EP1874534A1 - Fireproof glazing - Google Patents

Fireproof glazing

Info

Publication number
EP1874534A1
EP1874534A1 EP06725756A EP06725756A EP1874534A1 EP 1874534 A1 EP1874534 A1 EP 1874534A1 EP 06725756 A EP06725756 A EP 06725756A EP 06725756 A EP06725756 A EP 06725756A EP 1874534 A1 EP1874534 A1 EP 1874534A1
Authority
EP
European Patent Office
Prior art keywords
layer
glazing
glazing according
intumescent
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06725756A
Other languages
German (de)
French (fr)
Inventor
Bertrand GLAVERBEL - Centre R & D DURY
Etienne GLAVERBEL - Centre R & D DEGAND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
AGC Glass Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA filed Critical AGC Glass Europe SA
Publication of EP1874534A1 publication Critical patent/EP1874534A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10311Intumescent layers for fire protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Definitions

  • the present invention relates to fireproof glazing comprising a layer of intumescent material based on hydrated alkali silicate.
  • Fireproof glazing comprising in addition to glass sheets, one or more sheets of intumescent material are widely used in the trade. They have various fire resistance qualities depending on their constitution. Apart from their quality of fire resistance they must also ensure a certain mechanical resistance. These two properties can be obtained also by a suitable choice of structure including in particular several sheets of glass associated with several sheets of intumescent material.
  • the products in question must be free from defects, and in particular from defects which impair their transparency. It is known that among the possible defects for this type of product, the most common are the formation of bubbles eVou sail ("haze"). These defects appear most often to the test of aging. To be perfectly satisfactory it is appropriate that these products retain their optical quality for at least a period of not less than 10 years.
  • a recognized factor promoting accelerated aging is exposure to ultraviolet light. Given that the products in question are very often exposed to ultraviolet-rich radiation, especially to solar radiation, the preservation of optical qualities requires the implementation of specific provisions.
  • a sheet known to constitute an effective UV filter and which is also commonly used in the constitution of laminated glazing for their confer impact resistance properties.
  • Polyvinyl butyral sheets are particularly suitable.
  • the use of polymer sheets in fireproof glazing is not always appropriate.
  • the presence of organic materials is preferably avoided in this type of products because of their fire behavior.
  • the implementation imposes a well-defined provision of this sheet on the path of the incident radiation so that it actually prevents UV rays before they reach the sensitive layer to be protected.
  • the object of the invention is therefore to provide fire-resistant glazings comprising intumescent layers based on alkaline silicates protected against the alterations resulting from exposure to ultraviolet rays.
  • At least one glass sheet comprises a layer, or a set of layers, whose transmission of ultraviolet rays of wavelength less than 345 nm, is not greater than 35% preferably not more than 25% and particularly preferably not more than 20%.
  • the most efficient UV filtering layers do not transmit more than 10% and even less than 10% of wavelengths less than 345 nm.
  • the layer or layers in question also offer a transmission in the visible which is not less than 80% and preferably not less than 85%.
  • the transmissions in question here are those specific to the layer or the layer system, it being understood that in the glazing necessarily intervenes between the intumescent layer to be protected and the source of radiation, not only the protective layer but at least the glass sheet carrying this layer. As it is recalled later the presence of the glass sheet further reduces the transmission, even if this reduction is limited, it is not indifferent, and varies for the same glass depending on the thickness of the sheet.
  • the products according to the invention must be substantially "neutral” in coloring or slightly gray or bluish.
  • T ⁇ is the transmission at the wavelength ⁇
  • E ⁇ is the spectral distribution of the illuminant
  • S ⁇ is the sensitivity of the normal human eye according to the wavelength ⁇ ;
  • the intumescent layer is based on hydrated alkali silicates
  • the degradation was mainly due to wavelengths below 345 nm. Degradation at longer wavelengths is not perceptible in the duration of the aging tests.
  • the measures taken by the inventors made it possible to determine the quantitative threshold beyond which UV rays of wavelength less than 345 nm could lead to the appearance of defects within the time limits compatible with use. normal.
  • the inventors have also established that the UV sensitivity of the intumescent layer depends in part on the nature of this layer. The appearance of defects of the "bubble” or “veil” type seems all the more marked as the water content of this layer is higher. In this sense the sodium silicates hydrate which are the most common products are particularly sensitive.
  • the value of 20% of the UV rays (percentages actually reaching the layer intumescent by the combined filtering effects of the layer and the glass sheet with this layer) for the wavelength of 345 nm of sunlight appears as the highest threshold that can be supported without risk of occurrence of defects .
  • this value is at most 15%, or even 10%, and advantageously is as low as possible.
  • a UV filtration which does not make it possible to fall below this proportion, does not improve the UV resistance sufficiently for any hydrous alkali silicate product.
  • the fire-resistant glazings according to the invention comprise one or more layers, or sets of thin layers, of which at least one layer chosen from the group of materials comprising zinc oxide or a zinc-based alloy, the oxides mixed tin and zinc, cerium oxide.
  • a preferred layer according to the invention is based on zinc oxide. Zinc oxide layers are relatively easy to deposit, and are relatively inexpensive.
  • the thickness is not less than 50 nm. It is advantageously at least 100 nm, and preferably at least 150 nm. For smaller thicknesses the fraction of UV of less than 345 nm wavelength effectively filtered is not sufficient to ensure the desired longevity of the products when they are exposed to solar radiation.
  • the UV transmission according to the thickness of the sheet (s) is of the order indicated in the following table.
  • the range considered has a significant share greater than the selected threshold of 345 nm.
  • the effective influence of the glass sheet takes into account this spectral distribution. In other words, it is a little less than the preceding table suggests, which expresses the transmission over an extended range of wavelengths.
  • Fire-resistant glazings have on their faces glass sheets which are usually 3 or 4 mm thick.
  • the UV that reaches the first intumescent layer are already reduced by about a third. This proportion for thicker, less usual glass sheets can go down to less than half.
  • the UV filtering layers according to the invention can be adapted accordingly. In particular their thickness may be less if the outer glass sheet on which this layer is disposed is relatively thick.
  • the filter layer If for the filter layer a minimum thickness is required, there is in principle no upper limit not to exceed outside that leading to an excessive decrease in the visible light transmission that could result. For layers based on zinc oxide it is not desirable to use layers having a thickness of more than 300 nm. Beyond the gain in terms of UV filtration is no longer significant, but the increase in the thickness of the layer results in a possible reduction of the transmission in the visible.
  • UV filtering layers An additional factor leads to limiting the thicknesses of the UV filtering layers. This is the structure of these layers. Given their mode of production the UV filtering layers, and particularly the layers based on zinc oxide can develop under structures more or less sensitive to the corrosive action of the alkali silicate layers. The formation of these layers can lead either to relatively "compact" shapes or, conversely, to structures having points facilitating the alteration of these layers.
  • the layers based on zinc oxide are deposited in a traditional, especially in techniques using vacuum deposition by sputtering under magnetic field ("magnetron sputtering"). These layers can easily be brought to the required thicknesses.
  • the layers in question can also advantageously be deposited by pyrolysis, the latter generally having the advantage of a lower production cost and a better compactness.
  • Thin layers based on zinc oxide often comprise another metal in small proportions. This is particularly the case of aluminum which is introduced at percentages of the order of 2 to 4% for reasons related to the process of formation of these layers.
  • the presence of aluminum, especially in sputtering techniques, makes it possible to stabilize the operation of the metal cathode formed of this alloy. This avoids the irregularities in the layer from a certain instability of the system.
  • the layer tends to take a structure described as "columnar".
  • This type of structure as its name suggests leads to clusters of oxide separated by interfaces conducive to the penetration of corrosive agents.
  • the layers are of such a thickness that it is difficult to prevent the appearance of this type of columnar structure, it is advantageous according to the invention to divide the layer so as to reduce the thickness of each at the level where such structure does not manifest itself or in a limited way.
  • the divided layers are separated by an intermediate layer of another material, which is advantageously of the type indicated below to protect the UV filtering layers.
  • the hydrated alkali silicates constituting the intumescent layers are relatively aggressive. These are highly basic products. Direct contact of the anti-UV layer with the intumescent material may cause alteration of the layer. It is preferable according to the invention to protect the layer by interposing a perfectly inert barrier vis-à- silicate screw.
  • the protection of the layer based on zinc oxide is obtained by interposition of a thin layer resistant to pH greater than 11 and having a visible light transmission of at least 80%.
  • Thin layers of this type are for example based on tin oxide, oxide, nitride or aluminum oxy-nitride, titanium or zirconium.
  • This protective layer is of limited thickness which is strictly necessary for the protective role of the UV filter layer. Ordinarily, this layer has no thickness less than 10 nm and, as far as possible, this thickness remains less than 70 nm, and preferably less than 50 nm, to minimize its influence on the light transmission.
  • the protective layer is optionally a layer of an organic polymer resistant to the indicated alkaline conditions and sufficiently transparent.
  • organic polymer resistant to the indicated alkaline conditions and sufficiently transparent.
  • They are, for example, polyurethane films, polyethylene glycol terephthalate (PET), AAE, or silicone layer.
  • the organic layers are substantially thicker than the mineral layers indicated above. Typically their thickness is between 5 and 70 ⁇ , and most often between 10 and 30 ⁇ .
  • the corrosive nature of the intumescent layer varies according to its composition. It is even more marked that the water content is higher. It also varies according to the additives contained in the layer and which can influence its more or less caustic nature. This is the case for example strongly basic additives, especially urea. As a result, the protective barrier of the UV-resistant layer may also be more or less important to adapt to the nature of the silicate used to form the intumescent layer.
  • an anti-UV filter is justified only in those uses in which the layer of silicates is effectively subjected to radiation that may alter the transparency of the glazing. In this sense, if only one side of the glazing is exposed to such radiation, the UV filter may be limited to the side corresponding to the incidence of this radiation. In the opposite hypothesis, namely where the UV radiation can come indifferently on one side or the other of the glazing, it will be necessary to have a UV filter on each side of the intumescent layer.
  • the fireproof glazing as described above can also be assembled in the form of double glazing. As before, it suffices to guarantee the optical properties that the incident radiation is filtered before reaching the intumescent layer. If the first sheet of the double glazing is not of the fire-resistant type, it may be advantageous to deposit the filtering layer thereon so that it is not in contact with the alkali silicates, it does not require the presence a protective layer.
  • FIG. 1 is a schematic sectional view showing a basic structure of an anti-fire glazing
  • FIG. 2 similar to the previous one, shows a fireproof glazing according to the invention, whose intumescent layer is protected against UV damage;
  • FIG. 3 similar to FIG. 2, is an embodiment in which the UV filter is isolated from the intumescent layer;
  • FIG. 4 shows another embodiment of the invention comprising an anti-UV assembly on each side of the intumescent layer
  • FIG. 5 shows an embodiment according to the invention in which a glass sheet is replaced by a laminated assembly
  • FIG. 6 illustrates the implementation of an anti-fire glazing unit in a double glazing structure
  • FIG. 7 is a graph showing transmission variations different glazings depending on the wavelength considered
  • FIG. 8 shows the incidence of the thickness of an anti-UV layer based on zinc oxide
  • FIG. 9 illustrates the influence of the thickness of the glass sheet for two identical anti-UV layers
  • FIG. 10 shows the transmission variation for an anti-UV layer based on zinc oxide protected by a tin oxide layer.
  • the type of glazing concerned by the invention is shown in section in FIG. 1.
  • the fireproof glazing in its most basic configuration comprises two sheets of glass (1 and 2) joined together by means of a sheet of intumescent material. (3) consisting of hydrated alkali silicate.
  • the glass sheets are either of conventional "float” glass or, where appropriate, of low borosilicate type thermal expansion glass.
  • the structures of commercial fire-resistant glazing can assemble several sheets of intumescent materials and a corresponding number of glass sheets.
  • the thickness of the glass sheets and that of the or sheets of intumescent material vary depending on the production methods and applications envisaged.
  • the glass sheets are "Simple".
  • one or more "monolithic" glass sheets may be replaced by one or more laminated sheets consisting for example of two glass sheets joined by means of a polyvinyl butyral (PVB), vinyl acetate-type thermoplastic interlayer sheet. ethylene (EVA) etc.
  • PVB polyvinyl butyral
  • EVA vinyl acetate-type thermoplastic interlayer sheet.
  • the use of sheets of this type is generally intended to improve the mechanical properties of the glazing.
  • the properties of the constituent materials of these spacers have a number of disadvantages when they are subjected to the test of fire, especially because they lead to a release of fumes from their decomposition. When they are present in a glazing, efforts are made to arrange them so that these disadvantages are minimized.
  • they are preferably placed on the side of the windows least likely to be exposed to fire or, in more complex structures with more than two glass sheets, they are located possibly in the center of these structures.
  • the PVB sheets incidentally constitute a very powerful filter against UV rays.
  • the systematic use of these sheets as a protection against the degradation of the intumescent layers is, however, not generally desirable because of the difficulties mentioned above with respect to the fire resistance of these materials, also because of their As a result of an increase in the total thickness of the glazing, because of their cost, the PVB sheets constitute an important element of the cost of the whole.
  • the intumescent materials in question are of various natures. Their composition based on hydrated alkali silicates is distinguished, in particular by the nature of the silicates used. The most common are sodium silicates, but potassium silicates are also often used optionally mixed with sodium silicates. The choice of one or other of these alkalis also influences the proportions of the other constituents and in particular the water content.
  • Intumescent materials are further characterized by the relative proportions of Si and alkali present in the composition. This report defines what is usually presented as reflecting the more or less "refractory” nature of these materials. Another significant feature of these materials is their water content, which is sometimes presented indirectly by the "loss on fire” of the product, designating the percentage by weight of what is removed when the material is calcined. The water present in the intumescent material, releasing under the effect of heat, is responsible for the formation of the foam on which the fire-resistant quality depends.
  • constituents participate in the composition of these materials. These are various elements that either contribute to the improvement of the fireproof properties, or contribute to the stability of the product over time, or facilitate the production of these glazings. Among the most commonly used elements include polyol compounds and in particular glycerine which promotes in particular a certain plasticity of the intumescent material.
  • the inventors have sought exposure conditions liable to lead to the appearance of defects when the glazing is subjected to aging under accelerated conditions. They were able to determine the characteristics of the radiation responsible for the formation of these defects. For this, they submitted identical glazing samples to the same radiation but by filtering this radiation by means of known filters making it possible to eliminate wavelengths below specific values.
  • the glazing consists of two sheets of ordinary clear glass 2.85 mm thick, joined by means of a layer of sodium silicate hydrated 1 mm thick.
  • the glass is of traditional silico-soda-lime type. Its light transmission at a thickness of 4mm is 90%. The UV transmission for the same thickness is 57%.
  • the sodium silicate layer has an SiO 2 / alkali oxide ratio of 3.3.
  • the water content is 20% by weight, and the glycerin content is of the order of 5% by weight of the layer.
  • Figure 2 illustrates the principle of the invention.
  • a layer (4) acting as a UV filter is arranged on the sheet (1) on the side exposed to UV radiation, so that the intumescent layer is downstream in the path of the radiation.
  • FIG. 3 which is analogous to the previous one, additionally comprises a layer or coating 5, the function of which is to avoid the contact of the UV filter and the intumescent layer, when their characteristics make the silicate of the intumescent layer likely to Corrode the UV filter.
  • FIG. 4 shows a glazing unit comprising an anti-UV filter and its protective layer on each side of the intumescent layer. The presence of two anti-UV layers is made necessary when both sides of the glazing can be exposed to UV.
  • FIG. 5 shows a glazing unit comprising a laminated assembly formed of two glass sheets (1, 1 ') and a PVB type interlayer (6).
  • the other glass sheet (2) is simple.
  • the presence of the PVB sheet which constitutes a powerful UV filter makes it superfluous to provide an additional filter on the laminate side.
  • the opposite face which does not include a laminate must be subject to specific UV protection by means of the layers (4,5) if it is exposed to UV.
  • FIG. 6 illustrates an embodiment of a double glazing unit comprising an anti-fire element (1, 2, 3) of the type shown in FIG. 1.
  • the glass sheet 7 associated with the fireproof element is separated from the latter by a spacing (8) ordinarily confined and isolated from the surrounding atmosphere.
  • the anti-UV filter In the case where the incident radiation first encounters the sheet (7), it is advantageous to arrange the anti-UV filter on the inner face of this sheet. first sheet. This prevents contact with the silicate and the need to protect the filter against the corrosive effect of the silicate.
  • the filter layer can also, of course, be located on the outer face of this first sheet, provided that it resists claws and external aggression. It can finally be located on the face of the fireproof element exposed first to UV radiation.
  • the determination of the light transmission for different configurations of the prior art is the subject of FIG. 7. On the graph, the light transmission is plotted as a function of the wavelength.
  • the curve I is that corresponding to a clear "float" glass sheet only, 2.85 mm thick. It is found that wavelengths below 345 nm are widely transmitted. Total elimination is progressively achieved only for wavelengths below about 310 nm. A significant part of the UV rays responsible for the alteration of the intumescent layer is therefore transmitted to it. In practice this leads to the appearance of troublesome defects, after only the equivalent of one year of exposure under natural conditions.
  • Curve II is given as an indication of the influence of the glass itself on the transmission at various wavelengths.
  • the clear glass sheet has a thickness of 4.85 mm.
  • Curve III is obtained by using for "filter” a laminate consisting of two glass sheets each 1.6 mm thick, and a PVB interlayer 0.38 mm thick.
  • the laminated assembly unlike the previous cases, is a particularly effective filter for all wavelengths less than about 380 nm. This explains the very good behavior of the intumescent layer protected by the presence of the PVB sheet. After a year of natural exposure virtually no change is detectable for the optical properties of the intumescent layer and glazing with this layer.
  • Curve IV corresponds to the transmission of a sheet of glass of the same type as that which is the subject of curve I, but this time a layer of titanium oxide of 100 nm thickness is added over the entire surface of the leaf, as previously proposed. It can be seen that the presence of the titanium oxide layer substantially modifies the transmission spectrum. However, in wavelengths below 345 nm, the proportion of transmitted UV remains significant. At 345 nm it is still around 30%. The filter is insufficient for intumescent layers sensitive to UV. In addition, the TL in the visible wavelengths is strongly affected by this titanium oxide layer: the curve I corresponds to a TL of 90% whereas this value drops to 68% for the curve IV.
  • Figure 8 shows the transmission spectra of 6 mm thick glass sheets coated with zinc oxide layers.
  • the layers are deposited by magnetron sputtering conventionally from a Zn cathode by reactive deposition in an oxygen-rich atmosphere (80%).
  • the thicknesses are respectively 50 (V), 100 (VI) and 150 nm (VII).
  • V the thickness of the layers slightly modifies the overall light transmission in the visible.
  • the graph does not make it possible to account for this small variation, the contribution to this transmission being essentially between 400 and 800 nm. In total the presence of the layer reduces this transmission by about 1 to 2%.
  • UV transmissions below the 345 nm threshold show decay as the thickness increases.
  • the influence of the thickness diminishes beyond 100 nm.
  • An increase no longer significantly modifies UV transmission.
  • the increase in thickness results in a reduction of the transmission in the visible. For this reason, if it is desirable to have a thickness sufficient to reduce UV transmission to levels that effectively protect the intumescent layers, it is preferable not to increase the thickness too much to substantially reduce transmission. light.
  • FIG. 9 shows the spectrum obtained for the same layer of zinc oxide 170 nm thick, respectively on a glass sheet 2.85 mm thick (VIII), and on a sheet of 5.85 mm (IX). It can be seen in the wavelengths less than 370 nm that the curves are practically merged.
  • FIG. 10 illustrates the transmission spectrum of a 2.85 mm thick glass sheet coated with a 150 nm thick zinc oxide layer (X), and that corresponding to the analogous sample to the above, and wherein the zinc oxide layer is covered with a protective layer of tin oxide 50 nm thick.

Landscapes

  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

The invention concerns fireproof glazings. The inventive glazings comprise at least one hydrated alkaline silicate-based intumescent layer sandwiched between glass sheets one of which at least is coated with a thin layer filtering ultraviolet rays to which the glazing is exposed, the ultraviolet radiation filtering layer not transmitting more than 35 % of the rays of wavelengths not more than 345 nm. The resulting glazings are highly resistant to aging.

Description

Vitrage anti-feu Fire-resistant glazing
La présente invention concerne les vitrages anti-feu comportant une couche de matériau intumescent à base de silicate alcalin hydraté.The present invention relates to fireproof glazing comprising a layer of intumescent material based on hydrated alkali silicate.
Les vitrages anti-feu comportant en plus de feuilles de verre, une ou plusieurs feuilles de matériau intumescent sont largement répandus dans le commerce. Ils présentent des qualités de résistance au feu variées en fonction de leur constitution. En dehors de leur qualité de résistance au feu ils doivent aussi assurer une certaine résistance mécanique. Ces deux propriétés peuvent être obtenues également par un choix approprié de structure comprenant notamment plusieurs feuilles de verre associées à plusieurs feuilles de matériau intumescent.Fireproof glazing comprising in addition to glass sheets, one or more sheets of intumescent material are widely used in the trade. They have various fire resistance qualities depending on their constitution. Apart from their quality of fire resistance they must also ensure a certain mechanical resistance. These two properties can be obtained also by a suitable choice of structure including in particular several sheets of glass associated with several sheets of intumescent material.
Pour une utilisation satisfaisante les produits en question doivent être exempts de défauts, et en particulier de défauts qui en altèrent la transparence. Il est connu que parmi les défauts possibles pour ce type de produits, les plus fréquents concernent la formation de bulles eVou de voile ("haze"). Ces défauts apparaissent le plus souvent à l'épreuve du vieillissement. Pour être parfaitement satisfaisants il convient que ces produits conservent leur qualité optique au moins sur une durée qui n'est pas inférieure à 10 ans.For satisfactory use the products in question must be free from defects, and in particular from defects which impair their transparency. It is known that among the possible defects for this type of product, the most common are the formation of bubbles eVou sail ("haze"). These defects appear most often to the test of aging. To be perfectly satisfactory it is appropriate that these products retain their optical quality for at least a period of not less than 10 years.
Un facteur reconnu favorisant le vieillissement accéléré est l'exposition aux rayons ultraviolets. Compte tenu de ce que les produits en question sont très souvent exposés à des rayonnements riches en ultraviolets, notamment aux rayonnements solaires, la conservation des qualités optiques nécessite la mise en œuvre de dispositions spécifiques.A recognized factor promoting accelerated aging is exposure to ultraviolet light. Given that the products in question are very often exposed to ultraviolet-rich radiation, especially to solar radiation, the preservation of optical qualities requires the implementation of specific provisions.
Différents moyens ont été proposés pour prévenir l'altération des propriétés optiques des vitrages comportant des couches à base de silicates alcalins hydratés, étant entendu que les feuilles de verre clair traditionnelles qui enveloppent ces couches, à l'évidence ne constituent pas une barrière suffisante aux rayons ultraviolets.Various means have been proposed to prevent the alteration of the optical properties of the glazings comprising layers based on hydrated alkali silicates, it being understood that the traditional clear glass sheets which envelop these layers, obviously do not constitute a sufficient barrier to ultraviolet rays.
Parmi les moyens proposés figure en particulier l'utilisation d'une feuille connue pour constituer un filtre efficace aux UV, et qui par ailleurs est couramment utilisée dans la constitution de vitrages feuilletés pour leur conférer des propriétés de résistance aux impacts. Les feuilles de polyvinylbutyral sont particulièrement appropriées. On sait notamment que même sous une épaisseur relativement faible, de 0,38 mm environ, plus de 95% des rayons UV sont arrêtés. Cependant l'utilisation de feuilles polymères dans les vitrages anti-feu n'est pas toujours appropriée. La présence de matériaux organiques est de préférence évitée dans ce type de produits en raison de leur comportement au feu. Par ailleurs la mise en œuvre impose une disposition bien définie de cette feuille sur le trajet du rayonnement incident de telle sorte qu'elle fasse effectivement obstacle aux rayons UV avant que ceux-ci ne parviennent jusqu'à la couche sensible qui doit être protégée.Among the proposed means in particular is the use of a sheet known to constitute an effective UV filter, and which is also commonly used in the constitution of laminated glazing for their confer impact resistance properties. Polyvinyl butyral sheets are particularly suitable. In particular, it is known that even at a relatively small thickness, of about 0.38 mm, more than 95% of the UV rays are stopped. However, the use of polymer sheets in fireproof glazing is not always appropriate. The presence of organic materials is preferably avoided in this type of products because of their fire behavior. Moreover, the implementation imposes a well-defined provision of this sheet on the path of the incident radiation so that it actually prevents UV rays before they reach the sensitive layer to be protected.
D'autres propositions ont étés faites qui consistent à utiliser notamment une couche mince d'oxyde de titane déposée sur la feuille de verre au moins du côté de la lumière incidente. Les études des inventeurs ont montré que la présence d'une couche de ce type en termes de protection contre les UV, est insuffisante pour prévenir la dégradation de la couche intumescente (tout en gardant une transmission lumineuse suffisante).Other proposals have been made which include using a thin layer of titanium oxide deposited on the glass sheet at least on the side of the incident light. The studies of the inventors have shown that the presence of a layer of this type in terms of UV protection is insufficient to prevent the degradation of the intumescent layer (while keeping a sufficient light transmission).
L'invention a donc pour but de fournir des vitrages anti-feu comportant des couches intumescentes à base de silicates alcalins protégés contre les altérations résultant de l'exposition aux rayons ultraviolets.The object of the invention is therefore to provide fire-resistant glazings comprising intumescent layers based on alkaline silicates protected against the alterations resulting from exposure to ultraviolet rays.
Selon l'invention, dans les vitrages de ce type au moins une feuille de verre comporte une couche, ou un ensemble de couches, dont la transmission des ultraviolets de longueur d'onde inférieure à 345 nm, n'est pas supérieure à 35%, de préférence pas supérieure à 25% et de façon particulièrement avantageuse n'est pas supérieure à 20%. Pour les plus performantes les couches filtrant les UV ne transmettent pas plus de 10% et même moins de 10% des longueurs d'onde inférieures à 345 nm. La ou les couches en question par ailleurs offrent une transmission dans le visible qui n'est pas inférieure à 80% et de préférence pas inférieure à 85%.According to the invention, in glazings of this type at least one glass sheet comprises a layer, or a set of layers, whose transmission of ultraviolet rays of wavelength less than 345 nm, is not greater than 35% preferably not more than 25% and particularly preferably not more than 20%. For the most efficient UV filtering layers do not transmit more than 10% and even less than 10% of wavelengths less than 345 nm. The layer or layers in question also offer a transmission in the visible which is not less than 80% and preferably not less than 85%.
Les transmissions dont il est question ici sont celles propres à la couche ou au système de couches, étant entendu que dans les vitrages, nécessairement s'interpose entre la couche intumescente à protéger et la source de rayonnement, non seulement la couche protectrice mais au moins la feuille de verre portant cette couche. Comme il est rappelé plus loin la présence d la feuille de verre réduit encore la transmission, même si cette réduction est limitée, elle n'est pas indifférente, et varie pour un même verre en fonction de l'épaisseur de la feuille.The transmissions in question here are those specific to the layer or the layer system, it being understood that in the glazing necessarily intervenes between the intumescent layer to be protected and the source of radiation, not only the protective layer but at least the glass sheet carrying this layer. As it is recalled later the presence of the glass sheet further reduces the transmission, even if this reduction is limited, it is not indifferent, and varies for the same glass depending on the thickness of the sheet.
Pour être parfaitement satisfaisants, les produits selon l'invention doivent être pratiquement "neutres" en coloration ou légèrement gris ou bleutés.To be perfectly satisfactory, the products according to the invention must be substantially "neutral" in coloring or slightly gray or bluish.
Les éléments concernant les paramètres optiques utilisés dans la définition de l'invention suivent les formes normalisées suivantes:The elements concerning the optical parameters used in the definition of the invention follow the following standard forms:
- la transmission lumineuse totale (TL). Cette transmission totale est le résultat de l'intégration entre les longueurs d'onde de 380 et 780 nm de l'expression:- the total light transmission (TL). This total transmission is the result of the integration between the 380 and 780 nm wavelengths of the expression:
Σ Tχ.Eχ.Sχ / ∑ Eχ.Sχ , dans laquelle Tχ est la transmission à la longueur d'onde λ, Eχ est la distribution spectrale de l'illuminant et Sχ est la sensibilité de l'oeil humain normal en fonction de la longueur d'onde λ;Σ Tχ.Eχ.Sχ / Σ Eχ.Sχ, where Tχ is the transmission at the wavelength λ, Eχ is the spectral distribution of the illuminant and Sχ is the sensitivity of the normal human eye according to the wavelength λ;
- la transmission totale dans l'ultraviolet (TUV). Cette transmission totale est le résultat de l'intégration entre 280 et 380 nm de l'expression: Σ Tχ.Uχ / ∑ Uχ. dans laquelle Uχ est la distribution spectrale du rayonnement ultraviolet ayant traversé l'atmosphère, déterminée dans la norme DIN 67507.- the total transmission in the ultraviolet (TUV). This total transmission is the result of the integration between 280 and 380 nm of the expression: Σ Tχ.Uχ / Σ Uχ. where Uχ is the spectral distribution of ultraviolet radiation having passed through the atmosphere, as determined in DIN 67507.
Pour les produits traditionnels dans lesquels la couche intumescente est à base de silicates alcalins hydratés, il est apparu à l'expérience que la dégradation était essentiellement due à des longueurs d'onde inférieures à 345 nm. La dégradation pour des longueurs d'ondes plus grandes n'est pas perceptible dans la durée des essais de vieillissement. De façon analogue, les mesures entreprises par les inventeurs ont permis de déterminer le seuil quantitatif au-delà duquel les rayons UV de longueur d'onde inférieure à 345 nm pouvaient conduire à l'apparition de défauts dans les limites de temps compatibles avec une utilisation normale.For traditional products in which the intumescent layer is based on hydrated alkali silicates, it has been found in the experiment that the degradation was mainly due to wavelengths below 345 nm. Degradation at longer wavelengths is not perceptible in the duration of the aging tests. Similarly, the measures taken by the inventors made it possible to determine the quantitative threshold beyond which UV rays of wavelength less than 345 nm could lead to the appearance of defects within the time limits compatible with use. normal.
Les inventeurs ont également établi que la sensibilité aux UV de la couche intumescente dépend pour partie de la nature de cette couche. L'apparition des défauts de type "bulles" ou "voile", semble d'autant plus marquée que la teneur en eau de cette couche est plus élevée. Dans ce sens les silicates de sodium hydratés qui sont les produits les plus usuels sont particulièrement sensibles.The inventors have also established that the UV sensitivity of the intumescent layer depends in part on the nature of this layer. The appearance of defects of the "bubble" or "veil" type seems all the more marked as the water content of this layer is higher. In this sense the sodium silicates hydrate which are the most common products are particularly sensitive.
En fonction des essais, et selon la nature des silicates, la valeur de 20% des rayons UV (pourcentages atteignant effectivement la couche intumescente par les effets filtrant combinés de la couche et de la feuille de verre comportant cette couche) pour la longueur d'onde de 345 nm de la lumière solaire apparaît comme le seuil le plus haut qui puisse être supporté sans risque d'apparition des défauts. De préférence cette valeur est au plus de 15%, ou même 10%, et avantageusement est aussi faible que possible. Autrement dit une filtration des UV qui ne permet pas de descendre en dessous de cette proportion, n'améliore pas la résistance aux UV de manière suffisante pour tout produit du type silicate alcalin hydraté.Depending on the tests, and depending on the nature of the silicates, the value of 20% of the UV rays (percentages actually reaching the layer intumescent by the combined filtering effects of the layer and the glass sheet with this layer) for the wavelength of 345 nm of sunlight appears as the highest threshold that can be supported without risk of occurrence of defects . Preferably this value is at most 15%, or even 10%, and advantageously is as low as possible. In other words, a UV filtration which does not make it possible to fall below this proportion, does not improve the UV resistance sufficiently for any hydrous alkali silicate product.
Les vitrages anti-feu selon l'invention comportent une ou plusieurs couches, ou ensembles de couches minces, dont une couche au moins choisie dans le groupe de matériaux comprenant l'oxyde de zinc ou d'un alliage à base de zinc, les oxydes mixtes d'étain et de zinc, l'oxyde de cérium.The fire-resistant glazings according to the invention comprise one or more layers, or sets of thin layers, of which at least one layer chosen from the group of materials comprising zinc oxide or a zinc-based alloy, the oxides mixed tin and zinc, cerium oxide.
Les épaisseurs mises en œuvre sont choisies en fonction de cette capacité à faire obstacle à la transmission des UV. Le choix tient encore compte de la transmission dans le visible des couches en question. Mais d'autres facteurs, en particulier la commodité de production de ces couches, sont aussi déterminants dans le choix effectué. Pour l'ensemble de ces raisons une couche préférée selon l'invention est à base d'oxyde de zinc. Les couches d'oxyde de zinc sont relativement faciles à déposer, et sont relativement peu coûteuses.The thicknesses used are chosen according to this ability to hinder the transmission of UV. The choice still takes into account the visible transmission of the layers in question. But other factors, in particular the convenience of producing these layers, are also decisive in the choice made. For all of these reasons, a preferred layer according to the invention is based on zinc oxide. Zinc oxide layers are relatively easy to deposit, and are relatively inexpensive.
Pour une couche d'oxyde de zinc seule, l'épaisseur n'est pas inférieure à 50 nm. Elle est avantageusement d'au moins 100 nm, et de préférence d'au moins 150 nm. Pour des épaisseurs moindres la fraction des UV de moins de 345 nm de longueur d'onde effectivement filtrée n'est pas suffisante pour garantir la longévité recherchée des produits lorsque ceux-ci sont exposés à des rayonnements solaires.For a layer of zinc oxide alone, the thickness is not less than 50 nm. It is advantageously at least 100 nm, and preferably at least 150 nm. For smaller thicknesses the fraction of UV of less than 345 nm wavelength effectively filtered is not sufficient to ensure the desired longevity of the products when they are exposed to solar radiation.
Dans la détermination de l'épaisseur nécessaire de la couche filtrant les UV, il faut aussi tenir compte des autres éléments entrant dans la composition du vitrage, susceptibles de réduire la transmission des UV. A titre indicatif même les feuilles de verre ont une incidence sur cette transmission. Pour les feuilles de verre clair ordinaire la transmission des UV en fonction de l'épaisseur de la ou des feuilles est de l'ordre indiqué dans le tableau suivant. In determining the necessary thickness of the UV filtering layer, it is also necessary to take into account other elements involved in the composition of the glazing, which can reduce the UV transmission. As an indication, even the glass sheets have an impact on this transmission. For plain clear glass sheets the UV transmission according to the thickness of the sheet (s) is of the order indicated in the following table.
Dans la détermination de la transmission des UV comme indiqué précédemment, la plage considérée comporte une part importante supérieure au seuil retenu de 345 nm. L'influence effective de la feuille de verre tient compte de cette distribution spectrale. Autrement dit, elle est un peu moindre que ne le laisse supposer le tableau précédent qui exprime la transmission sur un domaine étendu de longueurs d'onde.In the determination of the UV transmission as indicated above, the range considered has a significant share greater than the selected threshold of 345 nm. The effective influence of the glass sheet takes into account this spectral distribution. In other words, it is a little less than the preceding table suggests, which expresses the transmission over an extended range of wavelengths.
Les vitrages anti-feu comportent sur leurs faces des feuilles de verre qui sont le plus usuellement de 3 ou 4 mm. Les UV qui atteignent la première couche intumescente sont donc déjà réduits d'environ un tiers. Cette proportion pour des feuilles de verre plus épaisses, moins usuelles, peut descendre à moins de la moitié. Les couches filtrant les UV, selon l'invention peuvent être adaptées en conséquence. En particulier leur épaisseur peut être moindre si la feuille de verre externe sur laquelle cette couche est disposée est relativement épaisse.Fire-resistant glazings have on their faces glass sheets which are usually 3 or 4 mm thick. The UV that reaches the first intumescent layer are already reduced by about a third. This proportion for thicker, less usual glass sheets can go down to less than half. The UV filtering layers according to the invention can be adapted accordingly. In particular their thickness may be less if the outer glass sheet on which this layer is disposed is relatively thick.
Si pour la couche filtrante une épaisseur minimum est requise, il n'y a pas en principe de limite supérieure à ne pas dépasser en dehors de celle conduisant à une diminution excessive de la transmission lumineuse visible qui pourrait en résulter. Pour les couches à base d'oxyde de zinc il n'est pas souhaitable d'utiliser des couches dont l'épaisseur serait de plus de 300 nm. Au-delà le gain en terme de filtration des UV n'est plus significatif, mais l'augmentation de l'épaisseur de la couche a pour conséquence une réduction possible de la transmission dans le visible.If for the filter layer a minimum thickness is required, there is in principle no upper limit not to exceed outside that leading to an excessive decrease in the visible light transmission that could result. For layers based on zinc oxide it is not desirable to use layers having a thickness of more than 300 nm. Beyond the gain in terms of UV filtration is no longer significant, but the increase in the thickness of the layer results in a possible reduction of the transmission in the visible.
Un facteur supplémentaire conduit à limiter les épaisseurs des couches filtrant les UV. Il s'agit de la structure de ces couches. Compte tenu de leur mode de production les couches filtrant les UV, et particulièrement les couches à base d'oxyde de zinc peuvent se développer sous des structures plus ou moins sensibles à l'action corrosive des couches de silicates alcalins. La formation de ces couches peut conduire soit à des formes relativement "compactes" ou, à l'inverse, à des structures présentant des points facilitant l'altération de ces couches.An additional factor leads to limiting the thicknesses of the UV filtering layers. This is the structure of these layers. Given their mode of production the UV filtering layers, and particularly the layers based on zinc oxide can develop under structures more or less sensitive to the corrosive action of the alkali silicate layers. The formation of these layers can lead either to relatively "compact" shapes or, conversely, to structures having points facilitating the alteration of these layers.
Les couches à base d'oxyde de zinc sont déposées de manière traditionnelle, notamment dans les techniques utilisant un dépôt sous vide par pulvérisation cathodique sous champ magnétique ("magnetron sputtering"). Ces couches peuvent aisément être portées aux épaisseurs requises. Les couches en question peuvent aussi avantageusement être déposées par pyrolyse, ces dernières présentant de façon générale l'avantage d'un coût de production moindre et d'une meilleure compacité.The layers based on zinc oxide are deposited in a traditional, especially in techniques using vacuum deposition by sputtering under magnetic field ("magnetron sputtering"). These layers can easily be brought to the required thicknesses. The layers in question can also advantageously be deposited by pyrolysis, the latter generally having the advantage of a lower production cost and a better compactness.
Les couches minces à base d'oxyde de zinc comprennent souvent un autre métal en faibles proportions. C'est le cas notamment de l'aluminium qui est introduit à des pourcentages de l'ordre de 2 à 4% pour des raisons liées au processus de formation de ces couches. La présence d'aluminium, notamment dans les techniques de pulvérisation cathodique, permet de bien stabiliser le fonctionnement de la cathode métallique formée de cet alliage. On évite de ce fait les irrégularités dans la couche provenant d'une certaine instabilité du système.Thin layers based on zinc oxide often comprise another metal in small proportions. This is particularly the case of aluminum which is introduced at percentages of the order of 2 to 4% for reasons related to the process of formation of these layers. The presence of aluminum, especially in sputtering techniques, makes it possible to stabilize the operation of the metal cathode formed of this alloy. This avoids the irregularities in the layer from a certain instability of the system.
Quel que soit son mode de préparation, mais particulièrement lorsque la couche à base d'oxyde de zinc est formée par pulvérisation cathodique, si l'épaisseur dépasse quelques dizaines de nanomètres, la couche tend à prendre une structure qualifiée de "colonnaire". Ce type de structure comme son nom l'indique conduit à des amas d'oxyde séparés par des interfaces propices à la pénétration des agents corrosifs. Pour limiter ce mécanisme, il est préférable selon l'invention de limiter l'épaisseur de chaque couche d'oxyde de telle sorte que le dépôt ne développe pas, ou peu, ce type de structure.Whatever its method of preparation, but particularly when the zinc oxide-based layer is formed by sputtering, if the thickness exceeds a few tens of nanometers, the layer tends to take a structure described as "columnar". This type of structure as its name suggests leads to clusters of oxide separated by interfaces conducive to the penetration of corrosive agents. To limit this mechanism, it is preferable according to the invention to limit the thickness of each oxide layer so that the deposit does not develop, or little, this type of structure.
Lorsque les couches sont d'épaisseur telle qu'il est difficile de prévenir l'apparition de ce type de structure colonnaire, il est avantageux selon l'invention de diviser la couche de manière à réduire l'épaisseur de chacune au niveau où une telle structure ne se manifeste pas ou de manière limitée. Dans ce cas les couches divisées sont séparées par une couche intermédiaire d'un autre matériau, lequel est avantageusement du type de ceux indiqués ci- dessous pour protéger les couches filtrant les UV.When the layers are of such a thickness that it is difficult to prevent the appearance of this type of columnar structure, it is advantageous according to the invention to divide the layer so as to reduce the thickness of each at the level where such structure does not manifest itself or in a limited way. In this case, the divided layers are separated by an intermediate layer of another material, which is advantageously of the type indicated below to protect the UV filtering layers.
Les silicates alcalins hydratés constituant les couches intumescentes sont relativement agressifs. Il s'agit de produits fortement basiques. Le contact direct de la couche anti-UV avec le matériau intumescent peut occasionner une altération de la couche. Il est préférable selon l'invention de protéger la couche par interposition d'une barrière parfaitement inerte vis-à- vis du silicate.The hydrated alkali silicates constituting the intumescent layers are relatively aggressive. These are highly basic products. Direct contact of the anti-UV layer with the intumescent material may cause alteration of the layer. It is preferable according to the invention to protect the layer by interposing a perfectly inert barrier vis-à- silicate screw.
Avantageusement, la protection de la couche à base d'oxyde de zinc est obtenue par interposition d'une couche mince résistante à des pH supérieurs à 11 et présentant une transmission lumineuse visible au moins égale à 80%. Des couches mince de ce type sont par exemple à base d'oxyde d'étain, d'oxyde, de nitrure ou d'oxy-nitrure d'aluminium, de titane ou de zirconium. Cette couche protectrice est d'épaisseur limitée à ce qui est strictement nécessaire pour le rôle de protection de la couche filtrant les UV. Ordinairement cette couche n'a pas d'épaisseur inférieure à 10 nm et, dans la mesure du possible cette épaisseur reste inférieure à 70 nm, et de préférence inférieure à 50 nm, pour minimiser son influence sur la transmission lumineuse.Advantageously, the protection of the layer based on zinc oxide is obtained by interposition of a thin layer resistant to pH greater than 11 and having a visible light transmission of at least 80%. Thin layers of this type are for example based on tin oxide, oxide, nitride or aluminum oxy-nitride, titanium or zirconium. This protective layer is of limited thickness which is strictly necessary for the protective role of the UV filter layer. Ordinarily, this layer has no thickness less than 10 nm and, as far as possible, this thickness remains less than 70 nm, and preferably less than 50 nm, to minimize its influence on the light transmission.
La couche protectrice est éventuellement une couche d'un polymère organique résistant aux conditions alcalines indiquées et suffisamment transparente. Il s'agit par exemple de films de polyuréthanes, de polytéréphtalate d'ethylène glycol (PET), d'AAE, ou encore de couche de silicones.The protective layer is optionally a layer of an organic polymer resistant to the indicated alkaline conditions and sufficiently transparent. They are, for example, polyurethane films, polyethylene glycol terephthalate (PET), AAE, or silicone layer.
Les couches organiques sont sensiblement plus épaisses que les couches minérales indiquées ci-dessus. Typiquement leur épaisseur se situe entre 5 et 70 μ, et le plus souvent entre 10 et 30 μ.The organic layers are substantially thicker than the mineral layers indicated above. Typically their thickness is between 5 and 70 μ, and most often between 10 and 30 μ.
Le caractère corrosif de la couche intumescente est variable selon sa composition. Il est d'autant plus marqué que la teneur en eau est plus élevée. Il varie aussi en fonction des additifs contenus dans la couche et qui peuvent influer sur son caractère plus ou moins caustique. C'est le cas par exemple des additifs fortement basiques, notamment de l'urée. En conséquence la barrière protectrice de la couche anti-UV peut aussi être plus ou moins importante pour s'adapter à la nature du silicate utilisé pour composer la couche intumescente.The corrosive nature of the intumescent layer varies according to its composition. It is even more marked that the water content is higher. It also varies according to the additives contained in the layer and which can influence its more or less caustic nature. This is the case for example strongly basic additives, especially urea. As a result, the protective barrier of the UV-resistant layer may also be more or less important to adapt to the nature of the silicate used to form the intumescent layer.
L'introduction d'un filtre anti-UV ne se justifie que dans les utilisations dans lesquelles la couche de silicates est effectivement soumise à un rayonnement susceptible d'altérer la transparence du vitrage. Dans ce sens, si une face seulement du vitrage est exposée à un tel rayonnement, le filtre anti- UV peut être limité au côté correspondant à l'incidence de ce rayonnement. Dans l'hypothèse inverse, à savoir où le rayonnement UV peut provenir indifféremment d'un côté ou de l'autre du vitrage, il conviendra de disposer d'un filtre UV de chaque côté de la couche intumescente.The introduction of an anti-UV filter is justified only in those uses in which the layer of silicates is effectively subjected to radiation that may alter the transparency of the glazing. In this sense, if only one side of the glazing is exposed to such radiation, the UV filter may be limited to the side corresponding to the incidence of this radiation. In the opposite hypothesis, namely where the UV radiation can come indifferently on one side or the other of the glazing, it will be necessary to have a UV filter on each side of the intumescent layer.
Dans les vitrages comportant une pluralité de feuilles de verre et de couches intumescentes, il va de soi que la protection des couches doit être effectuée sur les faces exposées les premières aux UV. Pour les couches ou les faces situées plus profondément dans le vitrage, elles bénéficient automatiquement de la protection des couches précédentes.In glazings comprising a plurality of glass sheets and intumescent layers, it goes without saying that the protection of the layers must be performed on the faces exposed first UV. For layers or faces located deeper in the glazing, they automatically benefit from the protection of previous layers.
Les vitrages anti-feu tels que décrits précédemment peuvent aussi faire l'objet d'un montage sous forme de vitrage double. Comme précédemment il suffit pour garantir les propriétés optiques que le rayonnement incident soit filtré avant de parvenir jusqu'à la couche intumescente. Si la première feuille du vitrage double n'est pas de type anti- feu, il peut être avantageux d'y déposer la couche filtrante de sorte que celle-ci n'étant pas au contact des silicates alcalins, elle ne nécessite pas la présence d'une couche de protection.The fireproof glazing as described above can also be assembled in the form of double glazing. As before, it suffices to guarantee the optical properties that the incident radiation is filtered before reaching the intumescent layer. If the first sheet of the double glazing is not of the fire-resistant type, it may be advantageous to deposit the filtering layer thereon so that it is not in contact with the alkali silicates, it does not require the presence a protective layer.
L'invention est décrite de façon plus détaillée en faisant référence aux dessins dans lesquels:The invention is described in more detail with reference to the drawings in which:
- la figure 1 est une vue schématique en coupe montrant une structure de base d'un vitrage anti-feu;- Figure 1 is a schematic sectional view showing a basic structure of an anti-fire glazing;
-la figure 2 analogue à la précédente présente un vitrage anti-feu selon l'invention, dont la couche intumescente est protégée contre les altérations dues aux UV;FIG. 2, similar to the previous one, shows a fireproof glazing according to the invention, whose intumescent layer is protected against UV damage;
- la figure 3 analogue à la figure 2, est un mode de réalisation dans lequel le filtre UV est isolé de la couche intumescente;FIG. 3, similar to FIG. 2, is an embodiment in which the UV filter is isolated from the intumescent layer;
- la figure 4 montre un autre mode de réalisation de l'invention comportant un ensemble anti-UV de chaque côté de la couche intumescente;FIG. 4 shows another embodiment of the invention comprising an anti-UV assembly on each side of the intumescent layer;
- la figure 5 présente un mode de réalisation selon l'invention dans lequel une feuille de verre est remplacée par un ensemble feuilleté;FIG. 5 shows an embodiment according to the invention in which a glass sheet is replaced by a laminated assembly;
- la figure 6 illustre la mise en œuvre d'un vitrage anti-feu dans une structure de vitrage double;FIG. 6 illustrates the implementation of an anti-fire glazing unit in a double glazing structure;
- la figure 7 est un graphique montrant les variations de transmission de différents vitrages en fonction de la longueur d'onde considérée;FIG. 7 is a graph showing transmission variations different glazings depending on the wavelength considered;
- la figure 8 montre l'incidence de l'épaisseur d'une couche anti-UV à base d'oxyde de zinc;FIG. 8 shows the incidence of the thickness of an anti-UV layer based on zinc oxide;
- la figure 9 illustre l'influence de l'épaisseur de la feuille de verre pour deux couches anti-UV identiques;FIG. 9 illustrates the influence of the thickness of the glass sheet for two identical anti-UV layers;
- la figure 10 montre la variation de transmission pour une couche anti-UV à base d'oxyde de zinc protégée par une couche d'oxyde d'étain.FIG. 10 shows the transmission variation for an anti-UV layer based on zinc oxide protected by a tin oxide layer.
Le type de vitrage concerné par l'invention est représenté en coupe à la figure 1. Le vitrage anti-feu dans sa configuration la plus élémentaire comprend deux feuilles de verre (1 et 2), réunies au moyen d'une feuille de matériau intumescent (3) constitué de silicate alcalin hydraté.The type of glazing concerned by the invention is shown in section in FIG. 1. The fireproof glazing in its most basic configuration comprises two sheets of glass (1 and 2) joined together by means of a sheet of intumescent material. (3) consisting of hydrated alkali silicate.
Les feuilles de verre sont soit de verre" float" usuel, soit le cas échéant de verre à faible coefficient de dilatation thermique du type borosilicaté.The glass sheets are either of conventional "float" glass or, where appropriate, of low borosilicate type thermal expansion glass.
Les structures des vitrages anti-feu du commerce peuvent assembler plusieurs feuilles de matériaux intumescents et un nombre correspondant de feuilles de verre. De même l'épaisseur des feuilles de verre et celle de la, ou des feuilles de matériau intumescent, varient en fonction des modes de production et des applications envisagées. Les structures les plus épaisses, et celles constituées de multiples feuilles de verre et de matériau intumescent conduisant normalement aux vitrages les plus résistant à l'épreuve du feu.The structures of commercial fire-resistant glazing can assemble several sheets of intumescent materials and a corresponding number of glass sheets. Similarly, the thickness of the glass sheets and that of the or sheets of intumescent material, vary depending on the production methods and applications envisaged. The thicker structures, and those consisting of multiple sheets of glass and intumescent material normally leading to the most fire resistant glazing.
Quelle que soit la structure choisie, la question de la transparence, et plus précisément de l'absence d'apparition de bulles ou de voile dans le temps, reste attachée à la présence de ces feuilles de matériau intumescent exposées aux rayons UV. Dans une certaine mesure plus l'épaisseur totale du matériau intumescent est grande, plus les défauts liés au vieillissement altèrent la transparence du vitrage, et donc plus il est nécessaire de faire en sorte d'éviter l'apparition de ces défauts.Whatever the chosen structure, the question of transparency, and more specifically of the absence of appearance of bubbles or veil over time, remains attached to the presence of these sheets of intumescent material exposed to UV rays. To a certain extent, the greater the total thickness of the intumescent material, the more the defects related to aging alter the transparency of the glazing, and therefore it is necessary to ensure that the appearance of these defects is avoided.
Dans la forme présentée les feuilles de verre sont "simples". Dans certaines réalisations une ou plusieurs feuilles de verre "monolithiques "peuvent être remplacées par une ou plusieurs feuilles stratifiées constituées par exemple de deux feuilles de verre réunies au moyen d'une feuille intercalaire thermoplastique du type polyvinylbutyral (PVB), vinyl-acétate d'ethylène (EVA) etc. L'utilisation des feuilles de ce type a pour but généralement d'améliorer les qualités mécaniques du vitrage. Les propriétés des matériaux constitutifs de ces intercalaires présentent cependant un certain nombre d'inconvénients lorsqu'ils sont soumis à l'épreuve du feu, notamment du fait qu'ils conduisent à un dégagement de fumées provenant de leur décomposition. Lorsqu'ils sont présents dans un vitrage, on s'efforce de les disposer de telle sorte que ces inconvénients soient minimisés. En particulier ils sont placés de préférence du coté des vitrages les moins susceptibles d'être exposé au feu ou, dans les structures plus complexes comportant plus de deux feuilles de verre, ils sont situés éventuellement au centre de ces structures.In the form presented the glass sheets are "Simple". In some embodiments, one or more "monolithic" glass sheets may be replaced by one or more laminated sheets consisting for example of two glass sheets joined by means of a polyvinyl butyral (PVB), vinyl acetate-type thermoplastic interlayer sheet. ethylene (EVA) etc. The use of sheets of this type is generally intended to improve the mechanical properties of the glazing. The properties of the constituent materials of these spacers, however, have a number of disadvantages when they are subjected to the test of fire, especially because they lead to a release of fumes from their decomposition. When they are present in a glazing, efforts are made to arrange them so that these disadvantages are minimized. In particular, they are preferably placed on the side of the windows least likely to be exposed to fire or, in more complex structures with more than two glass sheets, they are located possibly in the center of these structures.
Comme indiqué précédemment les feuilles de PVB constituent accessoirement un filtre très puissant contre les rayons UV. L'utilisation systématique de ces feuilles comme protection contre la dégradation des couches intumescentes n'est cependant pas souhaitable généralement en raison des difficultés indiquées ci-dessus à propos de la tenue au feu de ces matériaux, en raison aussi de ce qu'ils s'accompagnent d'un accroissement de l'épaisseur totale du vitrage, en raison encore de leur coût, les feuilles de PVB constituant un élément important du coût de l'ensemble.As indicated above, the PVB sheets incidentally constitute a very powerful filter against UV rays. The systematic use of these sheets as a protection against the degradation of the intumescent layers is, however, not generally desirable because of the difficulties mentioned above with respect to the fire resistance of these materials, also because of their As a result of an increase in the total thickness of the glazing, because of their cost, the PVB sheets constitute an important element of the cost of the whole.
Les matériaux intumescents dont il est question sont de natures variées. Leur composition à base de silicates alcalins hydratés se distingue, notamment par la nature des silicates utilisés. Les plus usuels sont les silicates de sodium, mais les silicates de potassium sont également souvent utilisés éventuellement en mélange avec les silicates de sodium. Le choix de l'un ou l'autre de ces alcalins influe aussi sur les proportions des autres constituants et notamment sur la teneur en eau.The intumescent materials in question are of various natures. Their composition based on hydrated alkali silicates is distinguished, in particular by the nature of the silicates used. The most common are sodium silicates, but potassium silicates are also often used optionally mixed with sodium silicates. The choice of one or other of these alkalis also influences the proportions of the other constituents and in particular the water content.
Les matériaux intumescents se caractérisent encore par les proportions relatives de Si et d'alcalins présents dans la composition. Ce rapport définit ce qui est présenté habituellement comme reflétant le caractère plus ou moins "réfractaire" de ces matériaux. Une autre caractéristique significative de ces matériaux est leur teneur en eau, qui est parfois présentée indirectement par la "perte au feu" du produit, désignant le pourcentage pondéral de ce qui est éliminé lorsque le matériau est calciné. L'eau présente dans le matériau intumescent, en se dégageant sous l'effet de la chaleur, est responsable de la formation de la mousse dont dépend la qualité anti-feu.Intumescent materials are further characterized by the relative proportions of Si and alkali present in the composition. This report defines what is usually presented as reflecting the more or less "refractory" nature of these materials. Another significant feature of these materials is their water content, which is sometimes presented indirectly by the "loss on fire" of the product, designating the percentage by weight of what is removed when the material is calcined. The water present in the intumescent material, releasing under the effect of heat, is responsible for the formation of the foam on which the fire-resistant quality depends.
D'autres constituants participent à la composition de ces matériaux. Il s'agit d'éléments variés qui, soit contribuent à l'amélioration des propriétés anti-feu, soit participent de la stabilité du produit dans le temps, soit facilitent la production de ces vitrages. Parmi les éléments les plus utilisés figurent notamment les composés polyols et en particulier la glycérine qui favorise notamment une certaine plasticité du matériau intumescent.Other constituents participate in the composition of these materials. These are various elements that either contribute to the improvement of the fireproof properties, or contribute to the stability of the product over time, or facilitate the production of these glazings. Among the most commonly used elements include polyol compounds and in particular glycerine which promotes in particular a certain plasticity of the intumescent material.
La nature et les propriétés des matériaux en question font l'objet de nombreuses publications antérieures. A titre indicatif on peut se reporter notamment aux publications de brevet: EP 1 027 404, FR 2 607 491, FR 2 399 513.The nature and properties of the materials in question are the subject of many previous publications. As an indication, reference may in particular be made to patent publications: EP 1 027 404, FR 2 607 491 and FR 2 399 513.
Dans un premier temps les inventeurs ont recherché les conditions d'exposition susceptibles de conduire à l'apparition de défauts lorsque le vitrage est soumis à un vieillissement dans des conditions accélérées. Ils ont ainsi pu déterminer les caractéristiques des radiations responsables de la formation de ces défauts. Pour cela ils ont soumis des échantillons de vitrages identiques à un même rayonnement mais en filtrant ce rayonnement au moyen de filtres connus permettant d'éliminer les longueurs d'onde inférieures à des valeurs déterminées.In a first step, the inventors have sought exposure conditions liable to lead to the appearance of defects when the glazing is subjected to aging under accelerated conditions. They were able to determine the characteristics of the radiation responsible for the formation of these defects. For this, they submitted identical glazing samples to the same radiation but by filtering this radiation by means of known filters making it possible to eliminate wavelengths below specific values.
Pour ces essais le vitrage est constitué de deux feuilles de verre clair ordinaire de 2,85 mm d'épaisseur, réunies au moyen d'une couche de silicate de sodium hydraté de lmm d'épaisseur. Le verre est de type silico- sodo-calcique traditionnel. Sa transmission lumineuse sous une épaisseur de 4mm s'établit à 90%. La transmission dans les UV pour la même épaisseur est de 57%. La couche de silicate de sodium présente un rapport SiO2/ oxydes alcalins de 3,3. La teneur en eau est de 20% en poids, et la teneur en glycérine est de l'ordre del5%en poids de la couche.For these tests, the glazing consists of two sheets of ordinary clear glass 2.85 mm thick, joined by means of a layer of sodium silicate hydrated 1 mm thick. The glass is of traditional silico-soda-lime type. Its light transmission at a thickness of 4mm is 90%. The UV transmission for the same thickness is 57%. The sodium silicate layer has an SiO 2 / alkali oxide ratio of 3.3. The water content is 20% by weight, and the glycerin content is of the order of 5% by weight of the layer.
Ainsi à l'expérience il est apparu que les longueurs d'onde supérieures à 345 nm n'entraînaient pratiquement l'apparition d'aucun défaut, notamment de bulles après une exposition équivalant à 10 ans dans des conditions d'utilisation naturelles. La même épreuve de vieillissement a été reproduite avec des éléments constitutifs du vitrage anti-feu lui-même. En particulier on a vérifié qu'un vitrage comprenant un ensemble feuilleté constitué de deux feuilles de verre de 1,6 mm d'épaisseur, réunies par une feuille de PVB de 0,38mm était effectivement protégé contre les radiations nuisibles à la longévité du produit. Dans cette configuration après les 1000 heures d'épreuve correspondant aux 10 ans de vieillissement naturel, le produit n'était pas sensiblement altéré par l'apparition de bulles ou de "haze" lorsque que l'irradiation était effectuée du coté comportant le PVB.Thus in the experiment it appeared that wavelengths greater than 345 nm practically did not lead to the appearance of any defects, in particular bubbles after exposure equivalent to 10 years under natural conditions of use. The same aging test has been reproduced with constituent elements of the fireproof glazing itself. In particular it has been verified that a glazing unit comprising a laminated assembly consisting of two 1.6 mm thick glass sheets, joined by a 0.38 mm PVB sheet, was effectively protected against harmful radiation to the longevity of the product. . In this configuration after the 1000 hours of test corresponding to the 10 years of natural aging, the product was not substantially altered by the appearance of bubbles or "haze" when the irradiation was performed on the side comprising the PVB.
La figure 2 illustre de manière le principe de l'invention. Dans la structure présentée en plus des deux feuilles de verre (1,2) et de la couche intumescente (3) de la figure 1, une couche (4) faisant office de filtre UV, est disposée sur la feuille (1) du côté exposé au rayonnement UV, de telle sorte que la couche intumescente se situe en aval sur le trajet du rayonnement.Figure 2 illustrates the principle of the invention. In the structure presented in addition to the two sheets of glass (1, 2) and the intumescent layer (3) of FIG. 1, a layer (4) acting as a UV filter is arranged on the sheet (1) on the side exposed to UV radiation, so that the intumescent layer is downstream in the path of the radiation.
La figure 3 analogue à la précédente comporte en plus une couche ou revêtement 5, dont le rôle est d'éviter le contact du filtre anti-UV et de la couche intumescente, lorsque leurs caractéristiques font que le silicate de la couche intumescente est susceptible de corroder le filtre anti-UV.FIG. 3, which is analogous to the previous one, additionally comprises a layer or coating 5, the function of which is to avoid the contact of the UV filter and the intumescent layer, when their characteristics make the silicate of the intumescent layer likely to Corrode the UV filter.
La figure 4 présente un vitrage comportant un filtre anti-UV et sa couche de protection de chaque côté de la couche intumescente. La présence de deux couches anti-UV est rendue nécessaire lorsque les deux faces du vitrage peuvent être exposées aux UV.FIG. 4 shows a glazing unit comprising an anti-UV filter and its protective layer on each side of the intumescent layer. The presence of two anti-UV layers is made necessary when both sides of the glazing can be exposed to UV.
La figure 5 présente un vitrage comportant un ensemble feuilleté formé de deux feuilles de verre (1,1') et d'un intercalaire de type PVB (6). L'autre feuille de verre (2) est simple. La présence de la feuille de PVB qui constitue un puissant filtre UV fait que du côté du feuilleté il est superflu de prévoir un filtre supplémentaire. A l'inverse la face opposée qui ne comporte pas de feuilleté doit faire l'objet d'une protection anti-UV spécifique au moyen des couches (4,5) si elle est exposée aux UV.FIG. 5 shows a glazing unit comprising a laminated assembly formed of two glass sheets (1, 1 ') and a PVB type interlayer (6). The other glass sheet (2) is simple. The presence of the PVB sheet which constitutes a powerful UV filter makes it superfluous to provide an additional filter on the laminate side. Conversely, the opposite face which does not include a laminate must be subject to specific UV protection by means of the layers (4,5) if it is exposed to UV.
La figure 6 illustre un mode de réalisation d'un vitrage double comportant un élément anti-feu (1,2,3) du type présenté à la figure 1. La feuille de verre 7 associée à l'élément anti-feu est séparée de celui-ci par un espacement (8) ordinairement confiné et isolé de l'atmosphère environnante. Dans le cas où le rayonnement incident rencontre en premier la feuille (7), il est avantageux de disposer le filtre anti-UV sur la face interne de cette première feuille. On évite ainsi le contact avec le silicate et la nécessité de protéger le filtre contre l'effet corrosif du silicate. La couche filtrante peut aussi, bien évidemment, se situer sur la face externe de cette première feuille, à condition qu'elle résiste aux griffes et aux agressions extérieures. Elle peut enfin se situer sur la face de l'élément anti-feu exposée en premier au rayonnement UV. La mise en œuvre est néanmoins plus délicate en raison des risques accrus d'altérations notamment mécaniques qui accompagnent la formation de cet élément anti-feu. A l'inverse la production, le stockage et la mise en œuvre d'une feuille simple portant une couche anti-UV telles que celles proposées selon l'invention, correspondent à des opérations courantes, bien maîtrisées.FIG. 6 illustrates an embodiment of a double glazing unit comprising an anti-fire element (1, 2, 3) of the type shown in FIG. 1. The glass sheet 7 associated with the fireproof element is separated from the latter by a spacing (8) ordinarily confined and isolated from the surrounding atmosphere. In the case where the incident radiation first encounters the sheet (7), it is advantageous to arrange the anti-UV filter on the inner face of this sheet. first sheet. This prevents contact with the silicate and the need to protect the filter against the corrosive effect of the silicate. The filter layer can also, of course, be located on the outer face of this first sheet, provided that it resists claws and external aggression. It can finally be located on the face of the fireproof element exposed first to UV radiation. The implementation is nevertheless more delicate because of the increased risks of alterations, especially mechanical alterations that accompany the formation of this fireproof element. Conversely, the production, storage and implementation of a single sheet carrying an anti-UV layer such as those proposed according to the invention correspond to common operations, well controlled.
Les combinaisons indiquées ci-dessus ne sont que quelques unes des possibilités offertes pour constituer des vitrages anti-feu selon l'invention qui peut recouvrir de multiples variantes. En particulier les vitrages anti-feu présentés ne comportent qu'une couche intumescente. L'invention couvre bien entendu les vitrages comportant plusieurs couches de ce type.The combinations indicated above are only some of the possibilities offered to constitute fire-resistant glazings according to the invention which can cover multiple variants. In particular, the fireproof glazings presented have only an intumescent layer. The invention covers, of course, glazings comprising several layers of this type.
La détermination de la transmission lumineuse pour différentes configurations de l'art antérieur fait l'objet de la figure 7. Sur le graphique, la transmission lumineuse est reportée en fonction de la longueur d'onde.The determination of the light transmission for different configurations of the prior art is the subject of FIG. 7. On the graph, the light transmission is plotted as a function of the wavelength.
Sur ce graphique la courbe I est celle correspondant à une feuille de verre "float" clair seule, de 2,85 mm d'épaisseur. On constate que les longueurs d'onde inférieures à 345 nm sont largement transmises. L'élimination totale n'est atteinte de façon progressive que pour des longueurs d'onde inférieures à environ 310 nm. Une partie significative des rayons UV responsables de l'altération de la couche intumescente est donc transmise jusqu'à celle-ci. En pratique cela conduit à l'apparition de défauts gênants, après seulement l'équivalent d'une année d'exposition dans les conditions naturelles.In this graph, the curve I is that corresponding to a clear "float" glass sheet only, 2.85 mm thick. It is found that wavelengths below 345 nm are widely transmitted. Total elimination is progressively achieved only for wavelengths below about 310 nm. A significant part of the UV rays responsible for the alteration of the intumescent layer is therefore transmitted to it. In practice this leads to the appearance of troublesome defects, after only the equivalent of one year of exposure under natural conditions.
La courbe II est donnée à titre indicatif de l'influence du verre lui-même sur la transmission aux diverses longueurs d'onde. Dans le cas considéré, la feuille de verre clair a cette fois une épaisseur de 4,85 mm.Curve II is given as an indication of the influence of the glass itself on the transmission at various wavelengths. In this case, the clear glass sheet has a thickness of 4.85 mm.
Globalement le profil de la courbe de transmission est analogue au précédent avec un décalage vers les longueurs d'onde un peu plus grandes. La disparition complète de la transmission ne débute qu'à environ 320 nm. Le maximum de transmission aussi bien pour les faibles longueurs d'onde que pour le visible est abaissé. Cependant on constate que la fraction transmise, dont la longueur d'onde est inférieure à 345 nm, reste très significative. L'accroissement de l'épaisseur de la feuille de verre protégeant la couche intumescente ne permet pas de protéger convenablement celle-ci contre les altérations liées au vieillissement. Comme précédemment après une année d'exposition aux conditions naturelles, la couche présente de bulles en quantité indésirable.Overall the profile of the transmission curve is similar to the previous one with a shift towards slightly longer wavelengths. The complete disappearance of the transmission starts at about 320 nm. The maximum transmission for both low wavelengths as well as for the visible is lowered. However, it is found that the fraction transmitted, whose wavelength is less than 345 nm, remains very significant. Increasing the thickness of the glass sheet protecting the intumescent layer does not adequately protect it against aging-related deterioration. As previously after a year of exposure to natural conditions, the layer has bubbles in undesirable amount.
La courbe III est obtenue en utilisant pour "filtre" un feuilleté constitué de deux feuilles de verre de 1,6 mm d'épaisseur chacune, et d'un intercalaire de PVB de 0,38 mm d'épaisseur. L'ensemble feuilleté, contrairement aux cas précédents, constitue un filtre particulièrement efficace pour toutes les longueurs d'onde inférieures à environ 380 nm. Ceci explique la très bonne tenue de la couche intumescente protégée par la présence de la feuille de PVB. Après une année d'exposition naturelle pratiquement aucune modification n'est décelable pour les propriétés optiques de la couche intumescente et des vitrages comportant cette couche.Curve III is obtained by using for "filter" a laminate consisting of two glass sheets each 1.6 mm thick, and a PVB interlayer 0.38 mm thick. The laminated assembly, unlike the previous cases, is a particularly effective filter for all wavelengths less than about 380 nm. This explains the very good behavior of the intumescent layer protected by the presence of the PVB sheet. After a year of natural exposure virtually no change is detectable for the optical properties of the intumescent layer and glazing with this layer.
La courbe IV correspond à la transmission d'une feuille de verre de même type que celle faisant l'objet de la courbe I, mais cette fois une couche d'oxyde de titane de 100 nm d'épaisseur est ajoutée sur toute la surface de la feuille, comme proposé antérieurement. On constate que la présence de la couche d'oxyde de titane modifie sensiblement le spectre de transmission. Néanmoins dans les longueurs d'onde inférieures à 345 nm, la proportion d'UV transmis reste significative. A 345 nm elle est encore de l'ordre de 30%. Le filtre est insuffisant pour les couches intumescentes sensibles aux UV. De plus, la TL dans les longueurs d'ondes visibles est fortement affectée par cette couche d'oxyde de titane : la courbe I correspond a une TL de 90% alors que cette valeur chute à 68% pour la courbe IV.Curve IV corresponds to the transmission of a sheet of glass of the same type as that which is the subject of curve I, but this time a layer of titanium oxide of 100 nm thickness is added over the entire surface of the leaf, as previously proposed. It can be seen that the presence of the titanium oxide layer substantially modifies the transmission spectrum. However, in wavelengths below 345 nm, the proportion of transmitted UV remains significant. At 345 nm it is still around 30%. The filter is insufficient for intumescent layers sensitive to UV. In addition, the TL in the visible wavelengths is strongly affected by this titanium oxide layer: the curve I corresponds to a TL of 90% whereas this value drops to 68% for the curve IV.
La figure 8 montre les spectres de transmission de feuilles de verre de 6 mm d'épaisseur revêtues de couches d'oxyde de zinc.Figure 8 shows the transmission spectra of 6 mm thick glass sheets coated with zinc oxide layers.
Les couches sont déposées par "magnetron sputtering" de façon traditionnelle à partir d'une cathode de Zn, par dépôt réactif en atmosphère riche en oxygène (80%).The layers are deposited by magnetron sputtering conventionally from a Zn cathode by reactive deposition in an oxygen-rich atmosphere (80%).
Trois épaisseurs de couches sont essayées pour déterminer l'influence de cette épaisseur sur la transmission. Les épaisseurs sont respectivement de 50 (V), 100 (VI) et 150 nm (VII). La présence des couches modifie un peu la transmission lumineuse globale dans le visible. Le graphique ne permet pas de rendre compte de cette faible variation, la contribution à cette transmission se situant essentiellement entre 400 et 800 nm. Au total la présence de la couche réduit cette transmission d'environ 1 à 2%.Three thicknesses of layers are tested to determine the influence of this thickness on the transmission. The thicknesses are respectively 50 (V), 100 (VI) and 150 nm (VII). The presence of the layers slightly modifies the overall light transmission in the visible. The graph does not make it possible to account for this small variation, the contribution to this transmission being essentially between 400 and 800 nm. In total the presence of the layer reduces this transmission by about 1 to 2%.
Avec ces couches d'oxyde de zinc on constate qu'en dessous d'environ 360 nm, la transmission tombe à des niveaux suffisamment bas pour que le matériau intumescent soit convenablement protégé par ce filtre, pour toutes les épaisseurs essayées. Les transmissions des UV en dessous du seuil de 345 nm montrent une décroissance quand l'épaisseur augmente. L'influence de l'épaisseur s'atténue au-delà de lOOnm. Une augmentation ne modifie plus sensiblement la transmission des UV. L'accroissement de l'épaisseur a pour conséquence une diminution de la transmission dans le visible. Pour cette raison, s'il est souhaitable d'avoir une épaisseur suffisante pour réduire la transmission des UV à des niveaux permettant de protéger efficacement les couches intumescentes, il est préférable de ne pas trop augmenter l'épaisseur pour ne pas réduire sensiblement la transmission lumineuse.With these layers of zinc oxide it is found that below about 360 nm, the transmission falls to sufficiently low levels that the intumescent material is suitably protected by this filter, for all the thicknesses tested. UV transmissions below the 345 nm threshold show decay as the thickness increases. The influence of the thickness diminishes beyond 100 nm. An increase no longer significantly modifies UV transmission. The increase in thickness results in a reduction of the transmission in the visible. For this reason, if it is desirable to have a thickness sufficient to reduce UV transmission to levels that effectively protect the intumescent layers, it is preferable not to increase the thickness too much to substantially reduce transmission. light.
A titre de comparaison des différentes structures, il est commode de mesurer leur taux de transmission des UV à 345 nm. Pour les structures précédentes les valeurs de transmission sont:As a comparison of the different structures, it is convenient to measure their UV transmission rate at 345 nm. For previous structures, the transmission values are:
verre clair 2,85 mm 75%clear glass 2.85 mm 75%
verre clair 4,85 mm 65%clear glass 4.85 mm 65%
feuilleté avec PVB -0%laminated with PVB -0%
verre clair 2,85mm et couche ZnO 170 nm 2%2.85mm clear glass and ZnO layer 170 nm 2%
Le rôle de l'épaisseur du verre qui paraît significatif, est en fait relativement modéré lorsque l'on introduit une couche faisant obstacle de façon efficace à la transmission des UV. La figure 9, montre le spectre obtenu pour une même couche d'oxyde de zinc de 170 nm d'épaisseur, respectivement sur une feuille de verre de 2,85 mm d'épaisseur (VIII), et sur une feuille de 5,85 mm (IX). On constate dans les longueurs d'onde inférieures à 370 nm que les courbes sont pratiquement confondues.The role of the glass thickness, which appears to be significant, is in fact relatively moderate when a layer is introduced effectively blocking the transmission of UV. FIG. 9 shows the spectrum obtained for the same layer of zinc oxide 170 nm thick, respectively on a glass sheet 2.85 mm thick (VIII), and on a sheet of 5.85 mm (IX). It can be seen in the wavelengths less than 370 nm that the curves are practically merged.
Pour protéger la couche filtrant les UV lorsqu'elle peut être sensible au contact avec la couche intumescente de silicate, on interpose par exemple une couche complémentaire de protection. La figure 10 illustre le spectre de transmission d'une feuille de verre de 2,85 mm d'épaisseur revêtue d'une couche d'oxyde de zinc de 150 nm d'épaisseur (X), et celui correspondant à l'échantillon analogue au précédent, et dans lequel la couche d'oxyde de zinc est recouverte d'une couche protectrice d'oxyde d'étain de 50 nm d'épaisseur.To protect the UV filter layer when it can be sensitive to contact with the intumescent layer of silicate, interposed for example a complementary protective layer. FIG. 10 illustrates the transmission spectrum of a 2.85 mm thick glass sheet coated with a 150 nm thick zinc oxide layer (X), and that corresponding to the analogous sample to the above, and wherein the zinc oxide layer is covered with a protective layer of tin oxide 50 nm thick.
On remarque sur ce graphique que le comportement vis-à-vis des UV est pratiquement le même dans les deux cas. La présence de la couche protectrice réduit un peu la transmission dans les longueurs d'onde visibles. Pour cette raison la couche protectrice est d'épaisseur avantageusement aussi petite que possible tout en garantissant une protection suffisante de la couche d'oxyde de zinc. It can be seen from this graph that UV behavior is essentially the same in both cases. The presence of the protective layer slightly reduces the transmission in the visible wavelengths. For this reason the protective layer is advantageously as small as possible while ensuring sufficient protection of the zinc oxide layer.

Claims

REVENDICATIONS
1. Vitrage anti-feu comprenant au moins une couche intumescente à base de silicate alcalin hydraté comprise entre des feuilles de verre dont au moins une est revêtue d'une couche mince filtrant les rayons ultraviolets auxquels le vitrage est exposé, la couche filtrant les ultraviolets ne transmettant pas plus de35%, des rayons de longueurs d'onde égales et inférieures à 345nm.1. Fire-resistant glazing comprising at least one intumescent layer based on hydrated alkali silicate comprised between glass sheets, at least one of which is coated with a thin layer filtering the ultraviolet rays to which the glazing is exposed, the ultraviolet filtering layer not transmitting more than 35%, wavelengths equal to or less than 345nm.
2. Vitrage selon la revendication 1 dans lequel la couche filtrant les ultraviolets ne transmet pas plus de 25%, des rayons de longueurs d'onde égales et inférieures à 345nm.2. Glazing according to claim 1 wherein the ultraviolet filter layer transmits no more than 25%, rays of wavelengths equal to and less than 345 nm.
3. Vitrage selon l'une des revendications précédentes dans lequel la couche filtrant les ultraviolets présente une transmission lumineuse qui n'est pas inférieure à 70%.3. Glazing according to one of the preceding claims wherein the ultraviolet filter layer has a light transmission of not less than 70%.
4. Vitrage selon l'une des revendications précédentes dans lequel la transmission des UV du fait de la couche filtrante mais également des autres éléments en amont de la couche intumescente sur le trajet du rayonnement, et notamment des feuilles de verre, cette transmission n'est pas supérieure à 20% des UV incidents de longueur d'onde supérieure à 345 nm lorsqu'ils atteignent la couche intumescente.4. Glazing according to one of the preceding claims wherein the transmission of UV due to the filter layer but also the other elements upstream of the intumescent layer in the path of the radiation, including glass sheets, this transmission does not is not more than 20% of incident UV wavelengths greater than 345 nm when they reach the intumescent layer.
5. Vitrage selon l'une des revendications précédentes dans lequel la transmission des UV du fait de la couche filtrante mais également des autres éléments en amont de la couche intumescente sur le trajet du rayonnement, et notamment des feuilles de verre, cette transmission n'est pas supérieure à 10% des UV incidents de longueur d'onde supérieure à 345 nm lorsqu'ils atteignent la couche intumescente.5. Glazing according to one of the preceding claims wherein the transmission of UV due to the filter layer but also the other elements upstream of the intumescent layer in the path of the radiation, and in particular glass sheets, this transmission n ' is not more than 10% of incident UV wavelengths greater than 345 nm when they reach the intumescent layer.
6. Vitrage selon l'une des revendications précédentes dans lequel la couche filtrant les ultraviolets est à base d'un des constituants du groupe comprenant: l'oxyde de zinc ou d'un alliage à base de zinc, les oxydes mixtes d'étain et de zinc, l'oxyde de cérium. 6. Glazing according to one of the preceding claims wherein the ultraviolet filter layer is based on one of the constituents of the group comprising: zinc oxide or a zinc-based alloy, mixed oxides of tin and zinc, cerium oxide.
7. Vitrage selon la revendication 6 dans lequel la couche filtrant les UV présente une épaisseur qui n'est pas inférieure à 50 nm.7. Glazing according to claim 6 wherein the UV filter layer has a thickness of not less than 50 nm.
8. Vitrage selon la revendication 6 ou la revendication 7 dans lequel la couche filtrant les UV présente une épaisseur qui n'est pas supérieure à 300 nm.8. Glazing according to claim 6 or claim 7 wherein the UV filter layer has a thickness of not greater than 300 nm.
9. Vitrage selon l'une des revendications précédentes dans lequel le filtre anti-UV est constitué par de l'oxyde de zinc.9. Glazing according to one of the preceding claims wherein the anti-UV filter is constituted by zinc oxide.
10. Vitrage selon l'une des revendications précédentes dans lequel la couche anti-UV est disposée entre deux feuilles de verre enserrant une couche intumescente.10. Glazing according to one of the preceding claims wherein the anti-UV layer is disposed between two sheets of glass enclosing an intumescent layer.
11. Vitrage selon la revendication 10 dans lequel la couche anti-UV est séparée de la couche intumescente par interposition d'une couche inerte aux silicates alcalins hydratés.11. Glazing according to claim 10 wherein the anti-UV layer is separated from the intumescent layer by interposing an inert layer with hydrated alkali silicates.
12. Vitrage selon la revendication 11 dans lequel la couche inerte aux silicates alcalins hydratés est une couche d'oxyde d'étain, une couche d'oxyde, de nitrure ou d'oxynitrure d'aluminium, de titane ou de zirconium.12. Glazing according to claim 11 wherein the hydrated alkali silicate inert layer is a tin oxide layer, a layer of oxide, nitride or oxynitride aluminum, titanium or zirconium.
13. Vitrage selon la revendication 11 dans lequel la couche inerte aux silicates alcalins hydratés présente une épaisseur qui n'est pas supérieure à 50 nm.13. Glazing according to claim 11 wherein the hydrated alkali silicate inert layer has a thickness of not more than 50 nm.
14. Vitrage selon la revendication 10 dans lequel la couche inerte aux silicates alcalins hydratés est une couche organique du type résine époxy, polyuréthane, polytéréphtalate d'éthylène glycole (PET), AAE ou silicones.14. Glazing according to claim 10 wherein the hydrated alkali silicate inert layer is an organic layer of the epoxy resin type, polyurethane, polyethylene glycol terephthalate (PET), AAE or silicones.
15. Vitrage selon la revendication 13 dans lequel la couche inerte aux silicates alcalins hydratés présente une épaisseur qui n'est pas supérieure à 50 μ.15. Glazing according to claim 13 wherein the hydrated alkali silicate inert layer has a thickness of not more than 50 μ.
16. Vitrage selon l'une des revendications précédentes constituant un vitrage double, un des éléments de celui-ci étant constitué d'au moins deux feuilles de verre et d'une couche intumescente de silicate alcalin hydraté, l'autre élément comportant une couche mince filtrant les rayons ultraviolets auxquels le vitrage est exposé, la couche filtrant les ultraviolets ne transmettant pas plus de 35%, des rayons de longueurs d'onde égales et inférieures à 345 nm.16. Glazing according to one of the preceding claims constituting a double glazing, one of the elements thereof consisting of at least two sheets of glass and an intumescent layer of hydrated alkali silicate, the other element having a thin layer filtering the ultraviolet rays to which the glazing is exposed, the ultraviolet filter layer transmitting not more than 35%, wavelengths equal to and less than 345 nm.
17. Vitrage selon l'une des revendications précédentes constituant un vitrage double, un des éléments de celui-ci étant constitué d'au moins deux feuilles de verre et d'une couche intumescente de silicate alcalin hydraté, l'autre élément comportant une couche mince filtrant les rayons ultraviolets auxquels le vitrage est exposé, la couche filtrant les ultraviolets ne transmettant pas plus de 25%, des rayons de longueurs d'onde égales et inférieures à 345 nm. 17. Glazing according to one of the preceding claims constituting a double glazing, one of the elements thereof consisting of at least two sheets of glass and an intumescent layer of hydrated alkali silicate, the other element having a layer thin film filtering the ultraviolet radiation to which the glazing is exposed, the ultraviolet filter layer transmitting no more than 25%, wavelengths equal to and less than 345 nm.
EP06725756A 2005-04-15 2006-04-13 Fireproof glazing Withdrawn EP1874534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2005/0197A BE1016494A3 (en) 2005-04-15 2005-04-15 Glass anti-fire.
PCT/EP2006/061597 WO2006108873A1 (en) 2005-04-15 2006-04-13 Fireproof glazing

Publications (1)

Publication Number Publication Date
EP1874534A1 true EP1874534A1 (en) 2008-01-09

Family

ID=34923732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06725756A Withdrawn EP1874534A1 (en) 2005-04-15 2006-04-13 Fireproof glazing

Country Status (4)

Country Link
EP (1) EP1874534A1 (en)
BE (1) BE1016494A3 (en)
RU (1) RU2417173C2 (en)
WO (1) WO2006108873A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006748A1 (en) * 2010-07-16 2012-01-19 Gevartis Ag Method for improving heat-protection glazings by preventing glass corrosion caused by alkaline glass attack and by priming
BE1020194A3 (en) * 2011-08-22 2013-06-04 Agc Glass Europe FIREPROOF GLAZING.
DE102012200799A1 (en) 2011-09-26 2013-03-28 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Fire protection element with protective coating and its manufacturing process
PT2928688T (en) 2012-12-06 2017-01-03 Saint Gobain Fire protection pane and flame retardant glazing
EP2949463A1 (en) * 2014-05-28 2015-12-02 Saint-Gobain Glass France Fire protection pane and flame retardant glazing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150463A (en) * 1983-11-30 1985-07-03 Glaverbel Fire screening panel
JPH0340944A (en) * 1989-07-06 1991-02-21 Fujita Corp Multifunctional glass
JP2925482B2 (en) * 1989-12-15 1999-07-28 セントラル硝子株式会社 UV absorbing glass with protective film
GB9028239D0 (en) * 1990-12-31 1991-02-13 Rankins Glass Co Ltd Laminated glazing material
GB9113417D0 (en) * 1991-06-21 1991-08-07 Glaverbel Fire-resistant panel
JPH05339033A (en) * 1992-03-31 1993-12-21 Sumitomo Cement Co Ltd Manufacture of uv shielding glass and window glass for automobile and window glass for building
US5480722A (en) * 1992-07-03 1996-01-02 Asahi Glass Company Ltd. Ultraviolet ray absorbent glass and method for preparing the same
DE19916506C1 (en) * 1999-04-13 2000-07-13 Flachglas Ag Fire protection (safety) glass, useful in building, is made from primary products with fire-inhibiting layer on pane of glass by bonding 2 or more to another pane of glass by fire-inhibiting layers
EP1398147A1 (en) * 2002-09-13 2004-03-17 Scheuten Glasgroep Fire-screening glazing unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006108873A1 *

Also Published As

Publication number Publication date
RU2007141982A (en) 2009-05-20
WO2006108873A1 (en) 2006-10-19
BE1016494A3 (en) 2006-12-05
RU2417173C2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
EP2379463B1 (en) Substrate provided with a multilayer stack having thermal properties and an absorbent layer
EP2350416B1 (en) Multiple glazing unit including at least one anti-glare coating, and use of an anti-glare coating in a multiple glazing unit
EP2897918B1 (en) Substrate provided with a stack having thermal properties and an absorbent layer
EP2379464A1 (en) Substrate provided with a multilayer stack having thermal properties and absorbent layers
EP2686279B1 (en) Insulating glazing
WO2008043951A2 (en) Multiple glazing unit having increased selectivity and use of a substrate for producing such a glazing unit
CA2604173A1 (en) Multiple glazing with improved selectivity
EP3494420A1 (en) Substrate equipped with a stack with thermal properties including at least one layer comprising zirconium-rich silicon-zirconium nitride, use and manufacture thereof
EP2585411B1 (en) Insulating glazing
BE1016494A3 (en) Glass anti-fire.
EP1961555A1 (en) Flameproof glazing
EP2585410B1 (en) Insulating glazing
EP3807225B1 (en) Material comprising a stack with thermal and aesthetic properties
BE1016510A3 (en) Glass anti-fire.
FR3091701A1 (en) SUBSTRATE HAVING A STACK OF THERMAL PROPERTIES AND AN ABSORBENT LAYER
EP2822908B1 (en) Insulating glazing
EP3807226A1 (en) Material comprising a stack with thermal and aesthetic properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGC GLASS EUROPE

17Q First examination report despatched

Effective date: 20111124

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130906