botulinum neurotoxin, behaves pharmacologically identically as the native botulinum neurotoxin and is called recombinant botulinum neurotoxin wild type.
  • the nerve cells mentioned here are cholinergic motor neurons.
  • the neurotoxicity is preferably determined by the hemi-diaphragm assay (HDA) known in the art.
  • the neurotoxicity of the muteins can preferably be determined as described by Habermann et al., Naunyn Schmiedeberg's Arch. Pharmacol. 31 1 (1980), 33-40.
  • Neurotoxin neutralizing antibodies Botulinum neurotoxin-targeting neutralizing antibodies are known (Göschel H, Wohlfarth K, Frevert J, Dengler R, Bigalke H. Botulinum A toxin therapy: neutralizing and non-neutralizing antibodies-therapeutic consequences, Exp. Neurol 1997 Sep; 147 (1997); l): 96-102.) Neurotoxin neutralizing antibodies have been found to interact particularly with the active sites such as the ganglioside and protein receptor binding pockets within the Hcc domain of the neurotoxin, and in the neurotoxin, the surfaces surrounding the binding pockets are altered by amino acid substitutions Negatively affecting functionality, the neutralizing antibodies lose their binding sites and the mutated neurotoxin is no longer neutralized.
  • the amino acid and / or nucleic acid sequence of the heavy chain (HC) of the neurotoxin produced by C. botulinum are generally available from publicly available databases for each of the known serotypes A. to G (see also Table 1).
  • Modification here comprises that at least one amino acid is deleted, added, inserted into the amino acid sequence, or at least one amino acid of the native neurotoxin is substituted by another natural or non-naturally occurring amino acid and / or Post-translational modifications include glycosylations, acetylations, acylations, deaminations, phosphorylations, isoprenylations, glycosylphosphatidylinositolations, and other modifications known to the person skilled in the art.
  • the HC of the neurotoxin produced by C. botulinum comprises three subdomains, namely the 50 kDa amino terminal translocation domain H N , the subsequent 25 kDa Hc N domain and the carboxyl terminal 25 kDa Hcc domain.
  • the H CN and H C c domains are referred to as the Hc fragment.
  • the corresponding amino acid sections of the respective subdomains can be seen for the individual serotypes and their variants from Table 1.
  • Ganglioside Receptor The HCs of the botulinum neurotoxins have a high affinity for peripheral nerve cells, which are predominantly mediated by the interaction with complex polysial gangliosides - these are glycolipids consisting of more than one sialic acid (Halpern et al. (1995), Curr., Top Microbiol Immunol 195, 221-41, WO 2006/02707) Thus, the LCs bound to them only reach this cell type and become effective only in these cells BoNT / A and B bind only one molecule of ganglioside GTIb.
  • the protein receptors are synaptotagmin I and synaptotagmin II.
  • the protein receptors are the synaptic vesicles glycoproteins 2 (SV2), preferably SV2A, SV2B and SV2C.
  • TMD median transmembrane domain
  • the fusion of the synaptic vesicle with the plasma membrane is initiated, whereupon the intraluminal amino terminus of synaptotagmine is extracellularly presented and used as a receptor anchor for BoNT / B and G is available.
  • the fourth luminal domain of SV2 isoforms after exocytosis is available extracellularly for interaction with BoNT / A.
  • the Hc fragments of BoNT / B and BoNT / G were recombinantly expressed as wild type or with single amino acid substitutions (mutations / substitutions) in the postulated binding pocket in E. coli and isolated.
  • the respective GST-synaptotagmin fusion protein with different amounts of the respective Hc fragment of BoNT / B or BoNT / G incubated and carried out a phase separation.
  • BoNT / B wild type binds only in the presence of complex gangliosides and synaptotagmin I with transmembrane domain, while synaptotagmin II is bound both with or without transmembrane domain as well as in the presence or absence of complex gangliosides.
  • Targeted substitution of amino acids within the protein receptor binding site of BoNT / B significantly increased or decreased the interaction with both synaptotagmin molecules (Figure 1).
  • BoNT / G wild type both in the presence and in the absence of complex gangliosides binding to Synaptotagmin I and Synaptotagmin II takes place each with or without transmembrane domain.
  • BoNT / B homologous amino acids Within the protein receptor binding site of BoNT / G, the interaction with both synaptotagmin molecules could be significantly increased or attenuated (FIG. 2).
  • the potency of the full-length form of BoNT / A, B and G wild types was determined in the HDA by means of a dose-response curve (FIGS. 3 and 6). Subsequently, the potency of the various full-length forms of BoNT / A, B and G single mutants in the HDA was determined (FIG. 6) and related to the potency of the BoNT / B and G wild types by means of an applied power function (FIGS. 4 and 5). , By way of example, the replacement of the amino acids valine 1118 by aspartate or lysine 1192 by glutamate in BoNT / B leads to a drastic reduction of the potency to ⁇ 2%.
  • the transport protein has at least 15% higher affinity or at least 15% lower affinity than the native neurotoxin.
  • the transport protein has at least 50% higher or lower, more preferably at least 80% higher or lower, and especially at least 90% higher or lower affinity than the native neurotoxin.
  • the modification of the HC takes place in the region of the Hc fragment of the given neurotoxin. If the modification comprises a substitution, deletion, insertion or addition, this can be carried out for example by targeted mutagenesis, method These are known to the skilled person.
  • the amino acids present in the native neurotoxin are hereby altered either by naturally occurring or non-naturally occurring amino acids. Basically, amino acids are divided into different physicochemical groups.
  • the negatively charged amino acids include aspartate and glutamate.
  • the positively charged amino acids include histidine, arginine and lysine.
  • the polar amino acids include asparagine, glutamine, serine, threonine, cysteine and tyrosine.
  • the non-polar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine and tryptophan.
  • Aromatic side groups are found in the amino acids histidine, phenylalanine, tyrosine and tryptophan.
  • the transport protein is a botulinum neurotoxin serotype A to G.
  • amino acid sequences of the native neurotoxins are obtainable from publicly available databases as follows:
  • Table 1 Database numbers of the amino acid sequences and subdivision of the seven botulinum neurotoxins.
  • the amino acids in the amino acid positions from 867 to 1296 of C. botulinum neurotoxin serotype A, 866 to 1291 of C. botulinum neurotoxin serotype B, 864 to 1291 and 1280, respectively, are preferred for modification C. botulinum neurotoxin serotype Cl, 860 to 1276 or 1285 of C. botulinum neurotoxin serotype D, 843 to 1251 and 1252, respectively, of the C. botulinum and C. butyricum neurotoxin serotype E, respectively 861 to 1274, 862 to 1280 and 1278 and 854 to 1268 of the C. botulinum or
  • At least one amino acid in the aforementioned positions be post-translationally modified, and / or added, and / or deleted, and / or inserted, and / or substituted by an amino acid which is either naturally occurring or of non-natural origin.
  • the neurotoxin botulinum neurotoxin is serotype A.
  • phenylalanine 1255 asparagine 1256, isoleucine 1258 and / or lysine 1260 the botulinum neurotoxin serotype A, protein sequences post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid, either naturally occurring or not of natural origin.
  • Particularly preferred are the positions asparagine 1196, glutamine 1199, serine 1207, phenylalanine 1255, isoleucine 1258 and / or lysine 1260 of the botulinum neurotoxin serotype A protein sequences.
  • the positions serine 1207 substituted by arginine or tyrosine and lysine 1260 substituted for glutamate are preferred.
  • the neurotoxin is botulinum neurotoxin serotype B.
  • positions valine 1 1 18, tyrosine 1 183, glutamate 1 191, lysine 1 192, glutamate 1245 and tyrosine 1256 of the botulinum neurotoxin serotype B protein sequences are preferred.
  • positions tyrosine 1183 and glutamate 1 191, which are replaced by leucine are preferred.
  • the neurotoxin is botulinum neurotoxin serotype G.
  • positions methionine 1126, leucine 1191, threonine 1199, glutamine 1200, lysine 1250 and tyrosine 1262 of the botulinum neurotoxin serotype G protein sequences are particularly preferred.
  • the position tyrosine 1262, which is replaced by phenylalanine, is preferred.
  • the transport protein provided in the present invention has an increased or decreased specific affinity of its protein binding domain, in particular to molecules of the synaptotagmine or synaptic vesicle glycoproteins 2 family.
  • a further embodiment of the present invention relates to a composition which contains a transport protein according to the invention and at least one intervening molecule (X).
  • the intervening molecule may be a small organic molecule, a peptide or a protein; preferably covalently by a peptide bond, ester bond, ether bond, sulfide bond, Disulfide bond or carbon-carbon bond bound to the transport protein.
  • the intervening molecule additionally comprises all known therapeutically active substances. Preference is given here cytostatics, antibiotics, antivirals, but also immunoglobulins.
  • the protein is a protease which cleaves one or more proteins of the neurotransmitter release mechanism, the protease being selected from the group of neurotoxins selected from the LC of C. botulinum neurotoxins, in particular serotypes A, B, Cl, D, E, F and G or a proteolytically active fragment of the LC of a C. botulinum neurotoxin, in particular a neurotoxin of the serotype A, B, Cl, D, E, F and G, the fragment being at least 0, 01% of the proteolytic activity of the native protease, preferably at least 5%, more preferably at least 50%, especially at least 90%.
  • the protease being selected from the group of neurotoxins selected from the LC of C. botulinum neurotoxins, in particular serotypes A, B, Cl, D, E, F and G or a proteolytically active fragment of the LC of a C. botulinum neurotoxin, in particular a neurotoxin of the
  • the transport protein and the protease are derived from the same C. botulinum neurotoxin serotype, more preferably the H t M domain of the transport protein and the protease are derived from the C. botulinum neurotoxin serotype A.
  • the sequences of the proteases are generally accessible from databases and the database numbers are shown in Table 1. The proteolytic activity of the proteases is determined by means of a substrate cleavage kinetics (see Binz et al. (2002), Biochemistry 41 (6), 1717-23).
  • a process for producing the transport protein In a first step, a nucleic acid encoding the transport protein is provided here.
  • the coding nucleic acid may be RNA, DNA or mixtures thereof.
  • the nucleic acid may also be modified with regard to its nuclease resistance, such as, for example, B. by incorporation of phosphorothioate bonds.
  • the nucleic acid can be prepared from an initial nucleic acid be, wherein the starting nucleic acid z. B. is accessible by cloning from genomic or cDNA libraries.
  • the nucleic acid can be prepared directly by solid phase synthesis. Suitable methods are known to the person skilled in the art. If it is assumed that an initial nucleic acid, z.
  • the nucleic acid is then operably linked to a suitable promoter.
  • suitable promoters for expression in known expression systems are known to the person skilled in the art. The choice of the promoter depends on the expression system used for the expression. In general, constitutive promoters are preferred, but inducible promoters are also useful.
  • the construct thus produced comprises at least part of a vector, in particular regulatory elements, the vector being selected, for example, from ⁇ derivatives, adenoviruses, baculoviruses, vaccinia viruses, SV40 viruses and retroviruses.
  • the vector is preferably capable of expressing the nucleic acid in a given host cell.
  • the invention provides host cells that contain the vector and that are suitable for expression of the vector.
  • Numerous prokaryotic and eukaryotic expression systems are known in the prior art, the host cells being selected, for example, from prokaryotic cells such as E. coli or B. subtilis, from eukaryotic cells such as S. cerevisiae and P. pastoris.
  • prokaryotic cells such as E. coli or B. subtilis
  • eukaryotic cells such as S. cerevisiae and P. pastoris.
  • higher eukaryotic cells can be used, such as insect cells or mammalian cells, host cells are preferred which, like C. botulinum, have no glycosylation apparatus.
  • the nucleic acid encodes the Hc fragment of C. botulinum neurotoxin.
  • This nucleic acid contains endonuclease cleavage sites flanking the Hc fragment-encoding nucleic acid, which endonuclease sites are compatible with those of other Hc fragments of C. botulinum neurotoxins to facilitate their easy modular exchange in the permitting the gene encoding the transport protein while retaining the similarity of the amino acid sequence.
  • composition according to the invention which contains, in addition to the transport protein, at least one intervening molecule, and this intervening molecule is functionalized with either a carboxy-terminal cysteine or a mercapto group, then it can be carried out in an analogous manner as before described the peptide or the protein are produced recombinantly, for example using binary vectors or by different host cells. If the same host cell is used for the expression of both the transport protein and the peptide or protein, preferably an intermolecular disulfide bond is formed in situ. For more efficient production in the same host cell, the nucleic acid encoding the peptide or protein can also be translated with that of the transport protein in the same reading frame to produce a single-chain polypeptide.
  • an intramolecular disulfide bond then preferably forms in situ.
  • an amino acid sequence which is either recognized and cleaved specifically by the protease thrombin or a specific endoprotease of the host cell, is inserted at the amino terminus of the transport protein.
  • the insert sequence CXXXZKTKSLVPRGSKBXXC (SEQ ID NO: 1), wherein X is any amino acid and Z and B are independently selected from alanine, valine, serine, threonine and glycine, from an endogenous protease of a bacterial host, preferably E. coli is efficiently cleaved in vivo.
  • the insertion of the insert sequence between the amino acid sequence of the transport protein and a further peptide or protein therefore has the advantage that subsequent post-processing, such as thrombin, for example, is not required.
  • Particularly preferred is the E. co / ⁇ strain E. coli Kl 2.
  • the insert sequence is preferably part of a loop containing 18-20, preferably, amino acids.
  • a corresponding intermolecular disulfide bond can subsequently be brought about by oxidation processes known to the person skilled in the art.
  • the peptide or protein can also be obtained directly by synthesis or fragment condensation. Corresponding methods are known to the person skilled in the art.
  • the transport protein and the peptide or protein are subsequently purified.
  • the skilled worker known methods are used, such. As chromatography method or electrophoresis.
  • Another embodiment of the present invention relates to the pharmaceutical composition containing the transport protein or a composition and optionally a pharmaceutically acceptable carrier, diluent and / or additive.
  • the pharmaceutical composition is suitable for oral, intravenous, subcutaneous, intramuscular and topical administration. Intramuscular administration is preferred.
  • a dosage unit of the pharmaceutical composition contains about 0.1 pg to 1 mg of transport protein and / or the composition according to the invention.
  • the pharmaceutical composition is useful for the treatment of disorders of neurotransmitter release and diseases such as, e.g. As hemifacial spasm, spasmodic torticollis, blepharospasm, spasticity, dystonia, migraine, pain, diseases, the cervical and lumbar spine, strabismus, hyper-salivation, wound healing, snoring and depression suitable.
  • Another embodiment of the present invention includes a cosmetic composition containing a transport protein and a cosmetically acceptable carrier, diluent and / or additive.
  • the cosmetic composition is suitable for the treatment of hyperhidrosis and facial wrinkles.
  • FIG. 1 Investigation of the in vitro binding of the wild-type and mutated BoNT / B Hc fragments on truncated GST-Syt I and GST-Syt II fusion proteins in the presence or absence of complex gangliosides by means of GST pull-down assay.
  • FIG. 2 Investigation of the in vitro binding of the wild-type and mutated BoNT / G Hc fragments on truncated GST-Syt I and GST-Syt II fusion proteins in the presence or absence of complex gangliosides by means of GST pull-down assay.
  • FIG. 3 Dose-response curve of the BoNT / B and G wild types in the HDA.
  • the applied power functions allow a relative comparison of the paralysis times of the single mutants with those of the associated wild types.
  • FIG. 4 Decrease and increase of the neurotoxicity of the BoNT / B single mutants in FIG.
  • FIG. 5 Decrease and increase of the neurotoxicity of the BoNT / G single mutants in FIG.
  • FIG. 6 Dose-response curves of the BoNT / A wild type and the BoNT / A single mutants in the HDA.
  • the present invention involves a transport protein (Trapo) which results from modifying the HC of the C. botulinum-produced neurotoxin, preferentially binds specifically to neurons, and is preferentially acquired intracellularly by receptor-mediated endocytosis and from the acidic endosomal compartment into the cytosol of Neurons is translocated.
  • This protein is used as a transporter to infect cell-bound proteases and other substances that can not physiologically penetrate the plasma membrane and enter the cytosol of nerve cells.
  • the substrates of the proteases are intracellularly localized proteins and peptides involved in transmitter release. After cleavage of the substrates, the specific functions of the neurons are blocked, whereby the cells themselves are not damaged. One of these functions is exocytosis, which effects neurotransmitter release. If the release of transmitters is inhibited, the transmission of signals from cell to cell is blocked. For example, striped muscles are paralyzed when the release of acetylcholine is inhibited at the neuromuscular junction. This effect can be used therapeutically when the transport protein is applied to nerve endings of spastic or dystonic muscles. Other active substances include agents with antiviral activity. Conjugated with the transport protein, they are useful for the treatment of viral infections of the nervous system. The present invention also relates to the use of a transport protein to inhibit the release of neurotransmitters.
  • Lower affinity transport proteins bind to, but are not taken up by the nerve cells. These transport proteins are therefore suitable as specific transporters to the nerve cell surface.
  • the mode of application and dosage of the neurotoxin according to the invention set forth herein may be selected based on criteria such as the solubility of the selected neurotoxin or the intensity of the pain to be treated.
  • the treatment interval for C. botulinum native progenitor toxins A and B averages three to four months. Prolonging this interval would reduce the risk of antibody formation and allow longer duration of treatment with BoNT.
  • the increase in LC in the cytosol would extend their degradation time and thus extend the duration of action.
  • the transport protein described here has a higher affinity and uptake rate than the native HC.
  • Plasmids for the E. coli expression of recombinant Hc fragments of BoNT / B and BoNT / G and the full-length form of BoNT / A, B and G with carboxyl-terminal StrepTag for affinity purification were analyzed by PCR Method with suitable primers, BoNT / A (AAA23262) BoNT / B (AAA23211) and BoNT / G (CAA52275) encoding chromosomal DNA and the expression vector pQe3 (Qiagen AG) generated as the starting vector.
  • Truncated variants of rat synaptotagmin I (syt I) (amino acids 1-53, amino acids 1-82) and rat synaptotagmin II (syt II) (amino acids 1-61, amino acids 1-90) were transfected into the GST-encoding vector pGEX- 2T (Amersham Biosciences AB). The nucleic acid sequences of all plasmids were confirmed by DNA sequencing. The recombinant Hc fragments and the VoIl-length form of BoNT were prepared in E. coli strain Ml 5 [pRep4] (Qiagen) during a 10-hour induction at room temperature and on a StrepTactin matrix (IBA GmbH) according to cleaned according to the manufacturer's recommendations.
  • the GST fusion proteins obtained from E. coli BL21 were isolated using glutathione immobilized on sepharose beads. Fractions containing the desired proteins were pooled and dialysed against Tris-NaCl-Triton buffer (20 mM Tris-HCl, 150 mM NaCl, 0.5% Triton X-100, pH 7.2).
  • GST fusion proteins (0.12 nmol each) immobilized on 10 ⁇ l GT-Sepharose beads were incubated with Hc fragments (0.1 nmol) in the absence or presence of a bovine brain ganglioside mixture (18% GM1, 55% GDIa, 10% GTIb, 2% other ganglooside, Calbiochem, 20 ⁇ g each) in a total volume of 180 ⁇ l Tris-NaCl-Triton buffer for 2 h at 4 ° C. The beads were collected by centrifugation, the supernatant removed and the separated beads each washed three times with 400 ⁇ l of the same buffer. The washed pellet fractions were boiled in SDS sample buffer and assayed along with the supernatant fractions by SDS-PAGE and Coomassie blue staining.
  • BoNT / B wild type only binds in the presence of complex gangliosides and synaptotagmin I with transmembrane domain, whereas synaptotagmin II binds to the transmembrane domain. probably bound with or without transmembrane domain as well as in the presence or absence of complex gangliosides.
  • BoNT / G wildtype For the BoNT / G wildtype it has been shown that both in the presence and in the absence of complex gangliosides binding to synaptotagmin I and synaptotagmin II takes place respectively with or without transmembrane domain.
  • BoNT / B homologous amino acids within the protein receptor binding site of BoNT / G interaction with both synaptotagmin molecules could be significantly enhanced (YI 262F) and attenuated (Q 1200E), respectively (Figure 2).
  • the neurotoxicity of the BoNT / A, B and G muteins was determined as described by Habermann et al., Naunyn Schmiedeberg's Arch. Pharmacol. 311 (1980), 33-40.
  • the potency of the full-length form of BoNT / A, B and G wild types was determined in the HDA by means of a dose-response curve (FIGS. 3 and 6).
  • the potency of the various full-length forms of BoNT / A, B and G single mutants in the HDA was determined (FIG. 6) and related to the potency of the BoNT / B and G wild types by means of an applied power function (FIGS. 4 and 5).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pain & Pain Management (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Psychiatry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a transport protein which can be obtained by modifying the heavy chain of the neurotoxin formed by Clostridium botulinum wherein (i) the protein binds specifically to nerve cells with a higher or lower affinity as the native neurotoxin; (ii) the protein has an increased or reduced neurotoxicity compared to the native neurotoxin, the neurotoxicity being preferably determined in the hemidiaphragma assay; and/or (iii) the protein comprises a lower affinity against neutralizing antibodies compared to the native neurotoxin. The invention also relates to methods for producing the same and the use thereof in cosmetic and pharmaceutical compositions.

Description

Carrier zum Targeting von Nervenzellen Carrier for targeting nerve cells
Die vorliegende Erfindung bezieht sich auf ein Transportprotein, das an Neurone mit höherer oder niedriger Affinität bindet als das von Clostridium botulinum gebildete Neurotoxin. Das Transportprotein wird vorzugsweise durch rezeptorvermittelte Endozytose aufgenommen. Dieses Protein findet Verwendung als Transporter, der andere chemische Substanzen (z.B. Proteasen) aus dem sauren, endo- somalen Kompartiment in das Zytosol von Neuronen transloziert, die physiolo- gisch nicht durch die Plasmamembran in das Zytosol von Nervenzellen eindringen können. Die vorliegende Erfindung bezieht sich insbesondere auf die Verwendung eines Transportproteins zur Einschleusung von Inhibitoren der Neurotransmitte- rausschüttung.The present invention relates to a transport protein that binds to higher or lower affinity neurons than the neurotoxin produced by Clostridium botulinum. The transport protein is preferably taken up by receptor-mediated endocytosis. This protein finds utility as a transporter that translocates other chemical substances (e.g., proteases) from the acidic endosomal compartment into the cytosol of neurons that can not penetrate physiologically through the plasma membrane into the cytosol of nerve cells. In particular, the present invention relates to the use of a transport protein for the introduction of inhibitors of neurotransmitter secretion.
Nervenzellen setzen Transmitterstoffe durch Exozytose frei. Als Exozytose wird die Verschmelzung der Membranen intrazellulärer Vesikel mit der Plasmamembran bezeichnet. Bei diesem Vorgang wird gleichzeitig der vesikuläre Inhalt in den synaptischen Spalt ausgeschüttet. Die Fusion der beiden Membranen wird durch Calcium reguliert, welches mit dem Protein Synaptotagmin reagiert. Zu- sammen mit anderen Kofaktoren kontrolliert Synaptotagmin den Status von drei sogenannten Fusionsproteinen, dem SNAP-25, Synaptobrevin 2 und Syntaxin IA. Während Syntaxin IA und Synaptobrevin 2 in die Plasma- bzw. Vesikelmembran integriert sind, ist SNAP -25 nur schwach an die Plasmamembran gebunden. Bei einem Anstieg der intrazellulären Calcium-Konzentration binden die drei Proteine aneinander, wobei sich beide Membranen annähern und anschließend miteinander verschmelzen. Bei cholinergen Neuronen wird Acetylcholin freigesetzt, welches Muskelkontraktionen, Schweißabsonderung und andere cholinerg vermittelte Reaktionen verursacht. • . Die oben genannten Fusionsproteine sind die Zielmoleküle (Substrate) der leichten Kette (LC) der clostridiellen Neurotoxine, die von den Bakterien C. botulinum, C. butyricum, C. baratii und C. tetani gebildet werden.Nerve cells release transmitter substances through exocytosis. Exocytosis refers to the fusion of the membranes of intracellular vesicles with the plasma membrane. In this process, the vesicular content is simultaneously released into the synaptic cleft. The fusion of the two membranes is regulated by calcium, which reacts with the protein synaptotagmin. Together with other cofactors, synaptotagmin controls the status of three so-called fusion proteins, SNAP-25, synaptobrevin 2 and syntaxin IA. While syntaxin IA and synaptobrevin 2 are integrated into the plasma and vesicle membranes, SNAP-25 is only weakly bound to the plasma membrane. As the intracellular calcium concentration increases, the three proteins bind to each other, with both membranes approaching and then fusing together. Cholinergic neurons release acetylcholine, which causes muscle contractions, sweating, and other cholinergic-mediated reactions. •. The above-mentioned fusion proteins are the target molecules (substrates) of the light chain (LC) of the clostridial neurotoxins formed by the bacteria C. botulinum, C. butyricum, C. baratii and C. tetani.
Das anaerobe, gram-positive Bakterium C. botulinum produziert sieben verschiedene Serotypen der clostridiellen Neurotoxine. Diese werden als die Botulinus Neurotoxine (BoNT/A bis BoNT/G) bezeichnet. Hiervon verursachen insbesondere BoNT/A und BoNT/B bei Mensch und Tier eine neuroparalytische Erkrankung, die als Botulismus bezeichnet wird. Die Sporen von C. botulinum finden sich im Erdreich, können sich jedoch in unsachgemäß sterilisierten und verschlossenen Nahrungsmittelkonserven aus häuslicher Herstellung entwickeln, auf die viele der Botulismusfälle zurückgeführt werden.The anaerobic, gram-positive bacterium C. botulinum produces seven different serotypes of clostridial neurotoxins. These are referred to as the botulinum neurotoxins (BoNT / A to BoNT / G). Of these, BoNT / A and BoNT / B in particular cause a neuroparalytic disorder in humans and animals called botulism. The spores of C. botulinum are found in the soil, but may develop into improperly sterilized and sealed home-grown canned foods, which are responsible for many of the botulism cases.
BoNT/A ist die aktivste aller bekannten biologischen Substanzen. Nur etwa 5- 6 pg gereinigtes BoNT/ A repräsentieren eine MLD (Median letale Dosis). Eine Einheit (engl.: Unit, U) von BoNT/A wird als die MLD definiert, die nach intraperitonealer Injektion die Hälfte an weiblichen Swiss Webster-Mäusen im Gewicht von jeweils 18-20 g tötet. Sieben immunologisch unterschiedliche BoNT wurden charakterisiert. Sie tragen die Bezeichnungen BoNT/A, B, Cl, D, E, F und G und können durch Neutralisation mit Serotyp spezifischen Antikörpern unterschieden werden. Die verschiedenen Serotypen von BoNT unterscheiden sich bei betroffenen Tierarten hinsichtlich der Schwere und Dauer der verursachten Lähmung. So ist z. B. bei der Ratte im Hinblick auf die Lähmung BoNT/A 500mal stärker wirksam als BoNT/B. Hinzu kommt, dass BoNT/B sich bei Primaten in einer Dosie- rung von 480 U/kg Körpergewicht als untoxisch erwiesen hat. Dieselbe Menge BoNT/A entspricht der 12fachen letalen Dosis dieses Stoffes bei Primaten. Zum anderen ist bei Mäusen die Lähmungsdauer nach Injektion von BoNT/A lOfach länger als nach Injektion von BoNT/E.BoNT / A is the most active of all known biological substances. Only about 5-6 pg of purified BoNT / A represents an MLD (median lethal dose). A Unit (U) of BoNT / A is defined as the MLD, which after intraperitoneal injection kills half of female Swiss Webster mice weighing 18-20 g each. Seven immunologically different BoNTs were characterized. They bear the names BoNT / A, B, Cl, D, E, F and G and can be distinguished by neutralization with serotype-specific antibodies. The different serotypes of BoNT differ in affected species with regard to the severity and duration of the caused paralysis. So z. B. in the rat with regard to the paralysis BoNT / A 500 times more effective than BoNT / B. In addition, BoNT / B has been found to be non-toxic in primates at a dose of 480 U / kg body weight. The same amount of BoNT / A is equivalent to 12 times the lethal dose of this substance in primates. On the other hand, in mice the paralysis time after injection of BoNT / A is 10 times longer than after injection of BoNT / E.
Die BoNT werden zur Behandlung neuromuskulärer Störungen eingesetzt, die durch Hyperaktivität in Skelettmuskeln, verursacht durch pathologisch überaktive periphere Nerven, charakterisiert sind. BoNT/A ist von der U.S. Food and Drug Administration zur Behandlung von Blepharospasmus, Strabismus, Hyperhydro- se, Falten und Hemifacialspasmen zugelassen. Verglichen mit BoNT/A besitzen die übrigen BoNT Serotypen offensichtlich eine geringere Wirksamkeit und kür- 5 zere Wirkdauer. Klinische Effekte des peripher intramuskulär verabreichten BoNT/A stellen sich für gewöhnlich innerhalb einer Woche ein. Die Dauer der Symptomuntefdrückung durch eine einzige intramuskuläre Injektion von BoNT/A beläuft sich im Regelfall auf etwa drei bis sechs Monate.The BoNTs are used to treat neuromuscular disorders caused by hyperactivity in skeletal muscle caused by pathologically overactive peripheral nerves are characterized. BoNT / A is approved by the US Food and Drug Administration for the treatment of blepharospasm, strabismus, hyperhidrosis, wrinkles and hemifacial spasm. Compared with BoNT / A, the remaining BoNT serotypes apparently have a lower potency and shorter duration of action. Clinical effects of peripheral intramuscularly administered BoNT / A usually occur within one week. The duration of symptom suppression by a single intramuscular injection of BoNT / A is usually about three to six months.
10 Die clostridiellen Neurotoxine hydrolysieren spezifisch verschiedene Proteine des Fusionsapparates. BoNT/A, Cl und E spalten SNAP-25, während BoNT/B, D, F, G sowie Tetanus Neurotoxin (TeNT) das vesikel-assoziierte Membranprotein (VAMP) 2 - auch Synaptobrevin 2 genannt - angreifen. BoNT/Cl spaltet außerdem Syntaxin IA.10 The clostridial neurotoxins specifically hydrolyse different proteins of the fusion apparatus. BoNT / A, Cl and E cleave SNAP-25, while BoNT / B, D, F, G and tetanus neurotoxin (TeNT) attack the vesicle-associated membrane protein (VAMP) 2 - also called synaptobrevin 2. BoNT / Cl also splits syntaxin IA.
!5! 5
Die Clostridien Bakterien setzen die Neurotoxine als einkettige Polypeptide mit jeweils 1251 bis 1315 Aminosäuren frei. Nachfolgend spalten endogene Proteasen jedes dieser Proteine an einer bestimmten Stelle in jeweils 2 Ketten (,nicking'), wobei die beiden Ketten jedoch durch eine Disulfid-Brücke miteinander verbun- 0 den bleiben. Diese zweikettigen Proteine werden als Holotoxine bezeichnet (siehe Shone et al. (1985), Eur. J. Biochem. 151, 75-82). Die beiden Ketten haben verschiedene Funktionen. Während das kleinere Teilstück, die leichte Kette (light chain = LC), eine Zn2+-abhängige Endoprotease darstellt, ist die größere Einheit (heavy chain = HC) der Transporter der leichten Kette. Durch Behandlung der HC 5 mit Endopeptidasen ergaben sich zwei 50 kDa Fragmente (siehe Gimenez et al. (1993), J. Protein Chem. 12, 351-363). Die amino-terminale Hälfte (HN-Fragment) integriert sich bei niedrigem pH-Wert in Membranen und translo- ziert die LC in das Zytosol der Nervenzelle. Die carboxyl-terminale Hälfte (Hc-Fragment) bindet an komplexe Polysialoganglioside, die nur in Nervenzell- 0 membranen vorkommen, .und an bislang nur teilweise identifizierte Proteinrezeptoren (Halpern et al. (1993), Curr Top Microbiol Immunol 195, 221-241). Dies erklärt die hohe Neuroselektivität der clostridiellen Neurotoxine. Kristallstrukturen bestätigen, dass BoNT/A über drei Domänen verfugt, die mit den drei Schritten des Wirkmechanismus in Einklang gebracht werden können (siehe Lacy et al. (1998), Nat. Struct. Biol. 5, 898-902). Desweiteren lassen diese Daten darauf schließen, dass innerhalb des Hc-Fragments zwei autonome Untereinheiten (Sub- domänen) von jeweils 25 kDa existieren. Der erste Beweis für die Existenz der beiden funktionellen Subdomänen wurde mit der amino-terminalen (HCN) und der carboxyl-terminalen Hälfte (Hcc) des Hc-Fragments des TeNT erbracht, die re- kombinant exprimiert wurden und erkennen ließen, dass zwar die Hcc-, nicht aber die HcN-Domäne an Neurone bindet (siehe Herreros et al. (2000), Biochem. J. 347, 199-204). Zu einem späteren Zeitpunkt wurde eine einzige Gangliosid- Bindungsstelle innerhalb der Hcc-Domänen von BoNT/A und B lokalisiert und charakterisiert (siehe Rummel et al. (2004), Mol. Microbiol. 51, 631-643). Der Ort für die Bindung des als Proteinrezeptor für BoNT/B und G identifizierten Sy- naptotagmins I und II konnte gleichfalls auf den Bereich der Hcc-Domänen von BoNT/B und G beschränkt werden (siehe Rummel et al. (2004), J. Biol. Chem. 279, 30865-70). Das Dokument offenbart jedoch nicht die für die Bindungstasche von BoNT/B und G relevanten Aminosäuren.The Clostridia bacteria release the neurotoxins as single-chain polypeptides, each with 1251 to 1315 amino acids. Subsequently, endogenous proteases of each of these proteins cleave at a given site in two chains ('nicking'), but the two chains remain connected by a disulfide bridge. These two-chain proteins are referred to as holotoxins (see Shone et al., (1985) Eur. J. Biochem., 151, 75-82). The two chains have different functions. While the smaller segment, the light chain (LC), represents a Zn 2+ -dependent endoprotease, the heavy chain (HC) is the light chain transporter. Treatment of the HC 5 with endopeptidases gave rise to two 50 kDa fragments (see Gimenez et al., 1993, J. Protein Chem. 12, 351-363). The amino-terminal half (H N fragment) integrates into membranes at low pH and translocates the LC into the cytosol of the nerve cell. The carboxyl-terminal half (Hc fragment) binds to complex polysialogangliosides which occur only in nerve cell membranes, and to protein receptors which have hitherto been only partially identified (Halpern et al., 1993, Curr Top Microbiol Immunol 195, 221-241 ). This explains the high neuroselectivity of clostridial neurotoxins. Crystal structures confirm that BoNT / A has three domains that can be reconciled with the three steps of the mechanism of action (see Lacy et al., 1998, Nat. Struct. Biol. 5: 898-902). Furthermore, these data suggest that within the Hc fragment there are two autonomous subunits (subdomains) of 25 kDa each. The first evidence for the existence of the two functional subdomains was provided by the amino-terminal (H CN ) and carboxyl-terminal half (Hcc) of the TeNT Hc fragment, which were expressed in a recombinant fashion and revealed that, although the Hcc but not the Hc N domain binds to neurons (see Herreros et al (2000), Biochem J. 347, 199-204). At a later date, a single ganglioside binding site was located and characterized within the Hcc domains of BoNT / A and B (see Rummel et al., (2004), Mol. Microbiol. 51, 631-643). The site for the binding of the synaptotagmines I and II identified as protein receptor for BoNT / B and G could also be limited to the range of the Hcc domains of BoNT / B and G (see Rummel et al., 2004, J. Biol. Chem. 279, 30865-70). However, the document does not disclose the amino acids relevant to the binding pocket of BoNT / B and G.
Unter physiologischen Bedingungen bindet die HC mit dem Hc-Fragment an neuronale Ganglioside, wird durch rezeptorvermittelte Endozytose ins Zellinnere aufgenommen und erreicht über das endosomale Kompartiment den natürlichen Ve- sikelkreislauf. Im sauren Milieu der frühen Endosomen dringt das HN-Fragment in die Vesikelmembran ein und bildet eine Pore. Jede Substanz (X), die mit der HC über eine Disulfϊd-Brücke verbunden ist, wird durch intrazelluläre Redoxsysteme, die Zugang zur Disulfϊd-Brücke bekommen und sie reduzieren, von der HC getrennt werden. Letztendlich wird X im Zytosol erscheinen.Under physiological conditions, the HC binds with the Hc fragment to neuronal gangliosides, is taken up by the receptor-mediated endocytosis into the cell interior and reaches the natural vesicle circulation via the endosomal compartment. In the acidic environment of the early endosomes, the H N fragment invades the vesicle membrane and forms a pore. Any substance (X) that is linked to the HC through a disulfide bridge will be separated from the HC by intracellular redox systems that gain access to and reduce the disulfide bond. Ultimately, X will appear in the cytosol.
Im Falle der clostridiellen Neurotoxine ist die HC der Träger einer LC, die im finalen Schritt ihr spezifisches Substrat im Zytosol spaltet. Der Zyklus der Komplexbildung und -dissoziation der Fusionsproteine wird unterbrochen und somit die Ausschüttung von Acetylcholin gehemmt. Als Folge hiervon werden gestreifte Muskeln gelähmt, und Schweißdrüsen stellen ihre Sekretion ein. Die Wirkdauer der einzelnen BoNT Serotypen ist verschieden und hängt von der Präsenz intakter LC im Zytosol ab. Da alle Neurone Rezeptoren für clostridielle Neurotoxine be- sitzen, ist es nicht nur die Ausschüttung von Acetylcholin, die betroffen sein kann, sondern potentiell auch die Ausschüttung der Substanz P, von Noradrenalin, GABA, Glycin, Endorphin und anderer Transmitter und Hormone.In the case of clostridial neurotoxins, the HC is the carrier of an LC, which in the final step cleaves its specific substrate in the cytosol. The cycle of complex formation and dissociation of the fusion proteins is interrupted and thus inhibited the release of acetylcholine. As a result, striped muscles are paralyzed, and sweat glands cease their secretion. The duration of action of the individual BoNT serotypes varies and depends on the presence of intact LC in the cytosol. Since all neurons have receptors for clostridial neurotoxins, it is not only the release of acetylcholine that may be affected but also potentially the release of substance P, norepinephrine, GABA, glycine, endorphin, and other transmitters and hormones.
Dass bevorzugt die cholinerge Transmission blockiert wird, kann damit erklärt werden, dass die HC in der Peripherie in das Neuron eindringt. Zentrale Synapsen werden durch die Blut-Hirn-Schranke geschützt, die von Proteinen nicht überwunden werden kann.The preferential blocking of cholinergic transmission can be explained by the HC entering the neuron at the periphery. Central synapses are protected by the blood-brain barrier, which proteins can not overcome.
In einer Ligand-Rezeptor-Studie wurden bestimmte Aminosäurereste innerhalb der Hcc-Domäne von BoNT/B und G ausgetauscht, um die Bindungstasche des Proteinrezeptors zu identifizieren und zu charakterisieren, um so die Affinität an den Proteinrezeptor zu verändern. Die Affinität der mutierten Hc-Fragmente von BoNT/B und G wurde in Gluthathion-S-Transferase-(GST)-Pulldown Experimenten mit Synaptotagmin bestimmt. Sodann wurde die HC mit denselben Mutatio- nen an LC-B bzw. LC-G gekoppelt. Die Wirkstärke dieser Konstrukte wurde mit Hilfe des isolierten Nerv-Muskel-Präparats der Maus (Hemi-Diaphragma-Assay = HDA) analysiert. In diesem Präparat befindet sich der Nervus phrenicus, welcher aus cholinergen Motoneuronen besteht und das wichtigste physiologische Ziel der clostridiellen Neurotoxine darstellt. Anschließend wurden in der Hcc-Domäne von BoNT/A in einer Vertiefung, die sich an analoger Stelle zu den Proteinrezep- torbindungstaschen in BoNT/B und G befindet, einzelne Aminosäuren ausgetauscht. Die Voll-Längen-BoNT/A Einzelmutanten wurden anschließend ebenfalls im HDA auf veränderte Potenz analysiert, welches Hinweise auf veränderte Ligand-Proteinrezeptor- Interaktionen gibt. Der BoNT/A-Komplex, auch Progenitortoxin A genannt, wurde in der jüngeren Vergangenheit zur Behandlung motorischer Dystönien eingesetzt, sowie zur Dämpfung exzessiver sympathischer Aktivität (siehe Benecke et al. (1995), Akt. Neurol. 22, 209ff) und zur Linderung von Schmerz und Migräne (siehe Sycha et al. (2004), J. Neurol. 251 , 19-30). Dieser Komplex besteht aus dem Neurotoxin, verschiedenen Hämagglutininen und einem nicht toxischen, nicht hämagglutinie- renden Protein. Unter physiologischem pH dissoziiert der Komplex in wenigen Minuten. Das hieraus hervorgehende Neurotoxin ist der einzige Bestandteil des Komplexes, der therapeutisch relevant ist und eine Linderung der Symptome ver- ursacht. Da die zugrunde liegende neurologische Erkrankung nicht geheilt wird, muss der Komplex in Intervallen von drei bis vier Monaten erneut injiziert werden. In Abhängigkeit von der Menge des injizierten Fremdproteins bilden einige Patienten spezifische BoNT/A-Antikörper. Diese Patienten werden gegen das Neurotoxin resistent. Wenn erst einmal antigensensitive Zellen das Neurotoxin erkannt haben und Antikörper gebildet wurden, werden die diesbezüglichen Gedächtniszellen über Jahre erhalten bleiben. Darum kommt es darauf an, die Patienten mit Präparaten höchster Aktivität in möglichst geringer Dosierung zu behandeln. Die Präparate sollten ferner keine weiteren Proteine bakterieller Herkunft enthalten, da diese als Immunadjuvantien wirken können. Solche Stoffe locken Makrophagen an, die sowohl die Immunadjuvantien als auch die Neurotoxine erkennen und den Lymphozyten präsentieren, welche daraufhin mit der Bildung von Immunglobulinen antworten. Folglich sollten nur Produkte von höchster Reinheit, die keine Fremdproteine enthalten, für die Therapie Verwendung finden. Die Resistenz der Patienten gegenüber dem Neurotoxin beruht auf molekularer Ebene gesehen vorwiegend auf der Anwesenheit neutralisierender Antikörper.In a ligand-receptor study, certain amino acid residues within the Hcc domain of BoNT / B and G were exchanged to identify and characterize the binding pocket of the protein receptor so as to alter the affinity to the protein receptor. The affinity of the mutated Hc fragments of BoNT / B and G was determined in glutathione S-transferase (GST) pulldown experiments with synaptotagmin. Then the HC was coupled with the same mutations to LC-B and LC-G, respectively. The potency of these constructs was analyzed with the aid of the mouse isolated nerve-muscle preparation (HDI). This preparation contains the phrenic nerve, which consists of cholinergic motor neurons and is the most important physiological target of clostridial neurotoxins. Subsequently, single amino acids were exchanged in the Hcc domain of BoNT / A in a well located analogously to the protein receptor binding pockets in BoNT / B and G. The full-length BoNT / A single mutants were then also analyzed for altered potency in HDA, indicating evidence for altered ligand-protein receptor interactions. The BoNT / A complex, also called progenitor toxin A, has been used in the recent past to treat motor dystonia, as well as to attenuate excessive sympathetic activity (see Benecke et al., 1995, Act Neurol., 22, 209ff) and for alleviation pain and migraine (see Sycha et al., 2004, J. Neurol., 251, 19-30). This complex consists of the neurotoxin, various hemagglutinins, and a non-toxic, non-hemagglutinating protein. Under physiological pH, the complex dissociates in a few minutes. The resulting neurotoxin is the only component of the complex that is therapeutically relevant and causes symptom relief. Since the underlying neurological disease is not cured, the complex must be re-injected at intervals of three to four months. Depending on the amount of injected foreign protein, some patients will form specific BoNT / A antibodies. These patients become resistant to the neurotoxin. Once antigen-sensitive cells have recognized the neurotoxin and antibodies have been generated, the memory cells in question will remain for years. Therefore, it is important to treat the patients with drugs of highest activity in the lowest possible dosage. The preparations should also contain no further proteins of bacterial origin, since they can act as immune adjuvants. Such substances attract macrophages that recognize both the immune adjuvants and the neurotoxins and present to the lymphocytes, which then respond to the formation of immunoglobulins. Consequently, only products of the highest purity, which do not contain foreign proteins, should be used for therapy. The resistance of the patients to the neurotoxin is based, on a molecular level, predominantly on the presence of neutralizing antibodies.
Mit der vorliegenden Erfindung wird nun ein Transportprotein (Trapo) vorgestellt, das die oben geschilderten Probleme der bisher bekannten Methoden überwinden kann. Diese Aufgabe wurde mit einem neuen Transportprotein gelöst, erhältlich durch Modifizierung der schweren Kette des von Clostridium botulinum gebildeten Neurotoxins, wobeiWith the present invention, a transport protein (Trapo) is now presented, which can overcome the above-described problems of the previously known methods. This object has been achieved with a novel transport protein obtainable by modifying the heavy chain of the neurotoxin produced by Clostridium botulinum, wherein
(i) das Protein an Nervenzellen mit höherer oder niedrigerer Affinität bindet als das native Neurotoxin;(i) the protein binds to higher or lower affinity nerve cells than the native neurotoxin;
(ii) das Protein im Vergleich zu dem nativen Neurotoxin eine erhöhte o- der verringerte Neurotoxizität aufweist; vorzugsweise wird die Neuroto- xizität im Hemidiaphragma-Assay bestimmt; und/oder(ii) the protein has increased or decreased neurotoxicity compared to the native neurotoxin; preferably, the neurotoxicity is determined in the hemidiaphragm assay; and or
(iii) das Protein im Vergleich zu dem nativen Neurotoxin eine geringere Affinität gegenüber neutralisierenden Antikörpern aufweist.(iii) the protein has a lower affinity for neutralizing antibodies compared to the native neurotoxin.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird ein Transportprotein bereitgestellt, das mit höherer oder niedrigerer Affinität an Nervenzellen bindet als das von C. botulinum gebildete native Neurotoxin.According to a preferred embodiment of the present invention, there is provided a transport protein which binds to nerve cells with higher or lower affinity than the native neurotoxin produced by C. botulinum.
Gemäß einem weiteren bevorzugten Ausführungsform der vorliegenden Erfin- düng wird ein Transportprotein bereitgestellt, welches durch Modifizierung der HC des von C. botulinum gebildeten Neurotoxins erhalten wird, wobei das Protein mit höherer oder niedrigerer Affinität als das native Neurotoxin spezifisch an Nervenzellen bindet. Vorzugsweise wird das Transportprotein von diesen Zellen durch Endozytose aufgenommen.According to another preferred embodiment of the present invention, there is provided a transport protein obtained by modifying the HC of the neurotoxin produced by C. botulinum, wherein the protein having higher or lower affinity than the native neurotoxin binds specifically to nerve cells. Preferably, the transport protein from these cells is taken up by endocytosis.
Gemäß einer weiteren bevorzugten Ausführungsform wird auch ein Transportprotein bereitgestellt, welches durch Modifizierung der HC des von C. botulinum gebildeten Neurotoxins erhalten wird, wobei das Protein durch Austausche oberflächenexponierter Aminosäuren insbesondere an den Gangliosid- und Proteinre- zeptorbindungstaschen der, Bindung neutralisierender Antikörper nicht mehr zugänglich ist. Nachfolgend werden Begriffe definiert, wie sie in Zusammenhang mit der vorliegenden Anmeldung zu verstehen sind.According to a further preferred embodiment, a transport protein is also obtained which is obtained by modifying the HC of the neurotoxin formed by C. botulinum, the protein no longer being accessible by exchanging surface-exposed amino acids, in particular at the ganglioside and protein receptor binding pockets of the binding neutralizing antibodies is. Hereinafter, terms are defined as they are to be understood in the context of the present application.
„Bindung an Nervenzellen mit höherer oder niedrigerer Affinität als natives Neu- rotoxin". Das native Neurotoxin ist hierbei das native Neurotoxin von C. botulinum. Vorzugsweise ist das native Neurotoxin hierbei das Botulinus Neurotoxin A und/oder Botulinus Neurotoxin B und/oder Botulinus Neurotoxin G aus C. botulinum. Das rekombinant hergestellte Botulinus Neurotoxin aus E. coli, welches u. a. die zum nativen Botulinus Neurotoxin identische Aminosäurese- quenz beinhaltet, verhält sich pharmakologisch identisch wie das native Botulinus Neurotoxin und wird rekombinantes Botulinus Neurotoxin Wildtyp genannt. Die hierbei erwähnten Nervenzellen sind cholinerge Motoneurone. Vorzugsweise bindet das Transportprotein spezifisch an die Plasmamembran assoziierte Moleküle, Transmembranproteine, synaptische Vesikelproteine, ein Protein der Synaptotag- min-Familie oder der synaptischen Vesikel Glykoproteine 2 (S V2), vorzugsweise Synaptotagmin I und/oder Synaptotagmin II und/oder SV2A, SV2B oder SV2C, besonders bevorzugt humanes Synaptotagmin I und/oder humanes Synaptotagmin II und/oder humanes SV2A, SV2B oder SV2C. Die Bindung wird vorzugsweise in vitro bestimmt. Besonders bevorzugt erfolgt die Bestimmung durch Verwendung eines GST-Pull-down-Assays, der im Detail in den Beispielen ausgeführt ist."Native neurotoxin is the native neurotoxin of C. botulinum, preferably the botulinum neurotoxin A and / or botulinum neurotoxin B and / or botulinum neurotoxin G from C. botulinum The recombinantly produced botulinum neurotoxin from E. coli, which contains, among other things, the amino acid sequence identical to the native botulinum neurotoxin, behaves pharmacologically identically to the native botulinum neurotoxin and is called recombinant botulinum neurotoxin wildtype Preferably, the transport protein specifically binds to plasma membrane associated molecules, transmembrane proteins, synaptic vesicle proteins, a synaptotagin family protein or synaptic vesicle glycoproteins 2 (S V2), preferably synaptotagmin I and / or synaptotagmin II and / or SV2A, SV2B or SV2C, more preferably human synaptotagmin I and / or human synaptotagmin II and / or human SV2A, SV2B or SV2C. The binding is preferably determined in vitro. Most preferably, the determination is made by using a GST pull-down assay detailed in the Examples.
„das Protein weist im Vergleich zu dem nativen Neurotoxin eine erhöhte oder verringerte Neurotoxizität auf Das native Neurotoxin ist hierbei das native Neu- rotoxin von C. botulinum. Vorzugsweise ist das native Neurotoxin hierbei das Botulinus Neurotoxin A und/oder Botulinus Neurotoxin B und/oder Botulinus Neurotoxin G aus C. botulinum. Das rekombinant hergestellte Botulinus Neurotoxin aus E. coli, welches u. a. die zum nativen Botulinus Neurotoxin identische Aminosäuresequenz beinhaltet, verhält sich pharmakologisch identisch wie das native Botulinus Neurotoxin und wird rekombinantes Botulinus Neurotoxin Wildtyp genannt. Die hierbei erwähnten Nervenzellen sind cholinerge Motoneurone. Die Neurotoxizität wird vorzugsweise mit Hilfe des im Stand der Technik bekannten Hemi-Diaphragma-Assays (HDA) bestimmt. Die Neurotoxizität der Muteine kann vorzugsweise bestimmt werden wie beschrieben von Habermann et al., Naunyn Schmiedeberg' s Arch. Pharmacol. 31 1 (1980), 33-40."The protein has increased or decreased neurotoxicity compared to the native neurotoxin. The native neurotoxin is the native novotoxin of C. botulinum. The native neurotoxin is preferably the botulinum neurotoxin A and / or botulinum neurotoxin B and / or botulinum neurotoxin G from C. botulinum. The recombinantly produced botulinum neurotoxin from E. coli, which contains, among other things, the amino acid sequence identical to the native botulinum neurotoxin, behaves pharmacologically identically as the native botulinum neurotoxin and is called recombinant botulinum neurotoxin wild type. The nerve cells mentioned here are cholinergic motor neurons. The neurotoxicity is preferably determined by the hemi-diaphragm assay (HDA) known in the art. The neurotoxicity of the muteins can preferably be determined as described by Habermann et al., Naunyn Schmiedeberg's Arch. Pharmacol. 31 1 (1980), 33-40.
„Neutralisierende Antikörper" Gegen Botulinus Neurotoxin gerichtete neutralisierende Antikörper sind bekannt (Göschel H, Wohlfarth K, Frevert J, Dengler R, Bigalke H. Botulinum A toxin therapy: neutralizing and nonneutralizing antibodies-therapeutic consequences, Exp. Neurol. 1997 Sep;147(l):96-102). Es wurde gefunden, dass Neurotoxin neutralisierende Antikörper insbesondere mit den aktiven Zentren wie z.B. den Gangliosid- und Proteinrezeptorbindungstaschen innerhalb der Hcc-Domäne des Neurotoxins interagieren. Werden im Neurotoxin die die Bindungstaschen umgebenden Oberflächen durch Aminosäureaustausche verändert ohne deren Funktionalität negativ zu beeinträchtigen, verlieren die neut- ralisierenden Antikörper ihre Bindungsplätze und das mutierte Neurotoxin wird nicht mehr neutralisiert."Neutralizing Antibodies" Botulinum neurotoxin-targeting neutralizing antibodies are known (Göschel H, Wohlfarth K, Frevert J, Dengler R, Bigalke H. Botulinum A toxin therapy: neutralizing and non-neutralizing antibodies-therapeutic consequences, Exp. Neurol 1997 Sep; 147 (1997); l): 96-102.) Neurotoxin neutralizing antibodies have been found to interact particularly with the active sites such as the ganglioside and protein receptor binding pockets within the Hcc domain of the neurotoxin, and in the neurotoxin, the surfaces surrounding the binding pockets are altered by amino acid substitutions Negatively affecting functionality, the neutralizing antibodies lose their binding sites and the mutated neurotoxin is no longer neutralized.
Der Ausdruck „Modifizierung der schweren Kette des von C. botulinum gebildeten Neurotoxins". Die Aminosäure und/oder Nukleinsäuresequenz der schweren Kette (HC) des von C. botulinum gebildeten Neurotoxins sind allgemein aus öffentlich zugänglichen Datenbanken erhältlich, für jeden der bekannten Sero typen A bis G (siehe auch Tabelle 1). Modifizierung umfasst hierbei, dass wenigstens eine Aminosäure deletiert, addiert, in die Aminosäuresequenz insertiert ist, oder wenigstens eine Aminosäure des nativen Neurotoxins durch eine andere natürli- che oder nicht natürlich vorkommende Aminosäure substituiert ist und/oder eine Aminosäure in der gegebenen Aminosäuresequenz posttranslational modifiziert ist. Posttranslationale Modifikationen umfassen hierbei Glykosylierungen, Acety- lierungen, Acylierungen, Desaminierungen, Phosphorylierungen, Isoprenylierun- gen, Glykosylphosphatidylinositolierungen, und weitere dem Fachmann bekannte Modifikationen. - , Die HC des von C. botulinum gebildeten Neurotoxins umfasst drei Subdomänen, nämlich die amino-terminale 50 kDa große Translokationsdomäne HN, die sich anschließende 25 kDa HcN-Domäne und die carboxyl-terminal gelegene 25 kDa Hcc-Domäne. Zusammengefasst werden die HCN- und HCc-Domäne als Hc-Fragment bezeichnet. Die entsprechenden Aminosäureabschnitte der jeweiligen Subdomänen sind für die einzelnen Serotypen und ihren Varianten aus Tabelle 1 ersichtlich.The term "modification of the heavy chain of the neurotoxin produced by C. botulinum." The amino acid and / or nucleic acid sequence of the heavy chain (HC) of the neurotoxin produced by C. botulinum are generally available from publicly available databases for each of the known serotypes A. to G (see also Table 1). Modification here comprises that at least one amino acid is deleted, added, inserted into the amino acid sequence, or at least one amino acid of the native neurotoxin is substituted by another natural or non-naturally occurring amino acid and / or Post-translational modifications include glycosylations, acetylations, acylations, deaminations, phosphorylations, isoprenylations, glycosylphosphatidylinositolations, and other modifications known to the person skilled in the art. The HC of the neurotoxin produced by C. botulinum comprises three subdomains, namely the 50 kDa amino terminal translocation domain H N , the subsequent 25 kDa Hc N domain and the carboxyl terminal 25 kDa Hcc domain. In summary, the H CN and H C c domains are referred to as the Hc fragment. The corresponding amino acid sections of the respective subdomains can be seen for the individual serotypes and their variants from Table 1.
„Gangliosidrezeptor" Die HC der Botulinus Neurotoxine besitzen eine hohe Affinität zu peripheren Nervenzellen, die überwiegend durch die Interaktion mit komplexen Polysialo- gangliosiden - dies sind Glycolipide, die aus mehr als einer Sialinsäure bestehen - vermittelt wird (Halpern et al. (1995), Curr. Top. Microbiol. Immunol. 195, 221- 41 ; WO 2006/02707). Folglich erreichen die an sie gebundenen LC nur diesen Zelltyp und werden nur in diesen Zellen wirksam. BoNT/A und B binden lediglich ein Molekül Gangliosid GTIb."Ganglioside Receptor" The HCs of the botulinum neurotoxins have a high affinity for peripheral nerve cells, which are predominantly mediated by the interaction with complex polysial gangliosides - these are glycolipids consisting of more than one sialic acid (Halpern et al. (1995), Curr., Top Microbiol Immunol 195, 221-41, WO 2006/02707) Thus, the LCs bound to them only reach this cell type and become effective only in these cells BoNT / A and B bind only one molecule of ganglioside GTIb.
Im Falle von BoNT/B und BoNT/G sind die Proteinrezeptoren Synaptotagmin I und Synaptotagmin II. Im Falle von BoNT/A sind die Proteinrezeptoren die synaptischen Vesikel Glykoproteine 2 (SV2), vorzugsweise SV2A, SV2B und SV2C.In the case of BoNT / B and BoNT / G, the protein receptors are synaptotagmin I and synaptotagmin II. In the case of BoNT / A, the protein receptors are the synaptic vesicles glycoproteins 2 (SV2), preferably SV2A, SV2B and SV2C.
Zurzeit sind 13 Iso formen aus der Familie der Synaptotagmine bekannt. Alle zeichnen sich durch zwei carboxyl-terminale Ca2+ bindende C2-Domänen, eine mittlere Transmembrandomäne (TMD), welche das Synaptotagmin in der synaptischen Vesikelmembran verankert, und einen unterschiedlich langen Amino- Terminus aus. Nach Ca2+ Einstrom wird die Fusion des synaptischen Vesikels mit der Plasmamembran initiiert, woraufhin der intraluminale Amino-Terminus des Synaptotagmins extrazellulär präsentiert wird und als Rezeptoranker für BoNT/B und G zur Verfügung steht. Analog dazu steht die vierte luminale Domäne der SV2 Isoformen nach Exozytose für die Interaktion mit BoNT/A extrazellulär zur Verfügung.At present, 13 isoforms from the family Synaptotagmine known. All are characterized by two carboxyl-terminal Ca 2+ binding C2 domains, a median transmembrane domain (TMD) anchoring the synaptotagmin in the synaptic vesicle membrane, and a different amino terminus. After Ca 2+ influx, the fusion of the synaptic vesicle with the plasma membrane is initiated, whereupon the intraluminal amino terminus of synaptotagmine is extracellularly presented and used as a receptor anchor for BoNT / B and G is available. Similarly, the fourth luminal domain of SV2 isoforms after exocytosis is available extracellularly for interaction with BoNT / A.
Durch zielgerichtete Mutagenese wurden einzelne Aminosäuren der Bindungstasche derart in ihrem Charakter verändert, dass eine Bindung an einen Proteinrezeptor erschwert oder verhindert ist. Hierzu wurden die Hc-Fragmente von BoNT/B und BoNT/G rekombinant als Wildtyp oder mit einzelnen Aminosäureaustauschen (Mutationen/Substitutionen) in der postulierten Bindungstasche in E. coli exprimiert und isoliert. Für einen GST-Pull-down-Assay zur Untersuchung der in vitro Interaktion zwischen BoNT/B und BoNT/G sowie dem Synaptotag- min I und dem Synaptotagmin II wurde das jeweilige GST-Synaptotagmin- Fusionsprotein mit unterschiedlichen Mengen des jeweiligen Hc-Fragments von BoNT/B bzw. BoNT/G inkubiert und eine Phasentrennung durchgeführt. Freies Hc-Fragment verblieb , im separierten Überstand, während gebundenes BoNT Hc-Fragment in der Festphase zusammen mit GST-Synaptotagmin-Fusionsprotein nachweisbar war. Der Ersatz der jeweiligen Hc-Fragmente durch die volle Länge BoNT/B und G im GST-Pull-down Assay ergab dieselben Ergebnisse.By targeting mutagenesis, individual amino acids of the binding pocket have been altered in their character such that binding to a protein receptor is impeded or prevented. For this purpose, the Hc fragments of BoNT / B and BoNT / G were recombinantly expressed as wild type or with single amino acid substitutions (mutations / substitutions) in the postulated binding pocket in E. coli and isolated. For a GST pull-down assay to study the in vitro interaction between BoNT / B and BoNT / G as well as Synaptotagmin I and Synaptotagmin II, the respective GST-synaptotagmin fusion protein with different amounts of the respective Hc fragment of BoNT / B or BoNT / G incubated and carried out a phase separation. Free Hc fragment remained in the separated supernatant while bound BoNT Hc fragment was detectable in the solid phase along with GST-synaptotagmine fusion protein. Replacement of the full-length Hc fragments with BoNT / B and G in the GST pull-down assay gave the same results.
Dabei wurde herausgefunden, dass der BoNT/B Wildtyp nur in Anwesenheit von komplexen Gangliosiden und Synaptotagmin I mit Transmembrandomäne bindet, während Synaptotagmin II sowohl mit oder ohne Transmembrandomäne als auch in An- oder Abwesenheit von komplexen Gangliosiden gebunden wird. Durch zielgerichtete Substitution von Aminosäuren innerhalb der Proteinrezeptorbin- dungsstelle von BoNT/B konnte die Interaktion mit beiden Synaptotagmin- Molekülen deutlich gesteigert bzw. abgeschwächt werden (Figur 1).It was found that the BoNT / B wild type binds only in the presence of complex gangliosides and synaptotagmin I with transmembrane domain, while synaptotagmin II is bound both with or without transmembrane domain as well as in the presence or absence of complex gangliosides. Targeted substitution of amino acids within the protein receptor binding site of BoNT / B significantly increased or decreased the interaction with both synaptotagmin molecules (Figure 1).
Weiterhin wurde für den BoNT/G Wildtyp gezeigt, dass sowohl in Anwesenheit als auch in Abwesenheit von komplexen Gangliosiden Bindung an Synaptotag- min I und Synaptotagmin II jeweils mit oder ohne Transmembrandomäne stattfindet. Durch zielgerichtete Substitution von zu BoNT/B homologen Aminosäuren innerhalb der Proteinrezeptorbindungsstelle von BoNT/G konnte die Interaktion mit beiden Synaptotagmin-Molekülen deutlich gesteigert bzw. abgeschwächt werden (Figur 2).Furthermore, it has been demonstrated for the BoNT / G wild type that both in the presence and in the absence of complex gangliosides binding to Synaptotagmin I and Synaptotagmin II takes place each with or without transmembrane domain. By targeted substitution of BoNT / B homologous amino acids Within the protein receptor binding site of BoNT / G, the interaction with both synaptotagmin molecules could be significantly increased or attenuated (FIG. 2).
Die Potenz der Voll-Längen-Form von BoNT/A, B und G Wildtypen wurde im HDA mittels einer Dosis-Wirkungs-Kurve bestimmt (Figur 3 und 6). Anschließend wurde die Potenz der verschiedenen Voll-Längen-Formen von BoNT/A, B und G Einzelmutanten im HDA ermittelt (Figur 6) und mittels einer angelegten Potenzfunktion ins Verhältnis zur Potenz der BoNT/B und G Wildtypen gesetzt (Figur 4 und 5). Beispielhaft führt der Austausch der Aminosäuren Valin 1118 gegen Aspartat oder Lysin 1192 gegen Glutamat in BoNT/B zu einer drastischen Reduktion der Potenz auf < 2%. Im Gegensatz dazu erzeugt die Mutation des Ty- rosin 1 183 in Leucin bzw. Arginin eine deutliche Verstärkung der Potenz von BoNT/B (Figur 4). Modifikation von Tyrosin 1256 zu Phenylalanin in BoNT/G resultiert ebenfalls in einer Potenzzunahme während die Mutation Glutamin 1200 in Glutamat, Lysin oder Tyrosin eine starke Abnahme der Potenz von BoNT/G hervorruft (Figur 5). Im Fall von BoNT/A erzeugt die Modifikation Serin 1207 zu Arginin oder Tyrosin eine Potenzerhöhung während die Mutation Lysin 1260 zu Glutamat eine drastische Potenzverringerung des BoNT/A bewirkt (Figur 6).The potency of the full-length form of BoNT / A, B and G wild types was determined in the HDA by means of a dose-response curve (FIGS. 3 and 6). Subsequently, the potency of the various full-length forms of BoNT / A, B and G single mutants in the HDA was determined (FIG. 6) and related to the potency of the BoNT / B and G wild types by means of an applied power function (FIGS. 4 and 5). , By way of example, the replacement of the amino acids valine 1118 by aspartate or lysine 1192 by glutamate in BoNT / B leads to a drastic reduction of the potency to <2%. In contrast, the mutation of tyrosine 1 183 in leucine and arginine, respectively, produces a marked enhancement of the potency of BoNT / B (FIG. 4). Modification of tyrosine 1256 to phenylalanine in BoNT / G also results in an increase in potency while the glutamine 1200 mutation in glutamate, lysine or tyrosine causes a large decrease in the potency of BoNT / G (Figure 5). In the case of BoNT / A, the modification of serine 1207 to arginine or tyrosine produces an increase in potency while the mutation lysine 1260 to glutamate causes a drastic reduction in the potency of BoNT / A (Figure 6).
Gemäß einer bevorzugten Ausführungsform weist das Transportprotein eine wenigstens 15 % höhere Affinität oder eine wenigstens 15 % niedrigere Affinität als das native Neurotoxin auf. Vorzugsweise weist das Transportprotein eine wenigstens 50 % höhere oder niedrigere, besonders bevorzugt wenigstens 80 % höhere oder niedrigere, und insbesondere eine wenigstens 90 % höhere oder niedrigere Affinität als das native Neurotoxin auf.In a preferred embodiment, the transport protein has at least 15% higher affinity or at least 15% lower affinity than the native neurotoxin. Preferably, the transport protein has at least 50% higher or lower, more preferably at least 80% higher or lower, and especially at least 90% higher or lower affinity than the native neurotoxin.
Gemäß einer bevorzugten Ausführungsform erfolgt die Modifizierung der HC im Bereich des Hc-Fragmentes des gegebenen Neurotoxins. Sofern die Modifikation eine Substitution, Deletion, Insertion oder Addition umfasst, kann diese beispielsweise durch zielgerichtete Mutagenese durchgeführt werden, Verfahren hierzu sind dem Fachmann bekannt. Die in dem nativen Neurotoxin vorhandenen Aminosäuren werden hierbei entweder durch natürlich vorkommende oder nicht natürlich vorkommende Aminosäuren verändert. Grundsätzlich werden Aminosäuren in unterschiedliche physikochemische Gruppen eingeteilt. Zu den negativ geladenen Aminosäuren gehören Aspartat und Glutamat. Zu den positiv geladenen Aminosäuren gehören Histidin, Arginin und Lysin. Zu den polaren Aminosäuren gehören Asparagin, Glutamin, Serin, Threonin, Cystein und Tyrosin. Zu den unpolaren Aminosäuren gehören Glycin, Alanin, Valin, Leucin, Isoleucin, Methionin, Prolin, Phenylalanin und Tryptophan. Aromatische Seitengruppen finden sich bei den Aminosäuren Histidin, Phenylalanin, Tyrosin und Tryptophan. Generell ist bevorzugt, dass eine Aminosäure durch eine andere Aminosäure ausgetauscht wird, die zu einer anderen physikochemischen Gruppe gehört.According to a preferred embodiment, the modification of the HC takes place in the region of the Hc fragment of the given neurotoxin. If the modification comprises a substitution, deletion, insertion or addition, this can be carried out for example by targeted mutagenesis, method These are known to the skilled person. The amino acids present in the native neurotoxin are hereby altered either by naturally occurring or non-naturally occurring amino acids. Basically, amino acids are divided into different physicochemical groups. The negatively charged amino acids include aspartate and glutamate. The positively charged amino acids include histidine, arginine and lysine. The polar amino acids include asparagine, glutamine, serine, threonine, cysteine and tyrosine. The non-polar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine and tryptophan. Aromatic side groups are found in the amino acids histidine, phenylalanine, tyrosine and tryptophan. Generally, it is preferred that one amino acid be replaced with another amino acid belonging to another physicochemical group.
Gemäß einer bevorzugten Ausfϊihrungsform der Erfindung ist das Transportprote- in ein Botulinus Neurotoxin Serotyp A bis G. Hierbei sind die Aminosäuresequenzen der nativen Neurotoxine wie folgt aus öffentlich zugänglichen Datenbanken erhältlich: According to a preferred embodiment of the invention, the transport protein is a botulinum neurotoxin serotype A to G. Here, the amino acid sequences of the native neurotoxins are obtainable from publicly available databases as follows:
Tabelle 1: Datenbanknummern der Aminosäuresequenzen und Aufteilung der Subdomänen der sieben Botulinus Neurotoxine.Table 1: Database numbers of the amino acid sequences and subdivision of the seven botulinum neurotoxins.
Im Hinblick auf das Hc-Fragment dieser Botulinus Neurotoxine sind für eine Modifizierung bevorzugt die Aminosäuren in den Aminosäurepositionen von 867 bis 1296 des C. botulinum Neurotoxin Serotyp A, 866 bis 1291 des C. botulinum Neurotoxin Serotyp B, 864 bis 1291 bzw. 1280 des C. botulinum Neurotoxin Serotyp Cl, 860 bis 1276 bzw. 1285 des C. botulinum Neurotoxin Serotyp D, 843 bis 1251 bzw. 1252 des C. botulinum bzw. C. butyricum Neurotoxin Serotyp E, 861 bis 1274, 862 bis 1280 bzw. 1278 und 854 bis 1268 des C. botulinum bzw.With respect to the Hc fragment of these botulinum neurotoxins, the amino acids in the amino acid positions from 867 to 1296 of C. botulinum neurotoxin serotype A, 866 to 1291 of C. botulinum neurotoxin serotype B, 864 to 1291 and 1280, respectively, are preferred for modification C. botulinum neurotoxin serotype Cl, 860 to 1276 or 1285 of C. botulinum neurotoxin serotype D, 843 to 1251 and 1252, respectively, of the C. botulinum and C. butyricum neurotoxin serotype E, respectively 861 to 1274, 862 to 1280 and 1278 and 854 to 1268 of the C. botulinum or
C. baratii Neurotoxin Serotyp F,C. baratii neurotoxin serotype F,
861 bis 1297 des C. botulinum Neurotoxin Serotyp G.861 to 1297 of C. botulinum neurotoxin serotype G.
Es ist daher bevorzugt, dass mindestens eine Aminosäure in den vorgenannten Positionen posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert, und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.It is therefore preferred that at least one amino acid in the aforementioned positions be post-translationally modified, and / or added, and / or deleted, and / or inserted, and / or substituted by an amino acid which is either naturally occurring or of non-natural origin.
Gemäß einer bevorzugten Ausführungsform ist das Neurotoxin Botulinus Neurotoxin Serotyp A. Vorzugsweise wird hierbei mindestens eine Aminosäure in den Positionen Threonin 1 195, Asparagin 1196, Glutamin 1199, Lysin 1204, Isoleucin 1205, Leucin 1206, Serin 1207, Leucin 1209, Aspartat 1213, Leucin 1217, Phenylalanin 1255, Asparagin 1256, Isoleucin 1258 und/oder Lysin 1260 der Botulinus Neurotoxin Serotyp A, Proteinsequenzen posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist. Besonders bevorzugt sind die Positionen Asparagin 1196, Glutamin 1199, Serin 1207, Phenylalanin 1255, Isoleucin 1258 und/oder Lysin 1260der Botulinus Neurotoxin Serotyp A Proteinsequenzen. Insbesondere sind die Positionen Serin 1207, welches durch Arginin oder Tyrosin ersetzt wird, und Lysin 1260, das gegen Glutamat ausgetauscht wird, bevorzugt.According to a preferred embodiment, the neurotoxin botulinum neurotoxin is serotype A. Preferably, at least one amino acid in the positions threonine 1 195, asparagine 1196, glutamine 1199, lysine 1204, isoleucine 1205, leucine 1206, serine 1207, leucine 1209, aspartate 1213, leucine No. 1217, phenylalanine 1255, asparagine 1256, isoleucine 1258 and / or lysine 1260 the botulinum neurotoxin serotype A, protein sequences post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid, either naturally occurring or not of natural origin. Particularly preferred are the positions asparagine 1196, glutamine 1199, serine 1207, phenylalanine 1255, isoleucine 1258 and / or lysine 1260 of the botulinum neurotoxin serotype A protein sequences. In particular, the positions serine 1207 substituted by arginine or tyrosine and lysine 1260 substituted for glutamate are preferred.
Gemäß einer bevorzugten Ausführungsform ist das Neurotoxin Botulinus Neurotoxin Serotyp B. Vorzugsweise wird hierbei mindestens eine Aminosäure in den Positionen Lysin 1113, Aspartat 1114, Serin 1116, Prolin 1117, Valin 1118, Threonin 1182, Tyrosin 1183, Phenylalanin 1186, Lysin 1188, Glutamat 1191, Lysin 1192, Leucin 1193, Phenylalanin 1194, Phenylalanin 1204, Phenylalanin 1243, Glutamat 1245, Lysin 1254, Aspartat 1255 und Tyrosin 1256 der Botulinus Neurotoxin Serotyp B Proteinsequenzen posttranslational modifiziert, und/oder ad- diert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist. Besonders bevorzugt sind die Positionen Valin 1 1 18, Tyrosin 1 183, Glutamat 1 191, Lysin 1 192, Glutamat 1245 und Tyrosin 1256 der Botulinus Neurotoxin Serotyp B Proteinsequenzen. Insbesondere sind die Positionen Tyrosin 1183 und Glutamat 1 191 , welche durch Leucin ersetzt werden, bevorzugt.According to a preferred embodiment, the neurotoxin is botulinum neurotoxin serotype B. Preferably, at least one amino acid in the positions lysine 1113, aspartate 1114, serine 1116, proline 1117, valine 1118, threonine 1182, tyrosine 1183, phenylalanine 1186, lysine 1188, glutamate 1191 , Lysine 1192, leucine 1193, phenylalanine 1194, phenylalanine 1204, phenylalanine 1243, glutamate 1245, lysine 1254, aspartate 1255 and tyrosine 1256 the botulinum neurotoxin serotype B protein sequences post-translationally modified, and / or adrenaline. diert, and / or deleted, and / or inserted and / or is substituted by an amino acid, which either occurs naturally or is not of natural origin. Particularly preferred are the positions valine 1 1 18, tyrosine 1 183, glutamate 1 191, lysine 1 192, glutamate 1245 and tyrosine 1256 of the botulinum neurotoxin serotype B protein sequences. In particular, the positions tyrosine 1183 and glutamate 1 191, which are replaced by leucine, are preferred.
Gemäß einer weiteren bevorzugten Ausführungsform ist das Neurotoxin Botulinus Neurotoxin Serotyp G. Vorzugsweise wird hierbei mindestens eine Amino- säure in den Positionen Phenylalanin 1121, Lysin 1123, Alanin 1124, Serin 1125, Methionin 1 126, Valin 1190, Leucin 1191 , Serin 1194, Glutamat 1196, Threonin 1199, Glutamin 1200, Leucin 1201 , Phenylalanin 1202, Phenylalanin 1212, Phenylalanin 1248, Lysin 1250, Aspartat 1251 und Tyrosin 1262 der Botulinus Neurotoxin Serotyp G Proteinsequenzen posttranslational modifiziert, und/oder ad- diert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist. Besonders bevorzugt sind die Positionen Methionin 1126, Leucin 1191, Threonin 1199, Glutamin 1200, Lysin 1250 und Tyrosin 1262 der Botulinus Neurotoxin Serotyp G Proteinsequenzen. Insbesondere ist die Position Tyrosin 1262, welche durch Phenylalanin ersetzt wird, bevorzugt.According to another preferred embodiment, the neurotoxin is botulinum neurotoxin serotype G. Preferably in this case at least one amino acid in the positions phenylalanine 1121, lysine 1123, alanine 1124, serine 1125, methionine 1 126, valine 1190, leucine 1191, serine 1194, glutamate 1196, threonine 1199, glutamine 1200, leucine 1201, phenylalanine 1202, phenylalanine 1212, phenylalanine 1248, lysine 1250, aspartate 1251 and tyrosine 1262 the botulinum neurotoxin serotype G protein sequences post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid which is either naturally occurring or of non-natural origin. Particularly preferred are the positions methionine 1126, leucine 1191, threonine 1199, glutamine 1200, lysine 1250 and tyrosine 1262 of the botulinum neurotoxin serotype G protein sequences. In particular, the position tyrosine 1262, which is replaced by phenylalanine, is preferred.
Das in der vorliegenden Erfindung bereitgestellte Transportprotein weist eine erhöhte oder verringerte spezifische Affinität seiner proteinbindenden Domäne insbesondere zu Molekülen aus der Familie der Synaptotagmine oder der synapti- sehen Vesikel Glykoproteine 2 auf.The transport protein provided in the present invention has an increased or decreased specific affinity of its protein binding domain, in particular to molecules of the synaptotagmine or synaptic vesicle glycoproteins 2 family.
Eine weitere Ausfuhrungsform der vorliegenden Erfindung bezieht sich auf eine Zusammensetzung, die ein erfindungsgemäßes Transportprotein und wenigstens ein intervenierendes Molekül (X) enthält. Das intervenierende Molekül kann ein kleines organisches Molekül, ein Peptid oder ein Protein sein; vorzugsweise kova- lent durch eine Peptid-Bindung, Ester-Bindung, Ether-Bindung, Sulfid-Bindung, Disulfid-Bindung oder Kohlenstoff-Kohlenstoff-Bindung an das Transportprotein gebunden.A further embodiment of the present invention relates to a composition which contains a transport protein according to the invention and at least one intervening molecule (X). The intervening molecule may be a small organic molecule, a peptide or a protein; preferably covalently by a peptide bond, ester bond, ether bond, sulfide bond, Disulfide bond or carbon-carbon bond bound to the transport protein.
Das intervenierende Molekül umfasst zusätzlich alle bekannten therapeutisch wirksamen Stoffe. Bevorzugt sind hierbei Zytostatika, Antibiotika, Virustatika, aber auch Immunglobuline.The intervening molecule additionally comprises all known therapeutically active substances. Preference is given here cytostatics, antibiotics, antivirals, but also immunoglobulins.
In einer bevorzugten Ausführungsform ist das Protein eine Protease, die ein oder mehrere Proteine des Freisetzungsapparates von Neurotransmittern spaltet, wobei die Protease aus der Gruppe der Neuro toxine ausgewählt ist, die aus den LC der C. botulinum Neurotoxine, insbesondere des Serotyps A, B, Cl, D, E, F und G oder einem proteolytisch aktivem Fragment der LC eines C. botulinum Neuroto- xins, insbesondere eines Neurotoxins des Serotyps A, B, Cl, D, E, F und G besteht, wobei das Fragment wenigstens 0,01 % der proteolytischen Aktivität der nativen Protease, vorzugsweise wenigstens 5 %, besonders bevorzugt wenigstens 50 %, insbesondere wenigstens 90 % aufweist. Vorzugsweise ist das Transportprotein und die Protease vom gleichen C. botulinum Neurotoxin Serotyp abgeleitet, insbesondere bevorzugt ist die HtM-Domäne des Transportproteins und die Protease vom C. botulinum Neurotoxin Serotyp A abgeleitet. Die Sequenzen der Pro- teasen sind allgemein aus Datenbanken zugänglich und die Datenbanknummern sind aus Tabelle 1 ersichtlich. Die proteolytische Aktivität der Proteasen wird anhand einer Substratspaltungskinetik bestimmt (siehe Binz et al. (2002), Bio- chemistry 41(6), 1717-23).In a preferred embodiment, the protein is a protease which cleaves one or more proteins of the neurotransmitter release mechanism, the protease being selected from the group of neurotoxins selected from the LC of C. botulinum neurotoxins, in particular serotypes A, B, Cl, D, E, F and G or a proteolytically active fragment of the LC of a C. botulinum neurotoxin, in particular a neurotoxin of the serotype A, B, Cl, D, E, F and G, the fragment being at least 0, 01% of the proteolytic activity of the native protease, preferably at least 5%, more preferably at least 50%, especially at least 90%. Preferably, the transport protein and the protease are derived from the same C. botulinum neurotoxin serotype, more preferably the H t M domain of the transport protein and the protease are derived from the C. botulinum neurotoxin serotype A. The sequences of the proteases are generally accessible from databases and the database numbers are shown in Table 1. The proteolytic activity of the proteases is determined by means of a substrate cleavage kinetics (see Binz et al. (2002), Biochemistry 41 (6), 1717-23).
Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Herstellung des Transportproteins bereitgestellt. In einem ersten Schritt wird hierbei eine das Transportprotein kodierende Nukleinsäure bereitgestellt. Die kodierende Nukleinsäure kann hierbei RNA, DNA oder Gemische davon darstellen. Die Nukleinsäure kann ferner im Hinblick auf ihre Nukleasere- sistenz modifiziert sein ,wie z. B. durch Einfügung von Phosphorthioat- Bindungen. Die Nukleinsäure kann aus einer Ausgangs-Nukleinsäure hergestellt werden, wobei die Ausgangs-Nukleinsäure z. B. durch Klonierung aus genomischen oder cDNA-Banken zugänglich ist. Weiterhin kann die Nukleinsäure direkt durch Festphasensynthese hergestellt werden. Geeignete Verfahren sind dem Fachmann bekannt. Sofern von einer Ausgangs-Nukleinsäure ausgegangen wird, kann z. B. durch ortsgerichtete Mutagenese eine zielgerichtete Veränderung durchgeführt werden, die auf Aminosäure-Ebene zu wenigstens einer Addition, Insertion, Deletion und/oder Substitution führt. Die Nukleinsäure wird sodann in operativer Weise mit einem geeigneten Promotor verbunden. Geeignete Promotoren für die Expression in bekannten Expressionssystemen sind dem Fachmann bekannt. Die Wahl des Promotors hängt hierbei vom zur Expression verwendeten Expressionssystem ab. Generell sind konstitutive Promotoren bevorzugt, jedoch sind auch induzierbare Promotoren verwendbar. Das so hergestellte Konstrukt umfasst wenigstens einen Teil eines Vektors, insbesondere regulatorische Elemente, wobei der Vektor beispielsweise ausgewählt ist aus λ-Derivaten, Adenovi- ren, Baculoviren, Vaccjniaviren, SV40-Viren und Retroviren. Der Vektor ist vorzugsweise zur Expression der Nukleinsäure in einer gegebenen Wirtszelle fähig.According to another embodiment of the present invention, there is provided a process for producing the transport protein. In a first step, a nucleic acid encoding the transport protein is provided here. The coding nucleic acid may be RNA, DNA or mixtures thereof. The nucleic acid may also be modified with regard to its nuclease resistance, such as, for example, B. by incorporation of phosphorothioate bonds. The nucleic acid can be prepared from an initial nucleic acid be, wherein the starting nucleic acid z. B. is accessible by cloning from genomic or cDNA libraries. Furthermore, the nucleic acid can be prepared directly by solid phase synthesis. Suitable methods are known to the person skilled in the art. If it is assumed that an initial nucleic acid, z. B. by site-directed mutagenesis a targeted change can be performed, which leads to at least one addition, insertion, deletion and / or substitution at the amino acid level. The nucleic acid is then operably linked to a suitable promoter. Suitable promoters for expression in known expression systems are known to the person skilled in the art. The choice of the promoter depends on the expression system used for the expression. In general, constitutive promoters are preferred, but inducible promoters are also useful. The construct thus produced comprises at least part of a vector, in particular regulatory elements, the vector being selected, for example, from λ derivatives, adenoviruses, baculoviruses, vaccinia viruses, SV40 viruses and retroviruses. The vector is preferably capable of expressing the nucleic acid in a given host cell.
Ferner stellt die Erfindung Wirtszellen bereit, die den Vektor enthalten und die zur Expression des Vektors geeignet sind. Im Stand der Technik sind zahlreiche prokaryontische und eukaryontische Expressionssysteme bekannt, wobei die Wirtszellen beispielsweise ausgewählt sind aus prokaryontischen Zellen wie E. coli oder B. subtilis, aus eukaryontischen Zellen wie S. cerevisiae und P. pastoris. Zwar können auch höhere eukaryontischen Zellen verwendet werden wie Insektenzellen oder Säugerzellen, jedoch sind Wirtszellen bevorzugt, die e- benso wie C. botulinum über keinen Glykosylierungs-Apparat verfügen.Further, the invention provides host cells that contain the vector and that are suitable for expression of the vector. Numerous prokaryotic and eukaryotic expression systems are known in the prior art, the host cells being selected, for example, from prokaryotic cells such as E. coli or B. subtilis, from eukaryotic cells such as S. cerevisiae and P. pastoris. Although higher eukaryotic cells can be used, such as insect cells or mammalian cells, host cells are preferred which, like C. botulinum, have no glycosylation apparatus.
Gemäß einer bevorzugten Ausführungsform kodiert die Nukleinsäure das Hc-Fragment des C. botulinum Neurotoxins. Diese Nukleinsäure enthält Endo- nuklease-Schnittstellen, die die Hc-Fragment kodierende Nukleinsäure flankieren, wobei die Endonukleasestellen kompatibel sind mit denen anderer Hc-Fragmente aus C. botulinum Neurotoxinen, um deren leichten modularen Austausch in dem das Transportprotein codierenden Gen zu gestatten, während die Ähnlichkeit der Aminosäuresequenz erhalten bleibt.According to a preferred embodiment, the nucleic acid encodes the Hc fragment of C. botulinum neurotoxin. This nucleic acid contains endonuclease cleavage sites flanking the Hc fragment-encoding nucleic acid, which endonuclease sites are compatible with those of other Hc fragments of C. botulinum neurotoxins to facilitate their easy modular exchange in the permitting the gene encoding the transport protein while retaining the similarity of the amino acid sequence.
Sofern eine erfindungsgemäße Zusammensetzung bereitgestellt wird, die neben dem Transportprotein noch wenigstens ein intervenierendes Molekül enthält, und dieses intervenierende Molekül ein Peptid oder Protein entweder mit einem car- boxyl-terminalen Cystein oder einer Mercapto-Gruppe funktionalisiert ist, so kann in analoger Weise wie zuvor beschrieben das Peptid bzw. das Protein rekombinant hergestellt werden, beispielsweise unter Verwendung von binären Vektoren oder durch unterschiedliche Wirtszellen. Sofern dieselbe Wirtszelle für die Expression sowohl des Transportproteins als auch des Peptids oder Proteins verwendet wird, wird vorzugsweise eine intermolekulare Disulfid-Bindung in situ gebildet. Zur effizienteren Produktion in derselben Wirtszelle kann die das Peptid oder Protein kodierende Nukleinsäure auch mit der des Transportproteins im gleichen Lese- rahmen translatiert werden, so dass ein einkettiges Polypeptid produziert wird. Hierbei bildet sich dann vorzugsweise eine intramolekulare Disulfid-Bindung in situ. Zur einfachen Hydrolyse der ebenfalls vorhanden peptidischen Verknüpfung zwischen Transportprotein und Peptid bzw. Protein wird am Amino-Terminus des Transportproteins eine Aminosäuresequenz, die entweder spezifisch von der Pro- tease Thrombin oder einer spezifischen Endoprotease der Wirtszelle erkannt und gespalten wird, eingefügt.If a composition according to the invention is provided which contains, in addition to the transport protein, at least one intervening molecule, and this intervening molecule is functionalized with either a carboxy-terminal cysteine or a mercapto group, then it can be carried out in an analogous manner as before described the peptide or the protein are produced recombinantly, for example using binary vectors or by different host cells. If the same host cell is used for the expression of both the transport protein and the peptide or protein, preferably an intermolecular disulfide bond is formed in situ. For more efficient production in the same host cell, the nucleic acid encoding the peptide or protein can also be translated with that of the transport protein in the same reading frame to produce a single-chain polypeptide. In this case, an intramolecular disulfide bond then preferably forms in situ. For simple hydrolysis of the likewise present peptide linkage between transport protein and peptide or protein, an amino acid sequence, which is either recognized and cleaved specifically by the protease thrombin or a specific endoprotease of the host cell, is inserted at the amino terminus of the transport protein.
Überraschenderweise wurde festgestellt, dass die Insert-Sequenz CXXXZKTKSLVPRGSKBXXC (SEQ ID NO: 1), wobei X eine beliebige Ami- nosäure bedeutet und Z und B unabhängig voneinander ausgewählt ist aus Alanin, Valin, Serin, Threonin und Glycin, von einer endogenen Protease eines bakteriellen Wirtes, vorzugsweise E. coli effizient in vivo gespalten wird. Das Einfügen der Insertsequenz zwischen die Aminosäuresequenz des Transportproteins und eines weiteren Peptids oder Proteins hat daher den Vorteil, dass eine spätere Nachprozessierung wie z.B. durch Thrombin nicht erforderlich ist. Besonders bevorzugt ist der E. co/ϊ-Stamm E. coli Kl 2. Die Insertsequenz ist vorzugsweise Teil eines Loops mit 18 20, vozugsweise A- minosäuren.Surprisingly, it has been found that the insert sequence CXXXZKTKSLVPRGSKBXXC (SEQ ID NO: 1), wherein X is any amino acid and Z and B are independently selected from alanine, valine, serine, threonine and glycine, from an endogenous protease of a bacterial host, preferably E. coli is efficiently cleaved in vivo. The insertion of the insert sequence between the amino acid sequence of the transport protein and a further peptide or protein therefore has the advantage that subsequent post-processing, such as thrombin, for example, is not required. Particularly preferred is the E. co / ϊ strain E. coli Kl 2. The insert sequence is preferably part of a loop containing 18-20, preferably, amino acids.
Sofern dieses nicht möglich ist, kann nach separater Aufreinigung des Transportproteins und des Proteins nachfolgend durch dem Fachmann bekannte Oxidati- onsverfahren eine entsprechende intermolekulare Disulfid-Bindung herbeigeführt werden. Das Peptid bzw. Protein kann auch direkt durch Synthese oder Fragmentkondensation erhalten werden. Entsprechende Verfahren sind dem Fachmann be- kannt.If this is not possible, after separate purification of the transport protein and the protein, a corresponding intermolecular disulfide bond can subsequently be brought about by oxidation processes known to the person skilled in the art. The peptide or protein can also be obtained directly by synthesis or fragment condensation. Corresponding methods are known to the person skilled in the art.
Das Transportprotein und das Peptid bzw. Protein werden nachfolgend aufgereinigt. Hierbei kommen dem Fachmann bekannte Verfahren zum Einsatz, wie z. B. Chromatographie-Verfahren oder Elektrophorese.The transport protein and the peptide or protein are subsequently purified. Here, the skilled worker known methods are used, such. As chromatography method or electrophoresis.
Eine weitere Ausführungsform der vorliegenden Erfindung bezieht sich auf die pharmazeutische Zusammensetzung, die das Transportprotein oder eine Zusammensetzung und optional einen pharmazeutisch akzeptablen Träger, ein Verdünnungsmittel und/oder Additiv enthält.Another embodiment of the present invention relates to the pharmaceutical composition containing the transport protein or a composition and optionally a pharmaceutically acceptable carrier, diluent and / or additive.
Die pharmazeutische Zusammensetzung ist zur oralen, intravenösen, subkutanen, intramuskulären und topischen Verabreichung geeignet. Die intramuskuläre Verabreichung ist hierbei bevorzugt. Eine Dosiseinheit der pharmazeutischen Zusammensetzung enthält ungefähr 0,1 pg bis 1 mg Transportprotein und/oder die erfindungsgemäße Zusammensetzung.The pharmaceutical composition is suitable for oral, intravenous, subcutaneous, intramuscular and topical administration. Intramuscular administration is preferred. A dosage unit of the pharmaceutical composition contains about 0.1 pg to 1 mg of transport protein and / or the composition according to the invention.
Die pharmazeutische Zusammensetzung ist zur Behandlung von Störungen der Neurotransmitterfreisetzung und von Erkrankungen wie z. B. Hemifacialspasmus, spasmodischer Torticollis, Blepharospasmus, Spastizitäten, Dystönien, Migräne, Schmerzen, Erkrankungen , der Hals- und Lendenwirbelsäule, Strabismus, Hyper- salivation, Wundheilung, Schnarchen und Depressionen geeignet. Eine weitere Ausführungsform der vorliegenden Erfindung schließt eine kosmetische Zusammensetzung ein, die ein Transportprotein und einen kosmetisch akzeptablen Träger, Verdünnungsmittel und/oder Additiv enthält. Die kosmetische Zu- sammensetzung ist geeignet für die Behandlung von Hyperhydrose und Gesichtsfalten.The pharmaceutical composition is useful for the treatment of disorders of neurotransmitter release and diseases such as, e.g. As hemifacial spasm, spasmodic torticollis, blepharospasm, spasticity, dystonia, migraine, pain, diseases, the cervical and lumbar spine, strabismus, hyper-salivation, wound healing, snoring and depression suitable. Another embodiment of the present invention includes a cosmetic composition containing a transport protein and a cosmetically acceptable carrier, diluent and / or additive. The cosmetic composition is suitable for the treatment of hyperhidrosis and facial wrinkles.
Figur 1 : Untersuchung der in vitro Bindung der Wildtyp und mutierten BoNT/B Hc-Fragmente an verkürzten GST-Syt I und GST-Syt II Fusionsprotei- nen in Gegenwart oder Abwesenheit von komplexen Gangliosiden mittels GST-Pull-down Assay.FIG. 1: Investigation of the in vitro binding of the wild-type and mutated BoNT / B Hc fragments on truncated GST-Syt I and GST-Syt II fusion proteins in the presence or absence of complex gangliosides by means of GST pull-down assay.
Figur 2: Untersuchung der in vitro Bindung der Wildtyp und mutierten BoNT/G Hc-Fragmente an verkürzten GST-Syt I und GST-Syt II Fusionsprotei- nen in Gegenwart oder Abwesenheit von komplexen Gangliosiden mittels GST-Pull-down Assay.FIG. 2: Investigation of the in vitro binding of the wild-type and mutated BoNT / G Hc fragments on truncated GST-Syt I and GST-Syt II fusion proteins in the presence or absence of complex gangliosides by means of GST pull-down assay.
Figur 3: Dosis- Wirkungs-Kurve der BoNT/B und G Wildtypen im HDA. Die angelegten Potenzfunktionen ermöglichen einen relativen Vergleich der Paralysezeiten der Einzelmutanten mit denen der dazugehörigen Wildtypen.FIG. 3: Dose-response curve of the BoNT / B and G wild types in the HDA. The applied power functions allow a relative comparison of the paralysis times of the single mutants with those of the associated wild types.
Figur 4: Ab- und Zunahme der Neurotoxizität der BoNT/B Einzelmutanten imFIG. 4: Decrease and increase of the neurotoxicity of the BoNT / B single mutants in FIG
Vergleich zum Wildtyp im HDA.Comparison to the wild type in HDA.
Figur 5: Ab- und Zunahme der Neurotoxizität der BoNT/G Einzelmutanten imFIG. 5: Decrease and increase of the neurotoxicity of the BoNT / G single mutants in FIG
Vergleich zum Wildtyp im HDA.Comparison to the wild type in HDA.
Figur 6: Dosis-Wirkungs-Kurven des BoNT/A Wildtyps und der BoNT/A Ein- zelmutanten im HDA. Im Detail beinhaltet die vorliegende Erfindung ein Transportprotein (Trapo), das durch Modifizierung der HC des von C. botulinum produzierten Neurotoxins entsteht, vorzugsweise spezifisch an Neurone bindet, und vorzugsweise durch rezeptorvermittelte Endozytose intrazellulär aufgenommen wird und aus dem sauren endosomalen Kompartiment in das Zytosol von Neuronen transloziert wird. Dieses Protein wird als Transporter benutzt, um daran gebundene Proteasen und andere Substanzen, die physiologisch die Plasmamembran nicht durchdringen und in das Zytosol von Nervenzellen gelangen können, in die Zellen einzuschleusen. Die Substrate der Proteasen sind intrazellulär lokalisierte Proteine und Peptide, die an der Transmitterfreisetzung beteiligt sind. Nach Spaltung der Substrate sind die spezifischen Funktionen der Neurone blockiert, wobei die Zellen selbst nicht geschädigt sind. Eine dieser Funktionen ist die Exozytose, die die Neurotransmit- terfreisetzung bewerkstelligt. Ist die Freisetzung von Transmittern gehemmt, ist die Übermittlung von Signalen von Zelle zu Zelle blockiert. Beispielsweise wer- den gestreifte Muskeln gelähmt, wenn die Freisetzung von Acetylcholin an der neuromuskulären Kontaktstelle gehemmt ist. Diese Wirkung kann therapeutisch genutzt werden, wenn das Transportprotein an Nervenendigungen spastischer o- der dystoner Muskeln appliziert wird. Andere aktive Substanzen sind beispielsweise Wirkstoffe mit antiviraler Wirkung. Mit dem Transportprotein konjugiert, sind sie für die Behandlung viraler Infektionen des Nervensystems von Nutzen. Die vorliegende Erfindung bezieht sich auch auf die Verwendung eines Transportproteins zur Hemmung der Freisetzung von Neurotransmittern.FIG. 6: Dose-response curves of the BoNT / A wild type and the BoNT / A single mutants in the HDA. In detail, the present invention involves a transport protein (Trapo) which results from modifying the HC of the C. botulinum-produced neurotoxin, preferentially binds specifically to neurons, and is preferentially acquired intracellularly by receptor-mediated endocytosis and from the acidic endosomal compartment into the cytosol of Neurons is translocated. This protein is used as a transporter to infect cell-bound proteases and other substances that can not physiologically penetrate the plasma membrane and enter the cytosol of nerve cells. The substrates of the proteases are intracellularly localized proteins and peptides involved in transmitter release. After cleavage of the substrates, the specific functions of the neurons are blocked, whereby the cells themselves are not damaged. One of these functions is exocytosis, which effects neurotransmitter release. If the release of transmitters is inhibited, the transmission of signals from cell to cell is blocked. For example, striped muscles are paralyzed when the release of acetylcholine is inhibited at the neuromuscular junction. This effect can be used therapeutically when the transport protein is applied to nerve endings of spastic or dystonic muscles. Other active substances include agents with antiviral activity. Conjugated with the transport protein, they are useful for the treatment of viral infections of the nervous system. The present invention also relates to the use of a transport protein to inhibit the release of neurotransmitters.
Transportproteine mit niedrigerer Affinität binden an die Nervenzellen, werden jedoch von diesen nicht aufgenommen. Diese Transportproteine eignen sich daher als spezifische Transporter zur Nervenzelloberfläche.Lower affinity transport proteins bind to, but are not taken up by the nerve cells. These transport proteins are therefore suitable as specific transporters to the nerve cell surface.
Wenn Patienten mit den Progenitortoxinen A und B aus C. botulinum behandelt werden, verursacht die Injektion dieser nicht humanen Proteine trotz der niedrigen Dosis die Bildung von Antikörpern, so dass die Therapie wirkungslos bleibt und daher abgebrochen werden muss, um letztendlich einen anaphylaktischen Schock zu vermeiden. Indem man eine Substanz desselben Wirkmechanismus mit einer höheren Transporteffizienz der enzymatischen Aktivität appliziert, kann die Dosis drastisch gesenkt werden, und es wird nicht zur Bildung von Antikörpern kommen. Diese Eigenschaften kommen dem hier beschriebenen Transportprotein zu.When patients are treated with C. botulinum progenitor toxins A and B, the injection of these non-human proteins, despite the low dose, causes the formation of antibodies, so that the therapy is ineffective and therefore must be discontinued, ultimately leading to anaphylactic shock to avoid. By applying a substance of the same mechanism of action with a higher transport efficiency of the enzymatic activity, the dose can be drastically reduced and no antibodies will be produced. These properties are attributed to the transport protein described here.
Auch wenn Beispiele für die Applikation angegeben werden, so werden im Allgemeinen der geeignete Applikationsmodus und die Dosierung von dem behandelnden Arzt individuell bestimmt. Solche Entscheidungen werden routinemäßig von jedem im Fachgebiet bewanderten Arzt getroffen. So kann z. B. der Applika- tionsmodus und die Dosierung des Neurotoxins gemäß der hier dargelegten Erfindung auf der Basis von Kriterien wie der Löslichkeit des gewählten Neurotoxins oder der Intensität der zu behandelnden Schmerzen gewählt werden.Although examples of the application are given, generally the appropriate mode of administration and dosage will be determined individually by the attending physician. Such decisions are routinely made by any physician skilled in the art. So z. For example, the mode of application and dosage of the neurotoxin according to the invention set forth herein may be selected based on criteria such as the solubility of the selected neurotoxin or the intensity of the pain to be treated.
Gegenwärtig beträgt das Behandlungsintervall für die nativen Progenitortoxine A und B aus C. botulinum durchschnittlich drei bis vier Monate. Die Verlängerung dieses Intervalls würde das Risiko der Antikörperbildung vermindern und eine längere Dauer der Behandlung mit BoNT ermöglichen. Die Zunahme von LC im Zytosol würde deren Abbau zeitlich strecken und damit auch die Wirkdauer verlängern. Das hier beschriebene Transportprotein besitzt eine höhere Affinität und Aufnahmerate als die native HC.At present, the treatment interval for C. botulinum native progenitor toxins A and B averages three to four months. Prolonging this interval would reduce the risk of antibody formation and allow longer duration of treatment with BoNT. The increase in LC in the cytosol would extend their degradation time and thus extend the duration of action. The transport protein described here has a higher affinity and uptake rate than the native HC.
Das folgende Beispiel dient lediglich dem Zwecke der Verdeutlichung und sollte nicht als begrenzend angesehen werden.The following example is for the purpose of illustration only and should not be construed as limiting.
Material und Methodenmaterial and methods
Plasmidkonstruktion und Herstellung rekombinanter ProteinePlasmid construction and production of recombinant proteins
Plasmide für die E. coli Expression von rekombinanten Hc-Fragmenten von BoNT/B und BoNT/G sowie der Voll-Längen-Form von BoNT/A, B und G mit carboxyl-terminalen StrepTag zur Affinitätsaufreinigung wurden durch PCR- Verfahren mit geeigneten Primern, BoNT/A (AAA23262) BoNT/B (AAA23211) und BoNT/G (CAA52275) kodierender chromosomaler DNA und dem Expressionsvektor pQe3 (Qiagen AG) als Ausgangsvektor erzeugt. Verkürzte Varianten von Ratten-Synaptotagmin I (Syt I) (Aminosäuren 1-53; Aminosäuren 1-82) und Ratten-Synaptotagmin II (Syt II) (Aminosäuren 1-61; Aminosäuren 1-90) wurden in den GST kodierenden Vektor pGEX-2T (Amersham Biosciences AB) einklo- niert. Die Nύkleinsäuresequenzen sämtlicher Plasmide wurden durch DNA- Sequenzierung bestätigt. Die rekombinanten Hc-Fragmente und die der VoIl- Längen-Form von BoNT wurden im E. coli-Stamm Ml 5 [pRep4] (Qiagen) wäh- rend einer zehnstündigen Induktion bei Raumtemperatur hergestellt und an einer StrepTactin-Matrix (IBA GmbH) gemäß den Herstellerempfehlungen aufgereinigt. Die aus E. coli BL21 erhaltenen GST-Fusionsproteine wurden mit Hilfe von auf Sepharosekügelchen immobilisierten Glutathion isoliert. Fraktionen, die die gewünschnten Proteine enthielten, wurden vereinigt und gegen Tris-NaCl-Triton- Puffer (20 raM Tris-HCl, 150 mM NaCl, 0,5 % Triton X-100, pH 7,2) dialysiert.Plasmids for the E. coli expression of recombinant Hc fragments of BoNT / B and BoNT / G and the full-length form of BoNT / A, B and G with carboxyl-terminal StrepTag for affinity purification were analyzed by PCR Method with suitable primers, BoNT / A (AAA23262) BoNT / B (AAA23211) and BoNT / G (CAA52275) encoding chromosomal DNA and the expression vector pQe3 (Qiagen AG) generated as the starting vector. Truncated variants of rat synaptotagmin I (syt I) (amino acids 1-53, amino acids 1-82) and rat synaptotagmin II (syt II) (amino acids 1-61, amino acids 1-90) were transfected into the GST-encoding vector pGEX- 2T (Amersham Biosciences AB). The nucleic acid sequences of all plasmids were confirmed by DNA sequencing. The recombinant Hc fragments and the VoIl-length form of BoNT were prepared in E. coli strain Ml 5 [pRep4] (Qiagen) during a 10-hour induction at room temperature and on a StrepTactin matrix (IBA GmbH) according to cleaned according to the manufacturer's recommendations. The GST fusion proteins obtained from E. coli BL21 were isolated using glutathione immobilized on sepharose beads. Fractions containing the desired proteins were pooled and dialysed against Tris-NaCl-Triton buffer (20 mM Tris-HCl, 150 mM NaCl, 0.5% Triton X-100, pH 7.2).
GST-Pull-down AssavGST pull-down Assav
GST-Fusionsproteine (jeweils 0,12 nmol), die auf lO μl GT-Sepharose- Kugel chen immobilisiert waren, wurden mit Hc-Fragmenten (0,1 nmol) in Abwesenheit oder Gegenwart eines Rinderhirn-Gangliosid-Gemisches (18 % GMl, 55 % GDIa, 10 % GTIb, 2 % sonstige Gangloside; Calbiochem; 20 μg jeweils) in einem Gesamtvolumen von 180 μl Tris-NaCl-Triton-Puffer für 2 h bei 4 °C inkubiert. Die Kügelchen wurden durch Zentrifugation gesammelt, der Überstand ent- fernt und die separierten Kügelchen jeweils dreimal mit 400 μl des gleichen Puffers gewaschen. Die gewaschenen Pellet-Fraktionen wurden in SDS-Probenpuffer aufgekocht und zusammen mit den Überstandfraktionen durch SDS-PAGE und Coomassie Blaufärbung untersucht.GST fusion proteins (0.12 nmol each) immobilized on 10 μl GT-Sepharose beads were incubated with Hc fragments (0.1 nmol) in the absence or presence of a bovine brain ganglioside mixture (18% GM1, 55% GDIa, 10% GTIb, 2% other ganglooside, Calbiochem, 20 μg each) in a total volume of 180 μl Tris-NaCl-Triton buffer for 2 h at 4 ° C. The beads were collected by centrifugation, the supernatant removed and the separated beads each washed three times with 400 μl of the same buffer. The washed pellet fractions were boiled in SDS sample buffer and assayed along with the supernatant fractions by SDS-PAGE and Coomassie blue staining.
Der BoNT/B Wildtyp bindet nur in Anwesenheit von komplexen Gangliosiden und Synaptotagmin I mit Transmembrandomäne, während Synaptotagmin II so- wohl mit oder ohne Transmembrandomäne als auch in An- oder Abwesenheit von komplexen Gangliosiden gebunden wird. Durch zielgerichtete Substitution von Aminosäuren innerhalb der Proteinrezeptorbindungsstelle von BoNT/B konnte die Interaktion mit beiden Synaptotagmin-Molekülen deutlich gesteigert (E1191L; Yl 183L) bzw. abgeschwächt (Vl 118D; Kl 192E) werden (Figur 1).The BoNT / B wild type only binds in the presence of complex gangliosides and synaptotagmin I with transmembrane domain, whereas synaptotagmin II binds to the transmembrane domain. probably bound with or without transmembrane domain as well as in the presence or absence of complex gangliosides. By targeted substitution of amino acids within the protein receptor binding site of BoNT / B, the interaction with both synaptotagmin molecules could be significantly increased (E1191L, Yl 183L) and attenuated (V1118D, Kl 192E) (Figure 1).
Für den BoNT/G Wildtyp wurde gezeigt, dass sowohl in Anwesenheit als auch in Abwesenheit von komplexen Gangliosiden Bindung an Synaptotagmin I und Sy- naptotagmin II jeweils mit oder ohne Transmembrandomäne stattfindet. Durch zielgerichtete Substitution von zu BoNT/B homologen Aminosäuren innerhalb der Proteinrezeptorbindungsstelle von BoNT/G konnte die Interaktion mit beiden Synaptotagmin-Molekülen deutlich gesteigert (Yl 262F) bzw. abgeschwächt (Q 1200E) werden (Figur 2).For the BoNT / G wildtype it has been shown that both in the presence and in the absence of complex gangliosides binding to synaptotagmin I and synaptotagmin II takes place respectively with or without transmembrane domain. By targeted substitution of BoNT / B homologous amino acids within the protein receptor binding site of BoNT / G, interaction with both synaptotagmin molecules could be significantly enhanced (YI 262F) and attenuated (Q 1200E), respectively (Figure 2).
Durch Nachweis der Bindung der rekombinanten Hc- Fragmente von BoNT/B und G an isolierte, immobilisierte Ganglioside konnte eine Schädigung der Funktion der benachbarten Gangliosid-Bindungstasche durch die in der Syt-Bindungstasche eingeführten Mutationen ausgeschlossen und ausreichende Rückschlüsse auf eine intakte Tertiärstruktur des Hc-Fragments geschlossen werden. Diese Ergebnisse werden unterstützt durch CD-spektroskopische Untersuchungen sowie thermischer Denaturierungsexperimente, welche ebenfalls intakte Tertiärstrukturen der mutierten Hc-Fragmente von BoNT/B und G anzeigen.By detecting the binding of the recombinant H c fragments of BoNT / B and G to isolated, immobilized gangliosides, damage to the function of the adjacent ganglioside binding pocket could be excluded by the mutations introduced in the syt binding pocket and sufficient conclusions could be drawn for an intact tertiary structure of Hc Fragments are closed. These results are supported by CD spectroscopic studies as well as thermal denaturation experiments, which also show intact tertiary structures of the mutated Hc fragments of BoNT / B and G.
Maus Hemidiaphragma Assay (HDA)Mouse Hemidiaphragm Assay (HDA)
Die Neurotoxizität der BoNT/A, B und G-Muteine wurde bestimmt wie beschrieben von Habermann et al., Naunyn Schmiedeberg's Arch. Pharmacol. 311 (1980), 33-40. Die Potenz der Voll-Längen-Form von BoNT/A, B und G Wildtypen wurde im HDA mittels einer Dosis- Wirkungs-Kurve bestimmt (Figur 3 und 6). Anschließend wurde die Potenz der verschiedenen Voll-Längen-Formen von BoNT/A, B und G Einzelmutanten im HDA ermittelt (Figur 6) und mittels einer angelegten Potenzfunktion ins Verhältnis zur Potenz der BoNT/B und G Wildtypen gesetzt (Figur 4 und 5). So führt der Austausch der Aminosäuren Valin 1 118 gegen Aspartat oder Lysin 1192 gegen Glutamat in BoNT/B zu einer drastischen Reduktion der Potenz auf < 2%. Im Gegensatz dazu erzeugt die Mutation des Tyrosin 1 183 in Leucin bzw. Arginin eine deutliche Verstärkung der Potenz von BoNT/B (Figur 4). Modifikation von Tyrosin 1256 zu Phenylalanin in BoNT/G resultiert ebenfalls in einer Potenzzunahme während die Mutation Glutamin 1200 in Glutamat, Lysin oder Tyrosin eine starke Abnahme der Potenz von BoNT/G hervorruft (Figur 5). Im Fall von BoNT/A erzeugt die Modifikation Serin 1207 zu Arginin oder Tyrosin eine Potenzerhöhung während die Mutation Lysin 1260 zu GIu- tamat eine drastische Potenzverringerung des BoNT/A bewirkt (Figur 6). The neurotoxicity of the BoNT / A, B and G muteins was determined as described by Habermann et al., Naunyn Schmiedeberg's Arch. Pharmacol. 311 (1980), 33-40. The potency of the full-length form of BoNT / A, B and G wild types was determined in the HDA by means of a dose-response curve (FIGS. 3 and 6). Subsequently, the potency of the various full-length forms of BoNT / A, B and G single mutants in the HDA was determined (FIG. 6) and related to the potency of the BoNT / B and G wild types by means of an applied power function (FIGS. 4 and 5). , Thus, the replacement of the amino acids valine 1 118 against aspartate or lysine 1192 against glutamate in BoNT / B leads to a drastic reduction of the potency to <2%. In contrast, the mutation of tyrosine 1 183 in leucine and arginine, respectively, significantly enhances the potency of BoNT / B (Figure 4). Modification of tyrosine 1256 to phenylalanine in BoNT / G also results in an increase in potency while the glutamine 1200 mutation in glutamate, lysine or tyrosine causes a large decrease in the potency of BoNT / G (Figure 5). In the case of BoNT / A, the modification of serine 1207 to arginine or tyrosine produces an increase in potency while the mutation lysine 1260 to glutamate causes a drastic reduction in the potency of BoNT / A (FIG. 6).

Claims

Ansprüche claims
1. Ein Transportprotein, erhältlich durch Modifizierung der schweren Kette des von Clostridium botulinum gebildeten Neurotoxins, wobei1. A transport protein obtainable by modifying the heavy chain of the neurotoxin produced by Clostridium botulinum, wherein
(i) das Protein an Nervenzellen mit höherer oder niedrigerer Affinität bindet als das native Neurotoxin;(i) the protein binds to higher or lower affinity nerve cells than the native neurotoxin;
(ii) das Protein im Vergleich zu dem nativen Neurotoxin eine erhöhte o- der verringerte Neurotoxizität aufweist; vorzugsweise wird die Neuroto- xizität im Hemidiaphragma-Assay bestimmt; und/oder(ii) the protein has increased or decreased neurotoxicity compared to the native neurotoxin; preferably, the neurotoxicity is determined in the hemidiaphragm assay; and or
(iii) das Protein im Vergleich zu dem nativen Neurotoxin eine geringere Affinität gegenüber neutralisierenden Antikörpern aufweist.(iii) the protein has a lower affinity for neutralizing antibodies compared to the native neurotoxin.
2. Das Transportprotein nach Anspruch 1 , wobei der neutralisierende Antikörper die Bindung des nativen Neurotoxins an den Proteinrezeptor oder Ganglio- sidrezeptor verhindert und/oder die Aufnahme des Neurotoxins in die Nervenzelle verhindert.2. The transport protein according to claim 1, wherein the neutralizing antibody prevents binding of the native neurotoxin to the protein receptor or ganglioid receptor and / or prevents uptake of the neurotoxin into the nerve cell.
3. Das Transportprotein nach Anspruch 1 oder 2, wobei das Transportprotein durch Endozytose von den Zellen aufgenommen wird.3. The transport protein according to claim 1 or 2, wherein the transport protein is taken up by endocytosis of the cells.
4. Das Transportprotein nach einem der Ansprüche 1 bis 3, wobei das Protein spezifisch an die Plasmamembran assoziierte Moleküle, Transmembranproteine, synaptische Vesikelproteine, Proteine der Synaptotagmin-Familie oder der synapatischen Vesikel Glykoproteine 2 (SV2) und/oder Synaptotagmin I und/oder Synaptotagmin II (cholinerger Motoneurone) und/oder SV2A, SV2B oder SV2C bindet, bevorzugt humanes Synaptotagmin I und/oder hu- manes Synaptotagmin II und/oder humanes SV2A, SV2B oder SV2C. The transport protein according to any one of claims 1 to 3, wherein said protein is specifically associated with plasma membrane molecules, transmembrane proteins, synaptic vesicle proteins, synaptotagmin family proteins or synaptic vesicle glycoproteins 2 (SV2) and / or synaptotagmin I and / or synaptotagmin II (cholinergic motor neuron) and / or SV2A, SV2B or SV2C, preferably human synaptotagmin I and / or human synaptotagmin II and / or human SV2A, SV2B or SV2C.
5. Das Transportprotein nach einem der Ansprüche 1 bis 4, wobei das Protein eine wenigstens 15 % höhere Affinität oder eine wenigstens 15 % niedrigere Affinität als das native Neurotoxin aufweist, vorzugsweise wenigstens 50 %, besonders bevorzugt wenigstens 80 %, insbesondere bevorzugt wenigstens 90 %.The transport protein according to any one of claims 1 to 4, wherein the protein has at least 15% higher affinity or at least 15% lower affinity than the native neurotoxin, preferably at least 50%, more preferably at least 80%, most preferably at least 90%. ,
6. Das Transportprotein nach einem der Ansprüche 1 bis 5, wobei das Hc-Fragment des Transportproteins wenigstens eine Substitution und/oder Deletion und/oder Insertion und/oder Addition und/oder posttranslationale Modifikationen von Aminosäuren, die entweder natürlich vorkommen oder nicht natürlichen Ursprungs sind und die die Affinität gegenüber dem nativen6. The transport protein according to any one of claims 1 to 5, wherein the Hc fragment of the transport protein at least one substitution and / or deletion and / or insertion and / or addition and / or post-translational modifications of amino acids, either naturally occurring or not of natural origin are and who are the affinity to the native
Neurotoxin erhöhen oder erniedrigen, aufweist.Neurotoxin increase or decrease.
7. Das Transportprotein nach einem der Ansprüche 1 bis 6, wobei das Neurotoxin Botulinus Neurotoxin Serotyp A bis G ist.The transport protein of any one of claims 1 to 6, wherein the neurotoxin is Botulinum neurotoxin serotype A to G.
8. Das Transportprotein nach Anspruch 7, wobei mindestens eine Aminosäure in den Aminosäurepositionen8. The transport protein of claim 7, wherein at least one amino acid in the amino acid positions
867 bis 1296 des Clostridium botulinum Neurotoxin Serotyp A, 866 bis 1291 des Clostridium botulinum Neurotoxin Serotyp B, 864 bis 1291 bzw. 1280 des Clostridium botulinum Neurotoxin Serotyp Cl,867 to 1296 of Clostridium botulinum neurotoxin serotype A, 866 to 1291 of Clostridium botulinum neurotoxin serotype B, 864 to 1291 and 1280 of Clostridium botulinum neurotoxin serotype Cl, respectively
860 bis 1276 bzw. 1285 des Clostridium botulinum Neurotoxin Serotyp D, 843 bis 1251 bzw. 1252 des Clostridium botulinum bzw. Clostridium butyri- cum Neurotoxin Serotyp E,860 to 1276 and 1285, respectively, of Clostridium botulinum neurotoxin serotype D, 843 to 1251 and 1252 of Clostridium botulinum and Clostridium butyrimus neurotoxin serotype E, respectively;
861 bis 1274, 862 bis 1280 bzw. 1278 und 854 bis 1268 des Clostridium bo- tulinum bzw. Clostridium baratii Neurotoxin Serotyp F,861 to 1274, 862 to 1280 and 1278 and 854 to 1268 of Clostridium borulinum and Clostridium baratii neurotoxin serotype F, respectively;
861 bis 1297 des Clostridium botulinum Neurotoxin Serotyp G. posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch Aminosäuren substituiert ist, die entweder natürlich vorkommen oder nicht natürlichen Ursprungs sind. 861 to 1297 of Clostridium botulinum neurotoxin serotype G. post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by amino acids that are either naturally occurring or non-natural.
9. Das Transportprotein nach einem der vorhergehenden Ansprüche, wobei das native Neurotoxin Neurotoxin Serotyp A ist und, vorzugsweise das Transportprotein an die synaptischen Vesikel Glykoproteine 2 (SV2), besonders bevorzugt SV2A, SV2B oder SV2C bindet.9. The transport protein according to any one of the preceding claims, wherein the native neurotoxin neurotoxin serotype A and, preferably, the transport protein to the synaptic vesicle glycoproteins 2 (SV2), particularly preferably SV2A, SV2B or SV2C binds.
10. Das Transportprotein nach Anspruch 9, wobei mindestens eine Aminosäure in den Positionen Threonin 1195, Asparagin 1196, Glutamin 1199, Lysin 1204, Isoleucin 1205, Leucin 1206, Serin 1207, Leucin 1209, Aspartat 1213, Leucin 1217, Phenylalanin 1255, Asparagin 1256, Isoleucin 1258 und/oder Lysin 1260 der Botulinus Neurotoxin Serotyp A Proteinsequenzen posttrans- lational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.10. The transport protein according to claim 9, wherein at least one amino acid in the positions threonine 1195, asparagine 1196, glutamine 1199, lysine 1204, isoleucine 1205, leucine 1206, serine 1207, leucine 1209, aspartate 1213, leucine 1217, phenylalanine 1255, asparagine 1256 , Isoleucine 1258 and / or lysine 1260 of the botulinum neurotoxin serotype A protein sequences posttranslationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid that is either naturally occurring or not of natural origin is.
11. Das Transportprotein nach Anspruch 10, wobei mindestens eine Aminosäure in den Positionen Asparagin 1196, Glutamin 1199, Serin 1207, Phenylalanin 1255, Isoleucin 1258 und/oder Lysin 1260 posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht na- türlichen Ursprungs ist.11. The transport protein according to claim 10, wherein at least one amino acid in the positions asparagine 1196, glutamine 1199, serine 1207, phenylalanine 1255, isoleucine 1258 and / or lysine 1260 post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid which is either naturally occurring or of non-natural origin.
12. Das Transportprotein nach einem der Ansprüche 10 oder 11, wobei die Aminosäure Serin an Position 1207 durch Arginin oder Tyrosin ersetzt wird.12. The transport protein according to any one of claims 10 or 11, wherein the amino acid serine at position 1207 is replaced by arginine or tyrosine.
13. Das Transportprotein nach einem der Ansprüche 10 oder 11, wobei die Aminosäure Lysin an Position 1260 durch Glutamat ersetzt wird.The transport protein of any one of claims 10 or 11, wherein the amino acid lysine at position 1260 is replaced by glutamate.
14. Das Transportprotein nach einem der Ansprüche 1 bis 8, wobei das Neurotoxin Botulinus Neurotoxin Serotyp B ist und, vorzugsweise das Transportpro- tein an Synaptotagmin.I oder II bindet. 14. The transport protein according to any one of claims 1 to 8, wherein the neurotoxin is botulinum neurotoxin serotype B and, preferably, binds the transport protein to synaptotagmin.I or II.
15. Das Transportprotein nach Anspruch 14, wobei mindestens eine Aminosäure in den Positionen Lysin 1113, Aspartat 1 114, Serin 1116, Prolin 1117, Valin 11 18, Threonin 1182, Tyrosin 1 183, Phenylalanin 1186, Lysin 1188, Glutamat 1191, Lysin 1192, Leucin 1193, Phenylalanin 1194, Phenylalanin 1204, Phenylalanin 1243, Glutamat 1245, Lysin 1254, Aspartat 1255 und Tyrosin15. The transport protein according to claim 14, wherein at least one amino acid in the positions lysine 1113, aspartate 1 114, serine 1116, proline 1117, valine 11 18, threonine 1182, tyrosine 1 183, phenylalanine 1186, lysine 1188, glutamate 1191, lysine 1192 , Leucine 1193, phenylalanine 1194, phenylalanine 1204, phenylalanine 1243, glutamate 1245, lysine 1254, aspartate 1255 and tyrosine
1256 der Botulinus Neurotoxin Serotyp B Proteinsequenzen posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.1256 the botulinum neurotoxin serotype B protein sequences are post-translationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid that is either naturally occurring or not of natural origin.
16. Das Transportprotein nach Anspruch 15, wobei mindestens eine Aminosäure in den Positionen Valin 1 118, Tyrosin 1183, Glutamat 1191, Lysin 1192, Glutamat 1245 und/oder Tyrosin 1256 der Botulinus Neurotoxin Serotyp B Proteinsequenzen posttranslational modifiziert, und/oder addiert, und/oder de- letiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.16. The transport protein according to claim 15, wherein at least one amino acid in the positions valine 118, tyrosine 1183, glutamate 1191, lysine 1192, glutamate 1245 and / or tyrosine 1256 of the botulinum neurotoxin serotype B protein sequences posttranslationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid which either occurs naturally or is not of natural origin.
17. Das Transportprotein nach Anspruch 16, wobei die Aminosäure Tyrosin an Position 1 183 durch Leucin substituiert ist.The transport protein of claim 16, wherein the amino acid tyrosine at position 1 183 is substituted by leucine.
18. Das Transportprotein nach Anspruch 16, wobei die Aminosäure Glutamat an Position 1 191 durch Leucin substituiert ist.18. The transport protein according to claim 16, wherein the amino acid glutamate at position 1 191 is substituted by leucine.
19. Das Transportprotein nach einem der Ansprüche 1 bis 8, wobei das Neuroto- xin Botulinus Neurotoxin Serotyp G ist.19. The transport protein according to any one of claims 1 to 8, wherein the neurotoxin botulinum neurotoxin serotype G is.
20. Das Transportprotein nach Anspruch 19, wobei mindestens eine Aminosäure in den Positionen Phenylalanin 1 121, Lysin 1 123, Alanin 1 124, Serin 1 125, Methionin 1126, Valin 1 190, Leucin 1 191, Serin 1194, Glutamat 1 196, Thre- onin 1199, Glutamin ,1200, Leucin 1201, Phenylalanin 1202, Phenylalanin20. The transport protein according to claim 19, wherein at least one amino acid in the positions phenylalanine 1 121, lysine 1 123, alanine 1 124, serine 1 125, methionine 1126, valine 1 190, leucine 1 191, serine 1194, glutamate 1 196, Thre - onin 1199, glutamine, 1200, leucine 1201, phenylalanine 1202, phenylalanine
1212, Phenylalanin 1248, Lysin 1250, Aspartat 1251 und Tyrosin 1262 der Botulinus Neurotoxin Serotyp G Proteinsequenzen posttranslational modifiziert, und/oder addiert, und/oder deletiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.1212, phenylalanine 1248, lysine 1250, aspartate 1251 and tyrosine 1262 of Botulinum neurotoxin serotype G protein sequences are posttranslationally modified, and / or added, and / or deleted, and / or inserted and / or substituted by an amino acid that is either naturally occurring or not of natural origin.
21. Das Transportprotein nach Anspruch 20, wobei mindestens eine Aminosäure in den Positionen Methionin 1126, Leucin 1191, Threonin 1199, Glutamin 1200, Lysin 1250 und Tyrosin 1262 der Botulinus Neurotoxin Serotyp G Proteinsequenzen posttranslational modifiziert, und/oder addiert, und/oder dele- tiert, und/oder insertiert und/oder durch eine Aminosäure substituiert ist, die entweder natürlich vorkommt oder nicht natürlichen Ursprungs ist.21. The transport protein according to claim 20, wherein at least one amino acid in the positions methionine 1126, leucine 1191, threonine 1199, glutamine 1200, lysine 1250 and tyrosine 1262 of the botulinum neurotoxin serotype G protein posttranslationally modifies, and / or adds, and / or dele and / or inserted and / or substituted by an amino acid which is either naturally occurring or of non-natural origin.
22. Das Transportprotein nach Anspruch 21, wobei die Aminosäure Tyrosin an Position 1262 durch Phenylalanin substituiert ist.The transport protein of claim 21, wherein the amino acid tyrosine at position 1262 is substituted by phenylalanine.
23. Eine Zusammensetzung, enthaltend ein Transportprotein nach einem der Ansprüche 1 bis 22 und wenigstens ein intervenierendes Molekül.23. A composition containing a transport protein according to any one of claims 1 to 22 and at least one intervening molecule.
24. Die Zusammensetzung nach Anspruch 23, wobei das intervenierende Molekül durch eine Peptid-Bindung, Ester-Bindung, Ether-Bindung, Sulfid-Bindung, Di- sulfid-Bindung oder Kohlenstoff-Kohlenstoff-Bindung kovalent an das Transportprotein gebunden ist.24. The composition of claim 23, wherein the intervening molecule is covalently bound to the transport protein by a peptide bond, ester bond, ether bond, sulfide bond, disulfide bond, or carbon-carbon bond.
25. Die Zusammensetzung nach Anspruch 23 oder 24, wobei das intervenierende Molekül entweder ein kleines organisches Molekül, ein Peptid oder ein Protein ist.The composition of claim 23 or 24, wherein the intervening molecule is either a small organic molecule, a peptide or a protein.
26. Die Zusammensetzung nach Anspruch 25, wobei das kleine organische Molekül ein Virustatikum, Zytostatikum, Antibiotikum oder ein Immunglobulin ist.26. The composition of claim 25, wherein the small organic molecule is a virustatic, cytostatic, antibiotic or immunoglobulin.
27. Die Zusammensetzung nach Anspruch 25, wobei das Protein eine Protease ist. 27. The composition of claim 25, wherein the protein is a protease.
28. Die Zusammensetzung nach Anspruch 27, wobei die Protease eine oder mehrere leichte Ketten (LC) der Serotypen A, B, Cl, D, E, F und/oder G des Clostridium botulinum Neurotoxins umfasst.The composition of claim 27, wherein the protease comprises one or more light chain (LC) serotypes A, B, Cl, D, E, F and / or G of Clostridium botulinum neurotoxin.
29. Die Zusammensetzung nach Anspruch 27, wobei die Protease ein proteolytisch aktives Fragment enthält, welches von der leichten Kette (LC) der Serotypen A, B, Cl, D, E, F und/oder G des Clostridium botulinum Neurotoxins abgeleitet ist und dadurch charakterisiert ist, dass es wenigstens 0,01 % der proteolytischen Aktivität der nativen Protease, vorzugsweise wenigstens 50 % aufweist.29. The composition of claim 27, wherein the protease contains a proteolytically active fragment derived from the light chain (LC) of the serotypes A, B, Cl, D, E, F and / or G of the Clostridium botulinum neurotoxin and thereby characterized in that it has at least 0.01% of the proteolytic activity of the native protease, preferably at least 50%.
30. Die Zusammensetzung nach Anspruch 28 und 29, wobei die Protease bestimmte Substrate innerhalb des cholinergen Motoneurons spezifisch spaltet.The composition of claims 28 and 29, wherein the protease specifically cleaves certain substrates within the cholinergic motoneuron.
31. Die Zusammensetzμng nach Anspruch 30, wobei die Substrate ausgewählt sind aus Proteinen, die in der Freisetzung von Neurotransmittern in Nervenzellen involviert sind, und Proteinen, die zu katalytischen Reaktionen innerhalb der Nervenzelle fähig sind.31. The assembly of claim 30, wherein the substrates are selected from proteins involved in the release of neurotransmitters into nerve cells and proteins capable of catalytic reactions within the nerve cell.
32. Die Zusammensetzung nach Anspruch 28 und 29, wobei die Protease und das Transportprotein kovalent durch eine Aminosäuresequenz verbunden sind, die von einer Endopeptidase spezifisch erkannt und gespalten wird.The composition of claims 28 and 29, wherein the protease and the transport protein are covalently linked by an amino acid sequence that is specifically recognized and cleaved by an endopeptidase.
33. Die Zusammensetzung nach Anspruch 32, wobei die Aminosäuresequenz die Sequenz CXXXZKTKSLVPRGSKBXXC umfasst, wobei X irgendeine Aminosäure ist und Z und B unabhängig voneinander ausgewählt sind aus Alanin, Valin, Serin, Threonin und Glycin.33. The composition of claim 32, wherein the amino acid sequence comprises the sequence CXXXZKTKSLVPRGSKBXXC, wherein X is any amino acid and Z and B are independently selected from alanine, valine, serine, threonine and glycine.
34. Die Zusammensetzung nach Anspruch 32, wobei nach Spaltung durch die En- dopeptidase eine Disulfid-Brücke die Protease und das Transportprotein miteinander verbindet, was wiederum zur Entstehung eines aktiven Holotoxins führt. 34. The composition of claim 32, wherein after cleavage by the endopeptidase a disulfide bridge links the protease and the transport protein together, which in turn leads to the formation of an active holotoxin.
35. Eine pharmazeutische Zusammensetzung, die das Transportprotein nach einem der Ansprüche 1 bis 22 oder die Zusammensetzung nach einem der Ansprüche 23 bis 34 enthält, sowie optional einen pharmazeutisch akzeptablen Träger, Verdünnungsmittel und/oder Additiv.35. A pharmaceutical composition containing the transport protein of any one of claims 1 to 22 or the composition of any of claims 23 to 34, and optionally a pharmaceutically acceptable carrier, diluent and / or additive.
36. Verwendung der pharmazeutischen Zusammensetzung nach Anspruch 35 zur Behandlung von Störungen und Erkrankungen, für welche eine Therapie mit Botulinus Neurotoxin indiziert ist.36. Use of the pharmaceutical composition according to claim 35 for the treatment of disorders and diseases for which therapy with botulinum neurotoxin is indicated.
37. Verwendung nach Anspruch 36, wobei die Störung oder Erkrankung eine der folgenden ist: Hemifacialspasmus, spasmodischer Torticollis, Blepharospasmus, Spastizitäten, Dystönien, Migräne, Schmerzen, Erkrankungen der Hals- und Lendenwirbelsäule, Strabismus, Hypersalivation, Schnarchen, Wundheilung und depressive Erkrankungen.The use of claim 36, wherein the disorder or disease is any of the following: hemifacial spasm, spasmodic torticollis, blepharospasm, spasticities, dystonia, migraine, pain, cervical and lumbar spine disorders, strabismus, hypersalivation, snoring, wound healing and depressive disorders.
38. Eine kosmetische Zusammensetzung, die das Transportprotein gemäß einem der Ansprüche 1 bis 22 oder die Zusammensetzung nach einem der Ansprüche 23 bis 34 enthält, sowie optional einen kosmetisch akzeptablen Träger, Verdün- nungsmittel und/oder Additiv.38. A cosmetic composition containing the transport protein according to any one of claims 1 to 22 or the composition according to any one of claims 23 to 34, and optionally a cosmetically acceptable carrier, diluent and / or additive.
39. Verwendung einer kosmetischen Zusammensetzung nach Anspruch 38 für die Behandlung der kosmetischen Indikationen Hyperhydrose und Gesichtsfalten.39. Use of a cosmetic composition according to claim 38 for the treatment of the cosmetic indications Hyperhydrose and facial wrinkles.
40. Ein Verfahren zur Herstellung eines Transportproteins nach den Ansprüchen 1 bis 22 oder einer Zusammensetzung nach den Ansprüchen 23 bis 34 durch Rekombination gemäß bekannter Verfahren.40. A method for producing a transport protein according to claims 1 to 22 or a composition according to claims 23 to 34 by recombination according to known methods.
41. Ein Verfahren zur Herstellung des Transportproteins nach Anspruch 40, wobei das Gen des Hc-Fragments durch zwei Nukleinsäuren enthaltende Restriktions- endonukleaseschnittstellen flankiert wird, wobei die Restriktionsendonuklea- seschnittstellen kompatibel sind mit jenen der anderen Hc-Fragmente aus Clostridium botulinum Neurotoxinen, um deren leichten modularen Austausch zu gestatten, während die Ähnlichkeit der Aminosäuresequenz erhalten bleibt.41. A method for producing the transport protein according to claim 40, wherein the gene of the Hc fragment is flanked by restriction endonuclease cleavage sites containing two nucleic acids, wherein the restriction endonuclease cleavage sites interfaces are compatible with those of the other Hc fragments of Clostridium botulinum neurotoxins to allow for their easy modular exchange while retaining the similarity of the amino acid sequence.
42. Ein Verfahren zur Herstellung der Zusammensetzung nach Anspruch 40, wobei das Gen der Protease durch zwei Nukleinsäuren enthaltende Restriktionsendo- nukleaseschnittstellen flankiert wird, wobei die Restriktionsendonuklea- seschnittstellen kompatibel sind mit jenen der anderen Proteasedomänen aus Clostridium botulinum Neurotoxinen, um deren leichten modularen Austausch zu gestatten, während die Ähnlichkeit der Aminosäuresequenz erhalten bleibt.42. A method of making the composition of claim 40, wherein the gene of the protease is flanked by restriction endonuclease cleavage sites containing two nucleic acids, wherein the restriction endonuclease sites are compatible with those of the other protease domains of Clostridium botulinum neurotoxins to facilitate their easy modular exchange while retaining the similarity of the amino acid sequence.
43. Eine Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Expressionsvektor ein Transportprotein gemäß den Ansprüchen 1 bis 22 oder eine Zusammensetzung nach einem der Ansprüche 23 bis 34 kodiert.43. A host cell containing a recombinant expression vector, wherein the expression vector encodes a transport protein according to claims 1 to 22 or a composition according to any one of claims 23 to 34.
44. Die Wirtszelle gemäß Anspruch 43, wobei die Wirtszelle eine Zelle von Escherichia coli, insbesondere E. coli K 12, Saccharomyces cerevisiae, Pichia pasto- ris oder Bacillus megaterium sein kann.44. The host cell according to claim 43, wherein the host cell can be a cell of Escherichia coli, in particular E. coli K 12, Saccharomyces cerevisiae, Pichia pastoris or Bacillus megaterium.
45. Ein Expressionsvektor, wobei der Vektor eine Nukleinsäure umfasst, die ein Transportprotein gemäß einem der Ansprüche 1 bis 22 oder eine Zusammensetzung nach einem der Ansprüche 23 bis 34 kodiert. 45. An expression vector, wherein the vector comprises a nucleic acid encoding a transport protein according to any one of claims 1 to 22 or a composition according to any one of claims 23 to 34.
EP06724595A 2005-04-26 2006-04-26 Carrier for targeting nerve cells Withdrawn EP1874803A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18212034.5A EP3511338A3 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
PL17154062T PL3181578T3 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP17154062.8A EP3181578B1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP20100011509 EP2345666A1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005019302A DE102005019302A1 (en) 2005-04-26 2005-04-26 Carrier for targeting nerve cells
PCT/EP2006/003896 WO2006114308A2 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18212034.5A Division EP3511338A3 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP17154062.8A Division EP3181578B1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Publications (1)

Publication Number Publication Date
EP1874803A2 true EP1874803A2 (en) 2008-01-09

Family

ID=36685707

Family Applications (4)

Application Number Title Priority Date Filing Date
EP17154062.8A Active EP3181578B1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP06724595A Withdrawn EP1874803A2 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP18212034.5A Withdrawn EP3511338A3 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP20100011509 Ceased EP2345666A1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17154062.8A Active EP3181578B1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP18212034.5A Withdrawn EP3511338A3 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells
EP20100011509 Ceased EP2345666A1 (en) 2005-04-26 2006-04-26 Carrier for targeting nerve cells

Country Status (20)

Country Link
US (5) US8481040B2 (en)
EP (4) EP3181578B1 (en)
JP (1) JP2008538902A (en)
KR (1) KR20080014754A (en)
CN (1) CN101184770A (en)
AU (1) AU2006239506A1 (en)
BR (1) BRPI0610252A2 (en)
CA (1) CA2606030A1 (en)
DE (1) DE102005019302A1 (en)
DK (1) DK3181578T3 (en)
EA (1) EA012578B1 (en)
ES (1) ES2723723T3 (en)
HU (1) HUE044200T2 (en)
IL (1) IL186508A0 (en)
MX (1) MX2007013284A (en)
PL (1) PL3181578T3 (en)
PT (1) PT3181578T (en)
TR (1) TR201905924T4 (en)
WO (1) WO2006114308A2 (en)
ZA (1) ZA200709166B (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043009A1 (en) 2004-09-06 2006-03-23 Toxogen Gmbh Transport protein for introducing chemical compounds into nerve cells
DE102005019302A1 (en) * 2005-04-26 2006-11-16 Toxogen Gmbh Carrier for targeting nerve cells
JP2008169166A (en) * 2007-01-14 2008-07-24 Tokyo Univ Of Agriculture & Technology Sugar-binding polypeptide, composite material and drug delivery system
CN101720331A (en) 2007-06-01 2010-06-02 德国麦氏大药厂 Process for providing a temperature - stable muscle relaxant on the basis of the neurotoxic component of botulinum toxin
CN101687046B (en) * 2007-07-10 2012-12-26 株式会社美地拓斯 Pharmaceutical liquid composition of botulinum toxin with improved stability
WO2009015840A2 (en) * 2007-07-27 2009-02-05 Merz Pharma Gmbh & Co. Kgaa Polypeptide for targeting of neural cells
WO2009038770A2 (en) * 2007-09-20 2009-03-26 University Of Massachusetts Cvip Detoxified recombinant botulinum neurotoxin
EP2210268A4 (en) * 2007-10-17 2012-02-15 Ohmx Corp Novel chemistry used in biosensors
EP2072057A1 (en) 2007-12-21 2009-06-24 Merz Pharma GmbH & Co.KGaA Early administration of Botulinum toxin in the treatment of cerebrovascular event and spinal cord injury
EP2072039A1 (en) 2007-12-21 2009-06-24 Merz Pharma GmbH & Co.KGaA Use of a neurotoxic component of Clostridium botulinum toxin complex to reduce or prevent side effects
WO2009115531A2 (en) 2008-03-17 2009-09-24 Universitätsklinikum Münster Yopm as delivery vehicle for cargo molecules and as biological therapeutic for immunomodulation of inflammatory reactions
BRPI0916964A2 (en) 2008-08-29 2015-11-24 Merz Pharma Gmbh & Co Kgaa polypeptide, antibody, nucleic acid, vector, host cell, method for making a polypeptide, composition and use of the polypeptide
EP2161033B1 (en) 2008-09-09 2013-05-01 Susanne Dr. Grafe Botulinum toxin to introduce temporal infertiliy in a vertebrate (e.g. human)
EP2248518B1 (en) 2009-04-17 2013-01-16 Merz Pharma GmbH & Co. KGaA Formulation for stabilizing proteins, peptides or mixtures thereof.
EP2246065A1 (en) 2009-04-29 2010-11-03 Merz Pharma GmbH & Co. KGaA Intrastriatal botulinum toxin therapy
BR112012028006A2 (en) 2010-05-07 2016-08-02 Hoffmann La Roche immunohistochemistry (ihq) method, use of a therapeutically active binding domain, kit and binding domain
EP2399601A1 (en) 2010-06-24 2011-12-28 Merz Pharma GmbH & Co. KGaA Botulinum toxin therapy
JP5990176B2 (en) 2010-10-12 2016-09-07 メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン Mammalian excipient-free preparation suitable for protein stabilization
KR101640694B1 (en) * 2011-09-29 2016-07-18 셀스냅, 엘엘씨 Compositions and methods for toxigenicity testing
DK3372239T3 (en) * 2012-05-30 2021-02-01 Harvard College MANIPULATED BOTULINUM NEUROTOXIN
BR112015003591B1 (en) 2012-11-21 2022-02-01 Ipsen Bioinnovation Limited USES OF LYS-C AND METHODS FOR MANUFACTURING A PROTEOLYTICLY PROCESSED POLYPEPTIDE
GB201312317D0 (en) 2013-07-09 2013-08-21 Syntaxin Ltd Cationic neurotoxins
AU2014322988B2 (en) 2013-09-20 2018-12-06 Westfaelische Wilhelms-Universitaet Muenster Cell-penetrating bacterial E3-ubiqitin-ligases for use in immunotherapy
ES2642916T3 (en) 2014-06-06 2017-11-20 Galit KLEINER-FISMAN Botulinum toxin for use in the treatment of paratonia
JP2017534598A (en) * 2014-09-30 2017-11-24 ザ メディカル カレッジ オブ ウィスコンシン インクThe Medical College Of Wisconsin, Inc. A versatile platform for targeted therapy to treat neurological diseases
US10549042B2 (en) 2014-12-23 2020-02-04 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled glass syringe
US10647750B2 (en) 2015-01-09 2020-05-12 Ipsen Bioinnovation Limited Cationic neurotoxins
EP3274364B1 (en) * 2015-03-26 2021-08-04 President and Fellows of Harvard College Engineered botulinum neurotoxin
GB201517450D0 (en) 2015-10-02 2015-11-18 Ipsen Biopharm Ltd Method
GB201607901D0 (en) 2016-05-05 2016-06-22 Ipsen Biopharm Ltd Chimeric neurotoxins
SG11201810210UA (en) * 2016-06-08 2018-12-28 Childrens Medical Center Engineered botulinum neurotoxins
TWI737742B (en) 2016-06-22 2021-09-01 德商梅茲製藥有限兩合公司 Botulinum toxin prefilled syringe system, kit having the same and use thereof
EP3263710A1 (en) 2016-07-01 2018-01-03 Ipsen Biopharm Limited Production of activated clostridial neurotoxins
HUE061429T2 (en) * 2016-07-08 2023-06-28 Childrens Medical Center A novel botulinum neurotoxin and its derivatives
US11117935B2 (en) 2016-08-24 2021-09-14 President And Fellows Of Harvard College Engineered botulinum neurotoxin
TW201814045A (en) 2016-09-16 2018-04-16 英商艾普森生物製藥有限公司 Method for producing di-chain clostridial neurotoxins
EP3519430A1 (en) 2016-09-29 2019-08-07 Ipsen Biopharm Limited Hybrid neurotoxins
EP3312290A1 (en) 2016-10-18 2018-04-25 Ipsen Biopharm Limited Cellular vamp cleavage assay
WO2019067815A2 (en) 2017-09-29 2019-04-04 Children's Medical Center Corporation A neurotoxin-like toxin and uses thereof
TWI810228B (en) 2017-12-20 2023-08-01 英商艾普森生物製藥有限公司 Treatment of autonomic disorders
KR20200115584A (en) * 2018-01-30 2020-10-07 칠드런'즈 메디컬 센터 코포레이션 Production of botulinum neurotoxin using the Bacillus system
US11707510B2 (en) * 2018-02-16 2023-07-25 Preclinics Discovery Gmbh Nucleic acid-based botulinum neurotoxin for therapeutic use
WO2019243376A1 (en) 2018-06-18 2019-12-26 Ipsen Biopharm Limited Intramuscular injection of botulinum toxin for the treatment of vulvodynia
CA3111674A1 (en) 2018-09-28 2020-04-02 Ipsen Biopharm Limited Cell-based clostridal neurotoxin assays
GB201815844D0 (en) 2018-09-28 2018-11-14 Ipsen Biopharm Ltd Therapeutic & comestic uses of botulinum neurotoxin serotype e
GB201815817D0 (en) 2018-09-28 2018-11-14 Ispen Biopharm Ltd Clostridial neurotoxins comprising and exogenous activation loop
US20220016221A1 (en) 2018-12-05 2022-01-20 Ipsen Biopharm Limited Treatment of symptoms of traumatic brain injury
GB201900621D0 (en) 2019-01-16 2019-03-06 Ipsen Biopharm Ltd Labelled polypeptides
GB201907016D0 (en) 2019-05-17 2019-07-03 Ipsen Biopharm Ltd Screening method to determine suitability for participation in a clinical trial
GB201914034D0 (en) 2019-09-30 2019-11-13 Ipsen Biopharm Ltd Treatment of neurological disorders
GB202001353D0 (en) 2020-01-31 2020-03-18 Ipsen Biopharm Ltd Treatment of skin conditions
SE2050326A1 (en) * 2020-03-25 2021-06-29 Jonathan Davies Engineered botulinum neurotoxin serotype E
GB202011055D0 (en) 2020-07-17 2020-09-02 Ipsen Bioinnovation Ltd Treatment of post-operative pain
GB202100566D0 (en) 2021-01-15 2021-03-03 Ipsen Biopharm Ltd Treatment of brain damage
GB202104294D0 (en) 2021-03-26 2021-05-12 Ipsen Biopharm Ltd Clostridial neurotoxins comprising an exogenous activation loop
CN117396217A (en) 2021-03-30 2024-01-12 益普生生物制药有限公司 Catalytically inactive clostridial neurotoxins for use in the treatment of pain and inflammatory diseases
WO2022208091A1 (en) 2021-03-30 2022-10-06 Ipsen Biopharm Limited Treatment of pain & inflammatory disorders
JP2024534384A (en) 2021-09-16 2024-09-20 イプセン バイオファーム リミテッド Modified BoNT/A for use in treating cervical dystonia
EP4404955A1 (en) 2021-09-23 2024-07-31 Ipsen Biopharm Limited Modified bont/a for use in the treatment of a disorder affecting an eyelid muscle of a subject
GB202113602D0 (en) 2021-09-23 2021-11-10 Ipsen Biopharm Ltd Treatment of a disorder affecting an eyelid muscle of a subject
GB202116795D0 (en) 2021-11-22 2022-01-05 Ipsen Biopharm Ltd Treatment of visceral pain
KR20240116485A (en) 2021-11-22 2024-07-29 입센 바이오팜 리미티드 treatment of pain
GB202206348D0 (en) 2022-04-29 2022-06-15 Ipsen Biopharm Ltd Treatment of limb spasticity
GB202206362D0 (en) 2022-04-29 2022-06-15 Ipsen Biopharm Ltd Treatment of upper facial lines
GB202206353D0 (en) 2022-04-29 2022-06-15 Ipsen Biopharm Ltd Treatment of cervical dystonia
GB202206361D0 (en) 2022-04-29 2022-06-15 Ipsen Biopharm Ltd Treatment of a facial dystonia
GB202213479D0 (en) 2022-09-14 2022-10-26 Ipsen Biopharm Ltd Cell-free clostridial neurotoxin assays
GB202214229D0 (en) 2022-09-28 2022-11-09 Ipsen Biopharm Ltd Clostridial neurotoxins comprising an activating endosomal protease cleavage site
GB202214232D0 (en) 2022-09-28 2022-11-09 Ispen Biopharm Ltd Clostridial neurotoxins comprising an activating exogenous protease cleavage site
WO2024069191A1 (en) 2022-09-30 2024-04-04 Ipsen Biopharm Limited Clostridial neurotoxin for use in a treatment of bladder pain syndrome
GB202404021D0 (en) 2024-03-20 2024-05-01 Ipsen Biopharm Ltd Cell-based neurotoxin assay

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022950A (en) * 1984-06-07 2000-02-08 Seragen, Inc. Hybrid molecules having translocation region and cell-binding region
US5668255A (en) * 1984-06-07 1997-09-16 Seragen, Inc. Hybrid molecules having translocation region and cell-binding region
US7214787B1 (en) * 1993-09-21 2007-05-08 United States Of America As Represented By The Secretary Of The Army Recombinant vaccine against botulinum neurotoxin
GB9410871D0 (en) * 1994-05-31 1994-07-20 Imperial College Modification of tetanus toxin for use as a transport protein
JP3523879B2 (en) * 1994-05-31 2004-04-26 アレルガン インコーポレイテッド Modification of Clostridium toxin for transport proteins
US6967088B1 (en) * 1995-03-16 2005-11-22 Allergan, Inc. Soluble recombinant botulinum toxin proteins
GB9508204D0 (en) * 1995-04-21 1995-06-07 Speywood Lab Ltd A novel agent able to modify peripheral afferent function
US5939070A (en) * 1996-10-28 1999-08-17 Wisconsin Alumni Research Foundation Hybrid botulinal neurotoxins
GB9818548D0 (en) * 1998-08-25 1998-10-21 Microbiological Res Authority Treatment of mucas hypersecretion
US7563874B2 (en) 1998-08-31 2009-07-21 The Regents Of The University Of California Therapeutic monoclonal antibodies that neutralize botulinum neurotoxins
US6545126B1 (en) 1999-03-18 2003-04-08 Wisconsin Alumni Research Foundation Chimeric toxins
US7235521B1 (en) * 1999-05-17 2007-06-26 United States Of America As Represented By The Secretary Of The Army Previns as specific inhibitors and therapeutic agents for botulinum toxin B and tetanus neurotoxins
ES2277854T5 (en) * 1999-08-25 2011-02-04 Allergan, Inc. ACTIVABLE RECOMBINANT NEUROTOXINS.
DK1234043T3 (en) * 1999-12-02 2004-07-19 Health Prot Agency Construction for delivery of therapeutic agents to neurocells
US7368532B2 (en) * 1999-12-02 2008-05-06 Syntaxin Limited Constructs for delivery of therapeutic agents to neuronal cells
US7138127B1 (en) * 2000-01-19 2006-11-21 Allergan, Inc. Clostridial toxin derivatives and methods for treating pain
US6670322B2 (en) * 2000-06-01 2003-12-30 Wisconsin Alumni Research Foundation Method of targeting pharmaceuticals to motor neurons
US20020127247A1 (en) 2000-11-17 2002-09-12 Allergen Sales, Inc. Modified clostridial neurotoxins with altered biological persistence
US7273722B2 (en) * 2000-11-29 2007-09-25 Allergan, Inc. Neurotoxins with enhanced target specificity
US6787517B1 (en) * 2000-12-29 2004-09-07 Allergan, Inc. Agent and methods for treating pain
CA2367636C (en) * 2001-04-12 2010-05-04 Lisa Mckerracher Fusion proteins
GB0112687D0 (en) * 2001-05-24 2001-07-18 Microbiological Res Authority Pharmaceutical use of secreted bacterial effector proteins
US7196189B2 (en) 2001-10-09 2007-03-27 Microbia, Inc. love variant regulator molecules
US20070118934A1 (en) * 2001-10-26 2007-05-24 Planet Biotechnology, Inc. Chimeric toxin receptor proteins and chimeric toxin receptor proteins for treatment and prevention of anthrax
JP2005538954A (en) * 2002-05-31 2005-12-22 トーマス・ジェファーソン・ユニバーシティ Compositions and methods for transepithelial transport of molecules
GB0216865D0 (en) 2002-07-19 2002-08-28 Microbiological Res Authority Targetted agents for nerve regeneration
ES2333319T3 (en) * 2002-10-31 2010-02-19 Wisconsin Alumni Research Foundation BOTULINICA B NEUROTOXINE RECEPTORS AND THEIR USE.
US20040115727A1 (en) * 2002-12-11 2004-06-17 Allergan, Inc., A Corporation Evolved clostridial toxins with altered protease specificity
WO2005030119A2 (en) * 2003-04-11 2005-04-07 Allergan, Inc. Botulinum toxin a peptides and methods of predicting and reducing immunoresistance to botulinum toxin therapy
US7172764B2 (en) * 2003-11-17 2007-02-06 Allergan, Inc. Rescue agents for treating botulinum toxin intoxications
US20050129677A1 (en) * 2003-12-10 2005-06-16 Shengwen Li Lipid rafts and clostridial toxins
US7514088B2 (en) * 2005-03-15 2009-04-07 Allergan, Inc. Multivalent Clostridial toxin derivatives and methods of their use
GB2416089A (en) 2004-06-30 2006-01-11 Siemens Ag Sending cti messages in a communication system
GB2416122A (en) 2004-07-12 2006-01-18 Ipsen Ltd Botulinum neurotoxin composition
EP1778279B1 (en) 2004-08-04 2014-12-03 Ipsen Biopharm Limited Pharmaceutical composition containing botulinum neurotoxin a2
GB2416692A (en) 2004-08-04 2006-02-08 Ipsen Ltd Pharmaceutical composition containing botulinum neurotoxin
DE102004043009A1 (en) * 2004-09-06 2006-03-23 Toxogen Gmbh Transport protein for introducing chemical compounds into nerve cells
JP2008515808A (en) * 2004-10-04 2008-05-15 トリニティ バイオシステムズ インコーポレーテッド Methods and compositions for needle-free polymer delivery
WO2006042149A2 (en) * 2004-10-06 2006-04-20 Allergan, Inc. Determining and reducing immunoresistance to botulinum toxin therapy using botulinum toxin a peptides
EP1824971B1 (en) * 2004-11-22 2016-01-13 New York University Genetically engineered clostridial genes, proteins encoded by the engineered genes, and uses thereof
US20070059326A1 (en) * 2004-12-02 2007-03-15 Michael Baldwin Escherichia coli-derived vaccine and therapy against botulism
EP1861419B1 (en) * 2005-03-15 2011-06-29 Allergan, Inc. Modified clostridial toxins with enhanced targeting capabilities for endogenous clostridial toxin receptor systems
DE102005019302A1 (en) * 2005-04-26 2006-11-16 Toxogen Gmbh Carrier for targeting nerve cells
JP5134540B2 (en) 2005-09-19 2013-01-30 アラーガン、インコーポレイテッド Clostridial toxin activated Clostridial toxin
DE102005051789B4 (en) 2005-10-28 2014-08-07 Toxogen Gmbh The botulinum neurotoxin A protein receptor and its applications
JP2009543556A (en) * 2006-07-11 2009-12-10 アラーガン、インコーポレイテッド Modified clostridial toxin with enhanced translocation ability and enhanced targeting activity
US8445650B2 (en) * 2007-09-25 2013-05-21 Thomas Jefferson University Mutant botulinum neurotoxin serotype A polypeptide and uses thereof
US9816818B2 (en) 2010-12-03 2017-11-14 Qualcomm Incorporated Inertial sensor aided heading and positioning for GNSS vehicle navigation
DK3372239T3 (en) * 2012-05-30 2021-02-01 Harvard College MANIPULATED BOTULINUM NEUROTOXIN
US9005628B2 (en) * 2012-10-04 2015-04-14 Dublin City University Biotherapy for pain

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006114308A2 *

Also Published As

Publication number Publication date
EA200702323A1 (en) 2008-04-28
HUE044200T2 (en) 2019-10-28
WO2006114308A2 (en) 2006-11-02
EP3181578A1 (en) 2017-06-21
ES2723723T3 (en) 2019-08-30
MX2007013284A (en) 2008-03-07
DK3181578T3 (en) 2019-05-06
US20150038401A1 (en) 2015-02-05
EP3511338A2 (en) 2019-07-17
US10266816B2 (en) 2019-04-23
US20130315888A1 (en) 2013-11-28
DE102005019302A1 (en) 2006-11-16
EP3181578B1 (en) 2019-01-30
US20090311275A1 (en) 2009-12-17
KR20080014754A (en) 2008-02-14
EP2345666A1 (en) 2011-07-20
EP3511338A3 (en) 2019-08-21
ZA200709166B (en) 2008-11-26
BRPI0610252A2 (en) 2010-06-08
AU2006239506A1 (en) 2006-11-02
JP2008538902A (en) 2008-11-13
US9115350B2 (en) 2015-08-25
PL3181578T3 (en) 2019-07-31
CA2606030A1 (en) 2006-11-02
US20170275607A1 (en) 2017-09-28
EA012578B1 (en) 2009-10-30
WO2006114308A3 (en) 2007-05-18
WO2006114308A8 (en) 2008-01-03
US20200024588A1 (en) 2020-01-23
TR201905924T4 (en) 2019-05-21
US10883096B2 (en) 2021-01-05
US8481040B2 (en) 2013-07-09
US9650622B2 (en) 2017-05-16
CN101184770A (en) 2008-05-21
PT3181578T (en) 2019-05-27
IL186508A0 (en) 2008-01-20

Similar Documents

Publication Publication Date Title
EP3181578B1 (en) Carrier for targeting nerve cells
EP1786832B1 (en) Transport protein which is used to introduce chemical compounds into nerve cells
EP1994048B1 (en) Pegylated mutated clostridium botulinum toxin
DE60032367T2 (en) ACTIVE RECOMBINANT NEUROTOXINE
DE60131856T2 (en) Motif based on leucine and Clostridium neurotoxins
DE69733146T2 (en) RECOMBINANT TOXIN FRAGMENTS
DE102005051789B4 (en) The botulinum neurotoxin A protein receptor and its applications
WO2006076902A2 (en) Recombinant expression of proteins in a disulfide-bridged, two-chain form
WO1999058571A2 (en) Hybrid protein for inhibiting the degranulation of mastocytes and the use thereof
US20230028019A1 (en) Bonded neurotoxins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071004

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

R17D Deferred search report published (corrected)

Effective date: 20080103

17Q First examination report despatched

Effective date: 20080408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101202