EP1868190B1 - Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction - Google Patents

Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction Download PDF

Info

Publication number
EP1868190B1
EP1868190B1 EP07116962A EP07116962A EP1868190B1 EP 1868190 B1 EP1868190 B1 EP 1868190B1 EP 07116962 A EP07116962 A EP 07116962A EP 07116962 A EP07116962 A EP 07116962A EP 1868190 B1 EP1868190 B1 EP 1868190B1
Authority
EP
European Patent Office
Prior art keywords
odss
graphics
button
state
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP07116962A
Other languages
German (de)
English (en)
Other versions
EP1868190A3 (fr
EP1868190A2 (fr
Inventor
Hiroshi Yahata
Joseph Mccrossan
Tomoyuki Okada
Wataru Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority claimed from EP04746984A external-priority patent/EP1641259B1/fr
Publication of EP1868190A2 publication Critical patent/EP1868190A2/fr
Publication of EP1868190A3 publication Critical patent/EP1868190A3/fr
Application granted granted Critical
Publication of EP1868190B1 publication Critical patent/EP1868190B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/022Control panels
    • G11B19/025'Virtual' control panels, e.g. Graphical User Interface [GUI]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/027Remotely controlled
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/031Electronic editing of digitised analogue information signals, e.g. audio or video signals
    • G11B27/034Electronic editing of digitised analogue information signals, e.g. audio or video signals on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/32Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on separate auxiliary tracks of the same or an auxiliary record carrier
    • G11B27/327Table of contents
    • G11B27/329Table of contents on a disc [VTOC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/34Indicating arrangements 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/213Read-only discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/782Television signal recording using magnetic recording on tape
    • H04N5/783Adaptations for reproducing at a rate different from the recording rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/84Television signal recording using optical recording
    • H04N5/85Television signal recording using optical recording on discs or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • H04N9/8047Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/806Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal
    • H04N9/8063Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal using time division multiplex of the PCM audio and PCM video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • H04N9/8227Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal the additional signal being at least another television signal

Definitions

  • the present invention relates to a recording medium suchasaBD-ROM, and to a reproduction apparatus.
  • the present invention particularly relates to an interactive control technology for combining, with a motion picture made of a plurality of pictures, an interactive display made of a plurality of buttons, and for realizing reproduction control in accordance with a user operation directed to the buttons.
  • the interactive control described above is an indispensable function for reproduction apparatuses in receiving a user operation on selection of title and chapter to be reproduced, a reply to a quiz question, and the like, and is widely known to be realized on DVD reproduction apparatuses.
  • the interactive control by a DVD reproduction apparatus is an application of OSD (on screen display) technology by which a button being a character string attached to a graphics is displayed on a screen, and the color of a frame of the button is changed according to a user operation. Such color change enables a user to intuitionally understand which button on the interactive display is in a selected state.
  • OSD on screen display
  • buttons are attempted on the interactive display of a BD-ROM (Blu-ray disk prerecorded format) whose standardization is underway.
  • BD-ROM Blu-ray disk prerecorded format
  • each button is presented in a form of original animation, and is overlayed with a scene of a movie, which is the main video image.
  • the content of this animation display changes according to a user operation.
  • buttons incurs a large amount of decoding load, and so there is a problem that a waiting time, until an initial display of the interactive display is realized, becomes long.
  • an interactive display such as shown in FIG .1 is overlayed with a scene of a movie work.
  • This interactive display has four buttons, each of which has three states: normal state; selected state; and active state.
  • each state of button is presented in 2-3 seconds of animation display. Even if one page of graphics data is displayed at intervals of 5 frames in an image signal, about 30 pages of graphics data are required to realize 2-3 seconds of animation.
  • the object of the present invention is to provide a recording medium that realizes interactive display with animation, without delay.
  • the present invention provides a recording medium having: a graphics stream; where: said graphics stream represents an interactive display to be overlayed with a motion picture made of a plurality of pictures, the interactive display including at least one graphical button material; said graphics stream includes a plurality of pieces of graphics data that are grouped under state sets; and the state sets respectively correspond to different states of the at least one button material and are disposed in a sequential order.
  • FIG. 2A is a diagram illustrating a use of the recording medium according to the present invention.
  • the recording medium of the present invention is a BD-ROM 100.
  • This BD-ROM 100 is used to supply a movie work to a Home Theatre System structured by a reproduction apparatus 200, a television 300, and a remote controller 400.
  • the remote controller 400 is used to receive an operation to change the state of the interactive display, from a user, and is closely related to the recording medium of the present invention.
  • FIG.2B illustrates keys of the remote controller 400, through which a user operation directed to the interactive display is received.
  • the remote controller 400 is provided with a MoveUp key, a MoveDown key, a MoveRight key, and a MoveLeft key.
  • the buttons on the interactive display have three states: normal state; selected state; and activestate.
  • the MoveUp key, the MoveDown key, the MoveRight key, and the MoveLeft key are used to receive a user operation to change the state of the buttons into normal state-selected state-active state.
  • the normal state is a state in which mere display is provided
  • the selected state is a state in which a focus is given according to a user operation, but confirmation has not been received.
  • the active state is a state in which confirmation is received.
  • the MoveUp key is for, when a button in the interactive display is in a selected state, setting a button above this selected button, to be in a selected state.
  • the MoveDown key is for setting a button below this selected button to be in a selected state.
  • the MoveRight key is for setting a key on the right of the selected key to be in a selected state, and the MoveLeft key is for setting a key on the left of the selected key to be in a selected state.
  • the Activated key is for setting the selected button to be in an active state (i.e. to activate).
  • Numerical keys "0"-"9" are for setting a button to which a corresponding number is assigned, to be in a selected state.
  • "+10" key is for receiving an operation to add 10 to the already inputted numerical values. It should be noted here that "0" key and “+10” key are both for receiving input of numerical value of no smaller than 10 digits. Therefore any one of them is enough for the remote controller 400.
  • FIG.3 is a diagram showing a structure of a BD-ROM.
  • the BD-ROM is shown at a fourth row of the drawing, and a track on the BD-ROM is shown in the third row.
  • the track is actually in a spiral shape on the disk, but shown as a line extending in the lengthwise direction of the drawing.
  • the track includes a lead-in area, a volume area, and a lead-out area.
  • the volume area in this drawing has a physical layer, a file system layer, and an application layer.
  • an application format of the BD-ROM is illustrated using a directory structure.
  • the BD-ROM has a directory BDMV under the root directory, and the BDMV directory contains such files as XXX.M2TS, XXX.CLPI, and YYY.MPLS.
  • the BDMV directory contains such files as XXX.M2TS, XXX.CLPI, and YYY.MPLS.
  • the AV Clip (XXX.M2TS) is a digital stream in MPEG-TS format (TS is Transport Stream) obtained by multiplexing a video stream, at least one audio stream, a presentation graphics stream, and an interactive graphics stream.
  • the video stream represents motion pictures of the movie
  • the audio stream represents sound of the movie
  • the presentation graphics stream represents subtitles of the movie
  • the interactive graphics stream represents dynamic reproduction control procedure directed to menus.
  • FIG.4 is a diagram schematically illustrating a structure of the AV Clip.
  • the AV Clip (middle row) is structured in a following manner.
  • a video stream made of plural vide frames (pictures pj1, pj 2, and pj3), and an audio stream made of plural audio frames (top row of the drawing) are respectively converted into a PES packet sequence (second to top row of the drawing), and then into a TS packet sequence (third to top row of the drawing).
  • a presentation graphics stream and an interactive graphics stream (bottom row of the drawing) are converted into a PES packet sequence (second to bottom row of the drawing), and then into a TS packet sequence (third to bottom row of the drawing).
  • the TS packet sequences are multiplexed, to obtain the AV Clip.
  • the AV Clip constituted in the above manner is divided into more than one extent, like ordinary computer files, and stored in areas in the BD-ROM.
  • the AV Clip is made of one or more ACCESS UNITs.
  • Each ACCESS UNIT functions as a unit of random access, as well as a decoding unit starting with an Intra (I) picture.
  • FIG. 5 is a diagram illustrating an internal structure of the Clip information. Since an AV Clip is obtained by multiplexing a video stream and an audio stream, and has ACCESS UNITS that each functions as a unit of random access, specific items managed by the Clip information are: attributes of each of the video stream and the audio stream; and at which position in the AV Clip a random access point exists.
  • the broken leader lines help clarify a structure of the Clip information.
  • the Clip information (XXX.CLPI) is comprised of: "attribute information" about the video stream and the audio stream; and "EP_map" being a reference table used in making a random access to the ACCESS UNITs.
  • the attribute information (“Attribute”) is comprised of : "Video attribute information” that is attribute information on a video stream; "Number” indicating the number of sets of attribute information; and "Audio attribute information #1-#m” that each representing attribute information for a corresponding one of a plurality of audio streams to be multiplexed onto the AV Clip.
  • the Video attribute information indicates what kind of compression method was employed to compress the video stream (Coding), and a resolution (Resolution), an aspect ratio (Aspect), and a frame rate (Framerate) for each set of picture data constituting the video stream.
  • audio attribute information#1-#m(attributeinformation on the audio stream) indicates what kind of compression method was employed to compress the audio stream (Coding), a channel of the audio stream (Ch.), which language the audio stream corresponds to (Lang), and a sampling frequency of the audio stream.
  • EP_map is a reference table used for performing indirect reference to the addresses of a plurality of random access points, us ing time information.
  • the EP_map is comprised of: a plurality of sets of entry information (ACCESS UNIT#1 entry,ACCESS UNIT#2entry, ACCESS UNIT#3 entry...), and entry number (Number).
  • each entry indicates a reproduction start time of a corresponding ACCESS UNIT and the address of the ACCESS UNIT, in association (Note that it is possible to enter the size of the first I picture in the ACCESS UNIT (I-size)).
  • a reproduction start time of an ACCESS UNIT is expressed by a time stamp of picture data positioned at the beginning of the ACCESS UNIT (presentation time stamp).
  • an address of an ACCESS UNIT is expressed by a serial number of a corresponding TS packet (SPN(Source Packet Number)).
  • SPN Source Packet Number
  • the variable length coding compression method is adopted. Therefore, even if there are varieties in size and reproduction time between each ACCESS UNIT including GOP, it becomes possible to perform random access, from any reproduction time, to the picture data of the ACCESS UNIT corresponding to a destination reproduction time, by referring to the entry of this ACCESS UNIT.
  • YYY.MPLS (playlist information) is a table constituting a playlist being reproduction path information, and is comprised of a plurality of pieces of PlayItem information (PlayItem information#1,#2,E3...#n), and PlayItem information number (Number).
  • FIG.6 is a diagram illustrating an internal structure of playlist information.
  • One piece of PlayItem information defines one or more logical reproduction sections that constitute a playlist.
  • the leader line hs1 in the drawing helps clarify a structure of one piece of PlayItem information.
  • the piece of PlayItem information is comprised of: "Clip_Information_file_name” representing a file name of reproduction section information of an AV Clip to which the In-point and Out-point of the reproduction section belongs; "Clip_codec_identifier” representing a coding method used to encode the AV Clip; "IN_time” being time information indicating a start point of the reproduction section; and "OUT_point” being time information indicating an ending point of the reproduction section.
  • the PlayItem information is characterized by its notation method. Specifically, in the PlayItem information, reproduction sections are defined in an indirect way by means of time, using the EP_map as a reference table.
  • FIG.7 is a diagram schematically illustrating this indirect reference.
  • an AV Clip is comprised of a plurality of ACCESS UNITs .
  • the EP_map of the Clip information specifies the addresses of the ACCESS UNITs as shown by the arrows ay1, 2, 3, and 4.
  • the arrows jy1, 2, 3, and 4 schematically show how the pieces of PlayItem information are used to make a reference to the ACCESS UNITs.
  • reference made by means of the pieces of PlayItem information i.e. the arrows jy 1, 2, 3, and 4 is able to specify the addresses of ACCESS UNITS within the AV Clip, via the EP_map, and so can be regarded as an indirect reference using time concept by means of EP_map.
  • a reproduction section on a BD-ROM, comprised of a combination of PlayItem information, Clip information, and AV Clip is called “PlayItem”.
  • a logical reproduction unit on a BD-ROM, comprised of a combination of PL information, Clip information, and AV Clip is called “playlist” (abbreviated as PL).
  • PL logical reproduction unit
  • a movie work recorded in a BD-ROM is structured by such logical reproduction units (i.e. PL). Therefore, it is easy to produce another movie work made of all the scenes with a character, by defining PLs specifying scenes with the character.
  • FIG.8A is a diagram illustrating a structure of the interactive graphics stream.
  • the first row represents a TS packet sequence constituting the AV Clip.
  • the second row represents a PES packet sequence constituting the graphics stream.
  • the PES packet sequence in the second row is structured by extracting payloads from TS packets of the first row that include a predetermined PID, and then linking the extracted payloads together. Note that the presentation graphics stream is not a main focus of the present invention, and so is not explained here.
  • the third row represents the structure of the graphics stream.
  • the graphics stream is made of functional segments of: ICS(Interactive Composition Segment); PDS (Palette Definition Segment); ODS (Object_Definition_Segment), and END (END of Display Set Segment).
  • ICS is called a display composition segment
  • PDS, ODS, and END are respectively called a definition segment.
  • the PES packet and each of the functional segments correspond one to one, or one to plurality. In other words, one functional segment is either recorded in the BD-ROM after converted into one PES packet, or after divided into fragments and converted into more than one PES packet.
  • FIG.8B is a diagram illustrating PES packets obtained by converting the functional segments.
  • a PES packet is made of a packet header and a payload, where the payload is the substance of a functional segment.
  • the packet header includes a DTS and a PTS corresponding to this functional segment.
  • DTS and PTS included in a packet header are referred to as DTS and PTS of a functional segment.
  • FIG. 9 These various kinds of functional segments constitute a logical structure as shown in FIG. 9 .
  • the third row represents functional segments
  • the second row represents Display Sets
  • the first row represents Epochs.
  • the second row is a collection of Display Sets (abbreviated as "DS"), each of which corresponds to graphics that make up one screen of graphics.
  • DS Display Sets
  • the broken line in the drawing indicates to which DS the functional segments of the third row belong.
  • ICS-PDS-ODS-END constitutes one DS.
  • a reproduction apparatus can constitute one screen of graphics by reading a series of functional segments constituting one DS, from the BD-ROM.
  • Each Epoch in the first row represents a period having memory management continuity on a reproduction time axis for an AV Clip, and also corresponds to a data set assigned to this period.
  • the assumed memory is a graphics plane that is for storing one screen of graphics, or an object buffer for storing graphics data in decompressed state.
  • a graphics plane or an object buffer has memory management continuity, it is meant that a flash does not occur in the graphics plane or in the object buffer in a period represented by the Epoch, and deletion/re-drawing for graphics is performed only within a predetermined rectangular area within the graphics plane (Here, the flash means clearing all the contents stored in the plane or in the buffer).
  • the size (length/width) and position of this rectangular area are fixed throughout an Epoch.
  • an Epoch can also be considered as one unit on a reproduction time axis, at which seamless reproduction is guaranteed. If a user wants to change the area, he has to define a change time on the reproduction time axis, and create a new Epoch that corresponds to the time after this change time. In this case, seamless reproduction will not be guaranteed between these two Epochs.
  • this video frame number is 4 to 5 frames. This number of video frames is determined by a ratio of a fixed area to an entire graphics plane, and a transfer rate between the object buffer and the graphics plane.
  • the broken lines hk1, 2 represent to which Epoch the functional segments in the third row belong.
  • a series of DS constitutes an Epoch of the first row.
  • Epoch Start a series of DS (namely, Epoch Start, Acquisition Point, and Normal Case) constitutes an Epoch of the first row.
  • Epoch Start a series of DS (namely, Epoch Start, Acquisition Point, and Normal Case) constitutes an Epoch of the first row.
  • "Epoch Start” , "Acquisition Point” , and “Normal Case” are respectively a type of DS. Note that the order of "Acquisition Point” and “Normal Case” is merely one example, and can be reversed.
  • Epoch Start is a DS that produces a display effect of "new display”, and indicates a start of a new Epoch. Therefore an Epoch Start has to include all the functional segments required to compose a next screen, and is disposed at a position in an AV Clip, which is destined for a random access target (e.g. chapter of a movie work).
  • Acquisition Point is a Display Set that produces a display effect of "display refresh", and relates to a preceding "Epoch Start”.
  • the Acquisition Point is classified into two types: Duplicate and Inherit.
  • a Duplicate is a Display Set totally identical to a preceding Epoch Start, whereas an Inherit is a Display Set inheriting the functional segments from a preceding Epoch Start but has different button commands from the preceding Epoch Start.
  • an Acquisition-Point DS includes all the functional segments required to compose a next screen. Therefore if a random access is performed to an Acquisition-Point DS, graphics display is guaranteed. In other words, an Acquisition-Point DS enables a screen composition during an Epoch in progress.
  • An Acquisition-Point Display Set is incorporated into a position that is a random access target.
  • a position can be specified by time search.
  • Time search is an operation in which input of time (minute and second) is received from a user, and random access is made to a reproduction time corresponding to the inputted time.
  • Such time input is performed in a rough unit such as 10 minutes or 10 seconds, and so time search can specify reproduction points in 10 minutes interval or 10 seconds interval.
  • Normal Case is a DS that produces a display effect of "display update", and only includes a difference with the prior display composition. For example, suppose that a button for a DSv has a same image design as a preceding DSu, but is under different state control from the DSu. In this case, the DSv is arranged either to only include ICS, or to only include ICS and PDS, and set the DSv as a Normal-Case DS. By doing so, it is not necessary to provide overlapping ODSs, and so helps reduce the occupied areas in a BD-ROM. Note that a Normal-Case DS cannot compose a screen by itself, because it represents only the difference.
  • An interactive display defined by these DS is created by disposing GUI parts on a screen.
  • GUI parts which are a user operation target, are called “button”.
  • the states of a button include "normal state”, “selected state”, and “active state”, each of which is composed by a plurality of graphics in decompressed state.
  • Each decompressed graphics representing a state of a button is called “graphics object”. The reason why one state of each button is represented by a plurality of decompressed graphics is for the purpose of animation display.
  • Object_Definition_Segment is information defining a graphics object. The following explains this graphics object.
  • An AV Clip recorded in a BD-ROM, features high-quality images that can be compared to those of a high-definition television. Accordingly, the resolution of the graphics object is high, which is 1920*1080 pixels, so as to produce a high definition.
  • an index value for one pixel is set as 8 bit length.
  • the index value includes red color-difference component (Cr_value), blue color-difference component (Cb_value), brightness component (Y_value), and transparency level (T_value).
  • Cr_value red color-difference component
  • Cb_value blue color-difference component
  • Y_value brightness component
  • T_value transparency level
  • An ODS has a data structure as shown in FIG. 10A , for defining a graphics object.
  • An ODS is comprised of: "segment_type” that indicates that it is an ODS; "segment_length” that indicates a data length of the ODS; "object_id” that uniquely identifies the graphics object that corresponds to this ODS in the Epoch; “object_version_number” that indicates a version of the ODS in the Epoch; “last in sequence flag”; and a continuous byte-length data "object_data_fragment” that is either a part or all of the graphics object.
  • object_id uniquely identifies the graphics object that corresponds to this ODS in the Epoch.
  • "object_id" assigned to each of the plurality of ODSs will be serial numbers.
  • the above-described data structure of an ODS assumes adoption of a storing method by which storing for a new PES packet does not start until a current PES packet becomes full. However, it is also possible to adopt a storing method by which there will be empty space in each PES packet.
  • “palette_definition_segment (PDS)” is information that defines a palette for color conversion.
  • a data structure of a PDS is shown in FIG.10B .
  • a PDS is comprised of: "segment_type” that indicates that it is a PDS; "segment_length” that indicates a data length of the PDS; “palette_id” that uniquely identifies the palette included in the PDS; “palette_version_number” that indicates a version of the PDS in the Epoch; and “palette_entry” that is information about each entry.
  • “palette_entry” represents a red color-difference component (Cr_value), blue color-difference component (Cb_value), brightness component (Y_value), and transparency level (T_value), for each entry.
  • END of Display Set Segment is an index indicating an end of a Display Set transfer, and is disposed immediately after the last ODS.
  • the internal structure of this "END of Display Set Segment" is comprised of: segment_type that indicates that this functional segment is an END of Display Set Segment; and segment_length that indicates a data length of the functional segment, which do not require particular explanation. Therefore the drawing does not show the internal structure.
  • An ICS is a functional segment constituting an interactive display.
  • An ICS has a data structure shown in FIG.11 .
  • an ICS is comprised of: segment_type; segment_length; composition_number; composition_state; command_update_flag; composition_timeout_PTS;selection_timeout_PTS;UO_mask_ta ble; animation_frame_rate_code; default_selected_button_number; default_activated_button_number; and "button information set (button info (1) (2) (3)).
  • composition_number indicates whether update is performed in the DS to which the ICS belongs, and takes a number from 0 to 15.
  • composition_state indicates whether the DS that starts with the particular ICS is a normal case, acquisition case, or epoch start.
  • command_update_flag indicates whether the button commands in the ICS have any change from the counterparts of the preceding ICS. For example, when a DS that a certain ICS belongs to is an Acquisition Point, the ICS will have the same content as the immediately preceding ICS, in principle. However, when this command_update_flag is set to be ON, it becomes possible to set, in the ICS, a button command different from the preceding DS. By this flag, a preceding graphics object can be appropriated, however the command gets valid when it is instructed to be changed.
  • composition_timeout_PTS describes an ending time of an interactive display by means of buttons. At the ending time, display of the interactive display is no more valid, and therefore is not presented. composition_timeout_PTS is preferably described in a time accuracy of the reproduction time axis for the motion picture data.
  • selection_timeout_PTS describes an ending time of a valid button selection period. At the time shown by the selection_timeout_PTS, a button specified by default_activated_button_number gets activated. selection_timeout_PTS is equal to the time specified by composition_timeout_PTS or shorter. selection_timeout_PTS is described in a time accuracy of a video frame.
  • UO_mask_table indicates permission/non-permission of a user operation in a Display Set corresponding to an ICS.
  • any user operation directed to a reproduction apparatus becomes invalid.
  • animation_frame_rate_code describes a frame rate to be applied to a button displayed in animation.
  • the animation frame rate is given by dividing the video frame rate by a value of this field. If this field indicates a value of 00, only ODS identified by start_object_id_xxx is displayed and in non-animation, among the ODS defining graphics objects for all the buttons.
  • “default_selected_button_number” indicates a button number whose default is to be set in a selected state at the start of an interactive display. When this field indicates 0, the button assigned a button number stored in the register of a reproduction apparatus is set to be an active state automatically. If this field indicates other than 0, the field is interpreted to identify a corresponding button.
  • “default_activated_button_number” indicates a button to be set in active state automatically, in a case when a user has not set any button in active state within the time defined by the selection_timeout_PTS.
  • the default_activated_button_number indicates "FF”
  • the button currently in selected state is automatically selected at the time defined by the selection_timeout_PTS.
  • the default_activated_button_number indicates "00”
  • the automatic selection is not performed.
  • the defaut_activated_button_number indicates other than "00" and "FF"
  • button information is information defining each button to be overlayed in an interactive display.
  • the leader line hpl helps clarify the internal structure of the button information i , which is information about the ith button to be controlled by the ICS (button i ). The following is an explanation on information elements constituting this button information i .
  • button_number is a numerical value uniquely identifying a button i in an ICS.
  • number_selectable_flag is a flag indicating whether a numerical-value selection is permitted for the button i .
  • auto_action_flag indicates whether to automatically set the button i to be active state.
  • auto_action_flag is set to be ON (i.e. bit value of 1)
  • the button i is set to be in active state, instead of selected state.
  • the auto_action_flag is set to be OFF (i.e. bit value of 0)
  • the button i will be in mere selected state even when the button i is actually selected.
  • object_horizontal_position "object_vertical_posi tion” respectively indicate a horizontal position and a vertical position of the upper left pixel of the button i in an interactive display.
  • upper_button_number indicates a button number to be in selected state, instead of the button i , when the MOVEUP key is pressed while the button i is in selected state. If the number for the button i is set in this field, the press of the MOVEUP key is ignored.
  • buttons “lower_button_number”, “left_button_number”, and “right_button_number” respectively indicate the button numbers to be in selected state, instead of the button i , when the MOVEDOWN key, the MOVELEFT key, the MOVERIGHT key are pressed while the button i is in selected state. When the number for the button i is set in this field, the press for these keys is ignored.
  • start_object_id_normal indicates the first number of serial numbers assigned to a plurality of ODSs constituting animation, when the button i in normal state is to be drawn in animation.
  • end_object_id_normal indicates the last number of the object_id being the serial numbers assigned to the plurality of ODSs constituting the animation, when the button i in normal state is to be drawn in animation. If the ID indicated by this end_object_id_normal is identical to the ID indicated by the start_object_id_normal, then the still image corresponding to a graphics object identified by this ID will be the image design of this button i .
  • “repeated_normal_flag” indicates whether to repeatedly continue the animation display for the button i in normal state.
  • start_object_id_selected indicates the first number of the serial numbers assigned to the plurality of ODSs constituting animation, when the button i in selected state is drawn in animation. If the ID indicated by end_object_id_selected is identical to the ID indicated by this start_object_id_selected, then the still image corresponding to a graphics object identified by this ID will be the image design of this button i .
  • end_object_id_selected indicates the last number of the object_id being the serial numbers assigned to the plurality of ODSs constituting the animation.
  • “repeat_selected_flag” indicates whether to repeatedly continue the animation display for the button i in selected state.
  • start_object_id_selected has the same value as end_object_id_selected, 00 is set in this field.
  • start_object_id_activated indicates the first number of the serial numbers assigned to the plurality of ODSs constituting animation, when the button i in active state is drawn in animation.
  • end_object_id_activated indicates the last number of object_id being the serial numbers assigned to the plurality of ODSs constituting animation, when the button in active state is drawn in animation.
  • button command indicates a command to be executed when the button i is put into active state.
  • the button command can instruct a reproduction apparatus to perform reproduction directed to PL and PlayItem.
  • a command that instructs a reproduction apparatus to perform reproduction directed to PL and PlayItem is called "LinkPL command" . This command can start reproduction of a playlist specified by a first argument, from a position specified by a second argument.
  • the first argument specifies, by means of a number assigned to a playlist, a PL to be reproduced.
  • the second argument specifies a reproduction start position, by means of a PlayItem included in the PL, or a chapter and a mark that are included in the PL.
  • a LinkPL function for specifying a reproduction start position by means of PlayItem is expressed as "LinkPLatPlayItem()".
  • LinkPL function for specifying a reproduction start position by means of Chapter is expressed as "LinkPLatChapter( )"
  • a LinkPL function for specifying a reproduction start position by means of Mark is expressed as "LinkPLatMark( )”.
  • a button command is used to give instructions to a reproduction apparatus to perform a state obtaining and a state setting.
  • a state of a reproduction apparatus is indicated by 64 Player Status Registers (whose set value is called PSR), and 4096 General Purpose Registers (whose set value is called GPR).
  • the button command is classified into the following (i)-(iv), and performs setting of a value to these registers, and obtaining of a value from these registers.
  • This function is used when obtaining a set value of a Player Status Register specified by an argument.
  • the function is used when setting a value specified by a second argument to a Player Status Register specified by a first argument.
  • This function is used when obtaining a set value of a General Purpose Register specified by an argument.
  • This function is used when setting a value specified by a second argument to a General Purpose Register specified by a first argument.
  • FIG. 12 is a diagram illustrating a relation between ODSs in a DSn, and an ICS.
  • This DSn is supposed to include ODS11-19, 21-29, 31-39, and 41-49.
  • ODS11-19 draw each state of a button A.
  • ODS21-29 draw each state of a button B.
  • ODS31-39 draw each state of a button C
  • ODS41-49 draw each state of a button D (as shown by a sign " ⁇ " in the drawing).
  • button_info(1),(2),(3),(4) respectively indicate the state control of these buttons A-buttons D (Refer to the arrows bh1,2,3,4 in the drawing).
  • FIG .14 illustrates a description example of an ICS when the state transition of the buttons A-D (shown in FIG.15 ) is performed.
  • arrows hh1 and hh2 symbolically represent a state transition by means of neighbor_info( ) of button info(1).
  • the lower_button_number is set as "button C" , and so the button C will be in selected state (sj1 of FIG.15 ) if an UO of MOVEDOWN key press occurs while the button A is in selected state (up1 of FIG.15 ).
  • the right_button_number is set as "button B" , and so the button B will be in selected state (sj2 of FIG. 15 ) if an UO of MOVERIGHT key press occurs while the button A is in selected state (up2 of FIG.15 ).
  • the arrow hh3 in FIG.15 indicates a state transition control by means of neighbor_info( ) of the button info (3).
  • upper_button_number is set as "button A", and so the button A will return to the selected state if an UO of MOVEUP key press occurs while the button C is in selected state (up3).
  • buttons A-D are described.
  • ODS11, 21, 31, and 41 have the image designs shown in FIG.16
  • the ODS11-19 assigned to the button A have the image designs shown in FIG.17 .
  • start_object_id_normal and end_object_id_normal specify ODS11-13, and so the normal state of the button A is presented in animation according to the ODS11-13.
  • start_object_id_selected and end_object_id_selected specify ODS14-16, and so the selected state of the button A is presented according to the ODS14-16.
  • the image design of the button A will change from the design according to the ODS11-13, to the design according to the ODS14-16.
  • the normal_state_info() and the selected_state_info() if the repeat_normal_flag and repeat_select_flag, are set as1, the animation according to the ODS11-13 and the animation according to the ODS14-16 will be repeatedly continued respectively, as shown by " ⁇ (A)", “(A) ⁇ ", and " ⁇ (B)", “(B) ⁇ ” in the drawing.
  • buttons A-D are assigned to the buttons A-D, and that the control for these ODS is described in the ICS, realistic-looking button state control will be realized (e.g. to change the expression of a character according to each user operation).
  • FIG.18 is a diagram illustrating one example of ICS and ODS included in a DS.
  • the ODS31-33 respectively indicate a portrait, a name, and a uniform number of a corresponding one of three baseball players shown in the top row of the drawing.
  • the ICS to which this DS belongs includes three sets of button information, where the button information (1) ' s start_object_id is set to indicate the ODS31, the button information (2)'s start_object_id is set to indicate the ODS32, and the button information (3)'s start_object_id is set to indicate the ODS33.
  • the button information (1)'s button number is set as 99
  • the button information (2)'s button information is set as 42
  • the button information (3)'s button information is set as 94.
  • the numerically_selectable_flag is set as 1. This means that any of the buttons corresponding to the button information (1)-(3) is selectable. Therefore if the numerical value of "99" is inputted by a user through the remote controller 400, the button corresponding to Mr. beginnerer's Luck will be put to selected state.
  • the input of the numerical value "99” may be received through sequential press of "9” and "9". Alternatively, it may be realized by a combination of a press of "9” and 9 times of press directed to "+10" key.
  • the button for Mr. Careless Mistake will be put to selected state
  • the button for Mr. Dead Stock will be put to selected state.
  • each ODS belonging to a Display Set is specified by an ICS to display one state of a button.
  • the order of ODSs in a Display Set is decided according to such a specification, i.e. which state of a button an ODS represents.
  • ODSs in a Display Set are classified into sets of (1) those representing normal state, (2) those representing selected state, and (3) those representing active state.
  • a set of ODSs that represents one state of a particular button is called "button-state set". These button-state sets are disposed in the order of "normal state-selected state-active state”. As shown above, the order of each ODS in the Display Set is decided according to which state of a button the ODS represents.
  • FIG.19 is a diagram illustrating the order of ODSs belonging to a Display Set.
  • This drawing depicts: a set of ODSs for rendering normal state of the buttons (ODSs for Normal state); a set of ODSs for rendering selected state of the buttons (ODSs for Selected state); and a set of ODSs for rendering active state of the buttons (ODSs for Active state).
  • the order of these button-state sets is as follows: normal state ⁇ selected state ⁇ active state. The purpose of this order is for facilitating reading of the ODSs constituting an initial display of an interactive display early, putting off the reading of the ODSs constituting a screen display after update.
  • the first row of FIG.19 represents graphics objects An, Bn, Cn, Dn, As, Bs, Cs, Ds, Aa, Ba, Ca, Da, which will be rendered by these button-state sets.
  • the subscript "n” assigned to An, Bn, Cn, Dn represents normal state of a corresponding button.
  • the subscript "s" of As,Bs,Cs,Ds represents selected state of a corresponding button, and the subscript "a” represents active state of a corresponding button.
  • the second row of FIG.19 shows button-state sets to which the Graphics Objects of the first row belong.
  • FIG.20 is a drawing illustrating a state transition of an interactive display at which the button-state sets of FIG.19 are disposed.
  • the interactive display in this drawing has a plurality of states, namely, "initial display”, “update display by 1 st user action”, and “update display by 2 nd update display”.
  • the arrows in the drawing represent user actions that trigger the state transition.
  • the four buttons A, B, C, and D respectively have three states of "normal state”, “selected state”, and "active state”. Among them, what is necessary for an initial display is three graphics objects for rendering a normal state and one graphics object for rendering a selected state.
  • buttons A-D Even when the default selected button is not decided yet, and it is uncertain which of the buttons A-D will be put to selected state, an initial display can be realized when decoding of graphics object representing the normal state and the selected state of each button has been complete.
  • the button-state sets are disposed in the order of "normal state ⁇ selected state ⁇ active state" as the second row of FIG.19 shows. According to this disposition of button-state sets, initial display can be realized even when the reading and decoding of ODSs constituting active state has not yet been complete, and it becomes also possible to shorten a time period between the reading start of a Display Set and completion of an initial display.
  • FIG.21 is a diagram illustrating the order of ODSs in a Display Set.
  • ODSs for Normal state is composed of ODS11-13, ODS21-23, ODS31-33, ODS41-43.
  • ODSs for Selected state is composed of ODS14-16, ODS24-26, ODS34-36, and ODS44-46.
  • ODSs for Active state is composed of ODS17-19, ODS27-29, ODS37-39, and ODS47-49.
  • ODS11-13 are for rendering expression change of a character as shown in FIG.
  • Multi-reference means that object_id of one ODS is specified by two or more sets of normal_state_info, selected_state_info, and activated_state_info.
  • object_id of one ODS is specified by two or more sets of normal_state_info, selected_state_info, and activated_state_info.
  • this ODS will be disposed only in a button-state set that corresponds to an earliest-appearing state among the plurality of states.
  • the ODS when an ODS is multiple-referenced by a normal state and a selected state, the ODS will be disposed in a button-state set for Normal state (N-ODSs), not in a button-state set for Selected state (S-ODSs).
  • N-ODSs Normal state
  • S-ODSs button-state set for Selected state
  • the ODS if an ODS is multipe-referenced by a selected state and an active state, then the ODS will be disposed in a button-state set for Selected state (S-ODSs), and not in a button-state set for Active state(A-ODSs) . In this way, a multiple-referenced ODS is disposed only in a button-state set corresponding to the earliest appearing state.
  • S-ODSs which ODS comes first depends on whether the default selected button is statically determined or dynamically determined.
  • a statically-determined default selected button is a button specified by a valid value (other than 00) set in default_selected_button_number in the ICS.
  • a valid value other than 00 is set as the default_selected_button_number, and that no ODS representing a default selected button does not exist in the N-ODSs, the ODS representing the default selected button is disposed at the beginning of the S-ODSs.
  • the button to be set in selected state will dynamically change depending on the state at a reproduction apparatus side.
  • the case where the default_selected_button_number is set to indicate the value 00 includes a case when the AV Clip onto which the Display Set has been multiplexed exists at a joint point of a plurality of reproduction paths. For example, suppose a case when the preceding reproduction paths are respectively first, second, and third chapters, and the Display set at the joint point is for displaying buttons corresponding to the first, second, and third chapters. In such a case, it is not appropriate to predetermine the button to be in selected state as a default, by the default_selected_button_number.
  • the button to be in selected state it is ideal to change the button to be in selected state according to which one of the preceding plurality of reproduction paths has been passed, until reaching this Display Set (e.g. the second-chapter button when reaching from the first chapter, the third-chapter button when reaching from the second chapter, and the fourth-chapter button when reaching from the third button).
  • this Display Set e.g. the second-chapter button when reaching from the first chapter, the third-chapter button when reaching from the second chapter, and the fourth-chapter button when reaching from the third button.
  • the default_selected_button_number will be set to indicate "invalid" , i.e. the zero value is set thereto. Since the button to be in selected state will change, an arrangement of disposing a certain ODS at the beginning of the button-state set is not performed.
  • FIG. 22 is a diagram illustrating difference in the order of ODSs in a S-ODSs, between a case when default_selected_button_number indicates “0", and when it indicates "button B".
  • the broken line ss1 indicates the order of ODSs in the S-ODSs when default_selected_button_number indicates the button B
  • the broken line ss2 indicates the order of ODSs in the S-ODSs when default_selected_button_number indicates 0.
  • An Epoch is a period during which memory management continues on the reproduction time axis. Since an Epoch is composed of one or more Display Sets, it is an issue how to assign Display Sets to the reproduction time axis of the AV Clip.
  • the reproduction time axis of an AV Clip is used to define decode/reproduction timing of each piece of picture data constituting a video stream multiplexed into an AV Clip. In this reproduction time axis, a decode timing and a reproduction timing are expressed in a time accuracy of 90KHz.
  • DTS and PTS assigned to these ICS and ODS in a Display Set indicate a timing to realize synchronized control on this reproduction time axis. Synchronized control by means of DTS and PTS assigned to ICS and ODS is assigning of Display Set to the reproduction time axis.
  • a DTS indicates a decode start time for an ODS, in a time accuracy of 90KHz.
  • a PTS indicates a decode end time for an ODS.
  • Decoding of an ODS does not end in an instant, and takes a certain time to complete.
  • a DTS and a PTS respectively indicate a decode start time and a decode end time, for an ODS.
  • the decode start time of an arbitrary ODSj belonging to a Display Set "n" is expressed as DTS(DSn[ODS]) in a time accuracy of 90KHz, the time obtained by adding a maximum time required for the decoding to this decode start time will be the guaranteed decode end time of the ODSj of the Display Set.
  • This maximum time is converted into a time accuracy of 90KHz, and added to the DTS of ODSj. In this way, the decode end time (90KHz) to be indicated by the PTS is obtained.
  • PTS ⁇ DS ODSj DTS DSn ODSj + 90 , 000 * SIZE DSn ODSj / / RD
  • the PTS of an ICS is set after a value obtained by adding: (1) PTS value of ODS whose decode time finishes the last among the ODSs constituting the initial display of the DSn; (2) a time required to clear a graphics plane; and (3) a write time required to write a graphics object obtained by decoding of ODSs, to the graphics plane.
  • the PTS of an IDS is set after a value obtained by adding (1) and (3).
  • S-ODSs ODSs for rendering the selected state of a plurality of buttons presented in an initial display
  • S-ODSsfirst the ODS in the S-ODSs whose decode time finishes the earliest
  • PTS value of the S-ODSsfirst is set as a PTS value of the ODS whose decode time finishes the last, and is used as a reference value of the PTS of the ICS.
  • S-ODSslast the ODS whose decode time finishes the last.
  • the PTS value of this S-ODSslast is set as a PTS value of the ODS whose decode time finishes the last, and is used as a reference value of the PTS of the ICS.
  • the decode end time of the S-ODSsfirst is expressed as PTS(DSn[S-ODSsfirst]). Then the PTS(DSn[ICS]) is obtained by adding (2) and (3), to PTS(DSn[S-ODSsfirst]).
  • the widthwise size of a rectangular area in which drawing is possible in a graphics plane is expressed as "video_width”
  • video_height the lengthwise size thereof is expressed as "video_height”.
  • the write rate to a graphics plane is 128Mbps.
  • the amount of time required to clear a graphics plane is expressed as 8*video_width*video_height//128,000,000.
  • ⁇ SIZE(DSn[ICS.BUTTON[i]]) the total size of the graphics objects specified by all the button information included in an ICS is expressed as ⁇ SIZE(DSn[ICS.BUTTON[i]]), and a write rate to a graphics plane is 128Mbps. Then the time required to write to the graphics plane is expressed as ⁇ SIZE(DSn[ICS.BUTTON[i]])//128,000. If this is expressed in a time accuracy of 90 KHz, the time required to clear the graphics plane is expressed as 90,000*( ⁇ SIZE(DSn[ICS.BUTTON[i]])//128,000,000).
  • ⁇ SIZE(DSn[ICS.BUTTON[i]]) indicates a total size for the first display object of the graphics objects representing a button.
  • This ⁇ SIZE(DSn[ICS.BUTTON[i]]) yields a different value between a case where the default selected button is decided and a case where it dynamically changes.
  • ⁇ SIZE(DSn[ICS.BUTTON[i]]) will yield a total size of: a first displayed one of ODSs that represent the selected state of a default selected button; and a first displayed one of ODSs that represent the normal state of the buttons other then the default selected button.
  • FIG.23A and FIG.23B are diagrams for showing the concrete value for ⁇ SIZE(DSn[ICS.BUTTON[i]]), in a case when N-ODSs include a plurality of ODSs constituting the buttons A-D, and S-ODSs include a plurality of ODSs constituting the buttons A-D.
  • ⁇ SIZE(DSn[ICS.BUTTON[i]]) will be a total size of four ODSs shown by thick frames.
  • "As1" is a firstly displayed one of a plurality of ODSs representing the selected state of the button A.
  • buttons B-D are respectively the firstly displayed one of a plurality of ODSs representing the normal state of the buttons B-D.
  • Size() When these sizes are expressed by "size()”, then ⁇ SIZE(DSn[ICS.BUTTON[i]]) will be expressed as size(As1)+size(Bn1)+size(Cn1)+size(Dn1).
  • the total of: a larger ODS of An1 and AS1; a larger ODS of Bn1 and Bs1; a larger ODS of Cn1 and Cs1; and a larger ODS of Dn1 and Ds1, will be ⁇ SIZE(DSn[ICS.BUTTON[i]]).
  • ⁇ SIZE(DSn[ICS.BUTTON[i]]) is expressed as follows.
  • ⁇ SIZE DSn ICS . BUTTON i max ( ( size Anl , ( size As ⁇ 1 ) + max ( ( size Bn ⁇ 1 , size Bs ⁇ 1 + max ( ( size Cn ⁇ 1 , size Cs ⁇ 1 + max ( ( size Dn ⁇ 1 , size Ds ⁇ 1
  • PTS (DSn [ICS]) at immediately after the Epoch Start will be expressed as follows, using the above expressions: PTS ⁇ DSn ICS ⁇ PTS ⁇ DSn ⁇ S - ODSsfirst + 90 , 000 * 8 * video_width * video_height / / 128 , 000 , 000 + 90 , 000 * ⁇ SIZE DSn ICS . BUTTON i ⁇ 128 , 000 , 000 , 000
  • FIG.24 shows one example of realizing synchronized display by setting PTS and DTS in the above way.
  • assumption is made such that a button is displayed at a display timing of arbitrary picture data "py1" which is in the motion picture in this drawing.
  • the PTS value of the ICS should be set so as to coincide with the display timing of this picture data.
  • Decoding of the ODS whose decode time finishes the last, among the ODSs constituting the initial display of the DSn, should be complete by the time obtained by subtracting, from the PTS of the ICS, the screen-clearing period cd1 and the graphics-object transfer period td1. Therefore the PTS value of the ODS should be set at the timing ( ⁇ 1) shown in this drawing. Furthermore, the decoding of the ODS takes the period dd1, and so the DTS value of this ODS should be set at the dd1 period earlier than this PTS.
  • FIG. 24 there is only one ODS to be overlayed with the motion picture, which is a simplified case. If the initial display of the interactive display to be overlayed with the motion picture is realized by a plurality of ODSs, PTS and DTS of the ICS, and PTS and DTS of ODS should be set as in FIG.25 .
  • FIG.25 is a diagram showing how to set DTS and PTS, in a case when a plurality of ODSs compose the initial display of the interactive display, and the default selected button is statically decided. If the decoding of the ODS whose decoding takes the longest in S-ODSsfirst (the ODSs for realizing the initial display) finishes when the time dd1 has passed in the drawing, then the PTS of this S-ODSsfirst (DSn [S-ODSsfirst]) is set to indicate the time at which the period dd1 has passed.
  • the PTS of the ICS should be set after the time obtained by adding, to the value of this PTS(DSn[S-ODSsfirst]), a period required to perform screen clearing (90,000*(8*video_width*video_height//128,000,000)), and transferring time of decoded graphics object (90,000*( ⁇ SIZE(DSn[ICS.BUTTON[i]])128,000,000)).
  • FIG.26 is a diagram showing how to set DTS and PTS, in a case when a plurality of ODSs compose the initial display of the interactive display, and the default selected button is not decided. If the decoding of the S-ODSslast, whose decoding takes the longest in S-ODSs for realizing the initial display, finishes when the time dd2 has passed in the drawing, then the PTS of this S-ODSslast (DSn[S-ODSslast]) is set to indicate the time at which the period dd2 has passed.
  • the PTS(DSn[ICS]) of the ICS should be set after the time obtained by adding, to the value of this PTS(DSn[S-ODSslast]), a period required to perform the screen clearing(90,000*(8*video_width*video_height//128,000,000) and transferring time of decoded graphics object (90,000*( ⁇ SIZE(DSn[ICS.BUTTON[i]])128,000,000)).
  • a period during which an interactive control is valid corresponds to a period of a VOBU, which functions as a GOP of the video stream.
  • a valid period can be set arbitrarily by means of PTS and DTS in ICS included in an Epoch. Therefore the interactive control by means of a BD-ROM is not in dependence relation with a GOP.
  • a synchronized control by means of a PTS of an ICS is not limited to perform control so as to display a button at a certain timing on a reproduction time axis, and also includes performing of control so as to enable display of a Popup menu during a certain period on a reproduction time axis.
  • a Popup menu is a menu that will be popped up on a screen, by a press of a menu key provided for the remote controller 400, and the synchronized control by means of PTS of ICS also include enabling of display of such a Popup menu at a display timing of certain picture data in an AV Clip.
  • the ODSs constituting a Popup menu are decoded and a graphics object obtained by the decoding are written to a graphics plane, just as the ODSs constituting a button. Unless the writing to a graphics plane is not complete, it is not possible to respond to a menu call by a user. In view of this, a time at which the Popup display becomes possible is indicated by the PTS of ICS, in performing synchronized display of a Popup menu.
  • the data structure of a Display Set (ICS,PDS,ODS), described so far, is an instance in a class structural body written in a programming language.
  • a producer who performs authoring is able to obtain the structures on a BD-ROM, by describing this class structural body.
  • FIG. 27 is a diagram showing the internal structure of a reproduction apparatus according to the present invention.
  • the reproduction apparatus according to the present invention is produced industrially based on the interior shown in this drawing.
  • the reproduction apparatus of the present invention is mainly composed of three parts: a system LSI, a drive apparatus, and a micro system.
  • the industrial production is pursued by implementing these parts to the cabinet and to the substrate of the reproduction apparatus.
  • the system LSI is an integrated circuit onto which varieties of processing units, having functions of the reproduction apparatus, are integrated.
  • the reproduction apparatus produced in such a way is comprised of: a BD drive 1, a track buffer 2, a PID filter 3, a transport buffers 4a, b, and c, a peripheral circuit 4d, a video decoder 5, a video plane 6, an audio decoder 7, a graphics plane 8, a CLUT unit 9, an addition device 10, a graphics decoder 12, a coded data buffer 13, a peripheral circuit 13a, a stream graphics processor 14, an object buffer 15, a composition buffer 16, a graphics controller 17, a UO controller 18, a player register group 19, and a control unit 20.
  • the BD-ROM drive 1 executes access to the BD-ROM by performing loading/reading/ejecting for a BD-ROM.
  • the track buffer 2 is a FIFO memory, and stores TS packets read from the BD-ROM, on a first-in first-out basis.
  • the PID filter 3 performs filtering to a plurality of TS packets outputted from the track buffer 2.
  • the filtering by the PID filter 3 is to write only TS packets having a desired PID, to the transport buffers 4a, b, and c, and does not require buffering. Therefore the TS packets inputted to the PID filter 3 will be written to the transport buffers 4a, b, and c, without time-delay.
  • the transport buffers 4a, b, and c are respectively a memory for storing TS packets outputted from the PID filter 3, on a first-in, first-out basis.
  • the peripheral circuit 4d is a wire logic that performs processing to convert TS packets read from the transport buffer 4a, into functional segments.
  • the functional segments obtained by the conversion are stored in the coded data buffer 13.
  • the video decoder 5 decodes a plurality of TS packets outputted from the PID filter 3 to obtain decompressed pictures, and write them to the video plane 6.
  • the video plane 6 is a plane for motion pictures.
  • the audio decoder 7 decodes the TS packets outputted form the PID filter 3 to obtain decompressed audio data, and outputs the decompressed audio data.
  • the graphics plane 8 is a memory having an area corresponding to one screen, and is able to store decompressed graphics for one screen.
  • the CLUT unit 9 converts index colors of the decompressed graphics stored in the graphics plane 8, based on the Y, Cr, Cb values shown by the PDS.
  • the addition device 10 multiplies the decompressed graphics resulted from color conversion at the CLUT unit 9, with a T value (transmission rate) shown by the PDS, and adds the result and the decompressed picture data stored in the video plane 6, pixel by pixel, to obtain an overlayed image, and outputs the overlayed image.
  • the graphics decoder 12 decodes a graphics stream, to obtain decompressed graphics, and writes this decompressed graphics to the graphics plane 8, as a graphics object. By decoding of the graphics stream, subtitles and menus will appear on a screen.
  • This graphics decoder 12 is comprised of a coded data buffer 13, a peripheral circuit 13a, a stream graphics processor 14, an object buffer 15, a composition buffer 16, and a graphics controller 17.
  • the coded data buffer 13 is a buffer in which the functional segments are stored together with DTS and PTS. Such functional segments result from removing a TS packet header, and a PES packet header from each TS packet in a transport stream stored in the transport buffer 4a, and then disposing the payloads sequentially. Among the removed TS packet header and the PES packet header, PTS/DTS are stored in association with a corresponding PES packet.
  • the peripheral circuit 13a is a wire logic that realizes: transferring between the coded data buffer 13 and the stream graphics processor 14; and transferring between the coded data buffer 13 and the composition buffer 16.
  • transferring processing when it reaches a time shown by the DTS of an ODS, the ODS is transferred from the coded data buffer 13 to the stream graphics processor 14.
  • the ICS and the PDS are transferred to the composition buffer 16.
  • the stream graphics processor 14 decodes an ODS, and writes the decompressed graphics composed of index colors resulting from decoding, to the object buffer 15, as a graphics object.
  • the decoding by the stream graphics processor 14 starts at the time of a DTS associated with the ODS, and ends at the time of a PTS associated with the ODS.
  • the decode rate "Rd" for the aforementioned graphics object corresponds to an output rate of this stream graphics processor 14.
  • FIG.28 is a diagram showing a storage content of the object buffer 15, in contrast to the graphics plane 8.
  • This storage content assumes a case where the ODSs in the example shown by FIGs.16 and 17 are written to the object buffer 15.
  • four-button animation is realized by 36 ODSs (ODS11-49).
  • the ODSs representing all the frames of this animation are stored in the object buffer 15.
  • a display position of each of the ODSs stored in the object buffer 15 is defined in the graphics plane 8. This display position is defined by button_horizontal position and button_vertical position of each piece of button information.
  • the animation is realized by transferring the ODSs from the object buffer 15, frame by frame, so as to write the ODSs to the corresponding display positions of the graphics plane 8.
  • the composition buffer 16 is a memory in which ICS and PDS are disposed.
  • the graphics controller 17 decodes the ICS disposed in the composition buffer 16, and performs control according to the ICS. The execution timing of this control is based on the value of PTS assigned to the ICS.
  • One of the most important functions of this graphics controller 17 is writing processing at initial display and at update of an interactive display. The following explains writing processing of the graphics controller 17 at initial display and at update, by referring to FIG.29.
  • FIG.29 is a diagram showing the processing performed by the graphics controller 17 at an initial display.
  • the graphics controller 17 performs control to write the ODSs belonging to the S-ODSs of the button A, to a display position defined by the button_horizontal_position and the button_vertical_position of the button A's button information, and to write the ODSs belonging to the N-ODSs of the buttons B, C, and D, respectively to display positions defined by the button_horizontal_position and the button_vertical_position of the button information of the buttons B, C, and D (The arrows w1, w2, w3, and w4 in the drawing symbolically show the above-described writing).
  • the initial display of FIG.20 is realized. Please note here that not all the ODSs are not necessary for an initial display of an interactive display.
  • the initial display is realized when the ODSs belonging to the S-ODSs of the default selected button and the ODSs belonging to the N-ODSs of the other buttons have been ready on the object buffer 15. That is, the graphics controller 17 can start writing for an initial display, if decoding has been complete for the ODSs belonging to the S-ODSs of the default selected button, and for the ODSs belonging to the N-ODSs of the other buttons.
  • FIG. 30 is a diagram showing processing of the graphics controller 17 at an update of an interactive display according to 1stUserAction(MoveRight).
  • the graphics controller 17 performs control to write the ODSs belonging to the S-ODSs of the button B, to a display position defined by the button_horizontal_position and the button_vertical_position of the button B's button information, and to write the ODSs belonging to the N-ODSs of the button A, to a display position defined by the button_horizontal_position and the button_vertical_position of the button A's button information (The arrows w5, w6, w7, and w8 symbolically show the writing).
  • the state transition as shown in FIG.20 is realized.
  • the buttons C and D stay in normal state, just as in the initial display of the interactive display, but the writing for these buttons to the graphics plane 8 is continued so as to continue the animation.
  • FIGs. 31 and 32 respectively show the processing of the graphics controller 17, in each cases where the 1stUserAction is MoveDown and Activated.
  • S-ODSs and A-ODSs for the buttons other than the default selected button are involved, and so all the ODSs are required to exist in the object buffer 15.
  • the UO controller 18 detects a user operation directed to the remote controller and to the front panel of the reproduction apparatus, and outputs information corresponding to the user operation (hereinafter "UO(user operation)”), to the control unit 20.
  • the player register group 19 is a register embedded in the control unit 20, and is comprised of 32 player status registers and 32 general purpose registers.
  • the meaning of the set value of the player status registers (PSR) is described below.
  • the notation as "PSR(x)" represents a set value of the xth player status register.
  • the PSR(8) is updated every time each piece of picture data of a AV Clip is displayed. In other words, when the reproduction apparatus displays a new piece of picture data, the PSR(8) is updated to indicate the value shown by the display start time (presentation time) of the new piece of picture data. By referring to this PSR(8), it is possible to know the current reproduction point.
  • the control unit 20 performs integration control through bi-directional communication with the graphics decoder 12.
  • the communication from the control unit 20 to the graphics decoder 12 is to output an UO received at the UO controller 18 to the graphics decoder 12.
  • the communication from the graphics decoder 12 to the control unit 20 is to output a button command included in an ICS to the control unit 20.
  • each constituting element performs decoding processing using pipelining.
  • FIG.33 is a timing chart showing the pipelining performed by the reproduction apparatus.
  • the fourth row represents a Display Set in a BD-ROM, and the third row represents reading periods that are respectively for reading the ICS, PDS, and ODS, to the coded data buffer 13.
  • the second row represents decoding periods for ODSs, performed by the stream graphics processor 14.
  • the first row represents processing periods by the graphics controller 17.
  • the decoding start time for each ODS is shown by the DTS11, DTS12, and DTS13 in the drawing.
  • each ODS is read to the coded data buffer 13 by the time shown by the DTS of the ODS, and the ODS read to the coded data buffer 13 is decoded and written to the object buffer 15 by the time shown by the PTS of the ODS.
  • the stream graphics processor 14 performs the described series of processing using pipelining.
  • the time at which all the graphics objects for an initial display of an interactive display are ready is when the decoding of a first ODS of the button-state set corresponding to the normal state and of a first ODS of the button-state set corresponding to the selected state is complete.
  • the PTS13 the time at which all the graphics objects necessary for the initial display of the interactive display are ready.
  • the period cd1 in the first row represents a period required to clear the graphics plane 8 by the graphics controller 17.
  • the period td1 is a period required to write, to the graphics plane 8, graphics objects that correspond to the first page of the interactive display, among those obtained in the object buffer 15.
  • the writing destination in the graphics plane 8 is shown by button_horizontal_position and button_vertical_position in the ICS.
  • the decompressed graphics constituting the interactive display is obtained to the graphics plane 8, at a time calculated by adding the screen clearing period "cd1" and the write time required to write the graphics object obtained by decoding "td1", to the PTS13 for ODS.
  • An overlayed image can be obtained by having the CLUT unit 9 to perform the color conversion for the aforementioned decompressed graphics, and having the addition device 10 to perform combining the result with the decompressed pictures stored in the video plane 6.
  • the initial display in the present embodiment is performed earlier by the period hy1 in the drawing, because the initial display is performed before decoding completion for the button-state set corresponding to the selected sate and the button-state set corresponding to the active state.
  • the stream graphics processor 14 is continuously decoding the remaining ODSs (i.e. decoding period for ODSn in the second row, decoding period for ODS1, and decoding period for ODSn). According to this, decoding of the remaining ODSs will finish early. This leads to early preparation for updating the interactive display, and so it becomes possible to respond to a user operation regarding an interactive display update by means of the remaining ODSs, without delay.
  • the pipelining as above enables prompt execution of both of an initial display and an update of an interactive display.
  • FIG. 33 assumes a case where the default selected button is statically decided
  • FIG.34 is a timing chart showing pipelining performed by the reproduction apparatus in a case where the default selected button dynamically changes.
  • the graphics objects necessary for an initial display will be ready when all the ODSs belonging to the button-state sets respectively corresponding to the N-ODSs and the S-ODSs are decoded, and corresponding graphics objects are obtained in the graphics plane 8.
  • the initial display in the present embodiment is made possible before decoding completion of thebutton-state set corresponding to the active state. Therefore the initial display execution is performed earlier by the period hy2 in the drawing.
  • the control unit 20 creates a program for performing processing shown in FIGs . 35 and 36 , which is implementable by a general CPU. As follows, the processing performed by the control unit 20 is explained with reference to FIGs.35 and 36 .
  • FIG.35 is a flowchart showing the execution procedure for a LinkPL function, performed by the control unit 20.
  • the control unit 20 follows the flowchart of this drawing.
  • Step S1 current PL information (.mpls) indicated by an argument of the LinkPL is read (Step S1), and the first PI information in the current PL information is set as PIy (Step S2). Then the Clip information specified by the Clip_information_file_name of the PIy is read (Step S3).
  • Step S4 In_time of the PIy is converted to an address using EP_map of the current Clip information (Step S4). Then the ACCESS UNIT specified by this address is set as the ACCESS UNITv (Step S5). out_time of the PIy is converted to an address using EP_map of the current Clip information (Step S6). Then the ACCESS UNIT specified by this address is set as ACCESS UNITw (Step S7).
  • Step S8 an instruction is given to the BD drive to read from the ACCESS UNITv to the ACCES UNITw (Step S8), and an instruction for decoding/outputting of PIy from the In_time to the Out_time, is given to the video decoder 5, the audio decoder 7, and the graphics decoder 12 (Step S9).
  • Step S11 is for performing ending judgment for the flowchart. Specifically, it is judged whether the PIy has reached the last PI. If the Step S11 results in Yes, the flowchart is ended. Otherwise, the next PlayItem is set as PIy (Step S12), and the operation returns to Step S3. Hereinafter, the processing of Step S1-Step S10 is repeated until Step S11 results in Yes.
  • Step S10 is a step for loading functional segments to the coded data buffer 13, in response to the reading of ACCESS UNIT.
  • FIG. 36 is a flowchart showing the procedure for loading processing for the functional segments.
  • SegmentK represents a variable corresponding to each of Segment (ICS,ODS,PDS) read together with the ACCESS UNIT.
  • An ignore flag is used to switch between ignoring and loading of SegmentK.
  • This flowchart has a loop structure in which processing of Steps S21-S24, and Steps S27-S35 is repeatedly performed for all the SegmentK, when the ignore flag has been set as "0", and has been initialized (Step S25, S26).
  • Step S21 is for judging whether a SegmentK is an ICS. If the SegmentK is an ICS, judgments of Step S27 and Step S28 are performed.
  • Step S27 is for judging whether the Segment_Type of the ICS is an Acquisition Point or not. If the SegmentK turns out to be an Acquisition Point, the operation moves onto Step S28. Conversely, if the SegmentK turns out to be either an Epoch Start or a Normal Case, the operation moves onto Step S33.
  • Step S28 is for judging in which buffer (among the coded data buffer 13, the stream graphics processor 14, the object buffer 15, and the composition buffer 16), the preceding DS is found within the graphics decoder 12, and is performed when Step S27 has resulted in Yes.
  • buffer among the coded data buffer 13, the stream graphics processor 14, the object buffer 15, and the composition buffer 16
  • Step S27 has resulted in Yes.
  • a DS is not found in the graphics decoder 12 it means that a random access has been performed. In this case, display should start from the DS being an Acquisition Point. Therefore the operation moves onto Step S30 (Step S28:No).
  • Step S28 When the preceding DS is found in the graphics decoder 12 (Step S28:Yes), the ignore flag is set as "1" (Step S29), and the operation moves onto Step S31.
  • Step S31 is for judging whether the command_update_flag is set as 1 or not. If 1 (Step S31:Yes), only the button command in the button information is loaded to the coded data buffer 13, and the others are ignored (Step S32). If 0, the operation moves onto Step S22. In this way, ICSs indicating an Acquisition Point will be ignored (Step S24).
  • Step S22 will result in No, and as a result, all the functional segments belonging to an Acquisition-point DS are ignored.
  • Step S33 is for judging whether the Segment_Type in an ICS indicates a Normal Case or not.
  • the ignore flag is set as 0 at Step S30.
  • Step S22 When the ignore flag is 0 (Step S22:Yes), the SegmentK is loaded to the coded data buffer 13 (Step S23).
  • Step S34 is the same as Step S28, in content, and is for judging whether the preceding DS is found in the graphics decoder 12. If the judgment is in the affirmative, the ignore flag is set as "0" (Step S30). If the judgment is in the negative, the ignore flag is set as "1", because it is inherently impossible to obtain sufficient number of functional segments for constituting an interactive display (Step S35). According to the above flag setting, when the preceding DS cannot be found in the graphics decoder 12, the functional segments constituting the Normal Case will be ignored.
  • DS10 is a duplicate of DS1, and DS10's Segment_Type indicates an Acquisition Point, and Command_update__flag is set as 0, and a button command of LinkPL(PL# 5) is included therein.
  • DS20 is an Inherit of DS1, and DS20's Segment_Type indicates an Acquisition Point.
  • the only difference with DS1 is the button command (LinkPL(PL#10)). So as to indicate existence of a difference, Command_update_flag is set as 1.
  • FIG.40 shows how the loading of DS1, DS10, and DS20 is performed when a normal reproduction is performed as in FIG.39 .
  • DS1 whose segment_type in ICS is an Epoch Start is loaded to the coded data buffer 13, as it is (Step S23).
  • DS10 whose segment_type in ICS is an Acquisition Point, has the ignore flag set as 1 (Step S29), and so the functional segments constituting DS10 are ignored and not loaded to the coded data buffer 13 (Step S24).
  • Step S30 results in Yes, and so only the button command is loaded.
  • the ignore flag still indicates 1, other elements than the button command are ignored and not loaded.
  • FIG.41 is a flowchart in which processing corresponding to the main routine in the processing of the graphics controller 17 is described. In this flowchart, the three kinds of processing are repeatedly performed: time stamp synchronized processing (Step S35); animation display processing (Step S36); and UO processing (Step S37).
  • FIG. 42 is a flowchart showing the processing procedure for synchronized control performed by means of a time stamp. In this flowchart, it is judged whether any of the phenomena of Step S41, S43-Step S47 holds. If any of the phenomena holds, a subroutine is formed in which a corresponding operation is performed, and then the operation returns to the main routine.
  • Step S41 is for judging whether the current reproduction time is any one of a time shown by the PTS of the S-ODSsfirst, and a time shown by the PTS of the S-ODSslast. If the judgment is in the affirmative, a period ⁇ is calculated at Step S42.
  • the period ⁇ is a period obtained by adding (2) a time required to clear a graphics plane, and (3) a time required to write a graphics object obtained by decoding an ODS to the graphics plane.
  • the graphics controller 17 refers to Segment_Type of ICS, and if the Segment_Type indicates an Epoch Start, ⁇ is set as (2) plane clearing time + (3) plane writing time. If it indicates an Acquisition Point, ⁇ is set as (3) plane writing time. To calculate the plane writing time (3), the calculation of Fig.23A is used when the default_selected_button_number indicates a valid value. On the other hand, when the default_selected_button_number indicates 0, the calculation of FIG.23B is used to calculate the plane writing time (3) . After the period ⁇ is calculated in the above way, the operation returns to loop processing.
  • Step S43 is for judging whether the current reproduction time is a time indicated by the PTS- ⁇ of ICS. If the judgment is in the affirmative, writing processing to the graphics plane 8 is performed (Step S51), and the operation returns to the main routine.
  • the variable "animation(p)" is a global variable indicating the ordinal position of the current frame in the sequence of frames, which will stay valid throughout a plurality of flowcharts.
  • the button (p) of all the buttons will be set as 0.
  • Step S46 and Step S47 are for judging whether the current reproduction time has reached the time information described in ICS.
  • Step S46 is for judging whether the current reproduction time is a time shown by selection_TimeOut_PTS. If the judgment is in the affirmative, processing to activate a button indicated by the default_activated_button_number is performed, and the operation returns to the main routine (Step S54).
  • Step S47 is for judging whether the current reproduction time is a Composition_TimeOut_PTS. If the judgment is in the affirmative, screen clearing is performed and the operation returns to the main routine (Step S55).
  • Step S51 and for Step S54 are respectively created as a subroutine. As follows, the processing performed at the subroutine of Step S51 is explained with reference to FIG.43 .
  • FIG. 43 is a flowchart showing a processing procedure for writing an initial display of a menu to the graphics plane 8.
  • Step S64 is for judging whether Segment_type of ICS indicates an Epoch Start. If the judgment is in the affirmative, the graphics plane 8 is cleared at Step S65, and the processing of Step S66-Step S73 is performed. The time required to clear the graphics plane 8 corresponds to a period cd1 in FIG.25 and in FIG.26 . If the judgment is in the negative, Step S65 is skipped and the processing of Step S66-Step S73 is performed.
  • Step S66-Step S73 form loop processing that is repeated for each piece of button information in an ICS (Step S66, Step S67).
  • a piece of button information that is the processing target is called "button information (p)".
  • Step S67 is for judging whether default_selected_button_number indicates a valid number.
  • Step S68 is for judging whether button_info(p) corresponds to the default selected button specified by the default_selected_button_number.
  • the graphics object of the start_object_id_normal indicated by the normal_state_info of the button_info(p) is found from the object buffer 15, and set as a graphics object(p) (Step S69).
  • the button_info(p) does correspond to the default selected button, the graphics object of the start_object_id_selected is found from the object buffer 15 (Step 570), and the button (p) is set as a current button (Step S71).
  • the current button is a button set in selected state in the interactive display currently displayed, and the reproduction apparatus stores the identifier of this current button as PSR(10).
  • Step S72 the graphics object (p) is written to a graphics plane 8, at a position shown by the button_horizontal_position and button_vertical_position of the button_info(p) (Step S72).
  • the first graphics object will be written to the graphics plane 8.
  • the time required to complete this processing for the graphics objects corresponds to the time td1 shown in FIG.25 and FIG.26 .
  • Step S67 When the default_selected_button_number indicates 0, and the default selected button dynamically changes, Step S67 will be No, and at Step S73, it is judged whether the button_info(p) corresponds to the current button. If the judgment is in the affirmative, the operation moves onto Step S70. If the judgment is in the negative, the operation moves onto Step S69.
  • Step S54 a processing procedure for a subroutine of Step S54 is explained with reference to FIG.44 .
  • FIG.44 is a flowchart showing a processing procedure how to auto-activate a default selected button.
  • Step S75 whether the default_activated_button_number is 00 or FF, is judged. If the default_activated_button_number is "00", the operation returns to the main routine without performing any processing. If the default_activated_button_number is "FF”, the current button i is changed to active state (Step S77). Then animation (i), which is a variable corresponding to the current button i, is set as 0, and the operation returns to the main routine (Step S78).
  • Step S76 the button indicated by the default_activated_button_number is set as a current button (Step S76), and the current button i is changed to active state (Step S77), and the animation (i), which is a variable correpsonding to the current button i, is set as 0, and the operation returns to the main routine (Stpe S78).
  • the button in selected state will be changed to active state.
  • FIG.45 is a flowchart showing a processing procedure for an animation display.
  • the initial display is realized by writing graphics objects specified by start_object_id_normal of normal_state_info, and start_object_id_selected of selected_state_info, in each button_info, to the graphics plane 8.
  • the animation is processing to overwrite this graphics plane 8 with an arbitrary frame (i.e. a graphics object corresponding to a q th frame) in each button, every time the loop operation of Step S35-Step S37 finishes one loop.
  • this process of updating is realized by writing graphics objects specified by normal_state_info and selected_state_info, in button_info, one by one to the graphics plane 8 and returning to the main routine.
  • " q " is a variable for specifying each graphics objects specified by normal_state_info and selected_state_info of button_info of each piece of button information.
  • Step S80 is for judging whether an initial display has been complete. If an initial display has not been complete, the operation makes a return, without performing any processing. If an initial display has been complete, Step S81-Step S93 is designed to structure loop processing in which the processing of steps S81-Step S93 is repeated for each button_info in an ICS (Step S81, Step S82).
  • Step S83 sets animation (p) (the variable corresponding to the button_info(p)), to a variable q .
  • the variable q will indicate the ordinal position of the current frame in the sequence of frames, which corresponds to the button_info(p).
  • Step S84 is for judging whether button_info(p) corresponds to a button currently in selected state (current button).
  • buttons_info(p) corresponds to a different button from the current button
  • an identifier obtained by adding the variable q to start_object_id_normal of normal_state_info of button_info(p) is set as ID(q) (Step S85).
  • Step S86 If the button_info(p) corresponds to the current button, the judgment of Step S86 is performed.
  • Step S86 is for judging whether the current button is in active state. If the judgment is in the affirmative, an identifier, obtained by adding the variable q to start_object_id_actioned of actioned_state_info of button_info(p), is set as ID(q) (Step S87). Then one of the button commands that are included in button_info(p) is executed (Step S88).
  • an identifier obtained by adding the variable q to start_object_id_selected of selected_state_info of button_info(p), is set as ID(q) (Step S89).
  • Step S90 the graphics object (p) that has the ID(q) and exists in the object buffer 15 is written to the graphics plane 8, at a position indicated by button_horizontal_position and button_vertical_position of button_info(p) (Step S90).
  • Step S91 is for judging whether start_object_id_normal+q has reached end_object_id_normal. If the judgment is in the negative, the variable "animation(p)" is incremented by the variable q (Step S92) . If the judgment is in the affirmative, the variable "animation(p)” is initialized to have a value "0" (Step S93). The above-described processing is repeated to all the button_info in the ICS (Step S81, Step S82). After completion of the processing for all the button_info in the ICS, the operation returns to the main routine.
  • Step S80 - Step S93 the design image for each button in the interactive display will be updated to a new graphics object every time one loop of Step S35-Step S37 is finished. If the loop of Step S35-Step S37 is performed many times, a so-called animation is realized.
  • the graphics controller 17 performs time adjustment so that the display interval for one frame of graphics object is set as a value indicated by animation_frame_rate_code.
  • buttons_info(p) are executed one by one. However, it is also possible to execute all the button commands included in button_info(p) at a time, after all the graphics objects corresponding to the active state have been displayed.
  • the processing procedure for UO processing at Step S37 in the main routine is explained with reference to FIG.46 .
  • FIG. 46 is a flowchart showing the processing procedure of the UO processing.
  • Step S100 is for judging whether UomaskTable is set as 1. If the judgment is in the affirmative, the operation returns to the main routine without performing any processing.
  • Step S101 is for judging whether any of MoveUP/Down/Left/Right keys has been pushed. If the judgment is in the affirmative, the current button is changed (Step S104), and it is judged whether auto_action_flag for the current button is 01 (Step 5108). If the judgment is in the negative, the operation returns to the main routine. If the judgment is in the affirmative, the operation moves onto Step S105.
  • Step S102 is for judging whether the activated key has been pushed. If the judgment is in the affirmative, the current button i is changed to active state (StepS105). Then, the variable "animation(i)" is set as 0 (Step S106).
  • Step S103 is for judging whether it is a case of numerical value inputting. If the judgment is in the affirmative, numerical-value inputting processing is performed (Step S107), and the operation returns to the main routine.
  • Step S104 and Step S107 respectively have a structure as a subroutine. The concrete processing procedures for the subroutines are shown in FIG. 47 and FIG. 48 . As follows, these flowcharts are explained.
  • FIG. 47 is a flowchart showing the procedure of changing processing for a current button. First, in neighbor_info of the current button, one of upper_button_number, lower_button_number, left_button_number, and right_button_number, which corresponds to the pressed key, is identified (Step S110).
  • Step S111 is for judging whether the button j set at Step S111 is identical to the button i. If they are identical, the operation returns to the main routine, without performing any processing. If they are not identical to each other, the button j is set as a current button (Step S113), and the variables "animation (i) " and "animation (j)" are set as 0. Then the operation returns to the main routine (Step S114).
  • FIG. 48 is a flowchart showing the procedure of numerical inputting processing. It is judged whether button info.j having the button_number that corresponds to the inputted numerical value exists (Step S121), and whether numerically_selectable_flag of button info.j is 1 is judged (Step S122). If Step S121 and Step S122 result in Yes, the current button is changed to normal state, and the button j is set as a current button (Step S123), and the variable "animation(i)" and the variable “animation(j)” are set as 0 (Step S124). Then it is judged whether auto_action_flag of Button info.j is 1 (StepS125) . If it is not 1, the operation returns to the main routine.
  • Steps S121-S123 If one of Steps S121-S123 is No, the operation returns to the main routine.
  • the stream graphics processor 14 and the graphics controller 17 perform the following processing, which is the same as the processing performed for synchronized display.
  • the graphics object is obtained at the graphics plane 8.
  • the current reproduction time reaches the time shown by the PTS assigned to the ICS.
  • the UO controller 18 the graphics object is outputted from the graphics plane 8 to the CLUT unit 9 for combining.
  • the ICS should be loaded to the Composition buffer 16, before: a decode start time of the first ODS (ODS1) in the DSn (i.e. DTS(DSn[ODS1] ⁇ ) ; and before the first PDS (PDS1) in the DSn becomes valid (i.e. PTS(DSn[PDS1])).
  • ODS1 ODS1
  • PTS1 PTS(DSn[PDS1]
  • a DTS of a PDS will be set at the same value as a corresponding PTS, so as to comply with the MPEG2 standard.
  • FIG.49 is a diagram showing a pipeline in a reproduction apparatus, based on the DTS in the ICS, and the PTS in the PDS.
  • FIG.49 is created based on FIG.33 .
  • "Reading to coded data buffer 13" found in the third row of FIG. 33 corresponds to the fifth row in the present drawing.
  • "decoding by Stream Graphics processor 14" found in the second row corresponds to the fourth row in the present drawing.
  • the ICS and the PTS are set so as to satisfy the above-presented relations.
  • the second row in FIG.49 is a PDS setting to the CLUT unit 9.
  • the third row shows a storage content of the composition buffer 16.
  • the DTS in the ICS is set at an earlier time than the DTS of the PDS or the DTS of the ODS. Therefore, as the arrow up1 shows in this drawing, loading of the ICS to the composition buffer 16 is performed first of all.
  • setting of PDS1-last to the CLUT unit 9 is performed after transfer of the ICS and before decoding of the ODS1, and so is set before the DTS of the ODS1, as the arrow up2 and up3 show in the drawing.
  • the End of the DSn indicates ending of the DSn, and so is to indicate a decode end time of the last ODS(ODSlast) of the DSn. This decode end time is indicated by the PTS of the ODSlast (PTS(DSn[ODSlast])). Therefore the PTS in the END should satisfy the following relation.
  • PTS DSn END PTS DSn ODSlast
  • the ICS in the DSn is loaded to the composition buffer 16 prior to the loading time of the first ODS(ODS1), and so the PTS of the END should be after a loading time of ICS belonging to the DSn (DTS(DSn[ICS])), and before a loading time of ICS belonging to the DSn+1 (DTS(DSn+1[ICS])).
  • a loading time for the first ODS is after a loading time of the last PDS(PDSlast).
  • PTS of END (PTS(DSn[END])) should be after a loading time of PDS belonging to the DSn belonging to the DSn (PTS(DSn[PDS1ast])). Therefore PTS of END should satisfy the following relation. PTS DSn PDSlast ⁇ DTS DSn END
  • FIG.50 is a diagram showing the meaning of the END during operation of the pipeline of the reproduction apparatus. This diagram is created based on FIG.33 , and almost all the rows therein are the same as those of FIG.33 , except that the first row indicates the storage content of the composition buffer 16.
  • FIG.50 renders two display sets, namely DSn and DSn+1.
  • the ODSlast is the last ODSn of A-ODSs, and so the PTS of the END is set to indicate the PTS of this ODSn.
  • the time shown by the PTS of this END is earlier than the time shown by the DTS of the ICS in DSn+1.
  • a DTS of an END will be set at the same value as a corresponding PTS, so as to comply with the MEPG2 standard.
  • ICS, PDS, and ODS in which DTS and PTS are set, are incorporated into an AV Clip in advance .
  • This is convenient for describing interactive control for having a reproduction apparatus to execute certain processing at which a frame of the motion picture appears on a screen, such interactive control being closely synchronized with the content of a motion picture.
  • ICS, PDS, and ODS are multiplexed to the AV Clip itself. Therefore even when the number of sections to be a reproduction control target is some hundreds, it is not necessary to store all the corresponding ICS, PDS, and ODS.
  • ICS, PDS, and ODS are read from a BD-ROM together with video packets.
  • the procedure to be followed is to read ICS, PDS, and ODS for a motion picture section that is to be reproduced at the moment onto the memory, and after completion of the reproduction of this motion picture section, delete the ICS, PDS, and ODS from the memory, and then store a new set of ICS, PDS, and ODS corresponding to the next motion picture section, to the memory.
  • the occupied area of a memory is limited to minimum even when the number of ICS, PDS, and ODS becomes some hundreds.
  • the ODSs will be grouped under three button-state sets (e.g. 120+120+120 pages).
  • Each button-state set is placed so that the set that appears earlier in the animation will be placed nearer to the top, and the set that appears later will be placed farther to the top. Accordingly, in reproduction, the earlier appearing button-state set will be loaded to the reproduction apparatus early, postponing loading of later appearing button-state sets.
  • the preparation for an initial display is ready, even though not all of the 360 pages of ODSs have not been finished being decoded.
  • execution of initial display will not be delayed. According to this, the interactive display with animation can be performed without delay.
  • FIG.51 is a flowchart showing the production method of the BD-ROM that relates to the second embodiment.
  • the production method of the BD-ROM includes: a material production process S201 in which material creation such as motion picture photographing and audio recording is performed; an authoring process S202 in which an application format is generated using an authoring apparatus; and a press process S203 in which a master for the BD-ROM is created by pressing and laminating, so as to complete the BD-ROM.
  • the authoring process directed to a BD-ROM includes the following steps, Step 5204 -Step 5209 .
  • Step S204 animation for frames corresponding to button states are created, frame by frame, in a plurality of pieces of graphics data in a plurality of run-length encoding method.
  • Step S205 the created pieces of graphics data are grouped under button states. Then an ICS is created in which each button information specifies an identifier of a piece of graphics data.
  • creation at Step S206, setting of default selected button and how to vary the states of buttons, are written to the ICS.
  • Step S207 the ICS and the grouped graphics data are integrated into a graphics stream.
  • the graphics stream is generated, at Step S208, the graphics stream is multiplexed with a video stream and an audio stream created independently of the graphics stream, to obtain an AV Clip.
  • Step S209 a static scenario, an active scenario, and the AV Clip are made to comply with the BD-ROM format, thereby completing an application format.
  • such a graphics stream as explained in the first embodiment is generated by performing grouping of graphics data during the authoring process. This is an easy way to generate an application format for a BD-ROM described in the first embodiment.
  • the interactive graphics stream of the first embodiment is recorded onto a BD-ROM by being overlayed onto an AVClip.
  • the interactive graphics stream is recorded to a BD-ROM as a sub Clip separate from the AVClip, and the playlist information is used to associate the AVClip and the sub Clip.
  • the reproduction path formed by Play Item information is called “main path”.
  • information indicating the sub Clip is called sub-path information and defines a reproduction path called "sub path”.
  • FIG.52 is a diagram showing an internal structure of PL information relating to the third embodiment.
  • each piece of sub-path information is made of one or more sub PlayItems.
  • each sub PlayItem is made of "Clip_information_file_name”, “Clip_codec_identifier”, "Sub Play Item_In_Time”, “Sub Play Item_Out_time”, "Sync_Play Item_id”, and "Sync_start_PTS_of PlayItem”.
  • “Clip_information_file_name” is a description of a file name of Clip information, which uniquely identifies a sub Clip corresponding to the sub PlayItem.
  • Chip_codec_identifier indicates in which coding method the AVClip has been encoded.
  • SubPlayltem_In_time indicates a start point of the sub PlayItem on a reproduction time axis of the sub Clip.
  • SubPlayItem_Out_time indicates an end point of the sub PlayItem on the reproduction time axis of the sub Clip.
  • Sync_PlayItem_id uniquely identifies one of PlayItems constituting the main stream, with which the present sub PlayItem is to be synchronized.
  • SubPlayItem_In_time exists on the reproduction time axis of the PlayItem identified by this Sync_PlayItem_id.
  • Sync_start_PTS_of_PlayItem indicates where on the reproduction time axis of the PlayItem identified by the Sync_PlayItem_id, the start point of the sub PlayItem identified by the SubPlayltem_In_time exists. During reproduction of the PlayItem, the sub PlayItem will start being reproduced when the current reproduction time has reached this Sync_start_PTS_of_PlayItem.
  • FIG.53 is a diagram schematically showing the synchronization of sub PlayItem according to sync_PlayItem_id and sync_start_PTS of_PlayItem.
  • the main path in this drawing is made of PlayItems #1, #2, and #3.
  • Sync_Playltem_id and sync_start_PTS_of_PlayItem for the sub PlayItem constituting the sub path are as shown within the frame drawn in a broken line of "wh1".
  • the sync_Playltem_id is set to indicate the PlayItem#1
  • the sync_start_PTS_of_PlayItem is set to indicate the time t1 on the reproduction time axis for the Play Item.
  • an interactive graphics stream being a sub Clip
  • an HD included in the reproduction apparatus.
  • playlist information on the HD corresponds the AVClip on the BD-ROM and the sub Clip on the HD
  • the AVClip and the sub Clip can be reproduced synchronously.
  • FIG.54 is a diagram showing file identification by way of "Clip_information_file_name" in the playlist information on the HD.
  • the arrows rf1, rf2 rf3 show indications by Clip_information_file_name of Play Items in the playlist information.
  • the arrows pf1, pf2, pf3 show indications by Clip_information_file_name of sub Play Items in the playlist information.
  • the sub path defined for the sub Clip on the HD is synchronously reproduced with the main path defined for the main Clip on the BD-ROM.
  • the control unit 20 controls the sub Clip indicated by the sub PlayItem to be reproduced synchronously with the main Clip. This synchronous reproduction is performed as follows. The picture data corresponding to the Sync_Start_PTS of_PlayItem of the sub PlayItem is read from the main Clip. Then, the data existing between the SubPlayItem_In_time to the SubPlayItem-Out_time of the sub PlayItem is reproduced.
  • each invention relating to the claims of the present invention is either extended or generalized description of either the above-described embodiments or their modification examples.
  • the degree of extension and generalization is based on the level of the state of art in this technological field, at the time of filing of the present invention.
  • each invention in the claims reflects the means to solve the technological problems of the conventional technology, and therefore the scope thereof will not exceed the scope recognizable by a person in this technological field. Therefore each invention in the claims of the present invention is substantially associated with the description of the present invention.
  • a recording medium and a reproduction apparatus realize interactive control on movie works, and so help provide the market with movie works of high added values, which helps invigorate the movie market and the consumer goods market. Accordingly, the recording medium and the reproduction apparatus according to the present invention are highly applicable in the movie industry and the consumer goods industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Television Signal Processing For Recording (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)

Claims (9)

  1. Support d'enregistrement (HD) comprenant :
    un flux de graphiques qui représente un affichage interactif incluant une pluralité de touches graphiques devant être superposées à un film, dans lequel :
    ledit flux de graphiques inclut une pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) et des informations de commande (ICS) qui commandent les états de chacune desdites touches graphiques présentant individuellement au moins un état normal, un état sélectionné ainsi qu'un état actif, et
    ladite pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) comprend un premier ensemble de données graphiques (N-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état normal, un deuxième ensemble de données graphiques (S-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état sélectionné, ainsi qu'un troisième ensemble de données graphiques (A-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état actif, l'état normal étant un état dans lequel est procuré un affichage simple, l'état sélectionné étant un état dans lequel est portée une certaine attention en fonction d'une opération de l'utilisateur mais pour lequel aucune confirmation n'a été reçue, et l'état actif étant un état dans lequel a été reçue une confirmation,
    lesdits premier deuxième et troisième ensembles de données graphiques (N-ODS, S-ODS, A-ODS) sont disposés suivant un ordre séquentiel,
    lesdites informations de commande (ICS) incluent des informations (le numéro par défaut de la touche sélectionnée) indiquant que l'une desdites touches graphiques, qui correspond à un numéro de touche enregistrée dans un registre d'état (PSR(10)) d'un appareil de reproduction (200), doit être positionnée à l'état sélectionné comme étant l'état par défaut dans ledit affichage interactif.
  2. Support d'enregistrement (HD) selon la revendication 1, comprenant en outre des informations de liste de diffusion, dans lequel :
    lesdites informations de liste de diffusion incluent des informations de voie principale et des informations de voie secondaire,
    lesdites informations de voie principale indiquent un flux vidéo en tant que flux principal et définissent une section de reproduction du flux principal,
    lesdites informations de voie secondaire indiquent ledit flux de graphiques comme un flux secondaire qui effectue une synchronisation avec ledit flux principal, définissent une section de reproduction dudit flux secondaire et incluent des informations de reproduction (sync start PTS of PlayItem, ou « datation PTS de début de synchronisation des éléments à diffuser »),
    lesdites informations de reproduction (sync start PTS of PlayItem) indiquent un point de synchronisation sur l'axe des temps de reproduction dudit flux principal, et
    ledit affichage interactif est représenté pour être superposé à une image dudit flux vidéo dans ladite section de reproduction dudit flux principal.
  3. Support d'enregistrement (HD) selon la revendication 2, dans lequel
    le support d'enregistrement (HD) sur lequel sont enregistrés ledit flux de graphiques et lesdites informations de liste de diffusion est un support d'enregistrement (HP) réinscriptible, et
    ledit flux vidéo est enregistré sur un disque optique à lecture seule (BD-ROM).
  4. Appareil de reproduction (200) permettant de reproduire un flux vidéo et un flux de graphiques, ledit appareil comprenant :
    un décodeur graphique (12) pouvant est mis en oeuvre pour décoder le flux de graphiques et récupérer un affichage interactif incluant une pluralité de touches graphiques, dans lequel :
    le flux de graphiques inclut une pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) et des informations de commande (ICS) qui commandent les états de chacune des touches graphiques présentant individuellement au moins un état normal, un état sélectionné ainsi qu'un état actif, l'état normal étant un état dans lequel est procuré un affichage simple, l'état sélectionné étant un état dans lequel est portée une certaine attention en fonction d'une opération de l'utilisateur mais pour lequel aucune confirmation n'a été reçue, et l'état actif étant un état dans lequel a été reçue une confirmation, et
    la pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) comprend un premier ensemble de données graphiques (N-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état normal, un deuxième ensemble de données graphiques (S-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état sélectionné, ainsi qu'un troisième ensemble de données graphiques (A-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état actif,
    les premier deuxième et troisième ensembles de données graphiques (N-ODS, S-ODS, A-ODS) sont disposés suivant un ordre séquentiel,
    les informations de commande (ICS) incluent des informations (le numéro par défaut de la touche sélectionnée) indiquant que l'une des touches graphiques, qui correspond à un numéro de touche enregistrée dans un registre d'état (PSR(10)) de l'appareil de reproduction (200), doit être positionnée à l'état sélectionné comme étant l'état par défaut dans l'affichage interactif, et
    ledit décodeur graphique (12) inclut :
    un processeur graphique (14) pouvant être mis en oeuvre pour décoder les données graphiques,
    un circuit tampon d'objets (15) pouvant être mis en oeuvre pour mémoriser des données graphiques décompressées obtenues par le décodage, et
    un contrôleur graphique (17) pouvant être mis en oeuvre pour écrire les données graphiques décompressées vers un plan graphique (8).
  5. Appareil de reproduction (200) selon la revendication 4, comprenant en outre un décodeur vidéo qui décode le flux vidéo et qui lit les informations de liste de diffusion enregistrées sur un support d'enregistrement (HD), dans lequel :
    les informations de liste de diffusion incluent des informations de voie principale et des informations de voie secondaire,
    les informations de voie principale indiquent le flux vidéo en tant que flux principal et définissent une section de reproduction du flux principal, le flux vidéo inclut des images,
    les informations de voie secondaire indiquent le flux de graphiques comme un flux secondaire qui effectue une synchronisation avec le flux principal, définissent une section de reproduction du flux secondaire et incluent des informations de reproduction (sync start PTS of PlayItem, ou « datation PTS de début de synchronisation des éléments à diffuser »),
    les informations de reproduction (sync start PTS of PlayItem) indiquent un point de synchronisation sur l'axe des temps de reproduction du flux principal, et
    l'affichage interactif est représenté pour être superposé à une image du flux vidéo dans la section de reproduction du flux principal.
  6. Appareil de reproduction (200) selon la revendication 5, dans lequel
    le support d'enregistrement (HD) sur lequel sont enregistrés le flux de graphiques et les informations de liste de diffusion est un support d'enregistrement (HD) réinscriptible, et le flux vidéo est enregistré sur un disque optique à lecture seule (BD-ROM).
  7. Procédé d'enregistrement permettant de réaliser un enregistrement sur un support d'enregistrement (HD), ledit procédé comprenant :
    la création de données d'application, et
    l'enregistrement des données créées de l'application sur le support d'enregistrement, dans lequel :
    les données d'application incluent un flux de graphiques,
    le flux de graphiques représente un affichage interactif devant être superposé à un film, l'affichage interactif incluant une pluralité de touches graphiques,
    le flux de graphiques inclut une pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) et des informations de commande (ICS) qui commandent les états de chacune des touches graphiques présentant individuellement au moins un état normal, un état sélectionné ainsi qu'un état actif, et
    la pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) comprend un premier ensemble de données graphiques (N-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état normal, un deuxième ensemble de données graphiques (S-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état sélectionné, ainsi qu'un troisième ensemble de données graphiques (A-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état actif, l'état normal étant un état dans lequel est procuré un affichage simple, l'état sélectionné étant un état dans lequel est portée une certaine attention en fonction d'une opération de l'utilisateur mais pour lequel aucune confirmation n'a été reçue, et l'état actif étant un état dans lequel a été reçue une confirmation,
    les premier deuxième et troisième ensembles de données graphiques (N-ODS, S-ODS, A-ODS) sont disposés suivant un ordre séquentiel, et
    les informations de commande (ICS) incluent des informations (le numéro par défaut de la touche sélectionnée) indiquant que l'une desdites touches graphiques, qui correspond à un numéro de touche enregistrée dans un registre d'état (PSR(10)) de l'appareil de reproduction (200), doit être positionnée à l'état sélectionné comme étant l'état par défaut dans l'affichage interactif.
  8. Programme intégré sur un support pouvant être lu par un ordinateur permettant à un ordinateur (200) de reproduire un flux de graphiques, ledit programme comprenant un code pouvant être mis en oeuvre pour amener l'ordinateur (200) à exécuter :
    le décodage du flux de graphiques, et
    la visualisation d'un affichage interactif, l'affichage interactif incluant une pluralité de touches graphiques, dans lequel :
    le flux de graphiques inclut une pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) et des informations de commande (ICS) qui commandent les états de chacune des touches graphiques présentant individuellement au moins un état normal, un état sélectionné ainsi qu'un état actif, et
    la pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) comprend un premier ensemble de données graphiques (N-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état normal, un deuxième ensemble de données graphiques (S-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état sélectionné, ainsi qu'un troisième ensemble de données graphiques (A-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état actif, l'état normal étant un état dans lequel est procuré un affichage simple, l'état sélectionné étant un état dans lequel est portée une certaine attention en fonction d'une opération de l'utilisateur mais pour lequel aucune confirmation n'a été reçue, et l'état actif étant un état dans lequel a été reçue une confirmation,
    lès premier deuxième et troisième ensembles de données graphiques (N-ODS, S-ODS, A-ODS) sont disposés suivant un ordre séquentiel,
    les informations de commande (ICS) incluent des informations (le numéro par défaut de la touche sélectionnée) indiquant que l'une desdites touches graphiques, qui correspond à un numéro de touche enregistrée dans un registre d'état (PSR(10)) de l'ordinateur (200), doit être positionnée à l'état sélectionné comme étant l'état par défaut dans ledit affichage interactif, et
    l'ordinateur (200) inclut :
    un processeur graphique pouvant être mis en oeuvre pour décoder les données graphiques,
    un circuit tampon d'objets (15) pouvant être mis en oeuvre pour mémoriser des données graphiques décompressées obtenues par le décodage, et
    un plan graphique (8) pouvant être mis en oeuvre pour mémoriser au moins certaines des données graphiques décompressées,
    dans lequel les données graphiques décompressées sont écrites sur le plan graphique (8).
  9. Procédé de reproduction d'un flux de graphiques, qui représente un affichage interactif incluant une pluralité de touches graphiques, ledit procédé de reproduction comprenant :
    le décodage du flux de graphiques et
    la visualisation de l'affichage interactif, dans lequel :
    le flux de graphiques inclut une pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) et des informations de commande (ICS) qui commandent les états de chacune des touches graphiques présentant individuellement au moins un état normal, un état sélectionné ainsi qu'un état actif, et
    la pluralité d'ensembles de données graphiques (N-ODS, S-ODS, A-ODS) comprend un premier ensemble de données graphiques (N-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état normal, un deuxième ensemble de données graphiques (S-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état sélectionné, ainsi qu'un troisième ensemble de données graphiques (A-ODS) formant un groupe de données graphiques permettant d'assurer le rendu de l'état actif, l'état normal étant un état dans lequel est procuré un affichage simple, l'état sélectionné étant un état dans lequel est portée une certaine attention en fonction d'une opération de l'utilisateur mais pour lequel aucune confirmation n'a été reçue, et l'état actif étant un état dans lequel a été reçue une confirmation,
    les premier deuxième et troisième ensembles de données graphiques (N-ODS, S-ODS, A-ODS) sont disposés suivant un ordre séquentiel,
    les informations de commande (ICS) incluent des informations (le numéro par défaut de la touche sélectionnée) indiquant que l'une desdites touches graphiques, qui correspond à un numéro de touche enregistrée dans un registre d'état (PSR(10)) d'un ordinateur (200), doit être positionnée à l'état sélectionné comme étant l'état par défaut dans ledit affichage interactif,
    ledit décodage inclut :
    le décodage des données graphiques,
    la mémorisation des données graphiques décompressées obtenues par le décodage sur un circuit tampon d'objets (15), et
    ladite visualisation inclut :
    l'écriture des données graphiques décompressées sur le plan graphique (8).
EP07116962A 2003-06-30 2004-06-29 Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction Expired - Lifetime EP1868190B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48322803P 2003-06-30 2003-06-30
EP04746984A EP1641259B1 (fr) 2003-06-30 2004-06-29 Support d'enregistrement, dispositif de reproduction, procede d'enregistrement, programme et procede de reproduction

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP04746984.6 Division 2004-06-29
EP04746984A Division EP1641259B1 (fr) 2003-06-30 2004-06-29 Support d'enregistrement, dispositif de reproduction, procede d'enregistrement, programme et procede de reproduction

Publications (3)

Publication Number Publication Date
EP1868190A2 EP1868190A2 (fr) 2007-12-19
EP1868190A3 EP1868190A3 (fr) 2008-02-13
EP1868190B1 true EP1868190B1 (fr) 2010-08-11

Family

ID=38687452

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07116962A Expired - Lifetime EP1868190B1 (fr) 2003-06-30 2004-06-29 Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction
EP07116968A Expired - Lifetime EP1868191B1 (fr) 2003-06-30 2004-06-29 Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07116968A Expired - Lifetime EP1868191B1 (fr) 2003-06-30 2004-06-29 Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction

Country Status (1)

Country Link
EP (2) EP1868190B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448452B1 (ko) 2000-06-09 2004-09-13 엘지전자 주식회사 고밀도 광 기록매체의 메뉴 지원방법
WO2004032122A1 (fr) 2002-10-02 2004-04-15 Lg Electronics Inc. Support d'enregistrement presentant une structure de donnees pour la gestion de reproduction de donnees graphiques et procedes et appareils d'enregistrement et de reproduction
US7769275B2 (en) 2002-10-04 2010-08-03 Lg Electronics, Inc. Recording medium having a data structure for managing reproduction of graphic data and recording and reproducing methods and apparatuses
US7616865B2 (en) 2003-04-30 2009-11-10 Lg Electronics Inc. Recording medium having a data structure for managing reproduction of subtitle data and methods and apparatuses of recording and reproducing
KR20050005074A (ko) * 2003-07-01 2005-01-13 엘지전자 주식회사 고밀도 광디스크의 그래픽 데이터 관리방법 및 그에 따른고밀도 광디스크
KR20050004339A (ko) * 2003-07-02 2005-01-12 엘지전자 주식회사 고밀도 광디스크의 그래픽 데이터 관리방법 및 그에 따른고밀도 광디스크
KR20050064150A (ko) 2003-12-23 2005-06-29 엘지전자 주식회사 고밀도 광디스크의 메뉴 구성방법 및 실행방법과기록재생장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4416846B2 (ja) * 1997-08-22 2010-02-17 ソニー株式会社 メニュー制御用データを記録したコンピュータ読み取り可能な記録媒体ならびにメニュー制御方法および装置
EP1463052A1 (fr) * 2003-03-25 2004-09-29 Deutsche Thomson-Brandt Gmbh Méthode de présentation des boutons animés

Also Published As

Publication number Publication date
EP1868191B1 (fr) 2010-08-11
EP1868190A3 (fr) 2008-02-13
EP1868191A3 (fr) 2008-02-13
EP1868190A2 (fr) 2007-12-19
EP1868191A2 (fr) 2007-12-19

Similar Documents

Publication Publication Date Title
EP2068564B1 (fr) Milieu d'enregistrement, appareil de reproduction, programme et méthode de reproduction
EP1619891B1 (fr) Support d'enregistrement, dispositif de reproduction, procede d'enregistrement, et procede de reproduction
EP1868190B1 (fr) Milieu d'enregistrement, appareil de reproduction, méthode d'enregistrement, programme et méthode de reproduction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070921

AC Divisional application: reference to earlier application

Ref document number: 1641259

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

RIC1 Information provided on ipc code assigned before grant

Ipc: H04N 9/82 20060101ALI20080110BHEP

Ipc: G11B 27/30 20060101ALI20080110BHEP

Ipc: G11B 19/02 20060101ALI20080110BHEP

Ipc: G06T 13/00 20060101ALI20080110BHEP

Ipc: H04N 5/92 20060101ALI20080110BHEP

Ipc: G11B 27/34 20060101ALI20080110BHEP

Ipc: G11B 27/034 20060101ALI20080110BHEP

Ipc: G11B 27/32 20060101ALI20080110BHEP

Ipc: H04N 5/91 20060101AFI20080110BHEP

AKX Designation fees paid

Designated state(s): DE ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PANASONIC CORPORATION

17Q First examination report despatched

Effective date: 20090326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1641259

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REF Corresponds to:

Ref document number: 602004028673

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2347701

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004028673

Country of ref document: DE

Effective date: 20110512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140619

Year of fee payment: 11

Ref country code: NL

Payment date: 20140510

Year of fee payment: 11

Ref country code: ES

Payment date: 20140513

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220506

Year of fee payment: 19

Ref country code: DE

Payment date: 20220308

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004028673

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630