EP1866469A1 - Thermally bound non-woven material - Google Patents

Thermally bound non-woven material

Info

Publication number
EP1866469A1
EP1866469A1 EP06707417A EP06707417A EP1866469A1 EP 1866469 A1 EP1866469 A1 EP 1866469A1 EP 06707417 A EP06707417 A EP 06707417A EP 06707417 A EP06707417 A EP 06707417A EP 1866469 A1 EP1866469 A1 EP 1866469A1
Authority
EP
European Patent Office
Prior art keywords
nonwoven fabric
fabric according
core
sheath
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06707417A
Other languages
German (de)
French (fr)
Other versions
EP1866469B1 (en
Inventor
Armin Greiner
Klaus Veeser
Holger Schilling
Günter Frey
Ralph Berkemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36599098&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1866469(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to PL06707417T priority Critical patent/PL1866469T3/en
Publication of EP1866469A1 publication Critical patent/EP1866469A1/en
Application granted granted Critical
Publication of EP1866469B1 publication Critical patent/EP1866469B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy
    • Y10T442/607Strand or fiber material is synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the invention relates to a thermally bonded nonwoven fabric having improved thermal and chemical stability.
  • the invention further relates to a use of this nonwoven fabric.
  • the document EP 0340 982 B1 discloses melt-bondable fibers and nonwovens made therefrom.
  • the melt-bondable fibers are bicomponent fibers consisting of a first at least partially crystalline polymer component and a second component adhering to the surface of the first component comprising a compatible blend of polymers comprising at least one amorphous polymer and at least one at least partially crystalline polymer.
  • the melting temperature of the second component should be at least 30 ° C below the first component, but at least equal to or greater than 13O 0 C.
  • the weight ratio of the amorphous polymer of the second component to the at least partially crystalline polymer of the second component in the range of 15: 85 to 90: 10 and be sized so that the bonding of the bicomponent fibers is prevented with a similar bicomponent fiber and that the first component of the core and the second component of the shell in the form of a sheath Core configuration forms spun bicomponent fiber.
  • This bicomponent fiber is blended with conventional polyester fibers and thermally bonded to a nonwoven fabric which is made into a nonwoven web by application of abrasive particles.
  • heat-binding conjugate fibers which have a sheath-core configuration and whose core consists of a polyester containing polyethylene terephthalate (PET) as the main component and the sheath of a copolymerized polyester or a side-by-side Conjugate fiber is made, which consists of a polyethylene terephthalate and a copolymerized polyester.
  • the copolymerized polyester is the lower melting component and contains butylene terephthalate units and butylene isophthalate units as repeating structural units.
  • a nonwoven fabric made from these bicomponent fibers is said to have excellent thermal resistance and fatigue resistance to compressive loads, so it can be used as an alternative material to polyurethane upholstery, especially in the automotive field.
  • thermally bonded nonwovens from a mixture of undrawn and stretched PET fibers.
  • binding under heat and pressure in a calender is necessary.
  • the binding capacity of the unstretched, amorphous PET fibers is not based on a melting process, but on the crystallization process of PET, which starts above 90 0 C, if there are still crystallizable parts.
  • Such nonwoven fabrics have a high meet chemical and thermal stability.
  • the manufacturing process allows low flexibility. For example, it is not possible with undrawn PET fibers to activate their binding ability several times, since this is at an irreversible below the melting temperature process.
  • the object of the invention has been found to provide a thermally bonded nonwoven fabric which shows improved properties in terms of its thermal stability, in particular the tendency to shrink of the resulting nonwoven fabrics.
  • thermoplastic bonded nonwoven fabric containing a low-shrinkage core-sheath bicomponent fiber.
  • the low-shrinkage core-sheath bicomponent fiber consists of a crystalline polyester core and a crystalline polyester coating which melts at least 10 ° C., and has a hot-air shrinkage at 170 ° C. of less than 10%, preferably less than 5%.
  • a corresponding nonwoven fabric has a thermal towerä ⁇ dtechnik (shrinkage and Bausch) of less than 2% at temperature loads of 150 0 C (1 h).
  • crystalline is understood as meaning a polyester polymer which has a melting enthalpy (DSC) of> 40 Joule / g and whose width of the melt peak (DSC) preferably precipitates at ⁇ 40 ° C. at 10 ° C./min.
  • the sheath of the low-shrinkage bicomponent fiber consists of a homogeneous polyester polymer prepared from a monomer pair, which is formed to greater than 95% only from a polymer pair. In the case of the polyester described in the claims, this means that the polymer consists of> 95% of a single dicarboxylic acid and a single dialcohol.
  • the mass ratio of core and cladding component is typically 50:50, but may vary between 90:10 and 10:90 for specific applications.
  • the sheath of the low-shrinkage core-sheath bicomponent fiber consists of polybutylene terephthalate (PBT), poly-trimethylene terephthalate (PTT) or polyethylene terephthalate (PET).
  • PBT polybutylene terephthalate
  • PTT poly-trimethylene terephthalate
  • PET polyethylene terephthalate
  • nonwoven fabric wherein the core of the low shrink core-sheath bicomponent fiber is polyethylene terephthalate or polyethylene naphthalate (PEN).
  • PEN polyethylene naphthalate
  • the nonwoven fabric according to the invention may be dependent on the respective
  • the nonwoven fabric according to the invention preferably consists of low-shrink core-sheath bicomponent fibers with a titre in the range between 0.1 and 15 dtex.
  • the nonwoven fabric according to the invention has a basis weight between 20 and 500 g / m 2 .
  • the nonwoven fabric according to the invention reaches at a Basis weight of eg 150-190g / m 2 a bending stiffness determined according to ISO 2493 transverse to the machine direction of greater than 1 Nmm.
  • the method of making the thermally bonded nonwoven web is to lay the fibers into a nonwoven web, thermally bond and, if necessary, compact immediately thereafter.
  • the fibers of the nonwoven fabric according to the invention dwell in a thermofusion oven, which enables a uniform temperature control of the binder fibers.
  • This compression is preferably carried out immediately after the binding process in the dryer with still hot fibers.
  • the structure of the fibers also allows subsequent thermal treatments, since the binding process can be activated several times.
  • the resulting thermally bonded nonwoven fabrics have shrinkage and bulk values in the range of ⁇ 2%, preferably ⁇ 1%.
  • the nonwoven fabrics according to the invention are suitable as a liquid filter medium, membrane support web, gas filter medium, battery separator or nonwoven fabric for the surface of composites due to their high thermal stability, their low shrinkage tendency and their chemical aging stability. This is especially true for use as an oil filter medium for use in automotive engines.
  • the invention will be explained in more detail with reference to FIGS. These show:
  • Figure 1 is a diagram in which the maximum tensile forces of the nonwovens A and B are as index after storage in air and oil based on the respective new state (DIN 53508 and DIN 53521).
  • Fig. 2 is a diagram in which the maximum tensile force extension of the nonwovens A and B after storage at 150 0 C in air and oil are based on the respective new condition (DIN 53508 and DIN 53521);
  • Fig. 3 is a diagram in which the maximum tensile forces of the nonwovens A and B are at different temperatures as an index based on the respective new state (DIN EN 29073-03).
  • nonwoven fabric E comparative example
  • FIG. 5 is an electron micrograph of a membrane support nonwoven fabric, which according to the invention consists of 100% low-shrink PET / PBT bicomponent fiber (nonwoven fabric F);
  • FIG. 6 shows a DSC curve of a bicomponent fiber A with a crystalline sheath polymer (here PET / PBT, according to the invention).
  • Fig. 7 DSC curve of a bicomponent fiber B with amorphous sheath polymer (here PET / CoPET, prior art).
  • the bending stiffness is determined according to ISO 2493 in Nmm. Thermal dimensional change (shrinkage)
  • the sample (DIN A4-sized pattern) is provided with markings in the longitudinal and transverse direction, which have a distance of 200 mm. After storing the sample for 1 hour at 150 0 C in a convection oven and then cooling for 20 minutes at room temperature, the dimensional change is determined. This is given, in each case for the longitudinal and transverse directions in percent relative to the initial value. The signs before the percent value indicate whether the dimensional changes are positive (+) or negative (-). The mean value is formed from at least six individual values (measurements).
  • the sample (DIN A4-sized sample) is provided with markings on which the thickness is determined in accordance with ISO 9073/2. After storage of the sample for 1 hour at 150 0 C in a convection oven and then cooled for 20 minutes at room temperature, the thickness (ISO 9073/2) is determined again at the markers.
  • the pad (B) is given as a percentage and calculated as follows:
  • the mean value is formed from at least six individual values (measurements).
  • the fiber is provided with a biasing weight as described below.
  • the free fiber end is in one Clamped clamp of a terminal plate.
  • the length of the clamped fiber is determined (Lt).
  • the fiber is suspended without weight hanging freely 10 minutes at 170 0 C in a convection oven.
  • the same weight piece from the determination of Li is again attached to the fiber and the new length determined after the shrinking process (L 2 ).
  • the percentage hot air shrinkage is calculated from:
  • the fiber should appear entreplexed. If the crimping is too strong, the next higher weight should be selected.
  • Nonwoven A represents a drained, carded and thermally bonded nonwoven having a basis weight of 190g / m 2.
  • This nonwoven fabric consists of 75% of a low shrink PET / PBT bicomponent fiber having a sheath melt point of 225 ° C and a core to sheath ratio of 50: 50 and 25% of conventional PET fibers. The thickness is 0.9 mm and the air permeability 850 l / m 2 s at 200 Pa. 14OgZm 2 of the fibers are carded over carding with transverse stretcher, the remaining 50g / m 2 are carded longitudinally.
  • the nonwoven fabric is bonded in a thermal fusion furnace at about 240 0 C and calibrated with an initial press unit to the target thickness.
  • Nonwoven fabric B was produced analogously to nonwoven fabric A. The difference is the use of conventional PET / Co-PET bicomponent fibers with a jacket melt point of about 200 ° C. and the reduction of the furnace temperature to 230 ° C. The resulting basis weight, thickness and air permeability are comparable.
  • the nonwoven fabrics C and D represent wet laid, dried and thermally bonded nonwovens having a basis weight of 198 g / m 2 and 182 g / m 2.
  • These nonwoven fabrics consist of 72% of a low-shrinkage PET / PBT bicomponent fiber with a sheath melt point of 225 ° C and a core-shell ratio of 50:50 and 28% of conventional PET fibers.
  • the fibers are present as dispersible short cut fibers.
  • the fibers are laid down on a wire belt in the paper-laying process, dried and thermally bonded in a second dryer.
  • the outstanding properties of these nonwovens lie in the very good mechanical test values, as well as their excellent shrinkage behavior (Table 2).
  • the low-shrinkage bicomponent fibers according to the invention offer advantages, since these fibers are multiply activatable in comparison to / around extended binder fibers or in the first
  • the nonwovens A.C.D according to the invention are particularly suitable for use as motor oil filter medium in motor vehicles.
  • calendered PET nonwoven fabrics are made of a mixture of stretched and unstretched monofilament PET fibers prior art. Due to the calendering process, there is a risk of surface sealing, especially for heavy nonwovens with basis weights> 150 g / m 2 , since high roll temperatures or slow production speeds are necessary for good penetration of the nonwoven fabric in order to bring the necessary heat into the interior of the nonwoven fabric. Sealed surfaces harbor the risk of film formation, which in turn leads to poor membrane adhesion and lower flow rates (comparative nonwoven fabric E).
  • Figures 4 and 5 demonstrate the different surfaces of a conventional nonwoven fabric (comparative example, nonwoven fabric E, Figure 4) and the surface of a nonwoven fabric according to the invention (nonwoven fabric F, Figure 5).
  • FIGS. 6 and 7 show DSC (differential scanning calorimetry) curves of crystalline clad polymer fibers (fiber A, here PBT) with DSC curves of conventional bicomponent fibers (fiber B, here CoPET).
  • fiber A crystalline clad polymer fibers
  • fiber B conventional bicomponent fibers
  • the enthalpy of fusion is a direct measure of the crystalline content in the polymer.
  • the core-sheath ratios of the two fibers are 1: 1, which results in the following enthalpies of fusion of the fiber sheaths:
  • the core of both fibers can serve here, which consists of PET in both.
  • the melting enthalpy values obtained are comparable (59 J / g vs. 54 J / g).
  • the low peak height and the broader peak base are characteristic of fiber cladding based on copolymers (here CoPET).
  • comonomers such as e.g. Isophthalic acid in polyethylene terephthalate, both the melting point and the crystallinity or willingness to crystallize the polymer is reduced.
  • the nonwoven fabrics according to the invention are thus based on fibers of the fiber A type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

The invention relates to a thermally bound non-woven material containing a low-shrinkage dual-component core-sheath fibre consisting of a crystalline polyester core and a crystalline polyester sheath which has a melting point at least 10°C lower than the core, the heat-shrinkage characteristic of said fibre being less than 10% at 170°C.

Description

Titel title
Thermisch gebundener VliesstoffThermally bonded nonwoven fabric
Beschreibung Technisches GebietDescription Technical area
Die Erfindung betrifft einen thermisch gebundenen Vliesstoff mit einer verbesserten thermischen und chemischen Stabilität. Die Erfindung betrifft weiterhin ein Verwendungen dieses Vliesstoffes.The invention relates to a thermally bonded nonwoven fabric having improved thermal and chemical stability. The invention further relates to a use of this nonwoven fabric.
Stand der TechnikState of the art
Aus dem Dokument EP 0340 982 B1 sind schmelzbindungsfähige Fasern und daraus hergestellte Vliesstoffe bekannt. Bei den schmelzbindungsfähigen Fasern handelt es sich um Bikomponentenfasern, die aus einer ersten zumindest teilweise kristallinen Polymerkomponenten bestehen und einer an der Oberfläche der ersten Komponente haftenden zweiten Komponente, die ein kompatibles Blend von Polymeren aufweist, welches mindestens aus einem amorphen Polymer und mindestens aus einem zumindest teilweise kristallinen Polymer besteht. Die Schmelztemperatur der zweiten Komponente soll mindestens 30 °C unterhalb der ersten Komponente liegen, jedoch mindestens gleich oder größer als 13O0C sein. Weiterhin soll das Gewichtsverhältnis des amorphen Polymer der zweiten Komponente zu dem zumindest teilweise kristallinen Polymer der zweiten Komponente im Bereich von 15 : 85 bis 90 : 10 liegen und so bemessen sein, dass das Verbinden der Bikomponentenfasern mit einer ähnlichen Bikomponentenfaser verhindert wird und dass die erste Komponente den Kern und die zweite Komponente den Mantel einer in Form einer Mantel-Kern-Konfiguration versponnenen Bikomponentenfaser bildet. Diese Bikomponentenfaser wird mit konventionellen Polyesterfasern gemischt und thermisch zu einem Vliesstoff gebunden, der durch Aufbringung von Schleifmittelteilchen zu einem Schlerfvlies verarbeitet wird.The document EP 0340 982 B1 discloses melt-bondable fibers and nonwovens made therefrom. The melt-bondable fibers are bicomponent fibers consisting of a first at least partially crystalline polymer component and a second component adhering to the surface of the first component comprising a compatible blend of polymers comprising at least one amorphous polymer and at least one at least partially crystalline polymer. The melting temperature of the second component should be at least 30 ° C below the first component, but at least equal to or greater than 13O 0 C. Furthermore, the weight ratio of the amorphous polymer of the second component to the at least partially crystalline polymer of the second component in the range of 15: 85 to 90: 10 and be sized so that the bonding of the bicomponent fibers is prevented with a similar bicomponent fiber and that the first component of the core and the second component of the shell in the form of a sheath Core configuration forms spun bicomponent fiber. This bicomponent fiber is blended with conventional polyester fibers and thermally bonded to a nonwoven fabric which is made into a nonwoven web by application of abrasive particles.
Aus dem Dokument JP 07-034326 sind wärmebindungsfähige Konjugatfasern bekannt, die eine Mantel-Kern-Konfiguration besitzen und deren Kern aus einem Polyester besteht, der Polyethylenterephthalat (PET) als Hauptkomponente enthält und dessen Mantel aus einem copolymerisierten Polyester oder einer side-by-side Konjugatfaser hergestellt ist, die aus einem Polyethylenterephthalat und einem copolymerisierten Polyester besteht. Der copolymerisierte Polyester stellt die niedriger schmelzende Komponente dar und enthält Butylenterephthalat-Einheiten und Butylenisophthalat-Einheiten als wiederkehrende Struktureinheiten. Ein aus diesen Bikomponentenfasern hergestellter Vliesstoff soll eine exzellente thermische Beständigkeit und eine ermüdungssichere Natur gegenüber Druckbelastungen aufweisen, sodass er als alternatives Material zu Polyurethan-Sitzpolsterungen, vor allem im Automobilbereich, eingesetzt werden kann.From the document JP 07-034326 heat-binding conjugate fibers are known, which have a sheath-core configuration and whose core consists of a polyester containing polyethylene terephthalate (PET) as the main component and the sheath of a copolymerized polyester or a side-by-side Conjugate fiber is made, which consists of a polyethylene terephthalate and a copolymerized polyester. The copolymerized polyester is the lower melting component and contains butylene terephthalate units and butylene isophthalate units as repeating structural units. A nonwoven fabric made from these bicomponent fibers is said to have excellent thermal resistance and fatigue resistance to compressive loads, so it can be used as an alternative material to polyurethane upholstery, especially in the automotive field.
Darüber hinaus besteht die Möglichkeit thermisch gebundene Vliesstoffe aus einem Gemisch aus unverstreckten und verstreckten PET-Fasern herzustellen. Für diese Vliesstoffe ist allerdings die Bindung unter Hitze und Druck in einem Kalander notwendig. Die Bindefähigkeit der unverstreckten, amorphen PET- Fasern beruht nicht auf einem Schmelzvorgang, sondern auf dem Kristallisationsprozess von PET, der oberhalb von 900C einsetzt, sofern noch kristallisationsfähige Anteile vorliegen. Derartige Vliesstoffe besitzen eine hohe erfüllen chemische und thermische Stabilität. Der Herstellprozess erlaubt jedoch eine geringe Flexibilität. So ist es bei unverstreckten PET-Fasem z.B. nicht möglich deren Bindefähigkeit mehrmals zu aktivieren, da diese auf einem unterhalb der Schmelztemperatur irreversiblen Vorgang besteht. Auch stellt die Durchbindung bei Vliesstoffen mit Flächengewichten >150g/m2 mit unverstreckten PET-Fasern sich als schwierig dar, da im Kalanderprozess die Wärme von außen nicht weit genug ins Innere der Vliesbahn eindringen kann. Es wird immer ein mehr oder weniger ausgeprägter Gradient auftreten.In addition, it is possible to produce thermally bonded nonwovens from a mixture of undrawn and stretched PET fibers. For these nonwovens, however, binding under heat and pressure in a calender is necessary. The binding capacity of the unstretched, amorphous PET fibers is not based on a melting process, but on the crystallization process of PET, which starts above 90 0 C, if there are still crystallizable parts. Such nonwoven fabrics have a high meet chemical and thermal stability. However, the manufacturing process allows low flexibility. For example, it is not possible with undrawn PET fibers to activate their binding ability several times, since this is at an irreversible below the melting temperature process. Also, the bonding in nonwovens with basis weights> 150g / m 2 with unstretched PET fibers is difficult, since in the calendering process, the heat from the outside can not penetrate far enough into the interior of the nonwoven web. There will always be a more or less pronounced gradient.
Darstellung der ErfindungPresentation of the invention
Die Erfindung hat sich die Aufgabe gestellt, einen thermisch gebundenen Vliesstoff anzugeben, der verbesserte Eigenschaften hinsichtlich seiner thermischen Stabilität, insbesondere der Schrumpfungsneigung der erhaltenen Vliesstoffe zeigt. Darüber hinaus wird durch die chemische Stabilität imThe object of the invention has been found to provide a thermally bonded nonwoven fabric which shows improved properties in terms of its thermal stability, in particular the tendency to shrink of the resulting nonwoven fabrics. In addition, due to the chemical stability in the
Vergleich zu Fasern, die Copolymerisate aus Monomerengemischen wie z.B. Isophthalsäure/Terephthalsäure enthalten, gesteigert.Comparison to fibers containing copolymers of monomer mixtures such as e.g. Isophthalic acid / terephthalic acid contained, increased.
Erfindungsgemäß wird die Aufgabe durch einen thermoplastisch gebundenen Vliesstoff gelöst, der eine schrumpfarme Kern-Mantel-Bikomponentenfaser enthält. Die schrumpfarme Kern-Mantel-Bikomponentenfaser besteht aus einem kristallinen Polyesterkem und einem mindestens 100C tiefer schmelzenden, kristallinen Polyestermantel und weist einen Heißluftschrumpf bei 1700C von kleiner 10%, vorzugsweise von kleiner 5% auf. Ein entsprechender Vliesstoff weist bei Temperaturbelastungen von 1500C (1 h) eine thermische Maßäπderung (Schrumpf und Bausch) von kleiner als 2% auf. Unter kristallin wird im Sinne dieser Erfindung ein Polyesterpolymer verstanden, welches eine Schmelzenthalpie (DSC) von > 40 Joule/g aufweist und dessen Breite des Schmelzpeaks (DSC) bei 10°C/min vorzugweise <40°C ausfällt. Vorzugsweise besteht der Mantel der schrumpfarmen Bikomponentenfaser aus einem homogenen, aus einem Monomerpaar hergestellten Polyesterpolymer, welches zu größer 95% nur aus einem Polymerpaar gebildet wird. Im Falle der in den Ansprüchen beschriebenen Polyester bedeutet dies, dass das Polymer zu >95% aus einer einzigen Dicarbonsäure und einem einzigen Dialkohol besteht.According to the invention the object is achieved by a thermoplastic bonded nonwoven fabric containing a low-shrinkage core-sheath bicomponent fiber. The low-shrinkage core-sheath bicomponent fiber consists of a crystalline polyester core and a crystalline polyester coating which melts at least 10 ° C., and has a hot-air shrinkage at 170 ° C. of less than 10%, preferably less than 5%. A corresponding nonwoven fabric has a thermal Maßäπderung (shrinkage and Bausch) of less than 2% at temperature loads of 150 0 C (1 h). For the purposes of this invention, crystalline is understood as meaning a polyester polymer which has a melting enthalpy (DSC) of> 40 Joule / g and whose width of the melt peak (DSC) preferably precipitates at <40 ° C. at 10 ° C./min. Preferably, the sheath of the low-shrinkage bicomponent fiber consists of a homogeneous polyester polymer prepared from a monomer pair, which is formed to greater than 95% only from a polymer pair. In the case of the polyester described in the claims, this means that the polymer consists of> 95% of a single dicarboxylic acid and a single dialcohol.
Das Massenverhältniss von Kern- und Mantelkomponente ist üblicherweise 50:50, kann bei speziellen Anwendungsbereichen aber zwischen 90:10 und 10:90 variieren.The mass ratio of core and cladding component is typically 50:50, but may vary between 90:10 and 10:90 for specific applications.
Besonders bevorzugt ist ein Vliesstoff, bei dem der Mantel der schrumpfarmen Kem-Mantel-Bikomponentenfaser aus Polybutylenterephthalat (PBT), PoIy- trimethylenterephthälat (PTT) oder Polyethylenterephthalat (PET) besteht.Particular preference is given to a nonwoven fabric in which the sheath of the low-shrinkage core-sheath bicomponent fiber consists of polybutylene terephthalate (PBT), poly-trimethylene terephthalate (PTT) or polyethylene terephthalate (PET).
Weiterhin bevorzugt ist ein Vliesstoff, bei dem der Kern der schrumpfarmen Kem-Mantel-Bikomponentenfaser aus Polyethylenterephthalat oder Polyethylennaphthalat (PEN) besteht.Further preferred is a nonwoven fabric wherein the core of the low shrink core-sheath bicomponent fiber is polyethylene terephthalate or polyethylene naphthalate (PEN).
Der erfindungsgemäße Vliesstoff kann abhängig von der jeweiligenThe nonwoven fabric according to the invention may be dependent on the respective
Verwendung außer der schrumpfarmen Kem-Mantel-Bikomponentenfaser weitere Fasern enthalten. Bevorzugt ist die Verwendung von 0 bis 90% Gew. von z.B. monofilen Standard-Polyesterfasern zusammen mit der schrumpfarmen Bikomponentenfaser.Use other fibers besides the low-shrink core-sheath bicomponent fiber. Preferably, the use of 0 to 90% by weight of e.g. monofilament standard polyester fibers together with the low-shrinkage bicomponent fiber.
Vorzugsweise besteht der erfindungsgemäße Vliesstoff aus schrumpfarmen Kem-Mantel-Bikomponentenfasem mit einem Titer im Bereich zwischen 0,1 und 15 dtex. Der erfindungsgemäße Vliesstoff besitzt ein Flächengewicht zwischen 20 und 500 g/m2. Der erfindungsgemäße Vliesstoff erreicht bei einem Flächengewicht von z.B. 150-190g/m2 eine Biegesteifigkeit bestimmt nach ISO 2493 quer zur Maschinenlaufrichtung von größer 1 Nmm.The nonwoven fabric according to the invention preferably consists of low-shrink core-sheath bicomponent fibers with a titre in the range between 0.1 and 15 dtex. The nonwoven fabric according to the invention has a basis weight between 20 and 500 g / m 2 . The nonwoven fabric according to the invention reaches at a Basis weight of eg 150-190g / m 2 a bending stiffness determined according to ISO 2493 transverse to the machine direction of greater than 1 Nmm.
Das Verfahren zur Herstellung des thermisch gebundenen Vliesstoffes besteht darin, dass die Fasern zu einem Vliesstoff gelegt, thermisch gebunden und falls erforderlich unmittelbar anschließend verdichtet werden. Bei dem Verfahren verweilen die Fasern des erfindungsgemäßen Vliesstoffes in einem Thermofusionsofen, der eine gleichmäßige Temperierung der Bindefasern ermöglicht. Vorzugsweise werden die schrumpfarmen Kern-Mantel- Bikomponentenfasem in einem Papierlege-verfahren nass gelegt und getrocknet oder nach einem Kardier- oder Airlaid-verfahren tocken gelegt, und anschließend bei Temperaturen von 200 bis 2700C gebunden und optional durch einen Kalander oder ein Presswerk mit Walzentemperaturen, die unter dem Schmelzpunkt des Mantelpolymeren, vorzugsweise <170°C, liegen verdichtet. Diese Verdichtung erfolgt vorzugsweise unmittelbar nach dem Bindeprozess im Trockner bei noch heißen Fasern. Die Struktur der Fasern erlaubt aber auch nachträgliche thermische Behandlungen, da der Bindeprozess mehrfach aktivierbar ist.The method of making the thermally bonded nonwoven web is to lay the fibers into a nonwoven web, thermally bond and, if necessary, compact immediately thereafter. In the method, the fibers of the nonwoven fabric according to the invention dwell in a thermofusion oven, which enables a uniform temperature control of the binder fibers. Preferably, the low-profile sheath-core bicomponent fibers in an be paper laid process wet-laid and placed dried or airlaid process stocking according to one carding or, and then bonded at temperatures of 200-270 0 C and, optionally, through a calender or a press plant with Roll temperatures which are below the melting point of the shell polymer, preferably <170 ° C, densified. This compression is preferably carried out immediately after the binding process in the dryer with still hot fibers. However, the structure of the fibers also allows subsequent thermal treatments, since the binding process can be activated several times.
Die erhaltenen thermisch gebundenen Vliesstoffe weisen Schrumpf- und Bauschwerte im Bereich von <2% , vorzugsweise <1% auf.The resulting thermally bonded nonwoven fabrics have shrinkage and bulk values in the range of <2%, preferably <1%.
Die erfindungsgemäßen Vliesstoffe sind als Flüssigkeitsfiltermedium, Membranstützvlies, Gasfiltermedium, Batterieseparator oder Vliesstoff für die Oberfläche von Verbundwerkstoffen aufgrund ihrer hohen thermischen Stabilität, ihrer geringen Schrumpfneigung und ihrer chemischen Alterungsstabilität geeignet. Dies trifft ganz besonders für die Verwendung als Ölfiltermedium zur Verwendung in KfZ-Motoren zu. Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Diese zeigen jeweils:The nonwoven fabrics according to the invention are suitable as a liquid filter medium, membrane support web, gas filter medium, battery separator or nonwoven fabric for the surface of composites due to their high thermal stability, their low shrinkage tendency and their chemical aging stability. This is especially true for use as an oil filter medium for use in automotive engines. The invention will be explained in more detail with reference to FIGS. These show:
Fig. 1 ein Diagramm bei dem die Höchstzugkräfte der Vliesstoffe A und B als Index nach Lagerung in Luft und Öl auf den jeweiligen Neuzustand bezogen sind (DIN 53508 und DIN 53521);Figure 1 is a diagram in which the maximum tensile forces of the nonwovens A and B are as index after storage in air and oil based on the respective new state (DIN 53508 and DIN 53521).
Fig. 2 ein Diagramm bei dem die Höchstzugkraftdehnung der Vliesstoffe A und B nach Lagerung bei 1500C in Luft und Öl auf den jeweiligen Neuzustand bezogen sind (DIN 53508 und DIN 53521); Fig. 3 ein Diagramm bei dem die Höchstzugkräfte der Vliesstoffe A und B bei verschiedenen Temperaturen als Index auf den jeweiligen Neuzustand bezogen sind (DIN EN 29073-03).Fig. 2 is a diagram in which the maximum tensile force extension of the nonwovens A and B after storage at 150 0 C in air and oil are based on the respective new condition (DIN 53508 and DIN 53521); Fig. 3 is a diagram in which the maximum tensile forces of the nonwovens A and B are at different temperatures as an index based on the respective new state (DIN EN 29073-03).
Fig. 4 eine Elektronenmikroskopische Aufnahme eines Membranstützvlies- stoffes, welcher mit unverstreckten Polyesterfasern gebunden wurde (Vliesstoff E; Vergleichsbeispiel);4 is an electron micrograph of a membrane support nonwoven fabric bound with undrawn polyester fibers (nonwoven fabric E, comparative example);
Fig. 5 Elektronenmikroskopische Aufnahme eines Membraπstützvlies-stoffes, welcher erfindungsgemäß zu 100% aus schrumpfarmen PET/PBT- Bikomponentenfaser besteht (Vliesstoff F);5 is an electron micrograph of a membrane support nonwoven fabric, which according to the invention consists of 100% low-shrink PET / PBT bicomponent fiber (nonwoven fabric F);
Fig. 6 DSC-Kurve einer Bikomponentenfaser A mit kristallinem Mantelpolymer (hier PET/PBT; erfindungsgemäß);6 shows a DSC curve of a bicomponent fiber A with a crystalline sheath polymer (here PET / PBT, according to the invention);
Fig. 7 DSC-Kurve einer Bikomponentenfaser B mit amorphem Mantelpolymer (hier PET/CoPET; Stand der Technik).Fig. 7 DSC curve of a bicomponent fiber B with amorphous sheath polymer (here PET / CoPET, prior art).
PrüfmethodenTest Methods
Biegesteifigkeitbending stiffness
Die Biegesteifigkeit wird nach ISO 2493 in Nmm bestimmt. Thermische Maßänderung (Schrumpf)The bending stiffness is determined according to ISO 2493 in Nmm. Thermal dimensional change (shrinkage)
Die Probe (DIN A4-großes Muster) wird mit Markierungen in Längs- und Querrichtung versehen, die einen Abstand von 200 mm aufweisen. Nach dem Lagern der Probe für 1 Stunde bei 1500C in einem Umluftofen und anschließendem 20minütigem Erkalten bei Raumtemperatur wird die Maßänderung bestimmt. Diese wird, jeweils für die Längs- und Querrichtung in Prozent bezogen auf den Ausgangswert angegeben. Die Vorzeichen vor dem Prozent-Wert geben an, ob die Maßänderung positiv (+) oder negativ (-) sind. Es wird der Mittelwert aus mindestens sechs Einzelwerten (-Messungen) gebildet.The sample (DIN A4-sized pattern) is provided with markings in the longitudinal and transverse direction, which have a distance of 200 mm. After storing the sample for 1 hour at 150 0 C in a convection oven and then cooling for 20 minutes at room temperature, the dimensional change is determined. This is given, in each case for the longitudinal and transverse directions in percent relative to the initial value. The signs before the percent value indicate whether the dimensional changes are positive (+) or negative (-). The mean value is formed from at least six individual values (measurements).
Thermische Maßänderung (Bausch)Thermal dimensional change (Bausch)
Die Probe (DIN A4-großes Muster) wird mit Markierungen versehen, an denen die Dicke nach ISO 9073/2 bestimmt wird. Nach dem Lagern der Probe für 1 Stunde bei 1500C in einem Umluftofen und anschließendem 20minütigem Erkalten bei Raumtemperatur wird an den Markierungen die Dicke (ISO 9073/2) erneut bestimmt. Der Bausch (B) wird in Prozent angegeben und wie folgt berechnet:The sample (DIN A4-sized sample) is provided with markings on which the thickness is determined in accordance with ISO 9073/2. After storage of the sample for 1 hour at 150 0 C in a convection oven and then cooled for 20 minutes at room temperature, the thickness (ISO 9073/2) is determined again at the markers. The pad (B) is given as a percentage and calculated as follows:
B [%] = (Dicke nach Lagerung x 100 / Dicke vor Lagerung ) - 100B [%] = (thickness after storage x 100 / thickness before storage) - 100
Es wird der Mittelwert aus mindestens sechs Einzelwerten (-Messungen) gebildet.The mean value is formed from at least six individual values (measurements).
Prüfung des HeißluftschrumpfesTest of hot air shrinkage
Es werden 20 Einzelfasern geprüft. Die Faser wird mit einem Vorspanngewicht, wie nachstehend beschrieben, versehen. Das freie Faserende wird in eine Klemme eines Klemmenbleches eingespannt. Die Länge der eingespannten Faser wird bestimmt (Lt). Anschließend wird die Faser ohne Gewicht frei hängend 10 Minuten bei 1700C im Umluft-Trockenschrank temperiert. Nach mindestens 20 Minuten Abkühlen bei Raumtemperatur wird das gleiche Gewichtsstück aus der Ermittlung von Li wieder an die Faser gehängt und die neue Länge nach dem Schrumpfprozess (L2) ermittelt. Der prozentuale Heißluftschrumpf errechnet sich aus:20 individual fibers are tested. The fiber is provided with a biasing weight as described below. The free fiber end is in one Clamped clamp of a terminal plate. The length of the clamped fiber is determined (Lt). Subsequently, the fiber is suspended without weight hanging freely 10 minutes at 170 0 C in a convection oven. After at least 20 minutes of cooling at room temperature, the same weight piece from the determination of Li is again attached to the fiber and the new length determined after the shrinking process (L 2 ). The percentage hot air shrinkage is calculated from:
HS[%] = ( Σ L1 - Σ L2 ) *1 OO / Σ LiHS [%] = (Σ L 1 - Σ L 2 ) * 1 OO / Σ Li
Größe des VorspanngewichtesSize of preload weight
im freihängenden Zustand sollte die Faser entkräuselt erscheinen. Sollte die Kräuselung zu stark sein, so ist das nächsthöhere Gewicht zu wählen.in the suspended state, the fiber should appear entreplexed. If the crimping is too strong, the next higher weight should be selected.
Schmelzenthalpie (DSC)Enthalpy of fusion (DSC)
In einem DSC-Gerät der Firma Mettler Toledo wird die Probe eingewogen und mit einem Temperaturprogram von 10°C/min von O0C bis 3000C erwärmt. Die Fläche unter den erhaltenen endothermen Schmelzpeaks stellt in Verbindung mit der Einwaage an Faser und den damit verbundenen Massen der Manteloder Kernkomponente die Schmelzenthalpie der jeweiligen Komponenten in J/g dar.In a DSC instrument from Mettler Toledo, the sample is weighed out and heated with a temperature program of 10 ° C / min from 0 ° C to 300 0 C. The area under the obtained endothermic melting peaks is related with the weight of fiber and the associated masses of the shell or core component, the enthalpy of fusion of the respective components in J / g.
Beispiel 1example 1
Vliesstoff A stellt einen trockengelegten, kardierten und thermisch gebundenen Vliesstoff mit einem Flächengewicht von 190g/m2 dar. Dieser Vliesstoff besteht zu 75% aus einer schrumpfarmen PET/PBT-Bikomponentenfaser mit einem Mantelschmelzpunkt von 225°C und einem Kern-Mantelverhältniss von 50:50 und zu 25% aus herkömmlichen PET-Fasern. Die Dicke beträgt 0,9mm und die Luftdurchlässigkeit 850 l/m2s bei 200Pa. 14OgZm2 der Fasern werden über Krempeln mit Querleger, die restlichen 50g/m2 werden längsgelegt kardiert. Der Vliesstoff wird in einem Thermofusionsofen bei ca. 2400C gebunden und mit einem Ausgangspresswerk auf die Zieldicke kalibriert.Nonwoven A represents a drained, carded and thermally bonded nonwoven having a basis weight of 190g / m 2. This nonwoven fabric consists of 75% of a low shrink PET / PBT bicomponent fiber having a sheath melt point of 225 ° C and a core to sheath ratio of 50: 50 and 25% of conventional PET fibers. The thickness is 0.9 mm and the air permeability 850 l / m 2 s at 200 Pa. 14OgZm 2 of the fibers are carded over carding with transverse stretcher, the remaining 50g / m 2 are carded longitudinally. The nonwoven fabric is bonded in a thermal fusion furnace at about 240 0 C and calibrated with an initial press unit to the target thickness.
VergleichsbeispielComparative example
Vliesstoff B wurde analog zu Vliesstoff A hergestellt. Der Unterschied besteht in der Verwendung von herkömmlichen PET/Co-PET-Bikomponentenfasern mit einem Mantelschmelzpunkt von ca. 2000C und der Reduzierung der Ofentemperatur auf 2300C. Das resultierende Flächengewicht, die Dicke und die Luftdurchlässigkeit sind vergleichbar.Nonwoven fabric B was produced analogously to nonwoven fabric A. The difference is the use of conventional PET / Co-PET bicomponent fibers with a jacket melt point of about 200 ° C. and the reduction of the furnace temperature to 230 ° C. The resulting basis weight, thickness and air permeability are comparable.
Die Vorteile des erfindungsgemäßen Vliesstoff A gegenüber dem Vergleichsvliesstoff B sind im folgenden dargestellt:The advantages of the nonwoven fabric A according to the invention over the comparative nonwoven fabric B are shown below:
Die Vliesbreite nach dem Trockner nimmt bei Vliesstoff A nur um ca. 9% ab, wogegen bei Vliesstoff B ca. 21% Breitenverlust auftreten. • Die Biegesteifigkeit quer von Vliesstoff A liegt um 15% höher The width of the fleece after the dryer decreases only about 9% for nonwoven A, whereas for nonwoven B there is about 21% width loss. • The flexural stiffness across nonwoven fabric A is 15% higher
• Die Dickenzunahme nach Lagerung bei 1500C (S&Brmischθ Maßänderung) liegt bei Vliesstoff A bei 1 ,5%, bei Vliesstoff B bei 4,7%.• The thickness increase after storage at 150 0 C (S & Brmischθ dimensional change) is nonwoven fabric A at 1, 5% in nonwoven fabric B at 4.7%.
• Die thermische und chemische Stabilität bei Lagerung bei 1500C in Luft und Öl ist beim Vliesstoff A deutlich verbessert (Figur 1 und 2). Die Diagramme zeigen deutlich eine stärkere Zerstörung von Vliesstoff B bei Lagerung in Motorenöl. Speziell die Versprödung in Figur 3 weist auf ein chemisches Stabilitätsproblem von Vliesstoff B in Öl hin.• The thermal and chemical stability when stored at 150 ° C. in air and oil is markedly improved for nonwoven fabric A (FIGS. 1 and 2). The graphs clearly show a greater destruction of nonwoven B when stored in engine oil. Specifically, the embrittlement in Figure 3 indicates a chemical stability problem of nonwoven fabric B in oil.
• Die Höchstzugkräfte bei verschiedenen Temperaturen zeigen für Vliesstoff A einen deutlich günstigeren Verlauf (Figur 3).• The maximum tensile forces at different temperatures show a significantly better course for nonwoven A (FIG. 3).
Beispiel 2Example 2
Die Vliesstoffe C und D stellen nassgelegte, getrocknete und thermisch gebundene Vliesstoffe mit einem Flächengewicht von 198g/m2 und 182g/m2 dar. Diese Vliesstoffe bestehen zu 72% aus einer schrumpfarmen PET/PBT- Bikomponentenfaser mit einem Mantelschmelzpunkt von 225°C und einem Kern-Mantelverhältπiss von 50:50 und zu 28% aus herkömmlichen PET- Fasern. Die Fasern liegen als dispergierbare Kurzschnittfasern vor. Die Fasern werden im Papierlegeverfahren auf einem Siebband abgelegt, getrocknet und in einem zweiten Trockner thermisch gebunden. Die herausragenden Eigenschaften dieser Vliesstoffe liegen in den sehr guten mechanischen Prüfwerten, sowie deren ausgezeichnetem Schrumpfverhalten (Tabelle 2). Ein Vergleich mit Vliesstoffen aus herkömmlichen Bikomponentenfasem mit CoPET-Mantel ist in diesem Falle nicht möglich, da derartige Fasern aufgrund der hohen Schrumpfwerte auf dieser Vliesstoffanlage bisher nicht verwendbar waren bzw. Breitenverluste von mindestens 20% aufwiesen, Die erfindungsgemäßen Nassvliesstoffe zeigen Breitenverluste von ca. 3%.The nonwoven fabrics C and D represent wet laid, dried and thermally bonded nonwovens having a basis weight of 198 g / m 2 and 182 g / m 2. These nonwoven fabrics consist of 72% of a low-shrinkage PET / PBT bicomponent fiber with a sheath melt point of 225 ° C and a core-shell ratio of 50:50 and 28% of conventional PET fibers. The fibers are present as dispersible short cut fibers. The fibers are laid down on a wire belt in the paper-laying process, dried and thermally bonded in a second dryer. The outstanding properties of these nonwovens lie in the very good mechanical test values, as well as their excellent shrinkage behavior (Table 2). A comparison with nonwovens made from conventional bicomponent fibers with CoPET sheath is not possible in this case, since such fibers have hitherto not been usable on this nonwoven fabric due to the high shrinkage values had or latitudinal losses of at least 20%, the wet nonwovens according to the invention show width losses of about 3%.
Tabelle 2: Prüfwerte der Vliesstoffe C und DTable 2: Test values of nonwovens C and D
Speziell bei Verwendung im Nasslegeprozess mit getrennten Trocknern für den Wasserentzug und für die Thermofusion bieten die erfindungsgemäßen schrumpfarmen Bikomponentenfasem Vorteile, da diese Fasern im Vergleich zu um/erstreckten Bindefasern mehrfach aktivierbar sind bzw. beim erstenEspecially when used in the wet-laying process with separate dryers for the dewatering and for the thermal fusion, the low-shrinkage bicomponent fibers according to the invention offer advantages, since these fibers are multiply activatable in comparison to / around extended binder fibers or in the first
Trocknungsprozess nicht bereits vollständig abreagieren.Do not completely finish the drying process.
Die erfindungsgemäßen Vliesstoffe A.C.D sind besonders geeignet zur Verwendung als Motorölfiltermedium in Kraftfahrzeugen.The nonwovens A.C.D according to the invention are particularly suitable for use as motor oil filter medium in motor vehicles.
Beispiel 3Example 3
Für die Verwendung als Membranstützvliesstoffe sind kalandrierte PET- Vliesstoffe (Vergleichsbeispiel; Vliesstoff E) aus einem Gemisch aus verstreckten und unverstreckten monofilen PET-Fasern Stand der Technik. Aufgrund des Kalandrierprozesses besteht speziell bei schweren Vliesstoffen mit Flächengewichten > 150g/m2 die Gefahr der Oberflächenversiegelung, da für eine gute Durchbindung des Vliesstoffes hohe Walzentemperaturen oder langsame Produktionsgeschwindigkeiten notwendig sind, um die notwendige Wärme ins Innere des Vliesstoffes zu bringen. Versiegelte Oberflächen bergen die Gefahr der Filmbildung, die wiederum zu schlechter Membranhaftung und geringeren Durchflussraten führt (Vergleichsvliesstoff E). Die Figuren 4 und 5 demonstrieren die unterschiedlichen Oberflächen eines herkömmlichen Vliesstoffes (Vergleichsbeispiel; Vliesstoff E; Figur 4) und die Oberfläche eines erfindungsgemäßen Vliesstoffes (Vliesstoff F; Figur 5).For use as membrane backing nonwovens, calendered PET nonwoven fabrics (comparative example, nonwoven fabric E) are made of a mixture of stretched and unstretched monofilament PET fibers prior art. Due to the calendering process, there is a risk of surface sealing, especially for heavy nonwovens with basis weights> 150 g / m 2 , since high roll temperatures or slow production speeds are necessary for good penetration of the nonwoven fabric in order to bring the necessary heat into the interior of the nonwoven fabric. Sealed surfaces harbor the risk of film formation, which in turn leads to poor membrane adhesion and lower flow rates (comparative nonwoven fabric E). Figures 4 and 5 demonstrate the different surfaces of a conventional nonwoven fabric (comparative example, nonwoven fabric E, Figure 4) and the surface of a nonwoven fabric according to the invention (nonwoven fabric F, Figure 5).
Die völlige Abwesenheit von Oberflächenversiegelungen bei Vliesstoff F (Figur 5) zeigt sich auch im Vergleich der Prüfwerte der beiden Vliesstoffe. So ist die Luftdurchlässigkeit von Vliesstoff F um eine Größenordnung gesteigert, bei vergleichbaren sonstigen Prüfwerten (Tabelle 3).The complete absence of surface seals in nonwoven fabric F (FIG. 5) is also evident when comparing the test values of the two nonwovens. Thus, the air permeability of nonwoven fabric F is increased by an order of magnitude, with comparable other test values (Table 3).
Tabelle 3: Prüfwerte von Vliesstoff E und FTable 3: Test values of nonwoven E and F
Die Verwendung von herkömmlichen Bikomponentenfasern mit Copolymeren im Mantel hat sich in diesem Bereich wegen der hohen Schrumpfwerte - und den damit verbundenen Gewichtsschwankungen - sowie der oft nicht gegebenen Lebensmittelzulassung der Mantelpolymere nicht durchgesetzt. Die erfindungsgemäßen Vliesstoffe aus den entsprechenden Bikomponentenfasern überwinden beide Hindernisse, da sie schrumpfarm sind und durch den Aufbau aus Homopolymeren Lebensmittelzulassungen problemlos erlauben.The use of conventional bicomponent fibers with copolymers in the sheath has in this area because of the high shrinkage - and the associated weight fluctuations - and often not given food approval of the shell polymers not enforced. The nonwovens according to the invention of the corresponding bicomponent fibers overcome both obstacles, since they are low in shrinkage and easily allow food approvals by the construction of homopolymers.
Beispiel 4Example 4
Um die Unterschiede der erfindungsgemäßen Vliesstoffe gegenüber herkömmlichen Vliesstoffen mit Bikomponentenfasern mit Mänteln basierend auf Copolymeren weiter aufzuzeigen, werden in den Figuren 6 und 7 DSC- Kurven (differential scanning calorimetry) von Fasern mit kristallinem Mantelpolymer (Faser A; hier PBT) mit DSC-Kurven von herkömmlichen Bikomponentenfasern (Faser B; hier CoPET) verglichen. Bei der Auswertung der Schmelzenthalpien der tieferschmelzenden Komponente zeigt sich, dass der Mantel der Faser B eine deutlich geringere Schmelzenthalpie in J/g aufweist als Faser A. In order to further demonstrate the differences of the nonwoven fabrics of the present invention over conventional bicomponent nonwoven fabrics having coats based on copolymers, FIGS. 6 and 7 show DSC (differential scanning calorimetry) curves of crystalline clad polymer fibers (fiber A, here PBT) with DSC curves of conventional bicomponent fibers (fiber B, here CoPET). When evaluating the enthalpies of fusion of the lower melting component, it can be seen that the sheath of fiber B has a significantly lower enthalpy of fusion in J / g than fiber A.
Die Schmelzenthalpie ist ein direktes Maß für die kristallinen Anteile im Polymer. Die Kern-Mantelverhältnisse der beiden Fasern liegen bei 1:1, wodurch sich folgende Schmelzenthalpien der Fasermäntel ergeben:The enthalpy of fusion is a direct measure of the crystalline content in the polymer. The core-sheath ratios of the two fibers are 1: 1, which results in the following enthalpies of fusion of the fiber sheaths:
Faser A 63 J/g Faser B 29 J/gFiber A 63 J / g fiber B 29 J / g
Als Messreferenz kann hier auch der Kern beider Fasern dienen, welcher bei beiden aus PET besteht. Die erhaltenen Werte der Schmelzenthalpie sind vergleichbar (59 J/g gegenüber 54 J/g).As a measurement reference, the core of both fibers can serve here, which consists of PET in both. The melting enthalpy values obtained are comparable (59 J / g vs. 54 J / g).
Unabhängig der gemessenen Werte ist bei einem Vergleich der DSC-Kurven die niedrige Peakhöhe und die breitere Peakbasis charakteristisch für Fasermäntel basierend auf Copolymeren (hier CoPET). Durch den Einbau von Comonomeren wie z.B. Isophtalsäure in Polyethylenterephthalat wird sowohl der Schmelzpunkt als auch die Kristallinität bzw. die Bereitschaft zu kristallisieren des Polymeren herabgesetzt. Die erfindungsgemäßen Vliesstoffe basieren somit auf Fasern vom Typ der Faser A. Regardless of the measured values, when comparing the DSC curves, the low peak height and the broader peak base are characteristic of fiber cladding based on copolymers (here CoPET). By the incorporation of comonomers such as e.g. Isophthalic acid in polyethylene terephthalate, both the melting point and the crystallinity or willingness to crystallize the polymer is reduced. The nonwoven fabrics according to the invention are thus based on fibers of the fiber A type.

Claims

Patentansprüche claims
1. Thermisch gebundener Vliesstoff enthaltend eine schrumpfarme Kern- Mantel-Bikomponentenfaser, wobei die schrumpfarme Kern-Mantel-1. A thermally bonded nonwoven fabric comprising a low-shrinkage core-shell bicomponent fiber, wherein the low-shrinkage core-shell
Bikomponentenfaser aus einem kristallinen Polyesterkern und einem mindestens 100C tiefer schmelzenden, kristallinen Polyestermantel besteht und einen Heißschrumpf bei 1700C von kleiner als 10% aufweist.Bicomponent fiber consists of a crystalline polyester core and at least 10 0 C lower melting, crystalline polyester shell and has a heat shrinkage at 170 0 C of less than 10%.
2. Vliesstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Mantel der schrumpfarmen Kem-Mantel-Bikomponentenfaser zu >95% aus einem homogenen Polyesterpolymer besteht, welches kein Copolymer darstellt.2. Nonwoven fabric according to claim 1, characterized in that the sheath of the low-shrink core-sheath bicomponent fiber consists of> 95% of a homogeneous polyester polymer, which is not a copolymer.
3. Vliesstoff nach Anspruch 2, dadurch gekennzeichnet, dass der Mantel der schrumpfarmen Kem-Mantel-Bikomponentenfaser aus Polybutylenterephthalat (PBT), Polytrimethylenterephthalat (PTT) oder Polyethylenterephthalat (PET) besteht.Nonwoven fabric according to claim 2, characterized in that the sheath of the low-shrink core-sheath bicomponent fiber consists of polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT) or polyethylene terephthalate (PET).
4. Vliesstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Kern der schrumpfarmen Kern-Mantel-Bikomponentenfaser aus Polyethylenterephthalat (PET) oder Polyethylennaphthalat (PEN) besteht.Nonwoven fabric according to claim 1, characterized in that the core of the low-shrinkage core-sheath bicomponent fiber consists of polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
5. Vliesstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die schrumpfarme Kern-Mantel-Bikomponentenfaser einen Titer zwischen 0,1 und 15 dtex aufweist.5. Nonwoven fabric according to one of claims 1 to 4, characterized in that the low-shrinkage core-sheath bicomponent fiber has a titer between 0.1 and 15 dtex.
6. Vliesstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die schrumpfarme Kern-Mantel-Bikomponentenfaser ein Kern- Mantel-Verhältnis zwischen 10:90 und 90:10 aufweist, vorzugsweise 50:50.6. Nonwoven fabric according to one of claims 1 to 5, characterized in that the low-shrinkage core-sheath bicomponent fiber is a core Sheath ratio between 10:90 and 90:10, preferably 50:50.
7. Vliesstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er bis zu 90% Gew. einer oder mehrerer weiterer Fasern enthält.7. Nonwoven fabric according to one of claims 1 to 6, characterized in that it contains up to 90% by weight of one or more further fibers.
8. Vliesstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Vliesstoff nass gelegt ist.8. Nonwoven fabric according to one of claims 1 to 7, characterized in that the nonwoven fabric is wet.
9. Vliesstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Vliesstoff trockengelegt ist.9. Nonwoven fabric according to one of claims 1 to 7, characterized in that the nonwoven fabric is drained.
10. Vliesstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die schrumpfarme Kem-Mantel-Bikomponeπtenfaser einen Titer zwischen 0,1 und 15 dtex aufweist.10. Nonwoven fabric according to one of claims 1 to 9, characterized in that the low-shrinkage Kem-sheath Bikomponeπtenfaser has a titer between 0.1 and 15 dtex.
11. Vliesstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass er ein Flächengewicht zwischen 20 und 500g/m2 aufweist.11. Nonwoven fabric according to one of claims 1 to 10, characterized in that it has a basis weight between 20 and 500g / m 2 .
12. Vliesstoff nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass er bei einem Flächengewicht >150g/m2 eine Biegesterfigkeit quer >1 Nmm aufweist.12. Nonwoven fabric according to one of claims 1 to 11, characterized in that it has a flexural strength transversely> 1 Nmm at a basis weight> 150g / m 2 .
13. Vliesstoff nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er nach 1 h bei 1500C eine thermische Maßänderung (Bausch und13. Nonwoven fabric according to one of claims 1 to 12, characterized in that it after 1 h at 150 0 C, a thermal dimensional change (Bausch and
Schrumpf) von <2%, vorzugsweise <1% aufweist.Shrinkage) of <2%, preferably <1%.
14. Verwendung eines Vliesstoffes nach einem der Ansprüche 1 bis 13 als Flüssigkeitsfiltermedium, Membranstützvliesstoff, Gasfiltermedium, Batterieseparator oder Vliesstoff für die Oberfläche von Verbundwerkstoffen.14. Use of a nonwoven fabric according to any one of claims 1 to 13 as a liquid filter medium, Membranstützvliesstoff, gas filter medium, Battery separator or nonwoven for the surface of composites.
15. Verwendung eines Vliesstoffes nach Anspruch 14 als Ölfiltermedium für KfZ-Motoren. 15. Use of a nonwoven fabric according to claim 14 as an oil filter medium for motor vehicle engines.
EP06707417.9A 2005-04-04 2006-03-04 Thermally bound non-woven material Active EP1866469B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06707417T PL1866469T3 (en) 2005-04-04 2006-03-04 Thermally bound non-woven material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510015550 DE102005015550C5 (en) 2005-04-04 2005-04-04 Use of a thermally bonded nonwoven fabric
PCT/EP2006/001992 WO2006105836A1 (en) 2005-04-04 2006-03-04 Thermally bound non-woven material

Publications (2)

Publication Number Publication Date
EP1866469A1 true EP1866469A1 (en) 2007-12-19
EP1866469B1 EP1866469B1 (en) 2013-07-17

Family

ID=36599098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707417.9A Active EP1866469B1 (en) 2005-04-04 2006-03-04 Thermally bound non-woven material

Country Status (9)

Country Link
US (2) US8124550B2 (en)
EP (1) EP1866469B1 (en)
KR (1) KR100942879B1 (en)
CN (1) CN101151406B (en)
DE (1) DE102005015550C5 (en)
DK (1) DK1866469T3 (en)
ES (1) ES2429537T3 (en)
PL (1) PL1866469T3 (en)
WO (1) WO2006105836A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015550C5 (en) * 2005-04-04 2013-02-07 Carl Freudenberg Kg Use of a thermally bonded nonwoven fabric
ATE475735T1 (en) 2007-01-31 2010-08-15 Ivo Ruzek HIGH STRENGTH LIGHTWEIGHT TUFTING SUPPORT AND METHOD FOR PRODUCING SAME
JP5497987B2 (en) * 2007-06-22 2014-05-21 ユニ・チャーム株式会社 Nonwoven fabric and method for producing the same
CN102373578B (en) 2010-08-18 2014-09-17 扬光绿能股份有限公司 Non-woven fabric and manufacturing method thereof, generating device and generating method for gas fuel
DE102010052466A1 (en) 2010-11-26 2012-05-31 Carl Freudenberg Kg Membrane carrier, its use and method for producing liquid-applied polymer membranes with such a membrane carrier
MY167349A (en) * 2010-12-24 2018-08-16 Kao Corp Method of producing nonwoven fabric, nonwoven fabric and manufacturing apparatus of nonwoven fabric, and a support for producing a nonwoven fabric
CN102660842A (en) * 2012-05-22 2012-09-12 昆山吉美川纤维科技有限公司 Method for preparing coconut palm plate for mattress
CN103866485B (en) * 2012-12-11 2017-07-28 东丽纤维研究所(中国)有限公司 One kind heat bonding non-woven fabrics and its production method and purposes
CN104424941B (en) * 2013-09-05 2018-04-03 上海泰瑞电子科技有限公司 A kind of sound-absorbing material and preparation method thereof
EP3052688B1 (en) * 2013-10-02 2019-01-16 Carl Freudenberg KG Fabric sheet with high thermal stability
DE102014003418B4 (en) 2014-03-13 2017-01-05 Carl Freudenberg Kg Element for light manipulation
DE102014119524A1 (en) * 2014-12-23 2016-06-23 Coroplast Fritz Müller Gmbh & Co. Kg "Adhesive tape based on a stitchbonded carrier with bicomponent fibers"
EP3078407A1 (en) * 2015-04-10 2016-10-12 Carl Freudenberg KG High efficiency filter medium with no binding agent
DE202015105210U1 (en) * 2015-10-02 2016-11-03 Ahlstrom Corp. Filter medium with high heat resistance
CN108367219B (en) * 2015-12-22 2021-03-19 东丽株式会社 Spunbonded nonwoven fabric for filter and manufacturing method thereof
DE102016220770A1 (en) * 2016-10-21 2018-04-26 Elringklinger Ag Separating device, motor device and deposition method
DE102017003361B4 (en) 2017-04-06 2021-09-30 Carl Freudenberg Kg Element for light manipulation
DE102017004481A1 (en) * 2017-05-11 2018-11-15 Carl Freudenberg Kg Textile fabric for electrical insulation
DE102018110246B4 (en) * 2018-04-27 2020-12-31 Johann Borgers GmbH Nonwoven molded part
EP4008968A1 (en) * 2020-12-03 2022-06-08 herotec GmbH Flächenheizung Laying device for lines of a surface tempering device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US4189338A (en) 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
US3958593A (en) 1974-05-13 1976-05-25 Joe William Christie Apparatus for connecting a main to a plurality of sizes of service lines
NZ185412A (en) 1976-10-20 1980-03-05 Chisso Corp Heat-adhesive compsite fibres based on propylene
JPS53147816A (en) 1977-05-24 1978-12-22 Chisso Corp Hot-melt fiber of polypropylene
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
DK620589A (en) * 1988-12-09 1990-06-10 Du Pont POLYESTER SUITABLE FOR USE AS BIND FIBER OR FILAMENT
JPH0734326A (en) * 1993-07-13 1995-02-03 Kuraray Co Ltd Heat-bondable conjugate fiber
MX9708842A (en) * 1995-05-25 1998-03-31 Minnesota Mining & Mfg Undrawn, tough, durably melt-bondable, macrodenier, thermoplastic, multicomponent filaments.
EP0747521B1 (en) * 1995-06-06 2004-03-03 Chisso Corporation Continuous fiber nonwoven and method for producing the same
JP3097019B2 (en) * 1995-08-07 2000-10-10 チッソ株式会社 Heat-fusible composite fiber and nonwoven fabric using the fiber
US6007914A (en) * 1997-12-01 1999-12-28 3M Innovative Properties Company Fibers of polydiorganosiloxane polyurea copolymers
EP0924322A1 (en) * 1997-12-19 1999-06-23 Mitsui Chemicals, Inc. Conjugate fibers and non-woven fabrics therefrom
DE19804418B4 (en) * 1998-02-05 2005-09-29 Sandler Ag Voluminous fabric for padding decorative layers
US6752947B1 (en) * 1998-07-16 2004-06-22 Hercules Incorporated Method and apparatus for thermal bonding high elongation nonwoven fabric
DE19840050C2 (en) * 1998-09-02 2001-04-19 Sandler C H Gmbh Heat and dimensionally stable thermally bonded nonwoven
DE19962359B4 (en) * 1999-12-23 2004-07-08 Carl Freudenberg Kg Thermo nonwoven
MXPA03006494A (en) * 2001-11-30 2003-10-15 Teijin Ltd Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof.
ATE325158T1 (en) * 2002-01-11 2006-06-15 Toyo Boseki POLYESTER FILMS
JP4016320B2 (en) * 2002-04-17 2007-12-05 東洋紡績株式会社 Polyester long fiber nonwoven fabric and separation membrane using the same
US7438777B2 (en) * 2005-04-01 2008-10-21 North Carolina State University Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
DE102005015550C5 (en) * 2005-04-04 2013-02-07 Carl Freudenberg Kg Use of a thermally bonded nonwoven fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006105836A1 *

Also Published As

Publication number Publication date
DE102005015550B4 (en) 2009-07-23
PL1866469T3 (en) 2013-12-31
US20080308490A1 (en) 2008-12-18
WO2006105836A1 (en) 2006-10-12
KR100942879B1 (en) 2010-02-17
KR20070116279A (en) 2007-12-07
DE102005015550C5 (en) 2013-02-07
EP1866469B1 (en) 2013-07-17
DE102005015550A1 (en) 2006-10-26
CN101151406A (en) 2008-03-26
US8481437B2 (en) 2013-07-09
ES2429537T3 (en) 2013-11-15
US20120129032A1 (en) 2012-05-24
US8124550B2 (en) 2012-02-28
DK1866469T3 (en) 2013-10-14
CN101151406B (en) 2011-07-06

Similar Documents

Publication Publication Date Title
DE102005015550C5 (en) Use of a thermally bonded nonwoven fabric
DE3688770T2 (en) Synthetic down.
DE69213251T2 (en) NEW FIBER FILLING MATERIAL
DE68918153T2 (en) Hot-melt adhesive fibers and their use in nonwovens.
DE69818118T2 (en) Hollow polyester fibers and textiles containing them
EP1937886B1 (en) Elastic, soft and punctiformly bound non-woven fabric provided with filler particles and method for production and the use thereof
DE3782724T2 (en) METHOD FOR PRODUCING FLEECE MATERIALS.
EP3375923B1 (en) Sound absorbing textile composite
DE69925140T3 (en) FIBER TRAY AS UNDERLAY AND TUFTING CARPET
DE3202485C2 (en)
EP1138365B1 (en) A method of manufacturing a pleatable filter material comprising a non-woven fabric
DE102017002552A1 (en) Sound-absorbing textile composite
DE3855393T2 (en) Nonwoven fabric made from hot melt adhesive composite fibers
DE1760473A1 (en) Spirally curled threads
EP3784827A1 (en) Nonwoven molded article
DE1635522A1 (en) Non-woven goods
DE60022157T2 (en) Continuous and / or discontinuous three-component polymer fibers for nonwovens, and manufacturing processes
DE69505995T2 (en) INSULATING MATERIAL
DE3881230T2 (en) Artificial down.
DE69528850T2 (en) HOT-WELDABLE COMPOSITE FIBERS AND FIBER GLOBOID MADE THEREOF WITH HIGH MODULE
DE112013001163T5 (en) Harness protection material and wiring harness
EP1505187A1 (en) Spunbonded nonwoven fabric and process for making the same
DE69409115T2 (en) NEW FIBER FILLING MATERIAL
DE19840050C2 (en) Heat and dimensionally stable thermally bonded nonwoven
DE102021133730B3 (en) Acoustically effective and dimensionally stable molding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502006013030

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D04H0001540000

Ipc: D04H0001740000

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/54 20120101ALI20121005BHEP

Ipc: D04H 1/42 20120101ALI20121005BHEP

Ipc: D04H 1/55 20120101ALI20121005BHEP

Ipc: D01F 8/14 20060101ALI20121005BHEP

Ipc: D04H 1/541 20120101ALI20121005BHEP

Ipc: D04H 1/74 20060101AFI20121005BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHILLING, HOLGER

Inventor name: BERKEMANN, RALPH

Inventor name: VEESER, KLAUS

Inventor name: FREY, GUENTER

Inventor name: GREINER, ARMIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 622305

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013030

Country of ref document: DE

Effective date: 20130912

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2429537

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

26 Opposition filed

Opponent name: BONAR B.V.

Effective date: 20140409

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006013030

Country of ref document: DE

Effective date: 20140409

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140304

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060304

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: LOW & BONAR B.V.

Effective date: 20140409

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

APAR Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2O

APBI Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAR Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2O

APBI Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502006013030

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20210322

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240326

Year of fee payment: 19

Ref country code: GB

Payment date: 20240320

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240326

Year of fee payment: 19

Ref country code: PL

Payment date: 20240222

Year of fee payment: 19

Ref country code: IT

Payment date: 20240327

Year of fee payment: 19

Ref country code: FR

Payment date: 20240321

Year of fee payment: 19

Ref country code: BE

Payment date: 20240320

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240403

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 19