EP1866265B1 - Electrical initiators using self-initiating compositions and gas generators comprising said initiators - Google Patents

Electrical initiators using self-initiating compositions and gas generators comprising said initiators Download PDF

Info

Publication number
EP1866265B1
EP1866265B1 EP06726280.8A EP06726280A EP1866265B1 EP 1866265 B1 EP1866265 B1 EP 1866265B1 EP 06726280 A EP06726280 A EP 06726280A EP 1866265 B1 EP1866265 B1 EP 1866265B1
Authority
EP
European Patent Office
Prior art keywords
self
composition
initiating
mass
electrical initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06726280.8A
Other languages
German (de)
French (fr)
Other versions
EP1866265A2 (en
Inventor
Patrick Moussier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Davey Bickford SAS
Original Assignee
Davey Bickford SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Davey Bickford SAS filed Critical Davey Bickford SAS
Publication of EP1866265A2 publication Critical patent/EP1866265A2/en
Application granted granted Critical
Publication of EP1866265B1 publication Critical patent/EP1866265B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/06Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being an inorganic oxygen-halogen salt
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/02Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate of an alkali metal
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters

Definitions

  • the present invention relates to a self-initiating pyrotechnic composition implemented in bulk or in the form of a compressed layer in the electric initiator of a gas generator and for initiating the combustion of a composition generating gas exposed to a temperature. significantly higher than its normal temperature of use.
  • the invention relates more particularly to the field of automotive safety.
  • Safety airbags for the safety of motor vehicle passengers deploy under the action of the gas generated by the combustion of a pyrotechnic composition, called a gas-generating composition, contained in a gas generator comprising a casing of resistant metal to corrosion.
  • a gas-generating composition contained in a gas generator comprising a casing of resistant metal to corrosion.
  • the choice of the metal constituting the envelope is generally dictated by the requirements of minimizing the weight of the vehicle in order to improve its performance in terms of fuel consumption. Because of its low density, aluminum is often chosen.
  • the inflation gas released by the exothermic decomposition reaction is typically nitrogen. Examples of inflation devices are described in US patents US 4923212 , US 4907819 and US 4865635 . When gas generators are intended for automotive safety, they must remain stable at high temperatures for long periods of time.
  • the rate of decomposition of the gas generating composition must be controlled for the bag to deploy quickly but not too violently. This control is primarily ensured by a good design of the gas generating composition and the architecture of the generator.
  • the combustion of the gas-generating composition is generally triggered by an electrical initiator contained in the gas generator, said initiator comprising an envelope, a resistive element and at least one charge composed of a pyrotechnic substance or a mixture of pyrotechnic substances.
  • electrical initiator is meant a device whose function is to convert an input energy of an electrical nature into an output energy of a pyrotechnic nature, much higher than the input energy.
  • This electrical initiator is typically connected via electrical wires to at least one collision detection device.
  • Most initiators operate by heat exchange between the resistive element and the load in contact with the resistive element.
  • the pyrotechnic substances constituting the charge may be pyrotechnic compositions operating by reaction between several constituents. These are generally mixtures of oxidants and reducing agents, and in particular mixtures of oxidants and inorganic reducers to which a more powerful explosive is optionally added or, on the contrary, a phlegmatizer, a binder or any other additive intended to obtain particular properties or to facilitate the implementation of the composition.
  • Electrical initiators generally comprise a second pyrotechnic composition, called the main charge, as energetic as the charge in contact with the resistive element, but reacting less violently, in particular for initiating gas-generating compositions.
  • Main charges used in electrical initiators for automotive safety and in particular in airbags are described in US patents US 5847310 and US 5672843 . Gas generators are designed to withstand all the temperatures that can be reached in an automobile under normal use (-40 ° C, 90 ° C).
  • self-initiation temperature is meant, in the present invention, the temperature at which a substance or a mixture of substances undergoes an exothermic decomposition reaction. This decomposition can be assimilated to a combustion, but it can lead to a blast or even a detonation. Temperature self-initiation of said substance or said mixture of substances can therefore, in general, be assimilated to its autoignition temperature. Under high initial temperatures, the rate of combustion of the gas generating compositions tends to become excessive.
  • the pressure generated is then such that the envelope of the gas generator, usually made of aluminum, can lose its mechanical integrity and explode with projections of metallic bodies that are dangerous for people in the vicinity. This explosion is even more likely when the critical temperature of mechanical strength of the metal constituting the envelope is reached at the time of firing.
  • compositions generating a gas having a self-initiation temperature that is to say self-ignition voluntarily reduced, without any other precaution. Indeed, such compositions operate too quickly when their autoignition temperatures are reached (global inflammation of the entire charge).
  • self-initiating composition is meant a substance or a mixture of substances contained in the gas generator whose self-initiation temperature is lower than the self-ignition temperature of the gas generating composition employed.
  • the role of the self-initiating composition is therefore to decompose exothermically, so that the evolution of heat triggers the combustion of the gas generating composition in a controlled manner, before its autoignition temperature is reached. and before the temperature at which the gas generator envelope loses its structural integrity is reached.
  • the heat evolution must be sufficient to provide the activation energy required to ignite the gas generating composition.
  • the self-initiating composition may be one of the compositions constituting the normal pyrotechnic chain in the initiator, in particular the main charge or an additional charge, or it may be a charge external to the initiator, in particular an initiating reinforcement charge.
  • power boosting charge which is generally placed between the initiator and the gas generating composition.
  • additional load is meant a load which is neither the primary load nor the secondary (main) load, and whose role is to initiate the main load.
  • initiation reinforcement charge is meant a charge serving as a complement to the main charge for the initiation of the gas generating composition, which therefore acts as a "booster".
  • the initiator reinforcing fillers comprise most of the time a mixture of boron and potassium nitrate.
  • the self-initiating composition can also be placed out of the normal pyrotechnic chain near the gas generating composition, at a place where the temperature rises rapidly, or even be mixed into pellets (without an envelope) or a capsule with the gas-generating composition (the pellets of the self-initiating composition and those of the gas-generating composition are distinct). This latter solution is generally accepted for its lack of interference with the normal operation of the device.
  • the first gas generator compositions for airbags implemented on a large scale were made of sodium azide mixed with oxidants and additives.
  • the decomposition reaction of such compositions generates nitrogen.
  • the self-initiation temperature of the self-initiating composition is less than 230 ° C, a temperature of the order of 200 ° C fully satisfactory, most often.
  • the self-initiating compositions generally consist of an energetic compound decomposing under a suitable temperature, such as nitrocellulose, or a mixture of oxidants and organic or inorganic reducing agents.
  • a suitable temperature such as nitrocellulose, or a mixture of oxidants and organic or inorganic reducing agents.
  • the inorganic reducers are chosen from the powders of metals and metalloids, the reducing agents organic are typically sugars or carbohydrates.
  • the inorganic oxidants are selected from nitrates, chlorates, perchlorates, peroxides and low electropositive metal oxides.
  • the first self-initiating compositions such as those described in the US patent US 4561675 , were made based on nitrocellulose and propellant powders.
  • Various additives have been added to the nitrocellulose powders to fulfill this self-initiation function.
  • self-initiating compositions based on nitrocellulose have the drawback of being unstable at storage under high temperatures, the corresponding gas generators giving poor results in the stability test at 107 ° C. for 408 hours.
  • nitrocellulose tends to decompose over time, so that the amount of energy released upon initiation decreases over time and may become insufficient to properly initiate combustion of the gas generating composition.
  • Self-initiating compositions incorporating mixtures of potassium or sodium chlorate and organic compounds, most commonly a carbohydrate such as lactose, have been found to be more stable. Such compositions have been widely described, in particular by Scheffee in the international application WO 94/14637 and the US patent US 5542688 , and Nagahashi, who claims in the US patent US 5847310 the production of an electrical initiator containing a self-initiating composition based on carbohydrates and chlorates. However, sodium chlorate / carbohydrate mixtures are not stable enough to meet the environmental test at 107 ° C for 408 hours when compressed and confined in initiators. The actual usable self-initiating compositions claimed by the aforementioned patents all have high self-initiation temperatures above 180 ° C; in practice, greater than 190 ° C, most often.
  • gas generating compositions based on sodium azide are poor in the volume of gas released per unit mass or volume of composition, generate abundant slag that must be filtered.
  • the use of sodium azide is unsatisfactory because of its toxicity.
  • Sodium azide-free gas generating compositions have been described more recently.
  • the sodium azide is replaced by organic compounds rich in nitrogen and low in carbon, such as 5-aminotetrazole, 1-nitroguanidine, diguanidinium 5,5-azotetrazolate or triaminoguanidinium nitrate.
  • organic compounds rich in nitrogen and low in carbon such as 5-aminotetrazole, 1-nitroguanidine, diguanidinium 5,5-azotetrazolate or triaminoguanidinium nitrate.
  • the combustions of these gas-generating compositions become unstable if one of their constituents is in the liquid state at the self-initiation temperature of said compositions, which can lead to excessive operational pressures.
  • Some conventional components have sufficiently low melting temperatures to be melted at the self-initiation temperature of the composition, for example 5-aminotetrazole, which melts at 202-204 ° C and 1-nitroguanidine, which melts at 226 ° C. -228 ° C.
  • the combustion of the corresponding gas generating compositions becomes unstable at temperatures of the order of 200-250 ° C.
  • the manufacturers have sought to find self-initiating compositions having a self-initiation temperature of less than 180 ° It should be noted that the use of ammonium nitrate in the gas generating compositions, although it has already been described, is undesirable because of its too low melting temperature (160 ° C.).
  • the US patent US 5084118 which discloses one of the first examples of composition generating gas free of sodium azide, claims a self-initiating composition based on 2,4-dinitrophenylhydrazine and chlorates, but this composition is too sensitive to shocks to be put implemented.
  • the US patent US 6177028 describes a self-initiating composition based on nitrogenous organic compounds, potassium nitrate, metal powders, metal oxides (MoO 3 ) and various additives. The complex formulation is difficult to implement.
  • compositions based on iron oxide or ferrocene and at least one compound selected from oxalates, persulfates, permanganates, nitrates, nitrides, perborates, bismuthates, formates, sulfamates, bromates and peroxides.
  • These compositions may also comprise a reducing agent, preferably titanium powder, and an explosive used as a fuel, such as guanidinium nitrate, 1-nitroguanidine, 5-aminotetrazole nitrate or 3-nitro-1, 2,4-triazol-5-one (NTO).
  • the self-initiating compositions described in these documents consist of a mixture of a metal powder, mainly molybdenum, and an oxidizing composition resulting from a mixture, optionally by co-fusion, of at least two oxidants, the first being generally silver nitrate or ammonium nitrate and the second being generally potassium nitrate or guanidinium nitrate.
  • Metal oxides which exert a catalytic effect by lowering the self-initiation temperature, may optionally be added. It is furthermore possible to mix with these self-initiating compositions a power-enhancing composition (booster), composed of an energetic oxidizer (perchlorate or nitrate) and boron or a metal (Mg, Ti or Zr).
  • the self-initiating composition ignites, initiates the combustion of the power-increasing composition, which initiates the combustion of the gas-generating composition.
  • Such self-initiating compositions have many disadvantages. Their implementation, which involves in particular the mixing of two oxidants by melting and then solidification, is complex.
  • the use of Silver nitrate is undesirable because it severely affects the stability of the compositions under 107 ° C for 408 hours.
  • silver nitrate is soluble in water, unstable in light, expensive and toxic. It is also preferable not to use ammonium nitrate which can become very unstable in the presence of other compounds and which, because of the ammonium ion, can cause instability of other constituents.
  • the compositions described in the US patent US 6221187 are too unstable to be used in compressed form and under confinement, as is the case in electrical initiators.
  • compositions which are perfectly stable at 107 ° C. for 408 hours (or at least 90 ° C. for 1000 hours), in bulk or in compressed form, in the open air or in a holster. or in an initiator and preferably in a hermetic initiator with compressed pyrotechnic layers.
  • non-hygroscopic self-initiating compositions preferably stable to light and moisture, which do not generate toxic substances or contain toxic compounds such as those based on lead, mercury, barium, cadmium arsenic, beryllium, chromium, cobalt or nickel, which have a flowability facilitating their implementation and whose manufacturing process is simple, are also needs that manufacturers seek to meet.
  • self-initiating compositions having a self-initiation temperature below 130 ° C can not be used in gas generators because a non-initiation safety temperature of 130 ° C is generally required. by car manufacturers. It has been previously stated that self-initiating compositions having a self-initiation temperature above 180 ° C are of lesser practical interest today.
  • compositions having self-initiation temperatures below 180 ° C are thereby reinforced.
  • a composition responding to need must have a self-initiation temperature ranging from 130 ° C to 180 ° C, and have a satisfactory set of characteristics.
  • the composition should not be initiated at a temperature below 130 ° C, in the system where it is used, even after environmental testing, which pushes the minimum temperature of the range of self-initiation temperatures allowed to- beyond 150 ° C.
  • the useful range becomes very narrow: 150-180 ° C, under a heating rate of less than or equal to 14 ° C / minute.
  • the aim of the present invention is to provide a self-initiating composition satisfying the abovementioned criteria and overcoming the drawbacks of the self-initiating compositions of the prior art, which is used in an electrical initiator comprising an envelope, a resistive element and a less a charge.
  • This self-initiating composition is used according to the invention as a filler.
  • the present invention also relates to a gas generator comprising such an electric initiator and a gas generating composition, and finally a gas generator comprising an electric initiator, a gas generating composition and at least one initiating reinforcement charge, where the Self-initiating composition is used according to the invention as an initiating reinforcement filler.
  • compositions having self-initiation temperatures low enough to protect gas generators from explosive reactions, it is necessary, however, that the self-initiation temperature remains higher than 130 ° C. even when slow heating ("Slow Heat Test").
  • the self-initiating compositions according to the invention are characterized by quantities of constituents assuring them a self-initiation temperature ranging from 130 to 220 ° C., preferably ranging from 150 to 180 ° C., and stability at a temperature of 107 ° C for 408 hours or at a temperature of 90 ° C for 1000 hours in all configurations where they are used.
  • a composition is said to be stable at a given temperature for a given time when a residence in an enclosure at said temperature during said time does not cause any detrimental degradation to the operation of the self-initiating composition itself or to the other components of the generator. gas or initiator. Stability is observed for a composition in bulk or compressed, in the open air or contained in a case or in an initiator, said initiator being able to be a hermetic initiator with compressed pyrotechnic layers.
  • a self-initiating composition must not, for example, be initiated unexpectedly during an environmental test.
  • compositions comprising a main formulation comprising, in appropriate amounts, at least one oxidant, at least one energetic organic compound, optionally one or more reducing compounds of a metal nature. , metalloid or metal hydride and optionally a transition metal oxide.
  • the self-initiating composition used according to the invention comprises 20 to 80% by weight of at least one alkali metal chlorate, used as an oxidant.
  • Alkali metal chlorates suitable for the present invention are selected from potassium chlorate, sodium chlorate and mixtures thereof.
  • Sodium chlorate does not produce much lower temperatures than potassium chlorate but is more hygroscopic and adversely affects the flow of the composition and its stability.
  • the preferred alkali metal chlorate is therefore potassium chlorate.
  • Silver nitrate, an oxidant widely used in the self-initiating compositions of the prior art can certainly lower their self-initiation temperatures, but its use is not desirable for the reasons stated above.
  • self-initiating compositions of comparable self-initiation temperatures using silver nitrate rather than potassium chlorate as the oxidant are less stable in environmental tests.
  • the principle of the use of a mixture of oxidants by co-fusion, as described in certain compositions of the prior art, or even a eutectic mixture of oxidants, with the aim of lowering the temperature of self-initiation, is not necessary with the self-initiating compositions used according to the invention.
  • the self-initiating composition used according to the invention also comprises 5 to 50% by weight of at least one energetic organic compound.
  • the term "energetic organic compound” is intended to mean an organic compound whose decomposition is exothermic. The inventors have discovered that the use of such compounds makes it possible to lower the self-initiation temperature of a self-initiating composition to a suitable value. It is preferable that the organic character of this energetic organic compound is not too pronounced so as to cause the least possible harm to the stability of said composition at 107 ° C. for 408 hours. Guanidinium nitrate is the preferred energetic organic compound for the invention.
  • guanidinium nitrate it is preferably used as a single energetic organic compound, however, it may also be used in admixture with or replaced by other energetic organic compounds, in particular by aliphatic or heterocyclic compounds having amine, amide, imide or imine and their salts, especially N- substituted derivatives of guanidinium nitrate. Just like guanidinium nitrate, these other organic compounds energy are used as fuel.
  • the self-initiating composition used according to the invention comprises, according to another embodiment, at least one energetic organic compound chosen from guanidinium nitrate, aminoguanidinium nitrate, nitroguanidinium nitrate, methylguanidinium nitrate, diaminoguanidinium nitrate (DAGN), triaminoguanidinium nitrate (TAGN), azodicarbonamide, 5-aminotetrazole, 5-aminotetrazole nitrate, triaminoguanidinium 5-aminotetrazolate, bistetrazole, bistetrazole amine, 5.5 diguanidinium azotetrazolate (GZT), guanylurea dinitramide (GUDN), guanidine dinitramide (GDN), 3-nitro-1,2,4-triazol-5-one (NTO), RDX (hexahydro-1, 3,5-trinitro-1,3,5-triazine or hexogen) and HMX (1
  • Some of these compounds have disadvantages such as a too low melting temperature (below 150 ° C. for example) or can generate eutectic mixtures having a low melting temperature (the initiation becomes probable when the temperature exceeds said temperature fusion).
  • Azodicarbonamide and 5-aminotetrazole for example, do not have these disadvantages and can be used without particular risk, but are of less interest than guanidinium nitrate to obtain adequate self-initiation temperatures.
  • guanidinium nitrate to obtain adequate self-initiation temperatures.
  • Highly energetic compounds such as HMX, RDX or NTO, which are high-potency explosives, can be introduced into the self-initiating compositions according to the invention, preferably up to 20% by weight, more preferably up to 20% by weight. at 15% by weight, relative to the mass of the main formulation.
  • the energetic organic compounds used according to the invention are guanidinium nitrate, aminoguanidinium nitrate, diaminoguanidinium nitrate (DAGN), triaminoguanidinium nitrate (TAGN), nitroguanidinium nitrate, methylguanidinium nitrate, 5- aminotetrazole, 5-aminotetrazole nitrate, triaminoguanidinium 5-aminotetrazolate, bistetrazole, bistetrazole amine, 5,5'-azotetrazolate diguanidinium (GZT) and 3-nitro-1,2,4-triazol-5-one (NTO).
  • DAGN diaminoguanidinium nitrate
  • TAGN triaminoguanidinium nitrate
  • nitroguanidinium nitrate methylguanidinium nitrate
  • 5- aminotetrazole 5-aminotetrazole nitrate
  • the oxidizing / organic energetic compound mixture described above may be accompanied by one or more reducing compounds of a metal, metalloid or metal hydride nature.
  • the reducing agents suitable for the present invention may be transition metals, preferably iron, manganese, cobalt, copper, titanium or zirconium, metals, preferably aluminum, metalloids, preferably boron and silicon, transition metal hydrides, preferably titanium hydrides such as TiH 2 and TiH n (n ⁇ 2) subhydrides, TiH 2 titanium dihydride being the preferred titanium hydride, zirconium dihydride ZrH 2 , or mixtures of all these reducers.
  • reducing agents are preferably used in the form of fine powders, that is to say with a particle size ranging from 0.1 to 100 ⁇ m, better still ranging from 1 to 50 ⁇ m.
  • Some of these reducing agents act as a catalyst for decomposition of chlorates and energetic organic compounds such as energetic organic nitrates, in particular guanidinium nitrate. This catalytic activity results in a lowering of the self-initiation temperature of a self-initiating composition incorporating such reducing agents.
  • the term "catalytic activity” and "catalyst” means a catalytic activity and a catalyst involved in the field of the decomposition of chlorates and nitrates, in particular organic nitrates.
  • the preferred reducer or mixture of preferred reducers can reconcile the achievement of a self-initiation temperature low enough for its functionality but compatible with the stability requirements of car manufacturers.
  • the inventors have found that metals, metalloids and metal hydrides, with comparable particle size, could be classified in the following manner as to their effectiveness in lowering the self-initiation temperature of a self-initiating potassium chlorate composition.
  • guanidinium nitrate / metal, metalloid or metal hydride Mo, Cr, W, V> B, Mn, Co, Cu> Ti, TiH 2 , Fe, Si, Zr, ZrH 2 , Ni, Al (1)
  • Chromium, nickel and silver are toxic, so do not use them.
  • Boron, manganese, cobalt and copper have a more moderate catalytic activity than vanadium and metals of group VIB, and change more significantly the potential and the rate of combustion of self-initiating compositions than zirconium, titanium , zirconium and titanium hydrides, iron, silicon and aluminum.
  • a reducing agent fulfilling a decomposition catalyst function for chlorates and nitrates, for example boron, manganese, cobalt, copper or their mixtures can partially or totally replace the reducing agents chosen from zirconium, titanium, zirconium hydrides and titanium, iron, silicon, aluminum and mixtures thereof in the self-initiating compositions of the invention.
  • the reaction vivacity and the self-initiation temperature of said compositions can thus be regulated by their mass content of boron, manganese, cobalt, copper or mixtures thereof.
  • the self-initiating composition according to the invention contains (a) 0 to 60% by weight of at least one metal or metalloid selected from boron, manganese, cobalt and copper, (b) 0 to 60% by weight of at least one metal or metal hydride chosen from zirconium, titanium, iron, aluminum, silicon, TiH 2 and ZrH 2 , and (c) 0 to 50% by weight of at least one transition metal oxide, the mass percentages of component (a) and component (c) not being simultaneously zero.
  • the transition metal oxides are used in the present invention as catalysts for the decomposition of alkali metal chlorates or energetic organic compounds such as energetic organic nitrates, particularly guanidinium nitrate. They allow in particular to lower the self-initiation temperature of a self-initiating composition metal, metalloid or metal hydride / alkali chlorate / organic nitrate energetic in a suitable range.
  • the transition metals and their oxides actually have catalytic properties used for many chemical reactions, particularly in the field of pyrotechnics for oxygen-generating compositions.
  • Yunchang Zhang's work highlights likely mechanisms: " Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate ", Zhang, Y., Kshirsagar, G., Ellison, JE, Cannon JC Thermochimica Acta 1993, 228 and subsequent publications.
  • Some of the metals used in the present invention may be covered by a surface layer of oxide. It is possible, although not proven, that this oxide layer contributes to the catalytic activity of said metals.
  • metal oxides or metalloid oxides useful as catalysts in the present invention mention may be made of MoO 3 , CuO, V 2 O 5 , CrO 3 , Cr 2 O 3 , MnO 2 , Co 3 O 4 , Cu 2 O, Nb 2 O 5 and Ag 2 O, or mixtures thereof.
  • the inventors have found that the oxides of metals or metalloids, with comparable particle size, could be classified in the following manner as to their effectiveness concerning the lowering of the self-initiation temperature of a self-initiating chlorate potassium composition.
  • guanidinium nitrate / metal, metalloid or metal hydride MoO 3 >CuO> Fe 2 O 3 , ZnO> SiO 2 (2)
  • the self-initiation temperature of a self-initiating composition can be lowered by the addition of a metal oxide of a more active metal as a catalyst according to equation (1) than the metal reducing agent, metalloid or metal hydride used.
  • a metal oxide of a more active metal as a catalyst according to equation (1) than the metal reducing agent, metalloid or metal hydride used.
  • a boron / alkali chlorate / guanidinium nitrate composition will have its self-initiation temperature lowered by the addition of molybdenum oxide.
  • the transition metal oxides which are particularly suitable for the present invention are preferably chosen from MoO 3 , CuO and mixtures thereof.
  • active metal oxides MoO 3 and CuO
  • a metal or active metal in the form of a metal powder, such as B, Mn, Co , Cu or mixtures thereof.
  • active metal oxides is essential to obtain a self-initiation temperature satisfying the aforementioned objectives in the case of compositions containing only weakly active metals or metalloids such as zirconium, titanium, TiH 2 , ZrH 2 , iron, aluminum or silicon.
  • compositions having a self-initiation temperature in line with the set objectives may be obtained even if they contain no metal, metalloid or metal hydride reductant, provided they contain an appropriate amount of minus an active transition metal oxide.
  • such compositions are low in energy and low light and are preferably not used as main charges.
  • transition metal oxides in the form of extremely fine powders so as to benefit from a large active surface area at a low mass proportion.
  • they are used in the form of nanoscale powders, an expression by which is meant, in the present invention, a powder having a particle size ranging from 1 to 100 nm, preferably from 3 to 30 nm.
  • the self-initiating compositions used according to the invention may comprise a number of additives, examples of which are given below and in no way limit the present invention.
  • the self-initiating compositions used according to the invention comprise a binder, and generally contain 1 to 10% by weight of this binder, preferably 2 to 10% by weight of this binder, better still 2 to 8%, this percentage being expressed in relation to the mass of the formulation principal and not with respect to the total mass of the composition.
  • the binder is hydrophobic.
  • the preferred binder is a fluoroelastomer binder such as Viton®.
  • a fluorinated elastomer binder such as Viton® improves the stability of the self-initiating composition without greatly increasing its self-initiation temperature. Like other binders, it reduces the sensitivity to friction, shock and static electricity of the composition and provides a particle size distribution facilitating the implementation of the powders.
  • the coating with this energetic and hydrophobic binder also gives excellent resistance to moisture. Its global role is largely beneficial.
  • Ultra fine silica is understood to mean, in the present invention, an extremely fine silica powder having a specific surface ranging from 100 to 200 m 2 .g -1 .
  • the ultra fine silica facilitates the implementation of the self-initiating compositions according to the invention (better grain flow) and improves their stability when used in bulk or in compressed form. It is possible that this increased stability results from a simple physical effect of reagent separation.
  • silica plays a role of stabilizer. It is also possible to use talc, graphite or boron nitride to facilitate the implementation of the composition.
  • the overall content of these additives remains less than 1% by weight (this percentage being expressed relative to the weight of the main formulation and not with respect to the total mass of the composition).
  • compositions of the invention differ widely from the compositions cited in the prior patents and in particular those of the patents US 5959242 , US 5739460 , US 6101947 and US 6221187 by the absence of silver nitrate, molybdenum or ammonium nitrate, by the implementation of a simpler process without premixing of the oxidants by co-melting then crystallization and by the use of a fluoroelastomer binder.
  • the self-initiation temperature of the self-initiating compositions used according to the invention decreases when the compression ratio of said compositions increases, variations of several tens of degrees can be observed.
  • the self-initiation temperature decreases when the compactness increases, even beyond a compression ratio of the order of 2000 bars, or even 3000 bars, which also ensure excellent mechanical strength. It may be advantageous to adjust the self-initiation temperature by varying the compression ratio of the self-initiating composition.
  • the self-initiation temperature of the self-initiating compositions used according to the invention decreases when the confinement of said compositions increases, that is to say when they are trapped by walls. However, their stability also decreases as containment increases.
  • the self-initiating compositions used according to the invention are prepared according to the usual processes for the production of the compositions ZPP (zirconium, potassium perchlorate) and THPP (titanium hydride, potassium perchlorate), which are well known to those skilled in the art, and do not require the development of a new process, which is interesting in terms of investment. In all cases, a mixture of dry constituents should be avoided for reasons of safety.
  • the dry mixing method does not make it possible to introduce a binder into the self-initiating composition. It is preferable to mix oxidants, energetic organic compounds and reducing agents by dispersion in a solvent in which they are insoluble, but in which the binder is soluble, if a binder is used.
  • the oldest method is to prepare the mixture oxidants / energetic organic compounds / reducing agents / solvent in the form of a paste, then partially evaporating the solvent in order to granulate the composition by forcing it on a grid having an adequate mesh size.
  • the granulated composition is optionally sieved to obtain a more precise particle size distribution.
  • This process makes it possible to obtain self-initiating compositions used according to the invention which are entirely functional, but it is not optimal because the granulation and sieving operations thus carried out present a risk of ignition.
  • the second method and the third method are reserved for self-initiating compositions comprising a binder.
  • the so-called "Shock Gel” process which is more recent, consists of gelling the binder by addition of an anti-solvent in the oxidant / energetic organic compounds / reducing agent / binder / solvent suspension with stirring.
  • the particles of oxidants, energetic organic compounds and reductants encapsulated by the binder form grains having a relatively homogeneous distribution of constituents, which can be sieved under anti-solvent and then dried.
  • This second method is of great interest in terms of handling safety.
  • the binder is a fluoroelastomer such as Viton®, acetone or methyl ethyl ketone are effective solvents, and aliphatic hydrocarbons such as heptane are suitable anti-solvents.
  • a third method is to charge the device or initiator with the mixture oxidants / organic compounds energetic / reducing agents / binder / solvent in the form of paste, then to dry the whole.
  • This method has no advantage over the "Shock Gel” process as regards the implementation of the self-initiating compositions according to the invention, but it makes it possible to obtain the same functional results.
  • the ultra-fine silica if it is used, is generally introduced into the self-initiating composition used according to the invention after drying of said composition.
  • the self-initiating compositions of the invention are used in an initiator, preferably an electrical initiator. Their compression ratios are then preferably between 50 and 500 bar.
  • the self-initiating compositions of the invention can also be used in uncompressed form, in bulk in electrical initiators or compartmentalized in preferably metal cases. Their potential applications, however, are not limited to a self-initiation function inside an initiator.
  • the self-initiating compositions of the invention can be used compressed in the form of pellets without a container. Compression rates of 500 to 3000 bar are then well suited.
  • the self-initiating compositions of the invention can be used compressed in preferably metal cases, for example in aluminum caps optionally closed by a flap. Compression rates ranging from 200 to 2000 bar are then well adapted.
  • the self-initiating compositions of the invention may also be used in uncompressed form outside the initiators, in which case they are compartmentalized in preferably metal cases.
  • the present invention thus relates to an electrical initiator comprising an envelope, a resistive element and at least one load, characterized in that it uses the self-initiating composition of the invention as a charge.
  • the self-initiating composition can be used as the main charge or as an additional charge.
  • the self-initiating compositions of the invention can thus replace the compositions constituting the main charges of the initiators, which are very often compositions boron / potassium nitrate, THPP (titanium hydride / potassium perchlorate), TPP (titanium / perchlorate of potassium) or ZPP (zirconium / potassium perchlorate).
  • the self-initiating compositions of the invention are placed between the composition in contact with the resistive element and the main charge or, preferably on the bottom of the case after the main charge in the functional order.
  • the electrical initiator according to the invention is a hermetic electric initiator with compressed pyrotechnic layers and of GTMS (Glass To Metal Seal) or PTMS® (Plastic To Metal Seal) type.
  • compressed pyrotechnic layer initiator is meant an initiator whose charge in contact with the resistive element, at least, is under the form of a compressed layer.
  • An electric initiator of the GTMS type is a compressed pyrotechnic layer initiator in which the current-carrying pins pass through a base of glass or ceramic and metal, providing electrical isolation and hermeticity. Examples of description of such initiators, well known to those skilled in the art, can be found in the patents US 5099762 , WO 02/46687 and US 5639986 .
  • An PTMS® electric initiator differs from a GTMS type initiator simply in that the pins pass through a plastic material instead of a glass-to-metal assembly. Examples of description of such initiators, well known to those skilled in the art, can be found in the international application WO 03/058154 and the French patent FR 2698687 .
  • the self-initiating compositions of the invention may be used in a gas generator or any other pyrotechnic device.
  • they are intended to be used in airbags, whatever the function they fulfill.
  • Having a self-initiation temperature ranging preferably from 150 to 180 ° C, they are suitable for use in gas generators using gas-generating compositions based in particular 5-aminotetrazole, 1-nitroguanidine, 5,5 ' diguanidinium azotetrazolate or triaminoguanidinium nitrate, but also based on sodium azide, the gas generating compositions based on this compound having much higher decomposition temperatures (generally higher than 350 ° C.).
  • the self-initiating compositions of the invention are generally placed in thermally exposed areas of the gas generator or electric initiator, in compressed or bulk form. They can be used as initiator reinforcing (booster) charges outside the initiator, and are then generally placed between the initiator and the gas generating composition. They may also be mixed with the gas generating compositions (or placed nearby), in compressed form (pellets, capsule), provided that they do not affect or non-significantly affect the properties of said gas-generating compositions.
  • the pellets or capsules of the self-initiating composition and those of the gas-generating composition are distinct.
  • the thermal initiation properties of the self-initiating compositions described in the present application have been characterized by measuring their self-initiation temperature according to different methods. Any self-initiation temperature value is accompanied by the rate at which the temperature was elevated in its determination, expressed in ° C / minute. This accuracy is desirable since the value of the self-initiation temperature varies depending on the conditions under which it is measured, particularly with the rate of temperature rise.
  • the "Bonfire Test” and the “Slow Heat Test” only apply to complete gas generators.
  • the "Bonfire Test” involves a rapid temperature rise (of the order of 50 ° C / minute) and makes it possible to verify the absence of explosion of the gas generator during a fire.
  • the "Slow Heat Test” is a “Bonfire Test” with a slower rise in temperature ( ⁇ 14 ° C / minute). This test is much more severe because of the progressive heating of the gas generators. Both of these tests are described in SAE / USCAR-24, USCAR Inflator Technical Requirements and Validation.
  • Tests 13, 14, 16, 21 and 52-54 demonstrate the advantage of combining reducing agents having a catalytic activity, such as manganese, with metals such as zirconium. The combustion of the self-initiating composition resulting from this combination releases a much greater amount of energy than when the manganese cobalt, copper or mixtures thereof are used as the only reducing agents.
  • Zirconium can be substituted or combined with Ti, TiH 2 , ZrH 2 , Fe or Al to produce similar effects.
  • the word “Fire” means that the self-initiating composition has functioned unexpectedly under 120 ° C or 140 ° C, during the environmental test (stability test under a given temperature for a given time) prior to the test in question .
  • the presence of this mention highlights some of the so-called “unstable” compositions within the meaning of the invention. Gas generators and their constituents must withstand, without any functional degradation, these accelerated aging tests.
  • the storage test under 107 ° C for 408 hours, particularly restrictive, is reserved only for qualifications of self-initiated compositions already developed.
  • the 120 ° C / 48 hours test performed on a device is roughly equivalent to several hundred hours under 107 ° C and makes it possible to predict with a high probability the behavior of the self-initiating composition contained in a fireproof device. environment 107 ° C / 408 hours.
  • a lack of inadvertent operation of the device during the test 140 ° C / 48 hours is very satisfactory.
  • obtaining a value of the self-initiation temperature T'3 slightly modified with respect to T'1 proves a high stability of the self-initiating composition, well beyond the 107 ° C test. / 408 hours.
  • Table 1 shows 54 tests corresponding to 54 self-initiating compositions, divided into 8 groups A, B, C, D, E, F, G and H. They were prepared by varying the nature of the reducing mixture, the mixture of organic compounds, the oxidizing mixture, metal oxides and additives in order to study the impact of the nature of the constituents on various properties of said compositions, in particular their self-initiation temperature and their stability.
  • the groups A, B, C and D were sorted in ascending order of the temperature T'1, measured during a test of the "Slow Heat Test" type, a severe test that has the advantage of involving a mass of relatively large composition (60 mg), a high compression ratio (1000 bar) and a confinement ensured by a holster with aluminum walls.
  • Group A comprises compositions having a temperature T'1 of less than 125 ° C, i.e. compositions having a self-initiation temperature too low in compressed form and under confinement to be of practical interest. These compositions contain molybdenum or MoO 3 combined with boron. These compositions have not satisfied at least one stability test with the exception of composition No. 6 containing 0.5% of silica.
  • Group B comprises compositions containing boron which have a temperature T'1 of between 125 and 130 ° C., which is still too low for use under a high compression ratio (1000 bars), but which have satisfied the tests of stability to which they have been subjected, and which have self-initiation temperatures T'4 of the order of 150-160 ° C hermetic electrical initiators (GTMS) under a compression ratio of 200 bar. These temperatures are little modified after environmental test (T'5).
  • Such compositions are of major interest for providing the self-initiation function as electrical initiators.
  • Group C comprises compositions containing boron or tungsten and a high content (40%) of guanidinium nitrate, leading to temperatures T'1 of the order of 135-150 ° C and a clear lack of stability (T3 ) in the 140 ° C / 15 hours test under reduced confinement and with a low mass (1 to 2 mg, in bulk). These results show the influence of guanidinium nitrate content on stability.
  • Group D comprises compositions having temperatures T'1 of between 150 and 220 ° C which have satisfied different stability tests.
  • Compositions containing manganese, cobalt or copper which have temperatures T'1 of between 150 and 180 ° C including after an environmental test (T'2) of 120 ° C / 48 hours (tests 12, 13 , 14, 16, 50, 51) are particularly advantageous for providing a self-initiation function in the form of pellets or in capsules intended to be inserted into the gas generators (compression ratio: 1000 bars).
  • Compositions which contain about 30% zirconium with only about 10% manganese, cobalt or copper are particularly advantageous by their high energy of combustion.
  • the other compositions of group D (tests 17 to 23) are of less interest because of higher self-initiation temperatures. However, tests 53 and 54 associated with tests 50 to 52 show the possibility of setting the self-initiation temperature to high values in order to favor stability.
  • compositions of groups E, F, G and H were sorted in order of increasing temperature T1.
  • Group E comprises compositions which have a T1 temperature (bulk) of between 170 and 196 ° C. These compositions are strongly degraded during environmental tests at 140 ° C./15 hours in a crucible as revealed by the DSC tests: ⁇ T 32 ⁇ [40; 178] ° C.
  • This group includes compositions containing vanadium, chromium, CuO-associated tungsten or MoO 3 -massed titanium hydride, molybdenum / silver nitrate / guanidinium nitrate compositions, and chlorate compositions. potassium / lactose optionally comprising boron. These compositions are too unstable for use in compressed form and under confinement (tests 29-31).
  • Group F which includes comparative test No. 35 carried out without a metal, metalloid or metal hydride and without a metal oxide reducing agent, groups together compositions having a temperature T1 of between 197 and 240 ° C. and which are resistant to the test of environment 140 ° C / 15 hours in a crucible as revealed by the DSC tests: ⁇ T 32 ⁇ [-6; 15] ° C.
  • This group comprises compositions containing aluminum, iron, nickel, zirconium, but also compositions azodicarbonamide / potassium chlorate optionally comprising boron, and a 5-aminotetrazole / potassium chlorate composition.
  • 5-aminotetrazole and azodicarbonamide can replace guanidinium nitrate as an energetic organic compound (tests 33, 36, 38) in the self-initiating compositions according to the invention.
  • Group G comprises zirconium / silver nitrate / guanidinium nitrate compositions having T1 temperatures included between 300 and 350 ° C, which excludes any application in the field of self-initiation.
  • Group H essentially comprises zirconium / potassium perchlorate (ZPP) compositions, which are not within the scope of the present invention and which are used in Table 1 for comparison purposes.
  • ZPP type compositions zirconium, potassium perchlorate, test 49
  • THPP titanium hydride, potassium perchlorate
  • TPP titanium, potassium perchlorate
  • ZPP, THPP, or TPP compositions have self-initiation temperatures above 380 ° C and therefore can not meet the set target.
  • compositions of Zr / KClO 3 / guanidinium nitrate (tests 19, 22, 40) and Zr / NaClO 3 guanidinium nitrate (test 15) have self-initiation temperatures T1 of the order of 200.degree. 220 ° C.
  • the combustion energy expressed in cal.g -1 in Table 1 is obtained in Jg -1 by multiplying the value in cal.g -1 by 4.1868.
  • Table 2 groups together the tests of Table 1 corresponding to reducing agent / potassium chlorate / guanidinium nitrate and optionally metal oxide, without binder or silica (including Comparative Test No.
  • compositions having self-initiation temperatures ranging from 130 to 220 ° C, more preferably from 150 to 200 ° C and more preferably from 150 to 180 ° C have been developed, by a adequate choice of constituents and their proportions.
  • Certain Group D compositions containing manganese, copper or cobalt have self-initiation temperatures of the order of 150-180 ° C, satisfactory stability, are not ignited during prolonged storage (48 hours) at 120 ° C and operate without much difference in autoignition temperature after this environmental test.
  • compositions zirconium / manganese, cobalt or copper / potassium chlorate / guanidinium nitrate / Viton® / silica are particularly interesting for applications under high compression ratio, zirconium to obtain a higher combustion energy and greater reaction rate.
  • the "GTMS" electrical initiator tests (T'4, T'5) show that certain compositions (group B) containing boron, potassium chlorate and guanidinium nitrate have self-initiation temperatures ranging from at 167 ° C with satisfactory stability.
  • the self-initiation temperature for a given temperature rise rate, may be adjusted, preferably from 130 to 220 ° C, more preferably from 150 to 200 ° C and more preferably from 150 to 200 ° C. 180 ° C, by varying the proportions of the constituents, in particular within the compositions of groups B, D and F of Table 1, as well as the compression ratios of these compositions.
  • the compositions in these groups do not necessarily correspond to optimal formulations, but formulations adapted to artifices meeting the objectives set can easily be developed by those skilled in the art from the constituents in these groups, by routine experimentation.

Description

La présente invention concerne une composition pyrotechnique auto-initiatrice mise en oeuvre en vrac ou sous forme de couche comprimée dans l'initiateur électrique d'un générateur de gaz et permettant d'initier la combustion d'une composition génératrice de gaz exposée à une température significativement plus élevée que sa température normale d'utilisation. L'invention concerne plus particulièrement le domaine de la sécurité automobile.The present invention relates to a self-initiating pyrotechnic composition implemented in bulk or in the form of a compressed layer in the electric initiator of a gas generator and for initiating the combustion of a composition generating gas exposed to a temperature. significantly higher than its normal temperature of use. The invention relates more particularly to the field of automotive safety.

Les coussins gonflables de sécurité destinés à la sécurité des passagers de véhicules motorisés se déploient sous l'action du gaz généré par la combustion d'une composition pyrotechnique, nommée composition génératrice de gaz, contenue dans un générateur de gaz comprenant une enveloppe en métal résistant à la corrosion. Le choix du métal constituant l'enveloppe est généralement dicté par des impératifs de minimisation du poids du véhicule en vue d'améliorer ses performances en terme de consommation de carburant. En raison de sa faible densité, l'aluminium est souvent choisi. Le gaz de gonflage libéré par la réaction de décomposition exothermique est typiquement de l'azote. Des exemples de dispositifs de gonflage sont décrits dans les brevets américains US 4923212 , US 4907819 et US 4865635 . Lorsque les générateurs de gaz sont destinés à la sécurité automobile, ils doivent rester stables sous des températures élevées, pendant de longues durées. Une parfaite conservation des caractéristiques du générateur lors d'une épreuve d'environnement conduite sous 107 °C pendant 408 heures constitue une exigence classique pour la sécurité automobile depuis le début des années 90. La vitesse de décomposition de la composition génératrice de gaz doit être maîtrisée pour que le sac se déploie rapidement mais pas trop violemment. Cette maîtrise est avant tout assurée par une bonne conception de la composition génératrice de gaz et de l'architecture du générateur. La combustion de la composition génératrice de gaz est généralement déclenchée par un initiateur électrique contenu dans le générateur de gaz, ledit initiateur comprenant une enveloppe, un élément résistif et au moins une charge composée d'une substance pyrotechnique ou d'un mélange de substances pyrotechniques. Par initiateur électrique, on entend un dispositif ayant pour fonction de convertir une énergie d'entrée de nature électrique en une énergie de sortie de nature pyrotechnique, beaucoup plus élevée que l'énergie d'entrée. Cet initiateur électrique est typiquement connecté par l'intermédiaire de fils électriques à au moins un dispositif de détection de collision. La plupart des initiateurs fonctionnent par échange thermique entre l'élément résistif et la charge au contact de l'élément résistif. Les substances pyrotechniques composant la charge peuvent être des compositions pyrotechniques fonctionnant par réaction entre plusieurs constituants. Il s'agit en général de mélanges d'oxydants et de réducteurs, et en particulier de mélanges d'oxydants et de réducteurs minéraux auxquels sont éventuellement ajoutés un explosif plus puissant ou au contraire un flegmatisant, un liant ou tout autre additif destiné à obtenir des propriétés particulières ou à faciliter la mise en oeuvre de la composition. Les initiateurs électriques comprennent généralement une deuxième composition pyrotechnique, appelée charge principale, aussi énergétique que la charge au contact de l'élément résistif, mais réagissant moins violemment, en particulier pour initier des compositions génératrices de gaz. Des charges principales mises en oeuvre dans des initiateurs électriques destinés à la sécurité automobile et en particulier dans des coussins gonflables de sécurité sont décrites dans les brevets américains US 5847310 et US 5672843 . Les générateurs de gaz sont conçus pour résister à toutes les températures qui peuvent être atteintes dans une automobile dans le cadre d'une utilisation normale (-40 °C ; 90°C).Safety airbags for the safety of motor vehicle passengers deploy under the action of the gas generated by the combustion of a pyrotechnic composition, called a gas-generating composition, contained in a gas generator comprising a casing of resistant metal to corrosion. The choice of the metal constituting the envelope is generally dictated by the requirements of minimizing the weight of the vehicle in order to improve its performance in terms of fuel consumption. Because of its low density, aluminum is often chosen. The inflation gas released by the exothermic decomposition reaction is typically nitrogen. Examples of inflation devices are described in US patents US 4923212 , US 4907819 and US 4865635 . When gas generators are intended for automotive safety, they must remain stable at high temperatures for long periods of time. Perfect preservation of the characteristics of the generator during an environmental test conducted under 107 ° C for 408 hours has been a classic requirement for automotive safety since the early 1990s. The rate of decomposition of the gas generating composition must be controlled for the bag to deploy quickly but not too violently. This control is primarily ensured by a good design of the gas generating composition and the architecture of the generator. The combustion of the gas-generating composition is generally triggered by an electrical initiator contained in the gas generator, said initiator comprising an envelope, a resistive element and at least one charge composed of a pyrotechnic substance or a mixture of pyrotechnic substances. By electrical initiator is meant a device whose function is to convert an input energy of an electrical nature into an output energy of a pyrotechnic nature, much higher than the input energy. This electrical initiator is typically connected via electrical wires to at least one collision detection device. Most initiators operate by heat exchange between the resistive element and the load in contact with the resistive element. The pyrotechnic substances constituting the charge may be pyrotechnic compositions operating by reaction between several constituents. These are generally mixtures of oxidants and reducing agents, and in particular mixtures of oxidants and inorganic reducers to which a more powerful explosive is optionally added or, on the contrary, a phlegmatizer, a binder or any other additive intended to obtain particular properties or to facilitate the implementation of the composition. Electrical initiators generally comprise a second pyrotechnic composition, called the main charge, as energetic as the charge in contact with the resistive element, but reacting less violently, in particular for initiating gas-generating compositions. Main charges used in electrical initiators for automotive safety and in particular in airbags are described in US patents US 5847310 and US 5672843 . Gas generators are designed to withstand all the temperatures that can be reached in an automobile under normal use (-40 ° C, 90 ° C).

Cependant, dans le cas d'un incendie, la température du générateur de gaz va croître jusqu'à ce qu'une composition ou une substance de la chaîne pyrotechnique atteigne sa température d'auto-initiation. Par température d'auto-initiation, on entend, dans la présente invention, la température à laquelle une substance ou un mélange de substances subit une réaction de décomposition exothermique. Cette décomposition peut être assimilée à une combustion, mais elle peut conduire à une déflagration ou même à une détonation. La température d'auto-initiation de ladite substance ou dudit mélange de substances peut donc, en général, être assimilée à sa température d'auto-inflammation. Sous des températures initiales élevées, la vitesse de combustion des compositions génératrices de gaz tend à devenir excessive. La pression engendrée est alors telle, que l'enveloppe du générateur de gaz, généralement en aluminium, peut perdre son intégrité mécanique et exploser avec projections de corps métalliques dangereux pour les personnes se trouvant à proximité. Cette explosion est encore plus probable lorsque la température critique de résistance mécanique du métal constituant l'enveloppe est atteinte au moment de la mise à feu.However, in the case of a fire, the temperature of the gas generator will grow until a composition or a substance in the pyrotechnic chain reaches its self-initiation temperature. By self-initiation temperature is meant, in the present invention, the temperature at which a substance or a mixture of substances undergoes an exothermic decomposition reaction. This decomposition can be assimilated to a combustion, but it can lead to a blast or even a detonation. Temperature self-initiation of said substance or said mixture of substances can therefore, in general, be assimilated to its autoignition temperature. Under high initial temperatures, the rate of combustion of the gas generating compositions tends to become excessive. The pressure generated is then such that the envelope of the gas generator, usually made of aluminum, can lose its mechanical integrity and explode with projections of metallic bodies that are dangerous for people in the vicinity. This explosion is even more likely when the critical temperature of mechanical strength of the metal constituting the envelope is reached at the time of firing.

Ce problème ne peut pas être résolu correctement en choisissant une composition génératrice de gaz ayant une température d'auto-initiation, c'est-à-dire d'auto-inflammation volontairement réduite, sans autre précaution. En effet, de telles compositions fonctionnent trop rapidement lorsque leurs températures d'auto-inflammation sont atteintes (inflammation globale de l'ensemble de la charge).This problem can not be solved correctly by choosing a composition generating a gas having a self-initiation temperature, that is to say self-ignition voluntarily reduced, without any other precaution. Indeed, such compositions operate too quickly when their autoignition temperatures are reached (global inflammation of the entire charge).

Le problème peut être résolu par l'utilisation d'une composition auto-initiatrice, comme expliqué dans la publication de P. Moussier "Controlled ignition of gas generating compositions: Electrical initiators including an autoignition function", International Pyrotechnie Automotive Safety Symposium (Association Française de Pyrotechnie), pp 215-226, 22-23 novembre 2005 . The problem can be solved by using a self-initiating composition, as explained in the publication of P. Moussier "Controlled ignition of gas generating compositions: Electrical initiators including an autoignition function", International Pyrotechnics Automotive Safety Symposium, pp 215-226, 22-23 November 2005 .

Par composition auto-initiatrice, on entend une substance ou un mélange de substances contenu dans le générateur de gaz dont la température d'auto-initiation est inférieure à la température d'auto-inflammation de la composition génératrice de gaz employée. Le rôle de la composition auto-initiatrice est donc de se décomposer de façon exothermique, de sorte que l'évolution de chaleur déclenche la combustion de la composition génératrice de gaz de manière contrôlée, avant que sa température d'auto-inflammation ne soit atteinte, et avant que ne soit atteinte la température à laquelle l'enveloppe du générateur de gaz perd son intégrité structurale. L'évolution de chaleur doit être suffisante pour fournir l'énergie d'activation requise pour enflammer la composition génératrice de gaz.By self-initiating composition is meant a substance or a mixture of substances contained in the gas generator whose self-initiation temperature is lower than the self-ignition temperature of the gas generating composition employed. The role of the self-initiating composition is therefore to decompose exothermically, so that the evolution of heat triggers the combustion of the gas generating composition in a controlled manner, before its autoignition temperature is reached. and before the temperature at which the gas generator envelope loses its structural integrity is reached. The heat evolution must be sufficient to provide the activation energy required to ignite the gas generating composition.

La composition auto-initiatrice peut être l'une des compositions constituant la chaîne pyrotechnique normale dans l'initiateur, notamment la charge principale ou une charge additionnelle, ou bien être une charge extérieure à l'initiateur, notamment une charge de renfort d'initiation (charge augmentatrice de puissance), laquelle est généralement placée entre l'initiateur et la composition génératrice de gaz. Par "charge additionnelle", on entend une charge qui n'est ni la charge primaire ni la charge secondaire (principale), et dont le rôle est d'initier la charge principale. Par "charge de renfort d'initiation", on entend une charge servant de complément de la charge principale pour l'initiation de la composition génératrice de gaz, qui joue donc le rôle de "booster". Les charges de renfort d'initiation comprennent la plupart du temps un mélange de bore et de nitrate de potassium. La composition auto-initiatrice peut également être placée hors de la chaîne pyrotechnique normale près de la composition génératrice de gaz, en un lieu où la température s'élève rapidement, ou même être mélangée sous forme de pastilles (sans enveloppe) ou d'une capsule à la composition génératrice de gaz (les pastilles de la composition auto-initiatrice et celles de la composition génératrice de gaz sont distinctes). Cette dernière solution est généralement retenue pour son absence d'interférence avec le fonctionnement normal du dispositif.The self-initiating composition may be one of the compositions constituting the normal pyrotechnic chain in the initiator, in particular the main charge or an additional charge, or it may be a charge external to the initiator, in particular an initiating reinforcement charge. (power boosting charge), which is generally placed between the initiator and the gas generating composition. By "additional load" is meant a load which is neither the primary load nor the secondary (main) load, and whose role is to initiate the main load. By "initiation reinforcement charge" is meant a charge serving as a complement to the main charge for the initiation of the gas generating composition, which therefore acts as a "booster". The initiator reinforcing fillers comprise most of the time a mixture of boron and potassium nitrate. The self-initiating composition can also be placed out of the normal pyrotechnic chain near the gas generating composition, at a place where the temperature rises rapidly, or even be mixed into pellets (without an envelope) or a capsule with the gas-generating composition (the pellets of the self-initiating composition and those of the gas-generating composition are distinct). This latter solution is generally accepted for its lack of interference with the normal operation of the device.

Les premières compositions génératrices de gaz pour coussins gonflables de sécurité mises en oeuvre à grande échelle ont été constituées d'azoture de sodium mélangé à des oxydants et des additifs. La réaction de décomposition de telles compositions génère de l'azote. Pour assurer l'absence d'explosion des générateurs de gaz en aluminium contenant des compositions génératrices de gaz à base d'azoture de sodium, il faut généralement que la température d'auto-initiation de la composition auto-initiatrice soit inférieure à 230 °C , une température de l'ordre de 200 °C satisfaisant pleinement, le plus souvent.The first gas generator compositions for airbags implemented on a large scale were made of sodium azide mixed with oxidants and additives. The decomposition reaction of such compositions generates nitrogen. To ensure the absence of explosion of aluminum gas generators containing compositions generating gas-based sodium azide, it is generally necessary that the self-initiation temperature of the self-initiating composition is less than 230 ° C, a temperature of the order of 200 ° C fully satisfactory, most often.

Les compositions auto-initiatrices sont généralement constituées d'un composé énergétique se décomposant sous une température adéquate, comme la nitrocellulose, ou d'un mélange d'oxydants et de réducteurs organiques ou minéraux. Les réducteurs minéraux sont choisis parmi les poudres de métaux et de métalloïdes, les réducteurs organiques sont typiquement des sucres ou hydrates de carbone. Les oxydants minéraux sont choisis parmi les nitrates, chlorates, perchlorates, peroxydes et les oxydes de métaux peu électropositifs.The self-initiating compositions generally consist of an energetic compound decomposing under a suitable temperature, such as nitrocellulose, or a mixture of oxidants and organic or inorganic reducing agents. The inorganic reducers are chosen from the powders of metals and metalloids, the reducing agents organic are typically sugars or carbohydrates. The inorganic oxidants are selected from nitrates, chlorates, perchlorates, peroxides and low electropositive metal oxides.

Les premières compositions auto-initiatrices, telles que celles décrites dans le brevet américain US 4561675 , ont été réalisées à base de nitrocellulose et de poudres propulsives. Différents additifs ont été ajoutés aux poudres à base de nitrocellulose pour remplir cette fonction d'auto-initiation. Cependant, les compositions auto-initiatrices à base de nitrocellulose présentent l'inconvénient d'être peu stables au stockage sous des températures élevées, les générateurs de gaz correspondants donnant de mauvais résultats à l'épreuve de stabilité sous 107 °C pendant 408 heures. De plus, la nitrocellulose tend à se décomposer avec le temps, de sorte que la quantité d'énergie libérée lors de l'initiation décroît avec le temps et peut devenir insuffisante pour initier correctement la combustion de la composition génératrice de gaz.The first self-initiating compositions, such as those described in the US patent US 4561675 , were made based on nitrocellulose and propellant powders. Various additives have been added to the nitrocellulose powders to fulfill this self-initiation function. However, self-initiating compositions based on nitrocellulose have the drawback of being unstable at storage under high temperatures, the corresponding gas generators giving poor results in the stability test at 107 ° C. for 408 hours. In addition, nitrocellulose tends to decompose over time, so that the amount of energy released upon initiation decreases over time and may become insufficient to properly initiate combustion of the gas generating composition.

Il a été découvert que les compositions auto-initiatrices incorporant des mélanges de chlorate de potassium ou de sodium et de composés organiques, le plus souvent un hydrate de carbone tel que le lactose, étaient plus stables. De telles compositions ont été largement décrites, notamment par Scheffee dans la demande internationale WO 94/14637 et le brevet américain US 5542688 , et Nagahashi, qui prétend dans le brevet américain US 5847310 à la réalisation d'un initiateur électrique contenant une composition auto-initiatrice à base d'hydrates de carbone et de chlorates. Cependant, les mélanges chlorate de sodium/hydrate de carbone ne sont pas assez stables pour satisfaire à l'épreuve d'environnement sous 107 °C pendant 408 heures lorsqu'ils sont comprimés et confinés dans des initiateurs. Les compositions auto-initiatrices réellement utilisables revendiquées par les brevets cités précédemment ont toutes des températures d'auto-initiation élevées, supérieures à 180 °C ; en pratique, supérieures à 190 °C, le plus souvent.Self-initiating compositions incorporating mixtures of potassium or sodium chlorate and organic compounds, most commonly a carbohydrate such as lactose, have been found to be more stable. Such compositions have been widely described, in particular by Scheffee in the international application WO 94/14637 and the US patent US 5542688 , and Nagahashi, who claims in the US patent US 5847310 the production of an electrical initiator containing a self-initiating composition based on carbohydrates and chlorates. However, sodium chlorate / carbohydrate mixtures are not stable enough to meet the environmental test at 107 ° C for 408 hours when compressed and confined in initiators. The actual usable self-initiating compositions claimed by the aforementioned patents all have high self-initiation temperatures above 180 ° C; in practice, greater than 190 ° C, most often.

En outre, les compositions génératrices de gaz à base d'azoture de sodium sont peu performantes quant au volume de gaz dégagé par unité de masse ou de volume de composition, génèrent des scories abondantes qui doivent être filtrées. L'utilisation de l'azoture de sodium n'est pas satisfaisante en raison de sa toxicité.In addition, the gas generating compositions based on sodium azide are poor in the volume of gas released per unit mass or volume of composition, generate abundant slag that must be filtered. The use of sodium azide is unsatisfactory because of its toxicity.

Des compositions génératrices de gaz exemptes d'azoture de sodium ont été décrites plus récemment. L'azoture de sodium y est remplacé par des composés organiques riches en azote et pauvres en carbone, tels que le 5-aminotétrazole, la 1-nitroguanidine, le 5,5'-azotétrazolate de diguanidinium ou le nitrate de triaminoguanidinium. Malheureusement, il est fréquent que les températures d'auto-initiation de ces compositions génératrices de gaz soient légèrement supérieures à la température de fusion de certains de leurs constituants. Or, les combustions de ces compositions génératrices de gaz deviennent instables si l'un de leurs constituants se trouve à l'état liquide à la température d'auto-initiation desdites compositions, ce qui peut entraîner des pressions opérationnelles excessives. Certains constituants classiques ont des températures de fusion suffisamment basses pour être fondus à la température d'auto-initiation de la composition, par exemple le 5-aminotétrazole, qui fond à 202-204 °C et la 1-nitroguanidine, qui fond à 226-228 °C. La combustion des compositions génératrices de gaz correspondantes devient instable sous des températures de l'ordre de 200-250 °C. Afin d'éviter l'explosion des générateurs de gaz en aluminium contenant de telles compositions génératrices de gaz exemptes d'azoture métallique, les fabricants se sont employés à rechercher des compositions auto-initiatrices ayant une température d'auto-initiation inférieure à 180 °C (notons que l'utilisation de nitrate d'ammonium dans les compositions génératrices de gaz, bien qu'elle ait déjà été décrite, n'est pas souhaitable, en raison de sa température de fusion trop faible, 160 °C). Le brevet américain US 5084118 , qui décrit l'un des premiers exemples de composition génératrice de gaz exempte d'azoture de sodium, revendique une composition auto-initiatrice à base de 2,4-dinitrophénylhydrazine et de chlorates, mais cette composition est trop sensible aux chocs pour être mise en oeuvre. Le brevet américain US 6177028 décrit une composition auto-initiatrice à base de composés organiques azotés, de nitrate de potassium, de poudres métalliques, d'oxydes métalliques (MoO3) et de divers additifs. La formulation, complexe, est difficile à mettre en oeuvre.Sodium azide-free gas generating compositions have been described more recently. The sodium azide is replaced by organic compounds rich in nitrogen and low in carbon, such as 5-aminotetrazole, 1-nitroguanidine, diguanidinium 5,5-azotetrazolate or triaminoguanidinium nitrate. Unfortunately, it is common for the self-initiation temperatures of these gas generating compositions to be slightly higher than the melting temperature of some of their constituents. However, the combustions of these gas-generating compositions become unstable if one of their constituents is in the liquid state at the self-initiation temperature of said compositions, which can lead to excessive operational pressures. Some conventional components have sufficiently low melting temperatures to be melted at the self-initiation temperature of the composition, for example 5-aminotetrazole, which melts at 202-204 ° C and 1-nitroguanidine, which melts at 226 ° C. -228 ° C. The combustion of the corresponding gas generating compositions becomes unstable at temperatures of the order of 200-250 ° C. In order to avoid the explosion of aluminum gas generators containing such gas generating compositions free of metal azide, the manufacturers have sought to find self-initiating compositions having a self-initiation temperature of less than 180 ° It should be noted that the use of ammonium nitrate in the gas generating compositions, although it has already been described, is undesirable because of its too low melting temperature (160 ° C.). The US patent US 5084118 , which discloses one of the first examples of composition generating gas free of sodium azide, claims a self-initiating composition based on 2,4-dinitrophenylhydrazine and chlorates, but this composition is too sensitive to shocks to be put implemented. The US patent US 6177028 describes a self-initiating composition based on nitrogenous organic compounds, potassium nitrate, metal powders, metal oxides (MoO 3 ) and various additives. The complex formulation is difficult to implement.

Le brevet américain US 6453816 décrit des compositions auto-initiatrices à base d'oxyde de fer ou de ferrocène et d'au moins un composé choisi parmi les oxalates, persulfates, permanganates, nitrates, nitrures, perborates, bismuthates, formiates, sulfamates, bromates et peroxydes. Ces compositions peuvent également comprendre un réducteur, préférentiellement de la poudre de titane, et un explosif utilisé en tant que combustible, tel que le nitrate de guanidinium, la 1-nitroguanidine, le nitrate de 5-aminotétrazole ou la 3-nitro-1,2,4-triazol-5-one (NTO).The US patent US 6453816 describes self-initiating compositions based on iron oxide or ferrocene and at least one compound selected from oxalates, persulfates, permanganates, nitrates, nitrides, perborates, bismuthates, formates, sulfamates, bromates and peroxides. These compositions may also comprise a reducing agent, preferably titanium powder, and an explosive used as a fuel, such as guanidinium nitrate, 1-nitroguanidine, 5-aminotetrazole nitrate or 3-nitro-1, 2,4-triazol-5-one (NTO).

Knowlton, dans les brevets américains US 5959242 , US 5739460 , US 6101947 , US 6221187 , US 6749702 et son article " Low temperature autoignition materials", Proceedings of the International Pyrotechnics Seminar 2000, 27, 107-117 , décrit des compositions auto-initiatrices dont le but est de déclencher la combustion d'une charge principale pyrotechnique dans un générateur de gaz ou un dispositif pyrotechnique, lorsque celui-ci est exposé à une flamme ou à un environnement de haute température. Le brevet américain US 6605167 s'appuie sur les compositions revendiquées dans les brevets américains US 5959242 , US 5739460 et US 6101947 pour l'obtention de températures d'auto-initiation comprises entre 80 et 250 °C. Les compositions auto-initiatrices décrites dans ces documents consistent en un mélange d'un métal en poudre, principalement le molybdène, et d'une composition oxydante résultant d'un mélange, éventuellement par co-fusion, d'au moins deux oxydants, le premier étant généralement le nitrate d'argent ou le nitrate d'ammonium et le second étant généralement le nitrate de potassium ou le nitrate de guanidinium. Des oxydes métalliques, qui exercent un effet catalytique en abaissant la température d'auto-initiation, peuvent éventuellement être ajoutés. Il est en outre possible de mélanger à ces compositions auto-initiatrices une composition augmentatrice de puissance (booster), composée d'un oxydant énergétique (perchlorate ou nitrate) et de bore ou d'un métal (Mg, Ti ou Zr). En cas d'exposition à une flamme ou à température élevée, la composition auto-initiatrice s'enflamme, initie la combustion de la composition augmentatrice de puissance, ce qui initie la combustion de la composition génératrice de gaz. De telles compositions auto-initiatrices possèdent de nombreux inconvénients. Leur réalisation, qui met notamment en jeu le mélange de deux oxydants par fusion puis solidification, est complexe. L'utilisation du nitrate d'argent n'est pas souhaitable, car il nuit sévèrement à la stabilité des compositions sous 107 °C pendant 408 heures. Par ailleurs le nitrate d'argent est soluble dans l'eau, instable à la lumière, coûteux et toxique. Il est également préférable de ne pas utiliser de nitrate d'ammonium qui peut devenir très instable en présence d'autres composés et qui, à cause de l'ion ammonium, peut provoquer l'instabilité d'autres constituants. En particulier, les compositions décrites dans le brevet américain US 6221187 sont trop instables pour pouvoir être utilisées sous forme comprimée et sous confinement, comme c'est le cas dans les initiateurs électriques.Knowlton, in US patents US 5959242 , US 5739460 , US 6101947 , US 6221187 , US 6749702 and his article " Low temperature autoignition materials ", Proceedings of the International Pyrotechnics Seminar 2000, 27, 107-117 , describes self-initiating compositions whose purpose is to trigger the combustion of a pyrotechnic main charge in a gas generator or pyrotechnic device, when it is exposed to a flame or a high temperature environment. The US patent US 6605167 relies on the compositions claimed in the US patents US 5959242 , US 5739460 and US 6101947 for obtaining self-initiation temperatures of between 80 and 250 ° C. The self-initiating compositions described in these documents consist of a mixture of a metal powder, mainly molybdenum, and an oxidizing composition resulting from a mixture, optionally by co-fusion, of at least two oxidants, the the first being generally silver nitrate or ammonium nitrate and the second being generally potassium nitrate or guanidinium nitrate. Metal oxides, which exert a catalytic effect by lowering the self-initiation temperature, may optionally be added. It is furthermore possible to mix with these self-initiating compositions a power-enhancing composition (booster), composed of an energetic oxidizer (perchlorate or nitrate) and boron or a metal (Mg, Ti or Zr). In case of exposure to a flame or at high temperature, the self-initiating composition ignites, initiates the combustion of the power-increasing composition, which initiates the combustion of the gas-generating composition. Such self-initiating compositions have many disadvantages. Their implementation, which involves in particular the mixing of two oxidants by melting and then solidification, is complex. The use of Silver nitrate is undesirable because it severely affects the stability of the compositions under 107 ° C for 408 hours. In addition, silver nitrate is soluble in water, unstable in light, expensive and toxic. It is also preferable not to use ammonium nitrate which can become very unstable in the presence of other compounds and which, because of the ammonium ion, can cause instability of other constituents. In particular, the compositions described in the US patent US 6221187 are too unstable to be used in compressed form and under confinement, as is the case in electrical initiators.

Il existe donc un besoin pour des compositions auto-initiatrices parfaitement stables sous 107 °C pendant 408 heures (ou, au moins, sous 90 °C pendant 1000 heures), en vrac ou comprimées, à l'air libre ou contenues dans un étui ou dans un initiateur et de préférence dans un initiateur hermétique à couches pyrotechniques comprimées.There is therefore a need for self-initiating compositions which are perfectly stable at 107 ° C. for 408 hours (or at least 90 ° C. for 1000 hours), in bulk or in compressed form, in the open air or in a holster. or in an initiator and preferably in a hermetic initiator with compressed pyrotechnic layers.

La mise en oeuvre de compositions auto-initiatrices non hygroscopiques, de préférence stables à la lumière et à l'humidité, qui ne génèrent pas de substance toxique ni ne contiennent de composés toxiques tels que ceux à base de plomb, mercure, baryum, cadmium, arsenic, béryllium, chrome, cobalt ou nickel, qui présentent une aptitude à l'écoulement facilitant leur mise en oeuvre et dont le procédé de fabrication est simple, constitue également des besoins que les fabricants cherchent à satisfaire. En outre, les compositions auto-initiatrices ayant une température d'auto-initiation inférieure à 130 °C ne peuvent pas être utilisées dans des générateurs de gaz pour la raison qu'une température de sécurité de non initiation de 130 °C est généralement exigée par les constructeurs automobiles. Il a été exposé précédemment que les compositions auto-initiatrices ayant une température d'auto-initiation supérieure à 180 °C présentent un moindre intérêt pratique aujourd'hui. Aujourd'hui, les fabricants de générateurs de gaz tendent à mettre en oeuvre des compositions génératrices de gaz de plus en plus performantes mais dont la combustion devient instable sous des températures de plus en plus basses, inférieures à 200 °C. Le besoin de compositions ayant des températures d'auto-initiation inférieures à 180 °C s'en trouve renforcé. Une composition répondant au besoin doit avoir une température d'auto-initiation allant de 130 °C à 180 °C, et présenter un ensemble de caractéristiques satisfaisant. La composition ne doit pas s'initier sous une température inférieure 130 °C, dans le système où elle est utilisée, même après épreuve d'environnement, ce qui repousse la température minimale de la plage des températures d'auto-initiation autorisées au-delà de 150 °C. Ainsi, le domaine utile devient très étroit : 150-180 °C, sous une vitesse de chauffage inférieure ou égale à 14 °C / minute.The implementation of non-hygroscopic self-initiating compositions, preferably stable to light and moisture, which do not generate toxic substances or contain toxic compounds such as those based on lead, mercury, barium, cadmium arsenic, beryllium, chromium, cobalt or nickel, which have a flowability facilitating their implementation and whose manufacturing process is simple, are also needs that manufacturers seek to meet. In addition, self-initiating compositions having a self-initiation temperature below 130 ° C can not be used in gas generators because a non-initiation safety temperature of 130 ° C is generally required. by car manufacturers. It has been previously stated that self-initiating compositions having a self-initiation temperature above 180 ° C are of lesser practical interest today. Today, manufacturers of gas generators tend to implement gas generating compositions increasingly efficient but whose combustion becomes unstable at lower and lower temperatures, below 200 ° C. The need for compositions having self-initiation temperatures below 180 ° C is thereby reinforced. A composition responding to need must have a self-initiation temperature ranging from 130 ° C to 180 ° C, and have a satisfactory set of characteristics. The composition should not be initiated at a temperature below 130 ° C, in the system where it is used, even after environmental testing, which pushes the minimum temperature of the range of self-initiation temperatures allowed to- beyond 150 ° C. Thus, the useful range becomes very narrow: 150-180 ° C, under a heating rate of less than or equal to 14 ° C / minute.

L'objectif de la présente invention est de fournir une composition auto-initiatrice satisfaisant les critères précités et palliant aux inconvénients des compositions auto-initiatrices de l'art antérieur, laquelle est utilisée dans un initiateur électrique comprenant une enveloppe, un élément résistif et au moins une charge. Cette composition auto-initiatrice est utilisée selon l'invention en tant que charge. La présente invention concerne aussi un générateur de gaz comprenant un tel initiateur électrique et une composition génératrice de gaz, et enfin un générateur de gaz comprenant un initiateur électrique, une composition génératrice de gaz et au moins une charge de renfort d'initiation, où la composition auto-initiatrice est utilisée selon l'invention en tant que charge de renfort d'initiation.The aim of the present invention is to provide a self-initiating composition satisfying the abovementioned criteria and overcoming the drawbacks of the self-initiating compositions of the prior art, which is used in an electrical initiator comprising an envelope, a resistive element and a less a charge. This self-initiating composition is used according to the invention as a filler. The present invention also relates to a gas generator comprising such an electric initiator and a gas generating composition, and finally a gas generator comprising an electric initiator, a gas generating composition and at least one initiating reinforcement charge, where the Self-initiating composition is used according to the invention as an initiating reinforcement filler.

Les buts ci-dessus sont atteints, et c'est ce qui constitue l'un des objets de la présente invention, par la mise en oeuvre d'une composition auto-initiatrice, comportant une formulation principale comprenant :

  • 20 à 80 % en masse d'au moins un chlorate de métal alcalin, de préférence 25 à 70 %, mieux 25 à 50 %,
  • 5 à 50 % en masse d'au moins un composé organique énergétique, tel que défini dans la revendication 1, de préférence 10 à 40 %, et caractérisée en ce que la formulation principale comprend en outre :
    1. (a) 0 à 60 % en masse d'au moins un métal ou métalloïde choisi parmi le bore, le manganèse, le cobalt et le cuivre, de préférence 0 à 40 %, mieux 5 à 20 %,
    2. (b) 0 à 60 % en masse d'au moins un métal ou hydrure métallique choisi parmi le zirconium, le titane, TiH2, ZrH2, l'aluminium, le silicium et le fer, de préférence 0 à 40 %, mieux 10 à 35 %,
    3. (c) 0 à 50 % en masse d'au moins un oxyde de métal de transition, de préférence 0 à 35 %, mieux 0,5 à 35 %,
les pourcentages massiques étant exprimés par rapport à la masse de la formulation principale et les pourcentages massiques de composant (a) et de composant (c) ne pouvant pas être simultanément nuls.The above aims are achieved, and this is one of the objects of the present invention, by the implementation of a self-initiating composition, comprising a main formulation comprising:
  • 20 to 80% by weight of at least one alkali metal chlorate, preferably 25 to 70%, more preferably 25 to 50%,
  • 5 to 50% by weight of at least one energetic organic compound, as defined in claim 1, preferably 10 to 40%, and characterized in that the main formulation further comprises:
    1. (a) 0 to 60% by weight of at least one metal or metalloid selected from boron, manganese, cobalt and copper, preferably 0 to 40%, more preferably 5 to 20%,
    2. (b) 0 to 60% by weight of at least one metal or metal hydride selected from zirconium, titanium, TiH 2 , ZrH 2 , aluminum, silicon and iron, preferably 0 to 40%, better 10 to 35%,
    3. (c) 0 to 50% by weight of at least one transition metal oxide, preferably 0 to 35%, more preferably 0.5 to 35%,
the mass percentages being expressed relative to the mass of the main formulation and the mass percentages of component (a) and component (c) can not be simultaneously zero.

S'il est souhaitable de disposer de compositions ayant des températures d'auto-initiation assez basses pour protéger les générateurs de gaz de réactions explosives, il est cependant nécessaire que la température d'auto-initiation reste supérieure à 130 °C même en cas d'échauffement lent (« Slow Heat Test »). Les compositions auto-initiatrices selon l'invention sont caractérisées par des quantités de constituants leur assurant une température d'auto-initiation allant de 130 à 220 °C, de préférence allant de 150 à 180 °C, et une stabilité à une température de 107 °C pendant 408 heures ou à une température de 90 °C pendant 1000 heures dans toutes les configurations où elles sont utilisées. Une composition est dite stable à une température donnée pendant un temps donné lorsqu'un séjour dans une enceinte à ladite température durant ledit temps n'entraîne aucune dégradation préjudiciable au fonctionnement de la composition auto-initiatrice elle-même ou aux autres composants du générateur de gaz ou de l'initiateur. La stabilité est constatée pour une composition en vrac ou comprimée, à l'air libre ou contenue dans un étui ou dans un initiateur, ledit initiateur pouvant être un initiateur hermétique à couches pyrotechniques comprimées. Ainsi, pour être stable, une composition auto-initiatrice ne doit par exemple pas être initiée intempestivement pendant une épreuve d'environnement.If it is desirable to have compositions having self-initiation temperatures low enough to protect gas generators from explosive reactions, it is necessary, however, that the self-initiation temperature remains higher than 130 ° C. even when slow heating ("Slow Heat Test"). The self-initiating compositions according to the invention are characterized by quantities of constituents assuring them a self-initiation temperature ranging from 130 to 220 ° C., preferably ranging from 150 to 180 ° C., and stability at a temperature of 107 ° C for 408 hours or at a temperature of 90 ° C for 1000 hours in all configurations where they are used. A composition is said to be stable at a given temperature for a given time when a residence in an enclosure at said temperature during said time does not cause any detrimental degradation to the operation of the self-initiating composition itself or to the other components of the generator. gas or initiator. Stability is observed for a composition in bulk or compressed, in the open air or contained in a case or in an initiator, said initiator being able to be a hermetic initiator with compressed pyrotechnic layers. Thus, to be stable, a self-initiating composition must not, for example, be initiated unexpectedly during an environmental test.

Les buts décrits ci-dessus sont atteints selon l'invention par la réalisation d'une composition comportant une formulation principale comprenant, en quantités appropriées, au moins un oxydant, au moins un composé organique énergétique, éventuellement un ou plusieurs composés réducteurs de nature métal, métalloïde ou hydrure métallique et éventuellement d'un oxyde de métal de transition.The aims described above are achieved according to the invention by producing a composition comprising a main formulation comprising, in appropriate amounts, at least one oxidant, at least one energetic organic compound, optionally one or more reducing compounds of a metal nature. , metalloid or metal hydride and optionally a transition metal oxide.

La composition auto-initiatrice utilisée selon l'invention comprend 20 à 80 % en masse d'au moins un chlorate de métal alcalin, utilisé en tant qu'oxydant. Les chlorates de métaux alcalins convenant pour la présente invention sont choisis parmi le chlorate de potassium, le chlorate de sodium et leurs mélanges. Le chlorate de sodium ne permet pas d'obtenir des températures beaucoup plus basses que le chlorate de potassium mais est plus hygroscopique et nuit à l'écoulement de la composition et à sa stabilité. Le chlorate de métal alcalin préféré est donc le chlorate de potassium. Le nitrate d'argent, un oxydant largement utilisé dans les compositions auto-initiatrices de l'art antérieur permet certes d'abaisser leurs températures d'auto-initiation, mais son utilisation n'est pas souhaitable pour les raisons énoncées précédemment. En particulier, des compositions auto-initiatrices de températures d'auto-initiation comparables utilisant comme oxydant le nitrate d'argent plutôt que le chlorate de potassium sont moins stables lors des épreuves d'environnement. Le principe de l'utilisation d'un mélange d'oxydants par co-fusion, comme cela est décrit dans certaines compositions de l'art antérieur, voire d'un mélange eutectique d'oxydants, dans le but d'abaisser la température d'auto-initiation, n'est pas nécessaire avec les compositions auto-initiatrices utilisées selon l'invention.The self-initiating composition used according to the invention comprises 20 to 80% by weight of at least one alkali metal chlorate, used as an oxidant. Alkali metal chlorates suitable for the present invention are selected from potassium chlorate, sodium chlorate and mixtures thereof. Sodium chlorate does not produce much lower temperatures than potassium chlorate but is more hygroscopic and adversely affects the flow of the composition and its stability. The preferred alkali metal chlorate is therefore potassium chlorate. Silver nitrate, an oxidant widely used in the self-initiating compositions of the prior art can certainly lower their self-initiation temperatures, but its use is not desirable for the reasons stated above. In particular, self-initiating compositions of comparable self-initiation temperatures using silver nitrate rather than potassium chlorate as the oxidant are less stable in environmental tests. The principle of the use of a mixture of oxidants by co-fusion, as described in certain compositions of the prior art, or even a eutectic mixture of oxidants, with the aim of lowering the temperature of self-initiation, is not necessary with the self-initiating compositions used according to the invention.

La composition auto-initiatrice utilisée selon l'invention comprend également 5 à 50 % en masse d'au moins un composé organique énergétique. Par "composé organique énergétique", on entend, au sens de la présente invention, un composé organique dont la décomposition est exothermique. Les inventeurs ont découvert que l'utilisation de tels composés permettait d'abaisser la température d'auto-initiation d'une composition auto-initiatrice jusqu'à une valeur convenable. Il est préférable que le caractère organique de ce composé organique énergétique ne soit pas trop prononcé afin de nuire le moins possible à la stabilité de ladite composition sous 107 °C pendant 408 heures. Le nitrate de guanidinium est le composé organique énergétique préféré pour l'invention. Il est de préférence utilisé en tant que composé organique énergétique unique, cependant, il peut également être utilisé en mélange avec ou remplacé par d'autres composés organiques énergétiques, en particulier par des composés aliphatiques ou hétérocycliques présentant des foncions amine, amide, imide ou imine et leurs sels, notamment les dérivés N-substitués du nitrate de guanidinium. Tout comme le nitrate de guanidinium, ces autres composés organiques énergétiques sont utilisés comme combustibles. Ainsi, la composition auto-initiatrice utlisée selon l'invention comprend, selon un autre mode de réalisation, au moins un composé organique énergétique choisi parmi le nitrate de guanidinium, le nitrate d'aminoguanidinium, le nitrate de nitroguanidinium, le nitrate de méthylguanidinium, le nitrate de diaminoguanidinium (DAGN), le nitrate de triaminoguanidinium (TAGN), l'azodicarbonamide, le 5-aminotétrazole, le nitrate de 5-aminotétrazole, le 5-aminotétrazolate de triaminoguanidinium, le bistétrazole, la bistétrazole amine, le 5,5'-azotétrazolate de diguanidinium (GZT), la guanylurée dinitramide (GUDN), la guanidine dinitramide (GDN), la 3-nitro-1,2,4-triazol-5-one (NTO), le RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine ou hexogène) et le HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane ou octogène). Certains de ces composés présentent des inconvénients tels qu'une température de fusion trop basse (inférieure à 150 °C par exemple) ou peuvent générer des mélanges eutectiques ayant une température de fusion trop basse (l'initiation devient probable lorsque la température dépasse ladite température de fusion). L'azodicarbonamide et le 5-aminotétrazole, par exemple, ne présentent pas ces inconvénients et peuvent être utilisés sans risque particulier, mais présentent un moindre intérêt que le nitrate de guanidinium pour l'obtention de températures d'auto-initiation adéquates. L'homme du métier veillera à ce que le choix du ou des composés organiques énergétiques permette d'obtenir les propriétés de stabilité souhaitées. Des composés très énergétiques tels que le HMX, le RDX ou le NTO, qui sont des explosifs de forte puissance, peuvent être introduits dans les compositions auto-initiatrices selon l'invention, de préférence jusqu'à 20 % en masse, mieux jusqu'à 15 % en masse, par rapport à la masse de la formulation principale.The self-initiating composition used according to the invention also comprises 5 to 50% by weight of at least one energetic organic compound. For the purposes of the present invention, the term "energetic organic compound" is intended to mean an organic compound whose decomposition is exothermic. The inventors have discovered that the use of such compounds makes it possible to lower the self-initiation temperature of a self-initiating composition to a suitable value. It is preferable that the organic character of this energetic organic compound is not too pronounced so as to cause the least possible harm to the stability of said composition at 107 ° C. for 408 hours. Guanidinium nitrate is the preferred energetic organic compound for the invention. It is preferably used as a single energetic organic compound, however, it may also be used in admixture with or replaced by other energetic organic compounds, in particular by aliphatic or heterocyclic compounds having amine, amide, imide or imine and their salts, especially N- substituted derivatives of guanidinium nitrate. Just like guanidinium nitrate, these other organic compounds energy are used as fuel. Thus, the self-initiating composition used according to the invention comprises, according to another embodiment, at least one energetic organic compound chosen from guanidinium nitrate, aminoguanidinium nitrate, nitroguanidinium nitrate, methylguanidinium nitrate, diaminoguanidinium nitrate (DAGN), triaminoguanidinium nitrate (TAGN), azodicarbonamide, 5-aminotetrazole, 5-aminotetrazole nitrate, triaminoguanidinium 5-aminotetrazolate, bistetrazole, bistetrazole amine, 5.5 diguanidinium azotetrazolate (GZT), guanylurea dinitramide (GUDN), guanidine dinitramide (GDN), 3-nitro-1,2,4-triazol-5-one (NTO), RDX (hexahydro-1, 3,5-trinitro-1,3,5-triazine or hexogen) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen). Some of these compounds have disadvantages such as a too low melting temperature (below 150 ° C. for example) or can generate eutectic mixtures having a low melting temperature (the initiation becomes probable when the temperature exceeds said temperature fusion). Azodicarbonamide and 5-aminotetrazole, for example, do not have these disadvantages and can be used without particular risk, but are of less interest than guanidinium nitrate to obtain adequate self-initiation temperatures. Those skilled in the art will ensure that the choice of the energetic organic compound or compounds makes it possible to obtain the desired stability properties. Highly energetic compounds such as HMX, RDX or NTO, which are high-potency explosives, can be introduced into the self-initiating compositions according to the invention, preferably up to 20% by weight, more preferably up to 20% by weight. at 15% by weight, relative to the mass of the main formulation.

Les composés organiques énergétiques utilisés selon l'invention sont le nitrate de guanidinium, le nitrate d'aminoguanidinium, le nitrate de diaminoguanidinium (DAGN), le nitrate de triaminoguanidinium (TAGN), le nitrate de nitroguanidinium, le nitrate de méthylguanidinium, le 5-aminotétrazole, le nitrate de 5-aminotétrazole, le 5-aminotétrazolate de triaminoguanidinium, le bistétrazole, la bistétrazole amine, le 5,5'-azotétrazolate de diguanidinium (GZT) et la 3-nitro-1,2,4-triazol-5-one (NTO).The energetic organic compounds used according to the invention are guanidinium nitrate, aminoguanidinium nitrate, diaminoguanidinium nitrate (DAGN), triaminoguanidinium nitrate (TAGN), nitroguanidinium nitrate, methylguanidinium nitrate, 5- aminotetrazole, 5-aminotetrazole nitrate, triaminoguanidinium 5-aminotetrazolate, bistetrazole, bistetrazole amine, 5,5'-azotetrazolate diguanidinium (GZT) and 3-nitro-1,2,4-triazol-5-one (NTO).

Pour constituer une composition auto-initiatrice, le mélange oxydant / composé organique énergétique décrit ci-dessus peut être accompagné d'un ou plusieurs composés réducteurs de nature métal, métalloïde ou hydrure métallique. Les réducteurs convenant pour la présente invention peuvent être des métaux de transition, de préférence le fer, le manganèse, le cobalt, le cuivre, le titane ou le zirconium, des métaux, de préférence l'aluminium, des métalloïdes, de préférence le bore et le silicium, des hydrures de métaux de transition, de préférence les hydrures de titane tels que TiH2 et les subhydrures TiHn (n < 2), le dihydrure de titane TiH2 étant l'hydrure de titane préféré, le dihydrure de zirconium ZrH2, ou bien des mélanges de tous ces réducteurs. Ils sont de préférence mis en oeuvre sous forme de poudres fines, c'est-à-dire d'une granulométrie allant de 0,1 à 100 µm, mieux encore allant de 1 à 50 µm. Certains de ces réducteurs, outre leur rôle de réactif vis-à-vis de l'oxygène, jouent un rôle de catalyseur de décomposition des chlorates et des composés organiques énergétiques tels que les nitrates organiques énergétiques, en particulier le nitrate de guanidinium. Cette activité catalytique se traduit par un abaissement de la température d'auto-initiation d'une composition auto-initiatrice incorporant de tels réducteurs. On entend ainsi par « activité catalytique » et « catalyseur » au sens de la présente invention, une activité catalytique et un catalyseur intervenant dans le domaine de la décomposition des chlorates et nitrates, en particulier des nitrates organiques. Le réducteur préféré ou le mélange de réducteurs préférés permettent de concilier l'obtention d'une température d'auto-initiation assez basse pour sa fonctionnalité mais compatible avec les exigences de stabilité des constructeurs automobiles. Les inventeurs ont constaté que les métaux, métalloïdes et hydrures métalliques, à granulométrie comparable, pouvaient être classés de la façon suivante quant à leur efficacité concernant l'abaissement de la température d'auto-initiation d'une composition auto-initiatrice chlorate de potassium / nitrate de guanidinium / métal, métalloïde ou hydrure métallique : Mo, Cr, W, V > B, Mn, Co, Cu > Ti, TiH2, Fe, Si, Zr, ZrH2, Ni, Al (1)In order to constitute a self-initiating composition, the oxidizing / organic energetic compound mixture described above may be accompanied by one or more reducing compounds of a metal, metalloid or metal hydride nature. The reducing agents suitable for the present invention may be transition metals, preferably iron, manganese, cobalt, copper, titanium or zirconium, metals, preferably aluminum, metalloids, preferably boron and silicon, transition metal hydrides, preferably titanium hydrides such as TiH 2 and TiH n (n <2) subhydrides, TiH 2 titanium dihydride being the preferred titanium hydride, zirconium dihydride ZrH 2 , or mixtures of all these reducers. They are preferably used in the form of fine powders, that is to say with a particle size ranging from 0.1 to 100 μm, better still ranging from 1 to 50 μm. Some of these reducing agents, in addition to their role of reactive vis-à-vis oxygen, act as a catalyst for decomposition of chlorates and energetic organic compounds such as energetic organic nitrates, in particular guanidinium nitrate. This catalytic activity results in a lowering of the self-initiation temperature of a self-initiating composition incorporating such reducing agents. For the purposes of the present invention, the term "catalytic activity" and "catalyst" means a catalytic activity and a catalyst involved in the field of the decomposition of chlorates and nitrates, in particular organic nitrates. The preferred reducer or mixture of preferred reducers can reconcile the achievement of a self-initiation temperature low enough for its functionality but compatible with the stability requirements of car manufacturers. The inventors have found that metals, metalloids and metal hydrides, with comparable particle size, could be classified in the following manner as to their effectiveness in lowering the self-initiation temperature of a self-initiating potassium chlorate composition. / guanidinium nitrate / metal, metalloid or metal hydride: Mo, Cr, W, V> B, Mn, Co, Cu> Ti, TiH 2 , Fe, Si, Zr, ZrH 2 , Ni, Al (1)

Le titane, TiH2 et le fer n'exercent qu'un faible effet catalytique ou pas d'effet catalytique dans la décomposition des chlorates et des nitrates, alors que le nickel, l'aluminium, le zirconium, ZrH2 et le silicium n'en exercent aucun. Le vanadium et les métaux du groupe 6 de la classification périodique, ou VIB selon les conventions, le chrome le molybdène et le tungstène, possèdent des activités catalytiques trop élevées. Ils peuvent conférer aux compositions auto-initiatrices qui les contiennent des températures d'auto-initiation trop faibles pour satisfaire les exigences de sécurité (inférieures à 130 °C sous confinement). D'autre part, les métaux du groupe VIB peuvent conduire à des dégradations trop importantes lors de l'épreuve de stabilité sous 107 °C pendant 408 heures. Il est donc préférable de ne pas utiliser le vanadium et les métaux du groupe VIB. Le chrome, le nickel et l'argent sont toxiques, il ne faut donc pas les utiliser. Le bore, le manganèse, le cobalt et le cuivre ont une activité catalytique plus modérée que celle du vanadium et des métaux du groupe VIB, et modifient plus sensiblement le potentiel et la vitesse de combustion des compositions auto-initiatrices que le zirconium, le titane, les hydrures de zirconium et de titane, le fer, le silicium et l'aluminium. Un réducteur remplissant une fonction de catalyseur de décomposition des chlorates et nitrates, par exemple le bore, le manganèse, le cobalt, le cuivre ou leurs mélanges peut remplacer partiellement ou totalement les réducteurs choisis parmi le zirconium, le titane, les hydrures de zirconium et de titane, le fer, le silicium, l'aluminium et leurs mélanges dans les compositions auto-initiatrices de l'invention. La vivacité de réaction et la température d'auto-initiation desdites compositions peuvent ainsi être réglées par leur teneur massique en bore, manganèse, cobalt, cuivre ou leurs mélanges. La composition auto-initiatrice selon l'invention contient (a) 0 à 60 % en masse d'au moins un métal ou métalloïde choisi parmi le bore, le manganèse, le cobalt et le cuivre, (b) 0 à 60 % en masse d'au moins un métal ou hydrure métallique choisi parmi le zirconium, le titane, le fer, l'aluminium, le silicium, TiH2 et ZrH2, et (c) 0 à 50 % en masse d'au moins un oxyde de métal de transition, les pourcentages massiques de composant (a) et de composant (c) ne pouvant pas être simultanément nuls.Titanium, TiH 2 and iron exert only a weak catalytic effect or no catalytic effect in the decomposition of chlorates and nitrates, whereas nickel, aluminum, zirconium, ZrH 2 and silicon n 'exert none. Vanadium and metals in Group 6 of the Periodic Table, or VIB according to convention, chromium, molybdenum and tungsten, have too high catalytic activities. They can give self-initiating compositions containing them self-initiation temperatures too low to meet safety requirements (less than 130 ° C under confinement). On the other hand, Group VIB metals can lead to excessive degradation in the stability test at 107 ° C for 408 hours. It is therefore preferable not to use vanadium and Group VIB metals. Chromium, nickel and silver are toxic, so do not use them. Boron, manganese, cobalt and copper have a more moderate catalytic activity than vanadium and metals of group VIB, and change more significantly the potential and the rate of combustion of self-initiating compositions than zirconium, titanium , zirconium and titanium hydrides, iron, silicon and aluminum. A reducing agent fulfilling a decomposition catalyst function for chlorates and nitrates, for example boron, manganese, cobalt, copper or their mixtures can partially or totally replace the reducing agents chosen from zirconium, titanium, zirconium hydrides and titanium, iron, silicon, aluminum and mixtures thereof in the self-initiating compositions of the invention. The reaction vivacity and the self-initiation temperature of said compositions can thus be regulated by their mass content of boron, manganese, cobalt, copper or mixtures thereof. The self-initiating composition according to the invention contains (a) 0 to 60% by weight of at least one metal or metalloid selected from boron, manganese, cobalt and copper, (b) 0 to 60% by weight of at least one metal or metal hydride chosen from zirconium, titanium, iron, aluminum, silicon, TiH 2 and ZrH 2 , and (c) 0 to 50% by weight of at least one transition metal oxide, the mass percentages of component (a) and component (c) not being simultaneously zero.

Les oxydes de métaux de transition sont utilisés dans la présente invention en tant que catalyseurs de décomposition des chlorates de métaux alcalins ou des composés organiques énergétiques tels que les nitrates organiques énergétiques, en particulier le nitrate de guanidinium. Ils permettent notamment d'abaisser la température d'auto-initiation d'une composition auto-initiatrice métal, métalloïde ou hydrure métallique / chlorate alcalin / nitrate organique énergétique dans une plage adéquate. Les métaux de transition et leurs oxydes possèdent effectivement des propriétés catalytiques utilisées pour de nombreuses réactions chimiques, en particulier dans le domaine de la pyrotechnie pour les compositions génératrices d'oxygène. Les travaux de Yunchang Zhang mettent en évidence des mécanismes probables : " Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate", Zhang, Y., Kshirsagar, G., Ellison, J. E., Cannon J. C. Thermochimica Acta 1993, 228 et publications ultérieures. Certains des métaux utilisés dans la présente invention peuvent être recouverts par une couche superficielle d'oxyde. Il est possible, quoique non avéré, que cette couche d'oxyde contribue à l'activité catalytique desdits métaux. Comme oxydes métalliques ou oxydes de métalloïdes utilisables en tant que catalyseurs dans la présente invention, on peut citer MoO3, CuO, V2O5, CrO3, Cr2O3, MnO2, Co3O4, Cu2O, Nb2O5 et Ag2O, ou leurs mélanges. Les inventeurs ont constaté que les oxydes de métaux ou métalloïdes, à granulométrie comparable, pouvaient être classés de la façon suivante quant à leur efficacité concernant l'abaissement de la température d'auto-initiation d'une composition auto-initiatrice chlorate de potassium / nitrate de guanidinium / métal, métalloïde ou hydrure métallique :

        MoO3 > CuO > Fe2O3, ZnO > SiO2     (2)

The transition metal oxides are used in the present invention as catalysts for the decomposition of alkali metal chlorates or energetic organic compounds such as energetic organic nitrates, particularly guanidinium nitrate. They allow in particular to lower the self-initiation temperature of a self-initiating composition metal, metalloid or metal hydride / alkali chlorate / organic nitrate energetic in a suitable range. The transition metals and their oxides actually have catalytic properties used for many chemical reactions, particularly in the field of pyrotechnics for oxygen-generating compositions. Yunchang Zhang's work highlights likely mechanisms: " Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate ", Zhang, Y., Kshirsagar, G., Ellison, JE, Cannon JC Thermochimica Acta 1993, 228 and subsequent publications. Some of the metals used in the present invention may be covered by a surface layer of oxide. It is possible, although not proven, that this oxide layer contributes to the catalytic activity of said metals. As metal oxides or metalloid oxides useful as catalysts in the present invention, mention may be made of MoO 3 , CuO, V 2 O 5 , CrO 3 , Cr 2 O 3 , MnO 2 , Co 3 O 4 , Cu 2 O, Nb 2 O 5 and Ag 2 O, or mixtures thereof. The inventors have found that the oxides of metals or metalloids, with comparable particle size, could be classified in the following manner as to their effectiveness concerning the lowering of the self-initiation temperature of a self-initiating chlorate potassium composition. guanidinium nitrate / metal, metalloid or metal hydride:

MoO 3 >CuO> Fe 2 O 3 , ZnO> SiO 2 (2)

La température d'auto-initiation d'une composition auto-initiatrice peut être abaissée par l'ajout d'un oxyde métallique d'un métal plus actif en tant que catalyseur selon l'équation (1) que le réducteur métal, métalloïde ou hydrure métallique utilisé. Par exemple, une composition bore / chlorate alcalin / nitrate de guanidinium verra sa température d'auto-initiation abaissée par l'ajout d'oxyde de molybdène. Les oxydes de métaux de transition convenant particulièrement pour la présente invention sont choisis de préférence parmi MoO3, CuO et leurs mélanges. En pratique, il n'est pas nécessaire d'incorporer des oxydes métalliques actifs (MoO3 et CuO) aux compositions auto-initiatrices de l'invention contenant un métal ou métalloïde actif sous forme de poudre métallique, tel que B, Mn, Co, Cu ou leurs mélanges. L'ajout d'oxydes métalliques actifs est en revanche indispensable à l'obtention d'une température d'auto-initiation satisfaisant les objectifs précités dans le cas de compositions ne contenant que des métaux ou métalloïdes peu actifs comme le zirconium, le titane, TiH2, ZrH2, le fer, l'aluminium ou le silicium. En outre, des compositions auto-initiatrices possédant une température d'auto-initiation en adéquation avec les objectifs fixés peuvent être obtenues même si elles ne contiennent aucun réducteur métal, métalloïde ou hydrure métallique, pourvu qu'elles contiennent une quantité appropriée d'au moins un oxyde de métal de transition actif. Cependant, de telles compositions sont peu énergétiques et peu vives et ne sont de préférence pas utilisées en tant que charges principales.The self-initiation temperature of a self-initiating composition can be lowered by the addition of a metal oxide of a more active metal as a catalyst according to equation (1) than the metal reducing agent, metalloid or metal hydride used. For example, a boron / alkali chlorate / guanidinium nitrate composition will have its self-initiation temperature lowered by the addition of molybdenum oxide. The transition metal oxides which are particularly suitable for the present invention are preferably chosen from MoO 3 , CuO and mixtures thereof. In practice, it is not necessary to incorporate active metal oxides (MoO 3 and CuO) with the self-initiating compositions of the invention containing a metal or active metal in the form of a metal powder, such as B, Mn, Co , Cu or mixtures thereof. The addition of active metal oxides, on the other hand, is essential to obtain a self-initiation temperature satisfying the aforementioned objectives in the case of compositions containing only weakly active metals or metalloids such as zirconium, titanium, TiH 2 , ZrH 2 , iron, aluminum or silicon. In addition, self-initiating compositions having a self-initiation temperature in line with the set objectives may be obtained even if they contain no metal, metalloid or metal hydride reductant, provided they contain an appropriate amount of minus an active transition metal oxide. However, such compositions are low in energy and low light and are preferably not used as main charges.

Il est avantageux d'utiliser des oxydes de métaux de transition sous forme de poudres extrêmement fines de manière à bénéficier d'une surface active importante pour une faible proportion massique. De préférence, ils sont utilisés sous forme de poudres dites nanométriques, une expression par laquelle on entend, dans la présente invention, une poudre de granulométrie allant de 1 à 100 nm, de préférence de 3 à 30 nm.It is advantageous to use transition metal oxides in the form of extremely fine powders so as to benefit from a large active surface area at a low mass proportion. Preferably, they are used in the form of nanoscale powders, an expression by which is meant, in the present invention, a powder having a particle size ranging from 1 to 100 nm, preferably from 3 to 30 nm.

Outre la formulation principale, les compositions auto-initiatrices utilisées selon l'invention peuvent comprendre un certain nombre d'additifs dont des exemples sont donnés ci-après et ne limitent en rien la présente invention.In addition to the main formulation, the self-initiating compositions used according to the invention may comprise a number of additives, examples of which are given below and in no way limit the present invention.

Généralement, les compositions auto-initiatrices utilisées selon l'invention comprennent un liant, et contiennent généralement 1 à 10 % en masse de ce liant, de préférence 2 à 10 % en masse de ce liant, mieux 2 à 8 %, ce pourcentage étant exprimé par rapport à la masse de la formulation principale et non par rapport à la masse totale de la composition. De préférence, le liant est hydrophobe. Le liant préféré est un liant élastomère fluoré comme le Viton®. Un liant élastomère fluoré comme le Viton® améliore la stabilité de la composition auto-initiatrice sans élever beaucoup sa température d'auto-initiation. Comme d'autres liants, il réduit la sensibilité à la friction, au choc et à l'électricité statique de la composition et permet d'obtenir une répartition granulométrique facilitant la mise en oeuvre des poudres. L'enrobage par ce liant énergétique et hydrophobe confère en outre une excellente résistance à l'humidité. Son rôle global est largement bénéfique.Generally, the self-initiating compositions used according to the invention comprise a binder, and generally contain 1 to 10% by weight of this binder, preferably 2 to 10% by weight of this binder, better still 2 to 8%, this percentage being expressed in relation to the mass of the formulation principal and not with respect to the total mass of the composition. Preferably, the binder is hydrophobic. The preferred binder is a fluoroelastomer binder such as Viton®. A fluorinated elastomer binder such as Viton® improves the stability of the self-initiating composition without greatly increasing its self-initiation temperature. Like other binders, it reduces the sensitivity to friction, shock and static electricity of the composition and provides a particle size distribution facilitating the implementation of the powders. The coating with this energetic and hydrophobic binder also gives excellent resistance to moisture. Its global role is largely beneficial.

Il est également possible d'inclure une quantité massique allant jusqu'à 1 %, de préférence de 0,2 à 1 % (ce pourcentage étant exprimé par rapport à la masse de la formulation principale et non par rapport à la masse totale de la composition), d'une silice ultra fine dite "fumée de silice", dans les compositions auto-initiatrices selon l'invention. Par silice ultra fine, on entend, dans la présente invention, une poudre de silice extrêmement fine ayant une surface spécifique allant de 100 à 200 m2.g-1. La silice ultra fine facilite la mise en oeuvre des compositions auto-initiatrices selon l'invention (meilleur écoulement des grains) et améliore leur stabilité lorsqu'elles sont utilisées en vrac ou sous forme comprimée. Il est possible que cette stabilité accrue découle d'un simple effet physique de séparation des réactifs. Quel qu'en soit le mécanisme, la silice joue un rôle de stabilisant. Il est également possible d'utiliser du talc, du graphite ou du nitrure de bore pour faciliter la mise en oeuvre de la composition. La teneur globale de ces additifs demeure inférieure à 1 % en masse (ce pourcentage étant exprimé par rapport à la masse de la formulation principale et non par rapport à la masse totale de la composition).It is also possible to include a mass quantity up to 1%, preferably from 0.2 to 1% (this percentage being expressed relative to the mass of the main formulation and not to the total mass of the composition), an ultra fine silica called "silica fume", in the self-initiating compositions according to the invention. Ultra fine silica is understood to mean, in the present invention, an extremely fine silica powder having a specific surface ranging from 100 to 200 m 2 .g -1 . The ultra fine silica facilitates the implementation of the self-initiating compositions according to the invention (better grain flow) and improves their stability when used in bulk or in compressed form. It is possible that this increased stability results from a simple physical effect of reagent separation. Whatever the mechanism, silica plays a role of stabilizer. It is also possible to use talc, graphite or boron nitride to facilitate the implementation of the composition. The overall content of these additives remains less than 1% by weight (this percentage being expressed relative to the weight of the main formulation and not with respect to the total mass of the composition).

Des exemples, non limitatifs, de compositions selon l'invention permettant de remplir les objectifs fixés sont donnés ci-après. L'une des compositions auto-initiatrices utilisées selon l'invention comporte :

  • une formulation principale comprenant :
    • 5 à 60 % de manganèse, cobalt, cuivre ou leurs mélanges, de préférence 5 à 40 %, mieux 5 à 20 %,
    • 0 à 60 % de zirconium, titane, TiH2, ZrH2, fer, silicium, aluminium ou leurs mélanges, de préférence 0 à 40 %, mieux 10 à 35 %,
    • 5 à 50 % de nitrate de guanidinium, mieux 10 à 40 %,
    • 25 à 70 % de chlorate de potassium, mieux 25 à 50 %,
  • et comporte en outre :
    • 2 à 8 % d'un liant élastomère fluoré comme le Viton®,
    • 0 à 1 % de silice ultra fine,
    ou bien :
    • une formulation principale comprenant :
      • 2 à 25 % de bore, mieux 2 à 15 %,
      • 0 à 60 % de zirconium, titane, TiH2, ZrH2, fer, silicium, aluminium ou leurs mélanges, mieux 0 à 40 %,
      • 5 à 50 % de nitrate de guanidinium, mieux 10 à 40 %,
      • 25 à 80 % de chlorate de potassium, mieux 25 à 70 %,
    • et comporte en outre :
      • 2 à 8 % d'un liant élastomère fluoré comme le Viton®,
      • 0 à 1 % de silice ultra fine,
    ou bien :
    • une formulation principale comprenant :
      • 20 à 60 % de zirconium, titane, TiH2, ZrH2, fer, silicium, aluminium ou leurs mélanges, mieux 20 à 50 %,
      • 5 à 50 % de nitrate de guanidinium, mieux 10 à 40 %,
      • 25 à 70 % de chlorate de potassium, mieux 25 à 50 %,
      • 0,5 à 50 % d'oxydes de métaux de transition tels MoO3 ou CuO, mieux 0,5 à 35 %,
    • et comporte en outre :
      • 2 à 8 % d'un liant élastomère fluoré comme le Viton®,
      • 0 à 1 % de silice ultra fine,
les pourcentages étant exprimés par rapport à la masse de la formulation principale.Nonlimiting examples of compositions according to the invention making it possible to fulfill the objectives set are given below. One of the self-initiating compositions used according to the invention comprises:
  • a main formulation comprising:
    • 5 to 60% of manganese, cobalt, copper or mixtures thereof, preferably 5 to 40%, better still 5 to 20%,
    • 0 to 60% of zirconium, titanium, TiH 2, ZrH 2, iron, silicon, aluminum or mixtures thereof, preferably 0 to 40%, better 10 to 35%,
    • 5 to 50% of guanidinium nitrate, better 10 to 40%,
    • 25 to 70% of potassium chlorate, more preferably 25 to 50%,
  • and further comprises:
    • 2 to 8% of a fluoroelastomer binder such as Viton®,
    • 0 to 1% ultra-fine silica,
    or :
    • a main formulation comprising:
      • 2 to 25% boron, better 2 to 15%,
      • 0 to 60% of zirconium, titanium, TiH 2 , ZrH 2 , iron, silicon, aluminum or mixtures thereof, better 0 to 40%,
      • 5 to 50% of guanidinium nitrate, better 10 to 40%,
      • 25 to 80% potassium chlorate, more preferably 25 to 70%,
    • and further comprises:
      • 2 to 8% of a fluoroelastomer binder such as Viton®,
      • 0 to 1% ultra-fine silica,
    or :
    • a main formulation comprising:
      • 20 to 60% of zirconium, titanium, TiH 2 , ZrH 2 , iron, silicon, aluminum or mixtures thereof, better 20 to 50%,
      • 5 to 50% of guanidinium nitrate, better 10 to 40%,
      • 25 to 70% of potassium chlorate, more preferably 25 to 50%,
      • 0.5 to 50% of transition metal oxides such as MoO 3 or CuO, better 0.5 to 35%,
    • and further comprises:
      • 2 to 8% of a fluoroelastomer binder such as Viton®,
      • 0 to 1% ultra-fine silica,
the percentages being expressed relative to the mass of the main formulation.

Ainsi, les compositions auto-initiatrices de l'invention diffèrent largement des compositions citées dans les brevets antérieurs et en particulier de celles des brevets US 5959242 , US 5739460 , US 6101947 et US 6221187 par l'absence de nitrate d'argent, de molybdène ou de nitrate d'ammonium, par la mise en oeuvre d'un procédé plus simple sans mélange préalable des oxydants par co-fusion puis cristallisation et par l'utilisation d'un liant élastomère fluoré.Thus, the self-initiating compositions of the invention differ widely from the compositions cited in the prior patents and in particular those of the patents US 5959242 , US 5739460 , US 6101947 and US 6221187 by the absence of silver nitrate, molybdenum or ammonium nitrate, by the implementation of a simpler process without premixing of the oxidants by co-melting then crystallization and by the use of a fluoroelastomer binder.

Les inventeurs ont par ailleurs découvert que la température d'auto-initiation des compositions auto-initiatrices utilisées selon l'invention diminuait lorsque le taux de compression desdites compositions augmentait, des variations de plusieurs dizaines de degrés pouvant être constatées. La température d'auto-initiation décroît lorsque la compacité augmente, même au-delà de taux de compression de l'ordre de 2000 bars, voire 3000 bars, qui assurent par ailleurs une excellente résistance mécanique. Il peut être avantageux d'ajuster la température d'auto-initiation par variation du taux de compression de la composition auto-initiatrice. La température d'auto-initiation des compositions auto-initiatrices utilisées selon l'invention diminue lorsque le confinement desdites compositions augmente, c'est-à-dire lorsque celles-ci sont emprisonnées par des parois. Cependant, leur stabilité décroît aussi lorsque le confinement augmente. Il est possible d'expliquer ces phénomènes par une action de type auto-catalytique des produits de décomposition accrue par l'emprisonnement. Il est donc nécessaire d'ajuster la formulation de la composition auto-initiatrice en fonction de la mise en oeuvre. En outre, l'importance des paramètres taux de compression et confinement varie selon les compositions.The inventors have furthermore discovered that the self-initiation temperature of the self-initiating compositions used according to the invention decreases when the compression ratio of said compositions increases, variations of several tens of degrees can be observed. The self-initiation temperature decreases when the compactness increases, even beyond a compression ratio of the order of 2000 bars, or even 3000 bars, which also ensure excellent mechanical strength. It may be advantageous to adjust the self-initiation temperature by varying the compression ratio of the self-initiating composition. The self-initiation temperature of the self-initiating compositions used according to the invention decreases when the confinement of said compositions increases, that is to say when they are trapped by walls. However, their stability also decreases as containment increases. It is possible to explain these phenomena by an action of auto-catalytic type of decomposition products increased by imprisonment. It is therefore necessary to adjust the formulation of the self-initiating composition according to the implementation. In addition, the importance of the compression ratio and containment parameters varies according to the compositions.

Les compositions auto-initiatrices utilisées selon l'invention sont préparées selon les procédés usuels de fabrication des compositions ZPP (zirconium, perchlorate de potassium) et THPP (hydrure de titane, perchlorate de potassium), bien connues de l'homme du métier, et ne nécessitent pas la mise au point d'un nouveau procédé, ce qui est intéressant en terme d'investissement. Dans tous les cas, un mélange des constituants à sec doit être évité, pour raison de sécurité. En outre, la méthode de mélange à sec ne permet pas d'introduire un liant dans la composition auto-initiatrice. Il est préférable de mélanger oxydants, composés organiques énergétiques et réducteurs par dispersion dans un solvant dans lequel ils sont insolubles, mais dans lequel le liant est soluble, si un liant est utilisé. Nous donnerons trois exemples de procédés. Le procédé le plus ancien consiste à préparer le mélange oxydants / composés organiques énergétiques / réducteurs / solvant sous forme de pâte, puis à évaporer partiellement le solvant afin de granuler la composition en la forçant sur une grille ayant une dimension de maille adéquate. La composition granulée est éventuellement tamisée afin d'obtenir une répartition granulométrique plus précise. Ce procédé permet d'obtenir des compositions auto-initiatrices utilisées selon l'invention tout à fait fonctionnelles, mais il n'est pas optimal car les opérations de granulation et de tamisages ainsi effectuées présentent un risque de mise à feu. Le deuxième procédé et le troisième procédé sont réservés aux compositions auto-initiatrices comprenant un liant. Le procédé dit « Shock Gel », plus récent, consiste à gélifier le liant par addition d'un anti-solvant dans la suspension oxydants / composés organiques énergétiques / réducteurs / liant / solvant sous agitation. Les particules d'oxydants, de composés organiques énergétiques et de réducteurs enrobées par le liant forment des grains ayant une répartition de constituants relativement homogène, qui peuvent être tamisés sous anti-solvant puis séchés. Ce deuxième procédé présente un grand intérêt sur le plan de la sécurité de manipulation. Lorsque le liant est un élastomère fluoré comme le Viton®, l'acétone ou la méthyl éthyl cétone constituent des solvants efficaces, et des hydrocarbures aliphatiques comme l'heptane constituent des anti-solvants adéquats. Les brevets US 3876477 et US 4012244 décrivent le principe de ce deuxième procédé. Un troisième procédé consiste à charger l'artifice ou l'initiateur avec le mélange oxydants / composés organiques énergétiques / réducteurs / liant / solvant sous forme de pâte, puis à sécher le tout. Ce procédé ne présente pas d'avantage par rapport au procédé « Shock Gel » en ce qui concerne la mise en oeuvre des compositions auto-initiatrices selon l'invention, mais il permet d'obtenir les mêmes résultats fonctionnels. La silice ultra fine, si elle est utilisée, est généralement introduite dans la composition auto-initiatrice utilisée selon l'invention après séchage de ladite composition.The self-initiating compositions used according to the invention are prepared according to the usual processes for the production of the compositions ZPP (zirconium, potassium perchlorate) and THPP (titanium hydride, potassium perchlorate), which are well known to those skilled in the art, and do not require the development of a new process, which is interesting in terms of investment. In all cases, a mixture of dry constituents should be avoided for reasons of safety. In addition, the dry mixing method does not make it possible to introduce a binder into the self-initiating composition. It is preferable to mix oxidants, energetic organic compounds and reducing agents by dispersion in a solvent in which they are insoluble, but in which the binder is soluble, if a binder is used. We will give three examples of processes. The oldest method is to prepare the mixture oxidants / energetic organic compounds / reducing agents / solvent in the form of a paste, then partially evaporating the solvent in order to granulate the composition by forcing it on a grid having an adequate mesh size. The granulated composition is optionally sieved to obtain a more precise particle size distribution. This process makes it possible to obtain self-initiating compositions used according to the invention which are entirely functional, but it is not optimal because the granulation and sieving operations thus carried out present a risk of ignition. The second method and the third method are reserved for self-initiating compositions comprising a binder. The so-called "Shock Gel" process, which is more recent, consists of gelling the binder by addition of an anti-solvent in the oxidant / energetic organic compounds / reducing agent / binder / solvent suspension with stirring. The particles of oxidants, energetic organic compounds and reductants encapsulated by the binder form grains having a relatively homogeneous distribution of constituents, which can be sieved under anti-solvent and then dried. This second method is of great interest in terms of handling safety. When the binder is a fluoroelastomer such as Viton®, acetone or methyl ethyl ketone are effective solvents, and aliphatic hydrocarbons such as heptane are suitable anti-solvents. Licences US 3876477 and US 4012244 describe the principle of this second method. A third method is to charge the device or initiator with the mixture oxidants / organic compounds energetic / reducing agents / binder / solvent in the form of paste, then to dry the whole. This method has no advantage over the "Shock Gel" process as regards the implementation of the self-initiating compositions according to the invention, but it makes it possible to obtain the same functional results. The ultra-fine silica, if it is used, is generally introduced into the self-initiating composition used according to the invention after drying of said composition.

Les compositions auto-initiatrices de l'invention sont mises en oeuvre dans un initiateur, de préférence un initiateur électrique. Leurs taux de compression sont alors préférentiellement compris entre 50 et 500 bars. Les compositions auto-initiatrices de l'invention peuvent également être utilisées sous forme non comprimée, en vrac dans les initiateurs électriques ou compartimentées dans des étuis de préférence métalliques. Leurs applications potentielles ne se limitent cependant pas à une fonction d'auto-initiation à l'intérieur d'un initiateur. Selon un second mode de réalisation, les compositions auto-initiatrices de l'invention peuvent être mises en oeuvre comprimées sous forme de pastilles sans contenant. Des taux de compression de 500 à 3000 bars sont alors bien adaptés. Selon un troisième mode de réalisation, les compositions auto-initiatrices de l'invention peuvent être mises en oeuvre comprimées dans des étuis de préférence métalliques, par exemple dans des capsules en aluminium optionnellement fermées par un paillet. Des taux de compression allant de 200 à 2000 bars sont alors bien adaptés. Les compositions auto-initiatrices de l'invention peuvent également être utilisées sous forme non comprimée à l'extérieur des initiateurs, auquel cas elles sont compartimentées dans des étuis de préférence métalliques.The self-initiating compositions of the invention are used in an initiator, preferably an electrical initiator. Their compression ratios are then preferably between 50 and 500 bar. The self-initiating compositions of the invention can also be used in uncompressed form, in bulk in electrical initiators or compartmentalized in preferably metal cases. Their potential applications, however, are not limited to a self-initiation function inside an initiator. According to a second embodiment, the self-initiating compositions of the invention can be used compressed in the form of pellets without a container. Compression rates of 500 to 3000 bar are then well suited. According to a third embodiment, the self-initiating compositions of the invention can be used compressed in preferably metal cases, for example in aluminum caps optionally closed by a flap. Compression rates ranging from 200 to 2000 bar are then well adapted. The self-initiating compositions of the invention may also be used in uncompressed form outside the initiators, in which case they are compartmentalized in preferably metal cases.

La présente invention concerne ainsi un initiateur électrique comprenant une enveloppe, un élément résistif et au moins une charge, caractérisé en ce qu'il utilise la composition auto-initiatrice de l'invention en tant que charge. La composition auto-initiatrice peut y être utilisée en tant que charge principale ou en tant que charge additionnelle. Les compositions auto-initiatrices de l'invention peuvent donc remplacer les compositions constituant les charges principales des initiateurs, qui sont très souvent des compositions bore / nitrate de potassium, THPP (hydrure de titane / perchlorate de potassium), TPP (titane / perchlorate de potassium) ou ZPP (zirconium / perchlorate de potassium). Lorsqu'elles sont utilisées en tant que charges additionnelles à l'intérieur d'un initiateur, les compositions auto-initiatrices de l'invention sont placées entre la composition au contact de l'élément résistif et la charge principale ou, de préférence au fond de l'étui après la charge principale dans l'ordre fonctionnel. De préférence, l'initiateur électrique selon l'invention est un initiateur électrique hermétique à couches pyrotechniques comprimées et, de type GTMS (Glass To Metal Seal) ou PTMS® (Plastic To Metal Seal). Par "initiateur à couches pyrotechniques comprimées", on entend un initiateur dont la charge au contact de l'élément résistif, au moins, se présente sous la forme d'une couche comprimée. Un initiateur électrique de type GTMS est un initiateur à couches pyrotechniques comprimées dans lequel les broches assurant le passage du courant traversent une embase de verre ou de céramique et de métal, assurant l'isolation électrique et l'herméticité. Des exemples de description de tels initiateurs, bien connus de l'homme du métier, peuvent être trouvés dans les brevets US 5099762 , WO 02/46687 et US 5639986 . Un initiateur électrique de type PTMS® diffère d'un initiateur de type GTMS simplement en ce que les broches traversent un matériau en matière plastique au lieu d'un ensemble verre-métal. Des exemples de description de tels initiateurs, bien connus de l'homme du métier, peuvent être trouvés dans la demande internationale WO 03/058154 et le brevet français FR 2698687 .The present invention thus relates to an electrical initiator comprising an envelope, a resistive element and at least one load, characterized in that it uses the self-initiating composition of the invention as a charge. The self-initiating composition can be used as the main charge or as an additional charge. The self-initiating compositions of the invention can thus replace the compositions constituting the main charges of the initiators, which are very often compositions boron / potassium nitrate, THPP (titanium hydride / potassium perchlorate), TPP (titanium / perchlorate of potassium) or ZPP (zirconium / potassium perchlorate). When used as additional charges inside an initiator, the self-initiating compositions of the invention are placed between the composition in contact with the resistive element and the main charge or, preferably on the bottom of the case after the main charge in the functional order. Preferably, the electrical initiator according to the invention is a hermetic electric initiator with compressed pyrotechnic layers and of GTMS (Glass To Metal Seal) or PTMS® (Plastic To Metal Seal) type. By "compressed pyrotechnic layer initiator" is meant an initiator whose charge in contact with the resistive element, at least, is under the form of a compressed layer. An electric initiator of the GTMS type is a compressed pyrotechnic layer initiator in which the current-carrying pins pass through a base of glass or ceramic and metal, providing electrical isolation and hermeticity. Examples of description of such initiators, well known to those skilled in the art, can be found in the patents US 5099762 , WO 02/46687 and US 5639986 . An PTMS® electric initiator differs from a GTMS type initiator simply in that the pins pass through a plastic material instead of a glass-to-metal assembly. Examples of description of such initiators, well known to those skilled in the art, can be found in the international application WO 03/058154 and the French patent FR 2698687 .

Les compositions auto-initiatrices de l'invention peuvent être utilisées dans un générateur de gaz ou tout autre engin pyrotechnique. En particulier, elles sont destinées à être utilisées dans des coussins gonflables de sécurité, quelle que soit la fonction qu'elles y remplissent. Ayant une température d'auto-initiation allant de préférence de 150 à 180 °C, elles conviennent pour une utilisation dans des générateurs de gaz utilisant des compositions génératrices de gaz à base notamment de 5-aminotétrazole, 1-nitroguanidine, 5,5'-azotétrazolate de diguanidinium ou nitrate de triaminoguanidinium, mais également à base d'azoture de sodium, les compositions génératrices de gaz à base de ce composé ayant des températures de décomposition beaucoup plus élevées (généralement supérieures à 350°C). Les compositions auto-initiatrices de l'invention sont généralement placées dans des zones thermiquement exposées du générateur de gaz ou de l'initiateur électrique, sous forme comprimée ou en vrac. Elles peuvent être utilisées en tant que charges de renfort d'initiation (booster) à l'extérieur de l'initiateur, et sont alors généralement placées entre l'initiateur et la composition génératrice de gaz. Elles peuvent aussi être mélangées aux compositions génératrices de gaz (ou placées à proximité), sous forme comprimée (pastilles, capsule), à condition qu'elles n'affectent pas ou affectent de façon non significative les propriétés desdites compositions génératrices de gaz. Les pastilles ou capsules de la composition auto-initiatrice et celles de la composition génératrice de gaz sont distinctes.The self-initiating compositions of the invention may be used in a gas generator or any other pyrotechnic device. In particular, they are intended to be used in airbags, whatever the function they fulfill. Having a self-initiation temperature ranging preferably from 150 to 180 ° C, they are suitable for use in gas generators using gas-generating compositions based in particular 5-aminotetrazole, 1-nitroguanidine, 5,5 ' diguanidinium azotetrazolate or triaminoguanidinium nitrate, but also based on sodium azide, the gas generating compositions based on this compound having much higher decomposition temperatures (generally higher than 350 ° C.). The self-initiating compositions of the invention are generally placed in thermally exposed areas of the gas generator or electric initiator, in compressed or bulk form. They can be used as initiator reinforcing (booster) charges outside the initiator, and are then generally placed between the initiator and the gas generating composition. They may also be mixed with the gas generating compositions (or placed nearby), in compressed form (pellets, capsule), provided that they do not affect or non-significantly affect the properties of said gas-generating compositions. The pellets or capsules of the self-initiating composition and those of the gas-generating composition are distinct.

Plusieurs méthodes, non limitatives, pour initier la combustion d'une composition génératrice de gaz (ou d'une composition pyrotechnique) contenue dans un générateur de gaz ou un dispositif pyrotechnique lorsque ledit générateur de gaz ou dispositif pyrotechnique est exposé à une température élevée vont maintenant être décrites.Several nonlimiting methods for initiating the combustion of a gas-generating composition (or a pyrotechnic composition) contained in a gas generator or a pyrotechnic device when said gas generator or pyrotechnic device is exposed to an elevated temperature are now be described.

La première méthode selon l'invention pour initier la combustion d'une composition génératrice de gaz comprend les trois étapes suivantes :

  • préparer une composition auto-initiatrice utilisée selon l'invention, ayant une température d'auto-initiation inférieure à celle de la composition génératrice de gaz (ou de la composition pyrotechnique) devant être initiée,
  • fabriquer des pastilles de composition auto-initiatrice, par compression, dans la matrice d'une pastilleuse,
  • ajouter une ou plusieurs pastilles de ladite composition auto-initiatrice aux pastilles de la composition génératrice de gaz. L'inflammation d'une pastille de composition auto-initiatrice, lorsque sa température atteint sa température d'auto-initiation, initie les pastilles de la composition génératrice de gaz qui l'environnent, la mise à feu se propageant à l'ensemble de la charge du générateur de gaz. De manière alternative, les pastilles de composition auto-initiatrice peuvent être placées dans une alvéole de la paroi du générateur de gaz (communiquant avec la composition génératrice de gaz) et non pas mélangées aux pastilles de la composition génératrice de gaz.
The first method according to the invention for initiating the combustion of a gas-generating composition comprises the following three steps:
  • preparing a self-initiating composition used according to the invention, having a self-initiation temperature lower than that of the gas-generating composition (or the pyrotechnic composition) to be initiated,
  • manufacture pellets of self-initiating composition, by compression, in the matrix of a pelletizer,
  • adding one or more pellets of said self-initiating composition to the pellets of the gas generating composition. The inflammation of a pellet of self-initiating composition, when its temperature reaches its self-initiation temperature, initiates the pellets of the gas generating composition that surround it, the firing propagating to the whole of the charge of the gas generator. Alternatively, the pellets of self-initiating composition may be placed in a cell of the wall of the gas generator (communicating with the gas generating composition) and not mixed with the pellets of the gas generating composition.

La deuxième méthode selon l'invention pour initier la combustion d'une composition génératrice de gaz comprend les trois étapes suivantes :

  • préparer une composition auto-initiatrice utilisée selon l'invention, ayant une température d'auto-initiation inférieure à celle de la composition génératrice de gaz (ou de la composition pyrotechnique) devant être initiée,
  • charger par compression la composition auto-initiatrice dans des étuis métalliques puis obturer, éventuellement au moyen de paillets métalliques sur lesquels les parois des étuis sont rabattues par sertissage,
  • placer ces étuis chargés de composition auto-initiatrice dans une alvéole de la paroi du générateur de gaz (communiquant avec la composition génératrice de gaz), de manière à ce que l'énergie dégagée par la composition auto-initiatrice contenue dans l'étui, lorsque sa température atteint sa température d'auto-initiation, initie les pastilles de la composition génératrice de gaz qui l'environnent, la mise à feu se propageant à l'ensemble de la charge du générateur de gaz.
The second method according to the invention for initiating the combustion of a gas-generating composition comprises the following three steps:
  • preparing a self-initiating composition used according to the invention, having a self-initiation temperature lower than that of the gas-generating composition (or the pyrotechnic composition) to be initiated,
  • compressing the self-initiating composition in metal holsters and then sealing, possibly by means of metal flakes on which the walls of the holsters are folded down by crimping,
  • placing these loaded cases of self-initiating composition in a cell of the wall of the gas generator (communicating with the gas-generating composition), so that the energy released by the self-initiating composition contained in the case, when its temperature reaches its self-initiation temperature, initiates the pellets of the gas generating composition that surround it, the firing propagating to the entire load of the gas generator.

La troisième méthode selon l'invention pour initier la combustion d'une composition génératrice de gaz comprend les trois étapes suivantes :

  • préparer une composition auto-initiatrice utilisée selon l'invention, ayant une température d'auto-initiation inférieure à celle de la composition génératrice de gaz (ou de la composition pyrotechnique) devant être initiée,
  • charger en vrac ou par compression, la composition auto-initiatrice dans un initiateur électrique, en tant que charge additionnelle ou en tant que charge principale,
  • placer l'initiateur électrique dans le logement du générateur de gaz prévu à cet effet. Lorsque la température de la composition auto-initiatrice atteint sa température d'auto-initiation, l'énergie dégagée initie l'ensemble de la charge de l'initiateur, qui initie à son tour la charge de renfort d'initiation (booster), qui initie la composition génératrice de gaz comme lors d'un fonctionnement normal.
The third method according to the invention for initiating the combustion of a gas-generating composition comprises the following three steps:
  • preparing a self-initiating composition used according to the invention, having a self-initiation temperature lower than that of the gas-generating composition (or the pyrotechnic composition) to be initiated,
  • load in bulk or compression, the self-initiator composition in an electric initiator, as an additional charge or as a main charge,
  • place the electric initiator in the housing of the gas generator provided for this purpose. When the temperature of the self-initiating composition reaches its self-initiation temperature, the released energy initiates the entire charge of the initiator, which in turn initiates the initiation reinforcement charge (booster), which initiates the gas generating composition as in normal operation.

La quatrième méthode selon l'invention pour initier la combustion d'une composition génératrice de gaz comprend les deux étapes suivantes :

  • préparer une composition auto-initiatrice utilisée selon l'invention, ayant une température d'auto-initiation inférieure à celle de la composition génératrice de gaz (ou de la composition pyrotechnique) devant être initiée,
  • charger en vrac ou par compression, la composition auto-initiatrice dans un générateur de gaz comprenant un initiateur électrique, en tant que charge de renfort d'initiation, en la plaçant entre l'initiateur électrique et la composition génératrice de gaz. Lorsque la température de la composition auto-initiatrice atteint sa température d'auto-initiation, l'énergie dégagée initie la composition génératrice de gaz comme lors d'un fonctionnement normal.
The fourth method according to the invention for initiating the combustion of a gas-generating composition comprises the following two steps:
  • preparing a self-initiating composition used according to the invention, having a self-initiation temperature lower than that of the gas-generating composition (or the pyrotechnic composition) to be initiated,
  • loading in bulk or compression, the self-initiating composition in a gas generator comprising an electrical initiator, as an initiating reinforcement charge, placing it between the electric initiator and the gas generating composition. When the temperature of the self-initiating composition reaches its self-initiation temperature, the released energy initiates the gas generating composition as during normal operation.

Les exemples suivants illustrent la présente invention sans caractère limitatif. Les pourcentages des différents constituants sont tous exprimés par rapport à la masse de la formulation principale.The following examples illustrate the present invention without limitation. The percentages of the various constituents are all expressed relative to the mass of the main formulation.

ExemplesExamples Détermination des températures d'auto-initiation :Determination of self-initiation temperatures:

Les propriétés d'initiation thermique des compositions auto-initiatrices décrites dans la présente demande ont été caractérisées par la mesure de leur température d'auto-initiation selon différentes méthodes. Toute valeur de température d'auto-initiation est accompagnée de la vitesse à laquelle la température a été élevée lors de sa détermination, exprimée en °C / minute. Cette précision est souhaitable, puisque la valeur de la température d'auto-initiation varie en fonction des conditions dans lesquelles elle est mesurée, en particulier avec la vitesse d'élévation de la température.The thermal initiation properties of the self-initiating compositions described in the present application have been characterized by measuring their self-initiation temperature according to different methods. Any self-initiation temperature value is accompanied by the rate at which the temperature was elevated in its determination, expressed in ° C / minute. This accuracy is desirable since the value of the self-initiation temperature varies depending on the conditions under which it is measured, particularly with the rate of temperature rise.

Les températures t1 à t4 sont des températures d'auto-initiation de compositions auto-initiatrices grossièrement déterminées lors "d'essais au four" (l'incertitude sur ces mesures est de l'ordre de 20 °C). Un "essai au four" consiste à introduire un échantillon de composition (20 à 50 mg) dans un four isotherme. S'il ne s'est pas initié spontanément au bout de 5 minutes, l'échantillon est remplacé par un nouvel échantillon après que la température du four ait été augmentée de 20 °C. L'opération est renouvelée jusqu'à que son auto-initiation soit observée. Les essais de détermination de la température d'auto-initiation « au four », à l'air libre font apparaître une forte influence du taux de compression de la composition. Ces essais sont assez représentatifs de pastilles de compositions destinées à l'auto-initiation, introduites parmi les pastilles de compositions génératrices de gaz, ou dans un autre emplacement adéquat du générateur de gaz.

  • t1: température d'auto-initiation d'une composition auto-initiatrice introduite en vrac dans un four, exprimée en °C.
  • t2 : température d'auto-initiation d'une composition auto-initiatrice introduite dans un four après avoir été comprimée sous 200 bars au moyen d'une pastilleuse, exprimée en °C.
  • t3 : température d'auto-initiation d'une composition auto-initiatrice introduite dans un four après avoir été comprimée sous 1000 bars au moyen d'une pastilleuse, exprimée en °C.
  • t4 : température d'auto-initiation d'une composition auto-initiatrice introduite dans un four après avoir été comprimée sous 1000 bars au moyen d'une pastilleuse puis séjourné 15 heures dans une étuve à 140°C, exprimée en °C.
The temperatures t1 to t4 are self-initiation temperatures of self-initiating compositions roughly determined during "oven tests" (the uncertainty on these measurements is of the order of 20 ° C). An "oven test" consists of introducing a composition sample (20 to 50 mg) into an isothermal oven. If it did not start spontaneously after 5 minutes, the sample is replaced with a new sample after the oven temperature has been raised by 20 ° C. The operation is repeated until its self-initiation is observed. The tests for determining the self-initiation temperature "in the oven", in the open air show a strong influence of the compression ratio of the composition. These tests are fairly representative of pellets of compositions for self-initiation, introduced among the pellets of gas generating compositions, or in another suitable location of the gas generator.
  • t1: self-initiation temperature of a self-initiating composition introduced in bulk in a furnace, expressed in ° C.
  • t2: self-initiation temperature of a self-initiating composition introduced into an oven after having been compressed at 200 bars by means of a pelletizer, expressed in ° C.
  • t3: self-initiation temperature of a self-initiating composition introduced into an oven after having been compressed at 1000 bar by means of a pelletizer, expressed in ° C.
  • t4: self-initiation temperature of a self-initiating composition introduced into an oven after having been compressed at 1000 bar by means of a pelletizer and then kept for 15 hours in an oven at 140 ° C., expressed in ° C.

Les températures T1 à T7 peuvent être considérées comme des températures d'auto-initiation de compositions auto-initiatrices. Elles sont déterminées par DSC (Differential Scanning Calorimetry), lors d'un "essai DSC". Cet essai consiste à introduire un échantillon de composition (1 à 2 mg) dans un creuset en acier inoxydable fermé hermétiquement mais contenant un volume relativement important d'air. Un certain confinement est ainsi assuré, bien qu'il soit très inférieur à celui de la plupart des artifices. La température du pic du premier exotherme, significatif d'une mise à feu sur une plus forte quantité de composition, est relevée (T1 à T7).

  • T1 : déterminée sur une composition auto-initiatrice en vrac, avec une élévation de température de 10 °C / minute, exprimée en °C.
  • T2 : déterminée sur une composition auto-initiatrice en vrac, avec une élévation de température de 50 °C / minute, exprimée en °C.
  • T3 : déterminée sur une composition auto-initiatrice en vrac, avec une élévation de température de 50 °C / minute, après que le creuset ait séjourné 15 heures dans une étuve à 140 °C, exprimée en °C. ΔT 32 = T 3 T 2.
    Figure imgb0001
  • T4 : déterminée sur une composition auto-initiatrice comprimée sous 200 bars au moyen d'une pastilleuse, avec une élévation de température de 50 °C / minute, exprimée en °C.
  • T5 : déterminée sur une composition auto-initiatrice comprimée sous 1000 bars au moyen d'une pastilleuse, avec une élévation de température de 10 °C / minute, exprimée en °C.
  • T6 : déterminée sur une composition auto-initiatrice comprimée sous 1000 bars au moyen d'une pastilleuse, avec une élévation de température de 50 °C / minute, exprimée en °C.
  • T7 : déterminée sur une composition auto-initiatrice comprimée sous 1000 bars au moyen d'une pastilleuse, avec une élévation de température de 50 °C / minute, après que le creuset ait séjourné 15 heures dans une étuve à 140 °C, exprimée en °C.
Temperatures T1 to T7 can be considered as self-initiation temperatures of self-initiating compositions. They are determined by DSC (Differential Scanning Calorimetry), during a "DSC test". This test involves introducing a sample composition (1 to 2 mg) in a stainless steel crucible closed hermetically but containing a relatively large volume of air. A certain confinement is thus ensured, although it is very inferior to that of most artifices. The temperature of the peak of the first exotherm, significant of a firing on a larger amount of composition, is noted (T1 to T7).
  • T1: determined on a self-initiating composition in bulk, with a temperature rise of 10 ° C / min, expressed in ° C.
  • T2: determined on a bulk self-initiating composition, with a temperature rise of 50 ° C / minute, expressed in ° C.
  • T3: determined on a self-initiating composition in bulk, with a temperature rise of 50 ° C / minute, after the crucible has been kept for 15 hours in an oven at 140 ° C, expressed in ° C. DT 32 = T 3 - T 2.
    Figure imgb0001
  • T4: determined on a self-initiating composition compressed at 200 bars by means of a pelletizer, with a temperature rise of 50 ° C / minute, expressed in ° C.
  • T5: determined on a self-initiating composition compressed at 1000 bar by means of a pelletizer, with a temperature rise of 10 ° C / minute, expressed in ° C.
  • T6: determined on a self-initiating composition compressed at 1000 bar by means of a pelletizer, with a temperature rise of 50 ° C / minute, expressed in ° C.
  • T7: determined on a self-initiating composition compressed at 1000 bar by means of a pelletizer, with a temperature rise of 50 ° C / minute, after the crucible has been kept for 15 hours in an oven at 140 ° C., expressed in ° C.

Le suivi du comportement des compositions auto-initiatrices en creusets hermétiques par DSC permet de déterminer leurs températures d'auto-initiation de façon beaucoup plus précise que lors "d'essais au four". Les mesures effectuées sur des compositions compactées sous 1000 bars sont particulièrement représentatives des températures d'auto-initiation qui seraient observées lors d'un « Bonfire Test » avec une élévation de température de 50 °C / minute (T6), et d'un « Slow Heat Test » avec une élévation de température de 10 °C / minute (T5), les secondes températures étant inférieures aux premières d'environ 20°C. Les résultats sont assez représentatifs de températures d'auto-initiation de pastilles de compositions auto-initiatrices placées sans fort confinement dans un générateur de gaz.Monitoring the behavior of self-initiating compositions in sealed crucibles by DSC makes it possible to determine their self-initiation temperatures much more precisely than during "oven tests". The measurements carried out on compacted compositions at 1000 bar are particularly representative of the self-initiation temperatures that would be observed during a "Bonfire Test" with a temperature rise of 50 ° C./minute (T6), and a "Slow Heat Test" with a temperature rise of 10 ° C / minute (T5), the second temperatures being lower than the first of about 20 ° C. The results are fairly representative of self-initiation temperatures of pellets of self-initiating compositions placed without strong confinement in a gas generator.

Le « Bonfire Test » et le « Slow Heat Test » ne s'appliquent effectivement qu'à des générateurs de gaz complets. Le « Bonfire Test » met en jeu une élévation de température rapide (de l'ordre de 50 °C / minute) et permet de vérifier l'absence d'explosion du générateur de gaz pendant un incendie. Le « Slow Heat Test » est un « Bonfire Test » avec une montée en température plus lente (< 14 °C / minute). Ce test est nettement plus sévère du fait du chauffage progressif des générateurs de gaz. Ces deux tests sont décrits dans le document SAE/USCAR-24, "USCAR Inflator Technical Requirements and Validation".The "Bonfire Test" and the "Slow Heat Test" only apply to complete gas generators. The "Bonfire Test" involves a rapid temperature rise (of the order of 50 ° C / minute) and makes it possible to verify the absence of explosion of the gas generator during a fire. The "Slow Heat Test" is a "Bonfire Test" with a slower rise in temperature (<14 ° C / minute). This test is much more severe because of the progressive heating of the gas generators. Both of these tests are described in SAE / USCAR-24, USCAR Inflator Technical Requirements and Validation.

Les températures T'1 à T'5 (exprimées en °C) sont des températures d'auto-initiation de compositions auto-initiatrices ayant subi une épreuve de type « Slow Heat Test » après introduction dans un artifice. Ces épreuves se déroulent de la façon suivante : l'artifice contenant la composition auto-initiatrice (50 à 60 mg) est placé dans une bombe munie d'un capteur de température et la bombe placée dans une enceinte régulée en température. La bombe est soumise à une élévation de température de l'ordre de 5 à 10 °C / minute et la température à l'intérieur de celle-ci lors du fonctionnement de l'artifice est relevée (T'1 à T'5).

  • T'1 : déterminée sur un artifice composé de 60 mg de composition auto-initiatrice comprimée sous 1000 bars et confinée dans un étui en aluminium, les lèvres de l'étui ayant été rabattues sur un paillet en aluminium en appui sur la composition. Un artifice de ce type peut être introduit dans un générateur de gaz afin d'y assurer une fonction d'auto-initiation.
  • T'2 : déterminée sur un artifice composé de 60 mg de composition auto-initiatrice comprimée sous 1000 bars et confinée dans un étui en aluminium, les lèvres de l'étui ayant été rabattues sur un paillet en aluminium en appui sur la composition. L'artifice a au préalable séjourné 48 heures dans une étuve à 120 °C.
  • T'3 : déterminée sur un artifice composé de 60 mg de composition auto-initiatrice comprimée sous 1000 bars et confinée dans un étui en aluminium, les lèvres de l'étui ayant été rabattues sur un paillet en aluminium en appui sur la composition. L'artifice a au préalable séjourné 48 heures dans une étuve à 140 °C.
  • T'4 : déterminée sur 50 mg de composition auto-initiatrice comprimée sous 200 bars et confinée dans un initiateur électrique de type GTMS tout à fait hermétique, sans volume libre. Un initiateur de ce type peut être introduit dans un générateur de gaz afin d'y assurer une fonction d'auto-initiation.
  • T'5 : déterminée sur 50 mg de composition auto-initiatrice comprimée sous 200 bars et confinée dans un initiateur électrique de type GTMS tout à fait hermétique, sans volume libre. L'initiateur a au préalable séjourné 48 heures dans une étuve à 120 °C.
La mention "NF" signifie que l'artifice ou l'initiateur GTMS n'a pas fonctionné durant une épreuve de type « Slow Heat Test » décrite ci-dessus.Temperatures T'1 to T'5 (expressed in ° C) are temperatures of self-initiation of self-initiating compositions having undergone a "Slow Heat Test" type test after introduction into a device. These tests are conducted as follows: the device containing the self-initiating composition (50 to 60 mg) is placed in a bomb equipped with a temperature sensor and the bomb placed in a chamber regulated temperature. The bomb is subjected to a temperature rise of the order of 5 to 10 ° C / minute and the temperature inside thereof during the operation of the device is noted (T'1 to T'5) .
  • T'1: determined on a device composed of 60 mg of self-initiating composition compressed under 1000 bar and confined in an aluminum case, the lips of the case having been folded down on an aluminum flap resting on the composition. An artifice of this type can be introduced into a gas generator to provide a self-initiation function.
  • T'2: determined on a device composed of 60 mg of self-initiating composition compressed under 1000 bar and confined in an aluminum case, the lips of the case having been folded on an aluminum flap resting on the composition. The device has previously stayed 48 hours in an oven at 120 ° C.
  • T'3: determined on a device composed of 60 mg of self-initiating composition compressed under 1000 bar and confined in an aluminum case, the lips of the holster having been folded down on an aluminum flap resting on the composition. The device has previously stayed 48 hours in an oven at 140 ° C.
  • T'4: determined on 50 mg of self-initiating composition compressed at 200 bar and confined in an electric initiator of GTMS type completely hermetic, without free volume. An initiator of this type can be introduced into a gas generator to provide a self-initiation function.
  • T'5: determined on 50 mg of self-initiating composition compressed at 200 bar and confined in an electric initiator of GTMS type completely hermetic, without free volume. The initiator has previously stayed 48 hours in an oven at 120 ° C.
The notation "NF" means that the GTMS device or initiator did not operate during a "Slow Heat Test" test described above.

Les résultats des mesures effectuées sur des compositions comprimées sous 1000 bars et confinées dans des étui aux parois en aluminium (T'1 à T'3) sont très proches de ce qui se produirait avec les mêmes artifices introduits dans des générateurs de gaz lors d'un « Slow Heat Test ».The results of measurements carried out on compositions compressed at 1000 bar and confined in cases with aluminum walls (T'1 to T'3) are very close to what would occur with the same devices introduced into gas generators during a "Slow Heat Test".

Détermination de l'énergie de combustion :Determination of the energy of combustion:

Ec : énergie de combustion de la composition auto-initiatrice, mesurée au moyen d'un calorimètre, exprimée en cal.g-1 (cal.g-1 = 4,1868 J.g-1). Les essais 13, 14, 16, 21 et 52-54 mettent en évidence l'intérêt de combiner les réducteurs possédant une activité catalytique, tels que le manganèse, à des métaux tels que le zirconium. La combustion de la composition auto-initiatrice résultant de cette combinaison libère une quantité d'énergie beaucoup plus importante que lorsque le manganèse le cobalt, le cuivre ou leurs mélanges sont utilisés comme seuls réducteurs. Le zirconium peut être remplacé ou combiné à Ti, TiH2, ZrH2, Fe ou Al pour produire des effets similaires.E c : combustion energy of the self-initiating composition, measured by means of a calorimeter, expressed in cal.g -1 (cal.g -1 = 4.186 g J -1 ). Tests 13, 14, 16, 21 and 52-54 demonstrate the advantage of combining reducing agents having a catalytic activity, such as manganese, with metals such as zirconium. The combustion of the self-initiating composition resulting from this combination releases a much greater amount of energy than when the manganese cobalt, copper or mixtures thereof are used as the only reducing agents. Zirconium can be substituted or combined with Ti, TiH 2 , ZrH 2 , Fe or Al to produce similar effects.

Epreuves de stabilité: Stability tests :

La mention "Feu" signifie que la composition auto-initiatrice a fonctionné intempestivement sous 120 °C ou sous 140 °C, pendant l'épreuve d'environnement (épreuve de stabilité sous une température donnée pendant un temps donné) préalable au test en question. La présence de cette mention met en évidence certaines des compositions dites "instables" au sens de l'invention. Les générateurs de gaz ainsi que leurs constituants doivent supporter, sans aucune dégradation fonctionnelle ces épreuves de vieillissement accéléré. L'épreuve de stockage sous 107 °C pendant 408 heures, particulièrement contraignante, n'est réservée qu'à des qualifications de compositions auto-initiatrices déjà mises au point. Pour raison de gain de temps, des tests plus courts sous des températures plus élevées ont été utilisés durant les phases de mise au point : 120 °C ou 140 °C / 48 heures pour des compositions auto-initiatrices disposées dans des artifices, 140 °C / 15 heures pour des compositions auto-initiatrices peu confinées, afin de provoquer une dégradation éventuelle desdites compositions. L'obtention de valeurs de températures d'auto-initiation similaires avant et après ces épreuves d'environnement prouve une grande stabilité de la composition auto-initiatrice considérée. En ce qui concerne les essais DSC, un écart de température d'auto-initiation supérieur à 30 °C entre les deux valeurs est insatisfaisant et reflète une réduction de l'énergie de réaction. En ce qui concerne les essais de type Slow Heat Test, un écart supérieur à 10 °C dans un sens ou l'autre est un indice de défaut de stabilité. L'épreuve 120 °C / 48 heures pratiquée sur un artifice équivaut grossièrement à plusieurs centaines d'heures sous 107 °C et permet de prédire avec une forte probabilité le comportement de la composition auto-initiatrice contenue dans un artifice à l'épreuve d'environnement 107 °C / 408 heures. Une absence de fonctionnement intempestif de l'artifice lors de l'épreuve 140 °C / 48 heures est très satisfaisante. Ainsi, l'obtention d'une valeur de la température d'auto-initiation T'3 peu modifiée par rapport à T'1 prouve une grande stabilité de la composition auto-initiatrice, bien au-delà de l'épreuve 107 °C / 408 heures.The word "Fire" means that the self-initiating composition has functioned unexpectedly under 120 ° C or 140 ° C, during the environmental test (stability test under a given temperature for a given time) prior to the test in question . The presence of this mention highlights some of the so-called "unstable" compositions within the meaning of the invention. Gas generators and their constituents must withstand, without any functional degradation, these accelerated aging tests. The storage test under 107 ° C for 408 hours, particularly restrictive, is reserved only for qualifications of self-initiated compositions already developed. For the sake of saving time, shorter tests under higher temperatures were used during the development phases: 120 ° C or 140 ° C / 48 hours for self-initiating compositions arranged in fireworks, 140 ° C / 15 hours for auto compositions -initiators little confined, to cause possible degradation of said compositions. Obtaining similar self-initiation temperature values before and after these environmental tests proves a high stability of the self-initiating composition under consideration. For the DSC tests, a self-initiation temperature difference of more than 30 ° C between the two values is unsatisfactory and reflects a reduction of the reaction energy. For Slow Heat Test, a deviation greater than 10 ° C in one direction or the other is an index of stability failure. The 120 ° C / 48 hours test performed on a device is roughly equivalent to several hundred hours under 107 ° C and makes it possible to predict with a high probability the behavior of the self-initiating composition contained in a fireproof device. environment 107 ° C / 408 hours. A lack of inadvertent operation of the device during the test 140 ° C / 48 hours is very satisfactory. Thus, obtaining a value of the self-initiation temperature T'3 slightly modified with respect to T'1 proves a high stability of the self-initiating composition, well beyond the 107 ° C test. / 408 hours.

Le tableau 1 présente 54 essais correspondant à 54 compositions auto-initiatrices, réparties en 8 groupes A, B, C, D, E, F, G et H. Elles ont été préparées en faisant varier la nature du mélange réducteur, du mélange de composés organiques énergétiques, du mélange oxydant, des oxydes métalliques et des additifs dans le but d'étudier l'impact de la nature des constituants sur diverses propriétés desdites compositions, notamment leur température d'auto-initiation et leur stabilité.Table 1 shows 54 tests corresponding to 54 self-initiating compositions, divided into 8 groups A, B, C, D, E, F, G and H. They were prepared by varying the nature of the reducing mixture, the mixture of organic compounds, the oxidizing mixture, metal oxides and additives in order to study the impact of the nature of the constituents on various properties of said compositions, in particular their self-initiation temperature and their stability.

Les groupes A, B, C et D ont été triés par ordre croissant de la température T'1, mesurée lors d'un essai de type « Slow Heat Test », un test sévère qui présente l'intérêt de faire intervenir une masse de composition relativement importante (60 mg), un taux de compression élevé (1000 bars) et un confinement assuré par un étui aux parois en aluminium.The groups A, B, C and D were sorted in ascending order of the temperature T'1, measured during a test of the "Slow Heat Test" type, a severe test that has the advantage of involving a mass of relatively large composition (60 mg), a high compression ratio (1000 bar) and a confinement ensured by a holster with aluminum walls.

Le groupe A comprend les compositions ayant une température T'1 inférieure à 125 °C, c'est-à-dire des compositions ayant une température d'auto-initiation trop basse sous forme comprimée et sous confinement pour présenter un intérêt pratique. Ces compositions contiennent du molybdène ou du MoO3 associé à du bore. Ces compositions n'ont pas satisfait à au moins une épreuve de stabilité à l'exception de la composition N° 6 contenant 0,5 % de silice.Group A comprises compositions having a temperature T'1 of less than 125 ° C, i.e. compositions having a self-initiation temperature too low in compressed form and under confinement to be of practical interest. These compositions contain molybdenum or MoO 3 combined with boron. These compositions have not satisfied at least one stability test with the exception of composition No. 6 containing 0.5% of silica.

Le groupe B comprend des compositions contenant du bore qui ont une température T'1 comprise entre 125 et 130 °C, ce qui est encore trop bas pour une utilisation sous fort taux de compression (1000 bars), mais qui ont satisfait aux épreuves de stabilité auxquelles elles ont été soumises, et qui présentent des températures d'auto-initiation T'4 de l'ordre de 150-160 °C en initiateurs électriques hermétiques (GTMS) sous un taux de compression de 200 bars. Ces températures sont peu modifiées après épreuve d'environnement (T'5). De telles compositions présentent un intérêt majeur pour assurer la fonction d'auto-initiation en initiateurs électriques.Group B comprises compositions containing boron which have a temperature T'1 of between 125 and 130 ° C., which is still too low for use under a high compression ratio (1000 bars), but which have satisfied the tests of stability to which they have been subjected, and which have self-initiation temperatures T'4 of the order of 150-160 ° C hermetic electrical initiators (GTMS) under a compression ratio of 200 bar. These temperatures are little modified after environmental test (T'5). Such compositions are of major interest for providing the self-initiation function as electrical initiators.

Le groupe C comprend des compositions contenant du bore ou du tungstène et une teneur élevée (40 %) de nitrate de guanidinium, conduisant à des températures T'1 de l'ordre de 135-150 °C et un net défaut de stabilité (T3) lors de l'épreuve 140 °C / 15 heures sous confinement réduit et avec une faible masse (1 à 2 mg, en vrac). Ces résultats font apparaître l'influence de la teneur en nitrate de guanidinium sur la stabilité.Group C comprises compositions containing boron or tungsten and a high content (40%) of guanidinium nitrate, leading to temperatures T'1 of the order of 135-150 ° C and a clear lack of stability (T3 ) in the 140 ° C / 15 hours test under reduced confinement and with a low mass (1 to 2 mg, in bulk). These results show the influence of guanidinium nitrate content on stability.

Le groupe D comprend des compositions ayant des températures T'1 comprises entre 150 et 220 °C et qui ont satisfait à différentes épreuves de stabilité. Les compositions contenant du manganèse, du cobalt ou du cuivre qui ont des températures T'1 comprises entre 150 et 180 °C y compris après une épreuve d'environnement (T'2) de 120 °C / 48 heures (essais 12, 13, 14, 16, 50, 51) sont particulièrement intéressantes pour assurer une fonction d'auto-initiation sous forme de pastilles ou dans des capsules destinées à être insérées dans les générateurs de gaz (taux de compression : 1000 bars). Les compositions qui contiennent environ 30 % de zirconium avec seulement environ 10 % de manganèse, cobalt ou cuivre (essais 13, 14, 52, 54) sont particulièrement avantageuses par leur énergie de combustion élevée. Les autres compositions du groupe D (essais 17 à 23) présentent un moindre intérêt du fait de températures d'auto-initiation plus élevées. Cependant, les essais 53 et 54 associés aux essais 50 à 52 font apparaître la possibilité de régler la température d'auto-initiation vers des valeurs hautes afin de privilégier la stabilité.Group D comprises compositions having temperatures T'1 of between 150 and 220 ° C which have satisfied different stability tests. Compositions containing manganese, cobalt or copper which have temperatures T'1 of between 150 and 180 ° C including after an environmental test (T'2) of 120 ° C / 48 hours (tests 12, 13 , 14, 16, 50, 51) are particularly advantageous for providing a self-initiation function in the form of pellets or in capsules intended to be inserted into the gas generators (compression ratio: 1000 bars). Compositions which contain about 30% zirconium with only about 10% manganese, cobalt or copper (tests 13, 14, 52, 54) are particularly advantageous by their high energy of combustion. The other compositions of group D (tests 17 to 23) are of less interest because of higher self-initiation temperatures. However, tests 53 and 54 associated with tests 50 to 52 show the possibility of setting the self-initiation temperature to high values in order to favor stability.

Les compositions des groupes E, F, G et H ont été triées par ordre de températures T1 croissantes.The compositions of groups E, F, G and H were sorted in order of increasing temperature T1.

Le groupe E comprend les compositions qui ont une température T1 (vrac) comprise entre 170 et 196 °C. Ces compositions sont fortement dégradées lors d'épreuves d'environnement 140 °C / 15 heures en creuset comme le révèlent les essais DSC : ΔT32 ∈ [40 ; 178] °C. Ce groupe comprend des compositions contenant du vanadium, du chrome, du tungstène associé à du CuO ou de l'hydrure de titane associé à du MoO3, des compositions molybdène / nitrate d'argent / nitrate de guanidinium, ainsi que des compositions chlorate de potassium / lactose comprenant éventuellement du bore. Ces compositions sont trop instables pour une utilisation sous forme comprimée et sous confinement (essais 29-31).Group E comprises compositions which have a T1 temperature (bulk) of between 170 and 196 ° C. These compositions are strongly degraded during environmental tests at 140 ° C./15 hours in a crucible as revealed by the DSC tests: ΔT 32 ∈ [40; 178] ° C. This group includes compositions containing vanadium, chromium, CuO-associated tungsten or MoO 3 -massed titanium hydride, molybdenum / silver nitrate / guanidinium nitrate compositions, and chlorate compositions. potassium / lactose optionally comprising boron. These compositions are too unstable for use in compressed form and under confinement (tests 29-31).

Le groupe F, qui inclut l'essai comparatif N° 35 réalisé sans réducteur métal, métalloïde ou hydrure métallique et sans oxyde métallique, regroupe les compositions ayant une température T1 comprise entre 197 et 240 °C et qui résistent à l'épreuve d'environnement 140 °C / 15 heures en creuset comme le révèlent les essais DSC : ΔT32 ∈ [-6 ; 15] °C. Ce groupe comprend des compositions contenant de l'aluminium, du fer, du nickel, du zirconium, mais également des compositions azodicarbonamide / chlorate de potassium comprenant éventuellement du bore, ainsi qu'une composition 5-aminotétrazole / chlorate de potassium. Le 5-aminotétrazole et l'azodicarbonamide peuvent remplacer le nitrate de guanidinium en tant que composé organique énergétique (essais 33, 36, 38) dans les compositions auto-initiatrices selon l'invention.Group F, which includes comparative test No. 35 carried out without a metal, metalloid or metal hydride and without a metal oxide reducing agent, groups together compositions having a temperature T1 of between 197 and 240 ° C. and which are resistant to the test of environment 140 ° C / 15 hours in a crucible as revealed by the DSC tests: ΔT 32 ∈ [-6; 15] ° C. This group comprises compositions containing aluminum, iron, nickel, zirconium, but also compositions azodicarbonamide / potassium chlorate optionally comprising boron, and a 5-aminotetrazole / potassium chlorate composition. 5-aminotetrazole and azodicarbonamide can replace guanidinium nitrate as an energetic organic compound (tests 33, 36, 38) in the self-initiating compositions according to the invention.

Le groupe G comprend des compositions zirconium / nitrate d'argent / nitrate de guanidinium ayant des températures T1 comprises entre 300 et 350 °C, ce qui exclut toute application dans le domaine de l'auto-initiation.Group G comprises zirconium / silver nitrate / guanidinium nitrate compositions having T1 temperatures included between 300 and 350 ° C, which excludes any application in the field of self-initiation.

Le groupe H comprend essentiellement des compositions zirconium / perchlorate de potassium (ZPP), n'entrant pas dans le cadre de la présente invention et qui sont utilisées dans le tableau 1 à titre comparatif. Les compositions du type ZPP (zirconium, perchlorate de potassium, essai 49), THPP (hydrure de titane, perchlorate de potassium) ou TPP (titane, perchlorate de potassium), bien connues de l'homme du métier, sont très utilisées dans les initiateurs électriques à couches pyrotechniques comprimées destinés à initier les générateurs de gaz pour les coussins gonflables de sécurité (références). Mais les compositions ZPP, THPP, ou TPP ont des températures d'auto-initiation supérieures à 380 °C et ne peuvent donc pas satisfaire l'objectif fixé. L'oxyde cuivrique et surtout l'oxyde de molybdène permettent d'abaisser leurs températures d'auto-initiation (essais 47, 48). Une forte proportion de poudre de molybdène (20 %) permet d'abaisser la température d'auto-initiation de 513 °C à 424 °C (essais 46 et 49). Le remplacement du perchlorate de potassium par le chlorate de sodium ramène la température d'auto-inflammation de 507 °C (essai 48) à 330 °C (essai 44). L'ajout à la composition de l'essai 49 (ZPP) de nitrate de guanidinium permet également d'atteindre une température d'auto-initiation de l'ordre de 330 °C (essai 45). L'effet du remplacement, dans une composition de type ZPP, du perchlorate de potassium par un chlorate de métal alcalin combiné à l'ajout de nitrate de guanidinium n'était a priori pas prévisible. Les deux actions exercent un effet coopératif. Ainsi, les compositions de type Zr / KClO3 / nitrate de guanidinium (essais 19, 22, 40) et Zr / NaClO3 nitrate de guanidinium (essai 15) ont des températures d'auto-initiation T1 de l'ordre de 200- 220°C. L'énergie de combustion exprimée en cal.g-1 dans le tableau 1 est obtenue en J.g-1 par multiplication de la valeur en cal.g-1 par 4,1868. Le Tableau 2 regroupe les essais du Tableau 1 correspondant à des compositions réducteur / chlorate de potassium / nitrate de guanidinium et éventuellement oxyde métallique, sans liant ni silice (dont l'essai comparatif N° 35), qui permettent de mettre en évidence directement l'influence du réducteur et de l'oxyde métallique sur les températures d'auto-initiation T1 à T3 et T'1. Les essais ont été triés par ordre croissant des températures T1, qui constituent des mesures plus précises que T2 ou t1. L'activité de MoO3 est révélée par la comparaison des essais 4 et 10. Cet oxyde a une activité importante en présence d'hydrure de titane (essai 28) qui se manifeste encore en présence de bore (essai 4). Ce tableau permet de classer les réducteurs en trois groupes en ce qui concerne leur activité catalytique : trop actifs (Mo, Cr, W, V), utiles (B, Mn, Co, Cu) et inactifs ou peu actifs (Al, Si, TiH2, Ti, Fe, Zr, Ni).Group H essentially comprises zirconium / potassium perchlorate (ZPP) compositions, which are not within the scope of the present invention and which are used in Table 1 for comparison purposes. ZPP type compositions (zirconium, potassium perchlorate, test 49), THPP (titanium hydride, potassium perchlorate) or TPP (titanium, potassium perchlorate), well known to those skilled in the art, are widely used in the electric initiators with compressed pyrotechnic layers for initiating gas generators for airbags (references). But ZPP, THPP, or TPP compositions have self-initiation temperatures above 380 ° C and therefore can not meet the set target. Copper oxide and especially molybdenum oxide lower their self-initiation temperatures (tests 47, 48). A high proportion of molybdenum powder (20%) makes it possible to lower the self-initiation temperature from 513 ° C. to 424 ° C. (tests 46 and 49). The replacement of potassium perchlorate with sodium chlorate reduces the autoignition temperature from 507 ° C (test 48) to 330 ° C (test 44). The addition to the composition of test 49 (ZPP) guanidinium nitrate also achieves a self-initiation temperature of the order of 330 ° C (test 45). The effect of replacing potassium perchlorate in a ZPP composition with an alkali metal chlorate combined with the addition of guanidinium nitrate was not predictable. Both actions have a cooperative effect. Thus, the compositions of Zr / KClO 3 / guanidinium nitrate (tests 19, 22, 40) and Zr / NaClO 3 guanidinium nitrate (test 15) have self-initiation temperatures T1 of the order of 200.degree. 220 ° C. The combustion energy expressed in cal.g -1 in Table 1 is obtained in Jg -1 by multiplying the value in cal.g -1 by 4.1868. Table 2 groups together the tests of Table 1 corresponding to reducing agent / potassium chlorate / guanidinium nitrate and optionally metal oxide, without binder or silica (including Comparative Test No. 35), which make it possible to directly highlight the influence of the reducing agent and the metal oxide on the self-initiation temperatures T1 to T3 and T'1. The tests were sorted by increasing order of T1 temperatures, which are more accurate measurements than T2 or t1. The activity of MoO 3 is revealed by the comparison of tests 4 and 10. This oxide has an important activity in the presence of titanium hydride (test 28) which is still manifested in the presence of boron (test 4). This table makes it possible to classify the reducing agents in three groups with regard to their catalytic activity: too active (Mo, Cr, W, V), useful (B, Mn, Co, Cu) and inactive or little active (Al, Si, TiH 2 , Ti, Fe, Zr, Ni).

Ainsi, de nouvelles compositions auto-initiatrices possédant des températures d'auto-initiation allant de 130 à 220 °C, mieux allant de 150 à 200 °C et encore mieux allant de 150 à 180 °C ont été mises au point, par un choix adéquat des constituants et de leurs proportions. Certaines compositions du groupe D contenant du manganèse, du cuivre ou du cobalt possèdent des températures d'auto-initiation de l'ordre de 150-180 °C, une stabilité satisfaisante, ne sont pas mises à feu intempestivement lors d'un stockage prolongé (48 heures) sous 120 °C et fonctionnent sans grand écart de température d'auto-inflammation après cette épreuve d'environnement. Les compositions zirconium / manganèse, cobalt ou cuivre / chlorate de potassium / nitrate de guanidinium / Viton®/ silice sont particulièrement intéressantes pour des applications sous fort taux de compression, le zirconium permettant d'obtenir une énergie de combustion plus élevée et une plus grande vitesse de réaction. Les essais en initiateurs électriques « GTMS » (T'4, T'5) font apparaître que certaines compositions (groupe B) contenant du bore, du chlorate de potassium et du nitrate de guanidinium possèdent des températures d'auto-initiation allant de 151 à 167 °C avec une stabilité satisfaisante.Thus, new self-initiating compositions having self-initiation temperatures ranging from 130 to 220 ° C, more preferably from 150 to 200 ° C and more preferably from 150 to 180 ° C have been developed, by a adequate choice of constituents and their proportions. Certain Group D compositions containing manganese, copper or cobalt have self-initiation temperatures of the order of 150-180 ° C, satisfactory stability, are not ignited during prolonged storage (48 hours) at 120 ° C and operate without much difference in autoignition temperature after this environmental test. The compositions zirconium / manganese, cobalt or copper / potassium chlorate / guanidinium nitrate / Viton® / silica are particularly interesting for applications under high compression ratio, zirconium to obtain a higher combustion energy and greater reaction rate. The "GTMS" electrical initiator tests (T'4, T'5) show that certain compositions (group B) containing boron, potassium chlorate and guanidinium nitrate have self-initiation temperatures ranging from at 167 ° C with satisfactory stability.

D'une manière générale, la température d'auto-initiation, pour une vitesse d'élévation en température donnée, peut être ajustée, de préférence de 130 à 220 °C, mieux de 150 à 200 °C et encore mieux de 150 à 180 °C, en faisant varier les proportions des constituants, notamment au sein des compositions des groupes B, D et F du tableau 1, ainsi que les taux de compression de ces compositions. Les compositions figurant dans ces groupes ne correspondent pas nécessairement à des formulations optimales, mais des formulations adaptées à des artifices répondant aux objectifs fixés peuvent aisément être mises au point par l'homme du métier à partir des constituants figurant dans ces groupes, par expérimentation en routine.In general, the self-initiation temperature, for a given temperature rise rate, may be adjusted, preferably from 130 to 220 ° C, more preferably from 150 to 200 ° C and more preferably from 150 to 200 ° C. 180 ° C, by varying the proportions of the constituents, in particular within the compositions of groups B, D and F of Table 1, as well as the compression ratios of these compositions. The compositions in these groups do not necessarily correspond to optimal formulations, but formulations adapted to artifices meeting the objectives set can easily be developed by those skilled in the art from the constituents in these groups, by routine experimentation.

Surfaces spécifiques : Specific surfaces :

Les surfaces spécifiques des différents constituants employés (réducteurs et oxydes métalliques) sont présentées dans le Tableau 3. Elles sont exprimées en m2.g-1 et ont été déterminées selon la méthode BET. Ce tableau révèle qu'il n'y a aucune corrélation entre l'activité d'un réducteur (comparaison au niveau de la température T1) et sa surface spécifique. En particulier, le molybdène présente l'une des surfaces spécifiques les plus faibles alors qu'il a la plus forte influence sur la température d'auto-initiation des compositions. En revanche, la forte activité du bore pourrait être due en partie à sa surface spécifique élevée.

Figure imgb0002
Figure imgb0003
Figure imgb0004
Tableau 3 Constituant Fe Mn W Mo Ti Si Ni Co TiH2 Cu Cr Zr V Al B MoO3 CuO Surface spécifique 0,11 0,19 0,28 0,35 0,39 0,5 0,53 0,58 0,79 0,9 1,12 1,2 1,83 10,5 22 35 43 The specific surfaces of the various constituents employed (reducing agents and metal oxides) are presented in Table 3. They are expressed in m 2 · g -1 and were determined according to the BET method. This table reveals that there is no correlation between the activity of a reducer (comparison at the temperature T1) and its specific surface. In particular, molybdenum has one of the weakest specific surfaces while it has the strongest influence on the self-initiation temperature of the compositions. In contrast, the high activity of boron may be due in part to its high specific surface area.
Figure imgb0002
Figure imgb0003
Figure imgb0004
<b> Table 3 </ b> Component Fe mn W MB Ti Yes Or Co TiH 2 Cu Cr Zr V al B MoO 3 CuO Specific surface 0.11 0.19 0.28 0.35 0.39 0.5 0.53 0.58 0.79 0.9 1.12 1.2 1.83 10.5 22 35 43

Claims (23)

  1. Electrical initiator containing an envelope, a resistive element and at least one charge, characterized in that it uses a self-initiating composition as charge, said self-initiating composition comprising a main formulation which contains:
    - 20 to 80 mass % of at least one alkali metal chlorate,
    - 5 to 50 mass % of at least one energetic organic compound,
    and characterized in that the energetic organic compound is selected from guanidine nitrate, aminoguanidine nitrate, diaminoguanidine nitrate (DAGN), triaminoguanidine nitrate (TAGN), nitroguanidine nitrate, methylguanidine nitrate, 5-aminotetrazole, 5-aminotetrazole nitrate, triaminoguanidinium 5-aminotetrazolate, bis tetrazole, bis tetrazole amine, 5,5' bis(guanidinium)azotetrazolate (GZT) and 3-nitro-1,2,4-triazol-5-one (NTO),
    and in that the main formulation also contains:
    (a) 0 to 60 mass % of at least one metal or metalloid selected from boron, manganese, cobalt and copper,
    (b) 0 to 60 mass % of at least one metal or metal hydride selected from zirconium, titanium, TiH2, ZrH2, aluminium, silicon and iron,
    (c) 0 to 50 mass % of at least one transition metal oxide,
    the mass percentages being expressed in relation to the main formulation mass and the mass percentages of component (a) and component (c) which cannot simultaneously be equal to zeros.
  2. Electrical initiator according to claim 1, characterized in that the main formulation contains a single energetic organic compound, guanidine nitrate.
  3. Electrical initiator according to any one of claims 1 and 2, characterized in that said transition metal oxides are selected from MoO3 and CuO.
  4. Electrical initiator according to claim 3, characterized in that said transition metal oxides are in the form of powder with a particle size ranging from 1 to 100 nm, preferably from 3 to 30 nm.
  5. Electrical initiator according to any one of the above claims, characterized in that said alkali metal chlorates are selected from potassium chlorate and sodium chlorate.
  6. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition comprises a binder.
  7. Electrical initiator according to claim 6, characterized in that said self-initiating composition contains 1 to 10 mass % of a binder, this percentage being expressed in relation to the main formulation mass.
  8. Electrical initiator according to either of claims 6 and 7, characterized in that the binder is a fluorinated elastomer such as Viton®.
  9. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition contains a mass quantity ranging up to 1%, preferably from 0.2 to 1% of ultrafine silica, this percentage being expressed in relation to the main formulation mass.
  10. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition comprises a main formulation containing:
    - 25 to 70 mass % of at least one alkali metal chlorate,
    - 10 to 40 mass % of at least one of said energetic organic compounds,
    (a) 0 to 40 mass % of at least one metal or metalloid selected from boron, manganese, cobalt and copper,
    (b) 0 to 40 mass % of at least one metal or metal hydride selected from zirconium, titanium, TiH2, ZrH2, aluminium, silicon and iron,
    (c) 0 to 35 mass % of at least one transition metal oxide,
    the mass percentages being expressed in relation to the main formulation mass.
  11. Electrical initiator according to any one of claims 1 to 9, characterized in that said self-initiating composition comprises a main formulation containing:
    - 5 to 60% of manganese, cobalt, copper or mixtures thereof, preferably 5 to 40%, better 5 to 20%,
    - 0 to 60% of zirconium, titanium, TiH2, ZrH2, iron, silicon, aluminium or mixtures thereof, preferably 0 to 40%, better 10 to 35%,
    - 5 to 50% of guanidine nitrate, better 10 to 40%,
    - 25 to 70% of potassium chlorate, better 25 to 50%, and characterized in that said main formulation also contains:
    - 2 to 8% of a fluorinated elastomer binder such as Viton®,
    - 0 to 1% of ultrafine silica,
    the percentages being expressed in relation to the main formulation mass.
  12. Electrical initiator according to any one of claims 1 to 9, characterized in that said self-initiating composition comprises a main formulation containing:
    - 2 to 25% of boron, better 2 to 15%,
    - 0 to 60% of zirconium, titanium, TiH2, ZrH2, iron, silicon, aluminium or mixtures thereof, better 0 to 40%,
    - 5 to 50% of guanidine nitrate, better 10 to 40%,
    - 25 to 80% of potassium chlorate, better 25 to 70%, and characterized in that said main formulation also contains:
    - 2 to 8% of a fluorinated elastomer binder such as Viton®,
    - 0 to 1% of ultrafine silica,
    the percentages being expressed in relation to the main formulation mass.
  13. Electrical initiator according to any one of claims 1 to 9, characterized in that said self-initiating composition comprises a main formulation which contains:
    - 20 to 60% of zirconium, titanium, TiH2, ZrH2, iron, silicon, aluminium or mixtures thereof, better 20 to 50%,
    - 5 to 50% of guanidine nitrate, better 10 to 40%,
    - 25 to 70% of potassium chlorate, better 25 to 50%,
    - 0.5 to 50% of transition metal oxides such as MoO3 or CuO, better 0.5 to 35%, and characterized in that said main formulation also contains:
    - 2 to 8% of a fluorinated elastomer binder such as Viton®,
    - 0 to 1% of ultrafine silica,
    the percentages being expressed in relation to the main formulation mass.
  14. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition is in compressed form, with a compression rate ranging from 50 to 500 bars.
  15. Electrical initiator according to any one of claims 1 to 13, characterized in that said self-initiating composition is in the form of pellets without packaging with a compression rate ranging from 500 to 3000 bars or in preferably metal cases with a compression rate ranging from 200 to 2000 bars.
  16. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition is stable at a temperature of 107°C during 408 hours or 90°C during 1000 hours.
  17. Electrical initiator according to any one of the above claims, characterized in that said self-initiating composition has a self-initiation temperature ranging from 130 to 220°C, preferably ranging from 150 to 180°C.
  18. Electrical initiator according to any one of the above claims, characterized in that the self-initiating composition is used as primary charge.
  19. Electrical initiator according to any one of the above claims, characterized in that the self-initiating composition is used as additional charge.
  20. Electrical initiator according to any one of the above claims, characterized in that it constitutes a hermetic electrical initiator with compressed pyrotechnic layers.
  21. Gas generator containing a gas generating composition, characterized in that it also contains an electrical initiator according to any one of claims 1 to 20.
  22. Gas generator containing an electrical initiator, a gas generating composition and at least one booster charge, characterized in that it uses an electrical initiator according to any one of claims 1 to 20 and in that said self-initiating composition is used as booster charge.
  23. Gas generator containing an electrical initiator, a gas generating composition and at least one booster charge, characterized in that it uses an electrical initiator according to any one of claims 1 to 13 and in that said initiator uses said self-initiating composition in non-compressed form, loose in said electrical initiator or compartmentalized in preferably metal cases and in that said self-initiating composition is used as booster charge.
EP06726280.8A 2005-03-30 2006-03-28 Electrical initiators using self-initiating compositions and gas generators comprising said initiators Active EP1866265B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550821A FR2883868B1 (en) 2005-03-30 2005-03-30 SELF-INITIATING COMPOSITIONS, ELECTRIC INITIATORS USING SUCH COMPOSITIONS AND GAS GENERATORS COMPRISING SUCH INITIATORS
PCT/FR2006/050265 WO2006103366A2 (en) 2005-03-30 2006-03-28 Self-initiating compositions, electrical initiators using said comparisons and gas generators comprising said initiators

Publications (2)

Publication Number Publication Date
EP1866265A2 EP1866265A2 (en) 2007-12-19
EP1866265B1 true EP1866265B1 (en) 2017-11-08

Family

ID=35686576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06726280.8A Active EP1866265B1 (en) 2005-03-30 2006-03-28 Electrical initiators using self-initiating compositions and gas generators comprising said initiators

Country Status (3)

Country Link
EP (1) EP1866265B1 (en)
FR (1) FR2883868B1 (en)
WO (1) WO2006103366A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902783B1 (en) * 2006-06-27 2008-10-24 Snpe Materiaux Energetiques Sa THERMO-INITIABLE PYROTECHNIC COMPOSITIONS, USE
FR2945288B1 (en) * 2009-05-05 2011-07-22 Snpe Materiaux Energetiques PYROTECHNIC SOLID COMPOUND, DRY PRODUCTION AND USE

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105060C1 (en) * 1981-02-12 1982-09-30 Diehl GmbH & Co, 8500 Nürnberg Initiating explosive mixture without detonator and provision of the initiating explosive mixture in a missile
US5084118A (en) * 1990-10-23 1992-01-28 Automotive Systems Laboratory, Inc. Ignition composition for inflator gas generators
DE69323410T2 (en) * 1992-07-13 1999-09-02 Nippon Koki Kk GAS GENERATOR FOR AIRBAGS
US5380380A (en) * 1994-02-09 1995-01-10 Automotive Systems Laboratory, Inc. Ignition compositions for inflator gas generators
US5959242A (en) * 1996-05-14 1999-09-28 Talley Defense Systems, Inc. Autoignition composition
US6453816B2 (en) * 1996-07-20 2002-09-24 Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik Temperature fuse with lower detonation point
CZ299764B6 (en) * 1996-07-20 2008-11-19 Delphi Technologies, Inc. Thermal fuse
US6214138B1 (en) * 1997-08-18 2001-04-10 Breed Automotive Technology, Inc. Ignition enhancer composition for an airbag inflator
DE19805976C1 (en) * 1998-02-13 1999-04-29 Nigu Chemie Gmbh Pre-ignition powder for thermal safety device for car air-bags
US6132480A (en) * 1999-04-22 2000-10-17 Autoliv Asp, Inc. Gas forming igniter composition for a gas generant
JP4131486B2 (en) * 1999-07-09 2008-08-13 日本化薬株式会社 Auto-igniting enhancer composition
US6143101A (en) * 1999-07-23 2000-11-07 Atlantic Research Corporation Chlorate-free autoignition compositions and methods
US20030145922A1 (en) * 2002-02-04 2003-08-07 Taylor Robert D. Vehicular occupant restraint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2883868B1 (en) 2007-08-03
WO2006103366A2 (en) 2006-10-05
WO2006103366A3 (en) 2007-04-05
FR2883868A1 (en) 2006-10-06
EP1866265A2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP3566296B2 (en) Ignition composition for inflator gas generator
US8075715B2 (en) Reactive compositions including metal
EP0482755B1 (en) Ignition composition for inflator gas generators
JPH08511233A (en) Ignition composition for inflator gas generator
US5936195A (en) Gas generating composition with exploded aluminum powder
US20070181236A1 (en) Gas-generating pyrotechnical compositions and pyrotechnical compounds for automotive safety
Zuo et al. Thermal decomposition and combustion behavior of solid propellant containing Si-based composites
EP1866265B1 (en) Electrical initiators using self-initiating compositions and gas generators comprising said initiators
WO2009095578A2 (en) Composition for generating nitrogenous gas and including azodicarbonamide, and method for generating nitrogen gas by decomposition of said composition
JP2007523036A (en) Spontaneous ignition pyrotechnic booster composition
US8992707B2 (en) Explosive composition having a first organic material infiltrated into a second microporous material
WO2008001005A2 (en) Pyrotechnic compositions initiable by heat, and their use
JP2000517282A (en) Gas generating composition
CN114174244A (en) Ignition booster composition
AU2013213697B2 (en) Active composition for a decoy which radiates spectrally on burnup of the active composition
CN100455553C (en) Thermally initiatable ignition mixture
CA2502155A1 (en) Explosive compound
US6645326B2 (en) Low temperature autoignition material
JP2008515754A (en) Mixtures as ignition mixtures that can initiate thermal reactions
US20050199324A1 (en) High impetus, high burn rate gas generant propellant and seatbelt pretensioner incorporating same
JP2001507325A (en) Autoignition composition for gas generator of inflator
US20060075681A1 (en) Pyrotechnic composition
US9162933B1 (en) Auto-ignition composition
FR2715400A1 (en) Gas generating composition for automobile airbags.
JP2007519602A (en) Gas generator and spontaneous ignition booster composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071030

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100805

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20171004

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 943986

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006054044

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 943986

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006054044

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006054044

Country of ref document: DE

26N No opposition filed

Effective date: 20180809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060328

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230328

Year of fee payment: 18