EP1863116A1 - Coupleur directif large bande - Google Patents

Coupleur directif large bande Download PDF

Info

Publication number
EP1863116A1
EP1863116A1 EP07109045A EP07109045A EP1863116A1 EP 1863116 A1 EP1863116 A1 EP 1863116A1 EP 07109045 A EP07109045 A EP 07109045A EP 07109045 A EP07109045 A EP 07109045A EP 1863116 A1 EP1863116 A1 EP 1863116A1
Authority
EP
European Patent Office
Prior art keywords
coupler
line
terminal
attenuators
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07109045A
Other languages
German (de)
English (en)
Other versions
EP1863116B1 (fr
Inventor
François DUPONT
Hilal Ezzeddine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1863116A1 publication Critical patent/EP1863116A1/fr
Application granted granted Critical
Publication of EP1863116B1 publication Critical patent/EP1863116B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • H01P5/186Lange couplers

Definitions

  • the present invention relates to the field of couplers which are intended to extract information proportional to a signal conveyed by a transmission line.
  • the invention more particularly relates to couplers made by means of conductive lines coupled to each other without contact. These couplers are called distributed line couplers as opposed to localized element couplers, made from capacitive and inductive elements.
  • the present invention applies more particularly to the field of radio frequency couplers, for example, for mobile radio type of communication applications.
  • FIG. 1 shows a typical example of a distributed line coupler.
  • a main line 11 connects an IN input access to a DIR output port. This line 11 constitutes the primary of the coupler and is intended to convey the useful signal.
  • a secondary line 12 is arranged parallel to the line 11 so as to ensure a coupling without contact therewith to take a part of the power present on the line 11.
  • the two ends of the line 12 define accesses, respectively CPLD intended to interpret the result of the coupling and ISO usually isolated, that is to say in the air.
  • the coupler is typically made by metal tracks deposited on an insulating substrate.
  • the first three parameters above are generally measured while the two unacknowledged terminals are loaded by standard impedances (typically 50 ohms).
  • the lengths given to the main and secondary lines are calculated according to the center frequency of the bandwidth for which the coupler is intended and the desired coupling. Typically, these lines have lengths corresponding to a quarter of the wavelength of this central frequency. The longer the lines, the more insertion losses are important.
  • FIG. 2 very schematically shows in the form of blocks a radiofrequency transmission chain of the type to which the present invention applies by way of example.
  • An emission amplifier 1 receives an RF radiofrequency signal to be transmitted by an antenna 2.
  • a 10-line coupler is used distributed between the output of FIG. the amplifier 1 and the antenna 2.
  • the IN and DIR ports of the transmission main line 11 are respectively connected to the output of the amplifier 1 and to the input of the antenna 2.
  • the terminal CPLD of the coupled line is connected in input of a detector 2 (DET) whose output is compared (comparator 4) to the reference signal REF to adjust the transmit power (the gain) of the amplifier 1.
  • DET detector 2
  • a signal entering via the DIR terminal is trapped by the ISO terminal so as to prevent this signal from reaching the application, for example the amplifier 1 (FIG. 2).
  • the ISO terminal is usually charged with a 50 ohm impedance connected to ground. Higher directivity is a higher dB attenuation between ISO and CPLD access.
  • an external isolator is provided between the coupler 10 and the antenna 2 so as to prevent a return of the signal to the amplifier 1.
  • the coupler does not need to be directive and the terminal ISO is usually left in the air.
  • the present invention relates more particularly to directional couplers.
  • a disadvantage of the couplers of the type illustrated in FIG. 1 is that the coupling is very sensitive to the frequency of the transmitted signal.
  • a directional coupler is described, for example, in the patent application No. US-A 2004/0113716 of the plaintiff.
  • This coupler is with interdigital transmission lines, also known under the name of Lange coupler.
  • a Lange structure improves the coupling between the lines.
  • capacitive elements are provided between terminals of the coupler, or between some of these terminals and the ground.
  • a disadvantage is that, in the ranges of frequencies to which the invention is directed, the values of the capacitive elements are so small that they approach the parasitic capacitance values of the structure, which makes the coupler difficult to achieve.
  • the present invention aims to overcome all or part of the disadvantages of known couplers in distributed lines.
  • the invention aims more particularly to keep a low coupling substantially constant over a wide band while maintaining a good directivity.
  • said localized element structure comprises, on the second end of the second line, two attenuators between which a low-pass filter is arranged.
  • the low-pass filter or filters comprise exclusively a conductive plane winding.
  • said attenuators each consist of an assembly of resistive elements providing input / output impedances equal to a reference impedance.
  • said assemblies are in " ⁇ ".
  • said distributed-line structure is a Lange structure.
  • no element has any capacitive element with the exception of possible parasitic capacitances.
  • the invention also provides a radiofrequency transmission system comprising, between a transmission amplifier and a connection to an antenna, a directional coupler.
  • a feature of an embodiment of the present invention is to combine a Lange structure-type distributed line structure with a localized element structure comprising at least one low-pass filter in series with the secondary line of the distributed structure.
  • FIG. 2 represents the diagram of an embodiment of a coupler according to the present invention.
  • This coupler has a distributed line structure 20 associated with a localized element structure 30, the combination of these two structures providing the coupler as a whole.
  • the structure 20 is in the form of a Lange structure in which the lines 11 'and 12' are interdigitated.
  • each line comprises two parallel rectilinear sections 111 and 112, respectively 121 and 122.
  • the section 111 connects IN and DIR accesses of the coupler.
  • the section 121 parallel to the section 111, connects internal accesses ICPLD and IISO of the distributed line structure. Between the sections 111 and 121 are successively arranged the section 122, then the section 112, to obtain the interdigitated structure.
  • the sections 111 and 112 are connected by a perpendicular section 113 on the access side IN.
  • a perpendicular link section 123 connects the ends of the sections 121 and 122 on the IISO access side.
  • conductive sections (bridges) 114 and 124 connect the respective free ends of sections 112 and 122 to accesses DIR and ICPLD respectively.
  • the links 114 and 124 are made by vias (not shown) and conductive tracks in a second conductive level with respect to a level in which are realized , in plan, the tracks 111, 112, 113, 121, 122 and 123 as well as access pads IN, DIR ICPLD and IISO.
  • the localized element structure 30 is constituted, between the ICPLD port and a CPLD terminal of the coupler intended to be connected to the application (for example to a detector 3 of the type illustrated in FIG. 2), of two attenuators 31. and 32 between which is interposed a low-pass filter 35.
  • Each attenuator 31, 32 is for example constituted by a ⁇ (pi) assembly of three resistive elements R311, R312 and R313, respectively R321, R322 and R323.
  • the resistive element R311 connects the access ICPLD to a first end of the inductive element 33 whose other end is connected to the terminal CPLD by the resistor R321.
  • Each resistive element R312, R313, R322 or R323 connects a terminal of one of the resistors R311 and R321 to ground M.
  • the low-pass filter 35 consists, for example, of an inductive element formed by a plane winding of a track conductive on an insulating support, the other face preferably comprises a ground plane M. The presence of this ground plane under the inductive element has been illustrated in FIG. 3 by an electrode 351 connected to the ground M.
  • insulating support may be the same substrate as that receiving the structure 20.
  • the distributed line structure 20 provides isolation between the transmission line 11 'and the coupled line 12'.
  • the presence of the attenuators 31 and 32 decreases the power of the coupling while the low-pass filter provides stability in frequency.
  • a low-pass filter of the first order is sufficient in the applications covered by the invention.
  • the terminal ISO is, for example, intended to be connected to a second detector, which justifies the presence of the low-pass filter 36 and the two attenuators 33 and 34.
  • the presence of both Attenuators participate in obtaining a low coupling factor (significant attenuation) while maintaining a high directivity.
  • One advantage of the combination of the two structures 20 and 30 is that it makes it possible to size the Lange structure for a coupling of a relatively large factor, which does not impose too small dimensions and preserves acceptable insertion losses. . This structure becomes easily achievable while preserving a good directivity. The attenuation complement of the coupled channel then comes from the attenuators.
  • the quality factor of the inductive elements 35 and 36 is not critical for the implementation of the invention insofar as these inductors are placed on the coupled and isolated channels.
  • these inductive elements are located on the attenuated path (secondary line) with respect to the transmission line main, a possible coupling between the two inductive elements will remain negligible.
  • FIG. 4 schematically shows in the form of blocks a second embodiment of a coupler according to the invention.
  • the structure 30 'with localized elements comprises, on the ISO terminal side, only an attenuator 33 (ATT1').
  • ATT1' Attenuator 33
  • Such an assembly is more particularly intended for the case where only the terminal CPLD is charged by a detector.
  • the ISO terminal is then connected to ground via a 50 ohm load (or reference impedance). Be careful not to connect the ISO terminal directly to the ground otherwise the coupler would no longer be directive.
  • FIG. 3 Compared with the assembly of FIG. 4, FIG. 3 has the advantage of a symmetrical structure. However, it requires one inductor and three more resistors.
  • An advantage of the coupler of the present invention is that it is devoid of capacitive element (other than potential parasitic capacitances such as, for example, between the tracks forming the inductances of the filters 35 and 36 and the electrodes 351 and 361). This makes the structure robust to electro-static discharges (ESD) without requiring additional protection.
  • ESD electro-static discharges
  • Another advantage of the coupler of the invention is to reduce the ripple of the coupling factor in each band as well as from one band to another in a multi-frequency band application compared to conventional couplers. In addition, it allows to use a single coupler.
  • a coupler of the type illustrated in FIG. 3 has been realized for frequencies ranging from about 800 MHz to 2 GHz, obtaining a coupling of -40 dB and a directivity of -30 dB, compared to a coupling of -20 dB and a directivity of -25 dB in the classical case (Lange coupler alone).
  • the variation of the coupling factor from one band to another between the GSM band (around 200 MHz around 900 MHz) and the DCS band (around 200 MHz around 1.8 GHz) goes from 12 dB to less than 2 dB.
  • the variation of the coupling factor goes from about 1 dB to less than 0.3 dB.
  • Such a coupler has a total footprint of 1.8 by 1.2 mm 2 when it is made using technologies of the type used for the manufacture of integrated circuits.
  • the present invention is susceptible of various variations and modifications which will be apparent to those skilled in the art.
  • the distributed-line structure may be more complex (more interdigital branches) or, conversely, a non-interdigitated distributed structure.
  • the dimensions of the various elements used by the invention are within the abilities of those skilled in the art from the functional indications given above and according to the intended application.
  • ⁇ resistive attenuators are a preferred embodiment, other localized element arrangements may be provided, for example, any "T" or other attenuation structure, ensuring 50 ohms (or other reference impedance) on either side of the attenuation structure.

Abstract

L'invention concerne un coupleur directif, comportant : une première structure (20) à lignes distribuées dont une première ligne conductrice (11') est destinée à véhiculer un signal principal entre deux bornes d'extrémité (IN, DIR) et dont une deuxième ligne conductrice (12'), couplée à la première, est destinée à véhiculer un signal secondaire proportionnel au signal principal ; et une deuxième structure (30) à éléments localisés comportant, entre une première borne (CPLD) du coupleur destinée à extraire le signal secondaire et une première extrémité (ICPLD) de la deuxième ligne, deux atténuateurs (31, 32) en série entre lesquels est intercalé un filtre passe-bas (35) et, entre une deuxième borne (ISO) du coupleur et la deuxième extrémité (IISO) de la deuxième ligne, au moins un atténuateur (33).

Description

    Domaine de l'invention
  • La présente invention concerne le domaine des coupleurs qui sont destinés à extraire une information proportionnelle à un signal véhiculé par une ligne de transmission. L'invention concerne plus particulièrement les coupleurs réalisés au moyen de lignes conductrices couplées l'une à l'autre sans contact. Ces coupleurs sont appelés des coupleurs à lignes distribuées par opposition à des coupleurs à éléments localisés, réalisés à partir d'éléments capacitifs et inductifs.
  • La présente invention s'applique plus particulièrement au domaine des coupleurs radiofréquence, par exemple, pour des applications de radiocommunication de type téléphonie mobile.
  • Exposé de l'art antérieur
  • La figure 1 représente un exemple classique de coupleur 10 à lignes distribuées. Une ligne principale 11 relie un accès d'entrée IN à un accès de sortie DIR. Cette ligne 11 constitue le primaire du coupleur et est destinée à véhiculer le signal utile. Une ligne secondaire 12 est disposée parallèlement à la ligne 11 de façon à assurer un couplage sans contact avec celle-ci pour prélever une partie de la puissance présente sur la ligne 11. Les deux extrémités de la ligne 12 définissent des accès, respectivement CPLD destiné à interpréter le résultat du couplage et ISO généralement isolé, c'est-à-dire en l'air. Le coupleur est typiquement réalisé par des pistes métalliques déposées sur un substrat isolant.
  • Un coupleur distribué se caractérise généralement par les paramètres suivants :
    • les pertes de transmission entre les bornes IN et DIR ;
    • le couplage qui correspond aux pertes de transmission entre les bornes IN et CPLD ;
    • l'isolation du couplage qui correspond à la perte de transmission entre les bornes DIR et ISO ; et
    • la directivité qui représente la différence en décibels entre les signaux présents sur les bornes ISO et CPLD.
  • Les trois premiers paramètres ci-dessus sont généralement mesurés alors que les deux bornes non prises en compte sont chargées par des impédances normalisées (généralement 50 ohms).
  • Les longueurs données aux lignes principale et secondaire sont calculées en fonction de la fréquence centrale de la bande passante à laquelle est destiné le coupleur et du couplage souhaité. Typiquement, ces lignes ont des longueurs correspondant au quart de la longueur d'onde de cette fréquence centrale. Plus les lignes sont longues, plus les pertes d'insertion sont importantes.
  • La figure 2 représente, de façon très schématique et sous forme de blocs, une chaîne d'émission radiofréquence du type à laquelle s'applique à titre d'exemple la présente invention. Un amplificateur d'émission 1 (PA) reçoit un signal radiofréquence RF à émettre par une antenne 2. Pour asservir la puissance d'émission à une valeur, fixée par une consigne REF, on utilise un coupleur 10 à lignes distribuées entre la sortie de l'amplificateur 1 et l'antenne 2. Les accès IN et DIR de la ligne principale 11 de transmission sont respectivement connectés en sortie de l'amplificateur 1 et en entrée de l'antenne 2. La borne CPLD de la ligne couplée est connectée en entrée d'un détecteur 2 (DET) dont la sortie est comparée (comparateur 4) au signal de référence REF pour ajuster la puissance d'émission (le gain) de l'amplificateur 1.
  • Dans un coupleur dit directif, un signal entrant par la borne DIR est piégé par la borne ISO de façon à éviter que ce signal atteigne l'application, par exemple l'amplificateur 1 (figure 2). Dans ce cas, la borne ISO est généralement chargée par une impédance de 50 ohms connectée à la masse. Par directivité plus élevée, on entend une atténuation en dB plus importante entre les accès ISO et CPLD.
  • Dans d'autres cas, un isolateur externe est prévu entre le coupleur 10 et l'antenne 2 de façon à empêcher un retour du signal vers l'amplificateur 1. Le coupleur n'a alors pas besoin d'être directif et la borne ISO est généralement laissée en l'air.
  • La présente invention concerne plus particulièrement les coupleurs directifs.
  • Un inconvénient des coupleurs du type de celui illustré en figure 1 est que le couplage est très sensible à la fréquence du signal émis.
  • Cet inconvénient est particulièrement gênant dans les applications de radiocommunication que vise plus particulièrement la présente invention. En effet, une variation du couplage trop élevée à l'intérieur d'une même bande de fréquences de fonctionnement (par exemple GSM ou DCS) nuit à l'optimisation du fonctionnement de la chaîne d'émission. De plus, le couplage peut fortement varier d'une bande de fréquences à une autre.
  • Un coupleur directif est décrit, par exemple, dans la demande de brevet N° US-A 2004/0113716 de la demanderesse. Ce coupleur est à lignes de transmission interdigitées, connu également sous la dénomination de coupleur de Lange. Par rapport à des coupleurs à lignes non interdigitées, une structure de Lange permet d'améliorer le couplage entre les lignes.
  • Par amélioration du couplage, on entend accroître l'atténuation en dB du signal sur la borne CPLD par rapport au signal utile de façon à prélever le moins possible de ce signal.
  • Par amélioration de la directivité, on entend accroître l'atténuation en dB du signal sur la borne ISO par rapport à la borne CPLD.
  • Traditionnellement, pour améliorer la directivité, on prévoit des éléments capacitifs soit entre des bornes du coupleur, soit entre certaines de ces bornes et la masse.
  • Un inconvénient est que, dans les gammes de fréquences que vise l'invention, les valeurs des éléments capacitifs sont tellement faibles qu'elles se rapprochent des valeurs de capacités parasites de la structure, ce qui rend le coupleur difficilement réalisable.
  • Résumé de l'invention
  • La présente invention vise à pallier tout ou partie des inconvénients des coupleurs connus en lignes distribuées.
  • L'invention vise plus particulièrement à garder un faible couplage sensiblement constant sur une large bande tout en maintenant une bonne directivité.
  • Pour atteindre tout ou partie de ces objets ainsi que d'autres, la présente invention prévoit un coupleur directif, comportant :
    • une première structure à lignes distribuées dont une première ligne conductrice est destinée à véhiculer un signal principal entre deux bornes d'extrémité et dont une deuxième ligne conductrice, couplée à la première, est destinée à véhiculer un signal secondaire proportionnel au signal principal ; et
    • une deuxième structure à éléments localisés comportant, entre une première borne du coupleur destinée à extraire le signal secondaire et une première extrémité de la deuxième ligne, deux atténuateurs en série entre lesquels est intercalé un filtre passe-bas et, entre une deuxième borne du coupleur et la deuxième extrémité de la deuxième ligne, au moins un atténuateur.
  • Selon un mode de réalisation de la présente invention, ladite structure à éléments localisés comporte, côté deuxième extrémité de la deuxième ligne, deux atténuateurs entre lesquels est disposé un filtre passe-bas.
  • Selon un mode de réalisation de la présente invention, le ou les filtres passe-bas comportent exclusivement un enroulement plan conducteur.
  • Selon un mode de réalisation de la présente invention, lesdits atténuateurs sont constitués chacun d'un montage d'éléments résistifs fournissant des impédances d'entrée/sortie égales à une impédance de référence.
  • Selon un mode de réalisation de la présente invention, lesdits montages sont en "π".
  • Selon un mode de réalisation de la présente invention, ladite structure à lignes distribuées est une structure de Lange.
  • Selon un mode de réalisation de la présente invention, aucun élément ne comporte d'élément capacitif à l'exception de capacités parasites éventuelles.
  • L'invention prévoit également une chaîne d'émission radiofréquence comportant, entre un amplificateur d'émission et une connexion vers une antenne, un coupleur directif.
  • Brève description des dessins
  • Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
    • la figure 1 décrite précédemment représente, de façon schématique, un coupleur distribué classique ;
    • la figure 2 décrite précédemment représente un exemple d'application d'un coupleur du type auquel s'applique la présente invention ;
    • la figure 3 représente, de façon schématique, un premier mode de réalisation d'un coupleur directif selon la présente invention ; et
    • la figure 4 représente, de façon schématique et sous forme de blocs, un deuxième mode de réalisation d'un coupleur directif selon la présente invention.
  • De mêmes éléments ont été désignés par de mêmes références aux différentes figures qui ont été tracées sans respect d'échelle. Pour des raisons de clarté, seuls les éléments qui sont utiles à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, les signaux traversant le coupleur ainsi que l'exploitation faite des mesures par la ligne couplée n'ont pas été détaillés, l'invention étant compatible avec toute application classique de tels signaux.
  • Description détaillée
  • Une caractéristique d'un mode de réalisation de la présente invention est de combiner une structure à lignes distribuées de type structure de Lange à une structure à éléments localisés comprenant au moins un filtre passe-bas en série avec la ligne secondaire de la structure distribuée.
  • La figure 2 représente le schéma d'un mode de réalisation d'un coupleur selon la présente invention.
  • Ce coupleur comporte une structure 20 à lignes distribuées associée à une structure 30 à éléments localisés, la combinaison de ces deux structures réalisant le coupleur dans son ensemble.
  • La structure 20 a la forme d'une structure de Lange dans laquelle les lignes 11' et 12' sont interdigitées. Dans l'exemple de la figure 3, chaque ligne comporte deux tronçons rectilignes parallèles 111 et 112, respectivement 121 et 122. Le tronçon 111 relie des accès IN et DIR du coupleur. Le tronçon 121, parallèle au tronçon 111, relie des accès interne ICPLD et IISO de la structure à lignes distribuées. Entre les tronçons 111 et 121 sont disposés successivement le tronçon 122, puis le tronçon 112, pour obtenir la structure interdigitée. Les tronçons 111 et 112 sont reliés par un tronçon perpendiculaire 113 côté accès IN. Un tronçon de liaison perpendiculaire 123 relie les extrémités des tronçons 121 et 122 côté accès IISO. Enfin, des tronçons (ponts) conducteurs 114 et 124 relient les extrémités libres respectives des tronçons 112 et 122 aux accès DIR et ICPLD respectivement. Dans une réalisation utilisant les technologies des circuits intégrés à laquelle s'applique la présente invention, les liaisons 114 et 124 sont réalisées par des vias (non représentés) et des pistes conductrices dans un deuxième niveau conducteur par rapport à un niveau dans lequel sont réalisées, en plan, les pistes 111, 112, 113, 121, 122 et 123 ainsi que des plots d'accès IN, DIR ICPLD et IISO.
  • La structure 30 à éléments localisés est constituée, entre l'accès ICPLD et une borne CPLD du coupleur destinée à être connectée à l'application (par exemple à un détecteur 3 du type de celui illustré par la figure 2), de deux atténuateurs 31 et 32 entre lesquels est intercalé un filtre passe-bas 35. Chaque atténuateur 31, 32 est par exemple constitué d'un montage en π (pi) de trois éléments résistifs R311, R312 et R313, respectivement R321, R322 et R323. L'élément résistif R311 relie l'accès ICPLD à une première extrémité de l'élément inductif 33 dont l'autre extrémité est reliée à la borne CPLD par la résistance R321. Chaque élément résistif R312, R313, R322 ou R323 relie une borne d'une des résistances R311 et R321 à la masse M. Le filtre passe-bas 35 est par exemple constitué d'un élément inductif réalisé par un enroulement plan d'une piste conductrice sur un support isolant dont l'autre face comporte, de préférence, un plan de masse M. La présence de ce plan de masse sous l'élément inductif a été illustrée en figure 3 par une électrode 351 reliée à la masse M. Le support isolant peut être le même substrat que celui recevant la structure 20.
  • Un montage identique est reproduit entre la borne IISO de la structure de Lange 20 et une borne ISO finale du coupleur. On retrouve deux atténuateurs 33 et 34 formés d'éléments résistifs R331, R332 et R333, respectivement R341, R342 et R343, et un filtre passe-bas 36 formé d'un élément inductif de préférence sous la forme d'une piste conductrice plane dont un plan de masse sous-jacent est illustré par une électrode 361 reliée à la masse.
  • La structure à lignes distribuées 20 apporte l'isolation entre la ligne de transmission 11' et la ligne couplée 12'.
  • La présence des atténuateurs 31 et 32 diminue la puissance du couplage tandis que le filtre passe-bas apporte la stabilité en fréquence. Un filtre passe-bas du premier ordre est suffisant dans les applications visées par l'invention.
  • Le fait de prévoir deux atténuateurs de part et d'autre du filtre 35 permet de préserver l'adaptation d'impédance dans les deux sens (vue du coupleur et vue du détecteur).
  • Dans le mode de réalisation de la figure 3, la borne ISO est, par exemple, destinée à être connectée à un deuxième détecteur, ce qui justifie la présence du filtre passe-bas 36 et des deux atténuateurs 33 et 34. La présence des deux atténuateurs participe à l'obtention d'un faible facteur de couplage (atténuation importante) tout en maintenant une directivité élevée.
  • Un avantage de la combinaison des deux structures 20 et 30 est qu'elle permet de dimensionner la structure de Lange pour un couplage d'un facteur relativement important, ce qui n'impose pas des dimensions trop faibles et préserve des pertes d'insertion acceptables. Cette structure devient aisément réalisable en préservant une bonne directivité. Le complément d'atténuation de la voie couplée provient alors des atténuateurs.
  • Le facteur de qualité des éléments inductifs 35 et 36 n'est pas critique pour la mise en oeuvre de l'invention dans la mesure où ces inductances sont placées sur les voies couplée et isolée. De plus, ces éléments inductifs se situant sur la voie atténuée (ligne secondaire) par rapport à la ligne de transmission principale, un couplage éventuel entre les deux éléments inductifs restera négligeable.
  • La figure 4 représente, de façon schématique et sous forme de blocs, un deuxième mode de réalisation d'un coupleur selon l'invention. Par rapport à la figure 3, la différence est que la structure 30' à éléments localisés comporte, côté borne ISO, uniquement un atténuateur 33 (ATT1'). Un tel montage est plus particulièrement destiné au cas où seule la borne CPLD est chargée par un détecteur. La borne ISO est alors reliée à la masse par l'intermédiaire d'une charge 50 ohms (ou de l'impédance de référence). On veillera à ne pas relier la borne ISO directement à la masse faute de quoi le coupleur ne serait plus directif.
  • Par rapport au montage de la figure 4, la figure 3 présente l'avantage d'une structure symétrique. Toutefois, elle nécessite une inductance et trois résistances de plus.
  • Un avantage du coupleur de la présente invention est qu'il est dépourvu d'élément capacitif (autre que d'éventuelles capacités parasites comme, par exemple, entre les pistes formant les inductances des filtres 35 et 36 et les électrodes 351 et 361). Cela rend la structure robuste aux décharges électro-stastiques (ESD) sans requérir de protection supplémentaire.
  • Un autre avantage du coupleur de l'invention est de diminuer l'ondulation du facteur de couplage dans chaque bande ainsi que d'une bande à une autre dans une application à plusieurs bandes de fréquences par rapport à des coupleurs classiques. De plus, cela permet d'utiliser un seul coupleur.
  • A titre de comparaison, on a réalisé un coupleur du type de celui illustré par la figure 3 pour des fréquences allant d'environ 800 MHz à 2 GHz en obtenant un couplage de -40 dB et une directivité de -30 dB, à comparer à un couplage de -20 dB et une directivité de -25 dB dans le cas classique (coupleur de Lange seul).
  • De plus, la variation du facteur de couplage d'une bande à une autre entre la bande GSM (environ 200 MHz autour de 900 MHz) et la bande DCS (environ 200 MHz autour de 1,8 GHz) passe de 12 dB à moins de 2 dB.
  • Dans chaque bande, la variation du facteur de couplage passe d'environ 1 dB à moins de 0,3 dB.
  • A titre d'exemple particulier de réalisation, un coupleur selon l'invention destiné aux bandes GSM et DCS a été réalisé avec les dimensions et composants suivants :
    • structure de Lange à lignes distribuées d'une longueur totale d'environ 1,7 mm (longueur développée de chaque ligne d'environ 3,5 mm) ;
    • éléments inductifs 35 et 36 réalisés par des enroulements conducteurs plans de 4,5 mm ;
    • résistances R311, R321, R331 et R341 : 70 Ω ; et
    • résistances R312, R313, R322, R323, R332, R333, R342 et R343 : 60 Ω.
  • Un tel coupleur présente un encombrement total de 1,8 par 1,2 mm2 lorsqu'il est réalisé en utilisant des technologies du type de celles utilisées pour la fabrication de circuits intégrés.
  • Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, la structure à lignes distribuées pourra être plus complexe (plus de branches interdigitées) ou, à l'inverse, une structure distribuée non interdigitée. De plus, les dimensions des différents éléments utilisés par l'invention sont à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus et en fonction de l'application visée. En outre, bien que des atténuateurs résistifs en π constituent un mode de réalisation préféré, d'autres montages à éléments localisés pourront être prévus, par exemple, n'importe quelle structure d'atténuation en "T" ou autre, garantissant une adaptation de 50 ohms (ou autre impédance de référence) de part et d'autre de la structure d'atténuation.

Claims (8)

  1. Coupleur directif, caractérisé en ce qu'il comporte :
    une première structure (20) à lignes distribuées dont une première ligne conductrice (11') est destinée à véhiculer un signal principal entre deux bornes d'extrémité (IN, DIR) et dont une deuxième ligne conductrice (12'), couplée à la première, est destinée à véhiculer un signal secondaire proportionnel au signal principal ; et
    une deuxième structure (30) à éléments localisés comportant, entre une première borne (CPLD) du coupleur destinée à extraire le signal secondaire et une première extrémité (ICPLD) de la deuxième ligne, deux atténuateurs (31, 32) en série entre lesquels est intercalé un filtre passe-bas (35) et, entre une deuxième borne (ISO) du coupleur et la deuxième extrémité (IISO) de la deuxième ligne, au moins un atténuateur (33).
  2. Coupleur selon la revendication 1, dans lequel ladite structure à éléments localisés (30') comporte, côté deuxième extrémité (IISO) de la deuxième ligne (12'), deux atténuateurs (33, 34) entre lesquels est disposé un filtre passe-bas (36).
  3. Coupleur selon l'une quelconque des revendications 1 et 2, dans lequel le ou les filtres passe-bas (35, 36) comportent exclusivement un enroulement plan conducteur.
  4. Coupleur selon l'une quelconque des revendications 1 à 3, dans lequel lesdits atténuateurs (31, 32, 33, 34) sont constitués chacun d'un montage d'éléments résistifs (R311, R312, R313 ; R321, R322, R323 ; R331, R332, R333 ; R341, R342, R343) fournissant des impédances d'entrée/sortie égales à une impédance de référence.
  5. Coupleur selon la revendication 4, dans lequel lesdits montages sont en "π".
  6. Coupleur selon l'une quelconque des revendications 1 à 5, dans lequel ladite structure à lignes distribuées (20) est une structure de Lange.
  7. Coupleur selon l'une quelconque des revendications 1 à 6, dans lequel aucun élément ne comporte d'élément capacitif à l'exception de capacités parasites éventuelles.
  8. Chaîne d'émission radiofréquence comportant, entre un amplificateur (1) d'émission et une connexion vers une antenne (2), un coupleur conforme à l'une quelconque des revendications 1 à 7.
EP07109045A 2006-05-30 2007-05-28 Coupleur directif large bande Expired - Fee Related EP1863116B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0651948A FR2901919A1 (fr) 2006-05-30 2006-05-30 Coupleur directif large bande

Publications (2)

Publication Number Publication Date
EP1863116A1 true EP1863116A1 (fr) 2007-12-05
EP1863116B1 EP1863116B1 (fr) 2009-01-21

Family

ID=37709539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07109045A Expired - Fee Related EP1863116B1 (fr) 2006-05-30 2007-05-28 Coupleur directif large bande

Country Status (4)

Country Link
US (1) US7671698B2 (fr)
EP (1) EP1863116B1 (fr)
DE (1) DE602007000501D1 (fr)
FR (1) FR2901919A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362483A1 (fr) * 2010-02-19 2011-08-31 Harris Corporation Dispositif de couplage directionnel de radiofréquence et procédés apparentés

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2384095B1 (fr) * 2009-01-29 2014-10-15 Panasonic Corporation Circuit de transmission différentiel et dispositif électronique le renfermant
US7961064B2 (en) * 2009-01-30 2011-06-14 Tdk Corporation Directional coupler including impedance matching and impedance transforming attenuator
FR2947400B1 (fr) * 2009-06-26 2011-06-03 St Microelectronics Tours Sas Circuit de couplage multibandes
EP2439812B1 (fr) * 2009-12-18 2016-07-13 Murata Manufacturing Co., Ltd. Coupleur directionnel
US8299871B2 (en) * 2010-02-17 2012-10-30 Analog Devices, Inc. Directional coupler
FR2965113B1 (fr) * 2010-09-17 2012-09-21 St Microelectronics Tours Sas Architecture de couplage multi-bande
US20130027273A1 (en) * 2011-07-27 2013-01-31 Tdk Corporation Directional coupler and wireless communication device
WO2013076802A1 (fr) * 2011-11-22 2013-05-30 三菱電機株式会社 Procédé de production de blindage électromagnétique pour fils métalliques minces, blindage électromagnétique pour fils métalliques minces et dispositif d'induction stationnaire comportant celui-ci
JP5812184B2 (ja) * 2012-03-02 2015-11-11 株式会社村田製作所 方向性結合器
WO2017143045A1 (fr) * 2016-02-17 2017-08-24 Eagantu Ltd. Coupleur directionnel à large bande
US9893409B2 (en) * 2016-07-01 2018-02-13 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Branch-line coupler
WO2020045429A1 (fr) * 2018-08-30 2020-03-05 株式会社村田製作所 Coupleur directionnel
US10644375B1 (en) 2018-11-14 2020-05-05 Nanning Fugui Precision Industrial Co., Ltd. Branch-line coupler
US11322815B2 (en) * 2020-04-22 2022-05-03 Macom Technology Solutions Holdings, Inc. Prematched power resistance in lange couplers and other circuits
CN113676195A (zh) * 2020-05-15 2021-11-19 大富科技(安徽)股份有限公司 一种腔体耦合器及其通信电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150898A (en) * 1996-03-22 2000-11-21 Matsushita Electric Industrial Co., Ltd. Low-pass filter with directional coupler and cellular phone
US20050212617A1 (en) * 2004-01-02 2005-09-29 Lu Chen Directional coupler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523725A (en) * 1994-03-03 1996-06-04 Murata Manufacturing Co., Ltd. Signal-to-noise enhancer
JP3063054B2 (ja) * 1996-03-08 2000-07-12 株式会社村田製作所 分配器、合成器およびs/nエンハンサ
EP1187357B1 (fr) * 2000-03-15 2010-05-19 Hitachi Metals, Ltd. Module haute fréquence et dispositif de communication sans fil
KR100440252B1 (ko) * 2002-05-15 2004-07-15 한국전자통신연구원 에스엔 강화기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150898A (en) * 1996-03-22 2000-11-21 Matsushita Electric Industrial Co., Ltd. Low-pass filter with directional coupler and cellular phone
US20050212617A1 (en) * 2004-01-02 2005-09-29 Lu Chen Directional coupler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362483A1 (fr) * 2010-02-19 2011-08-31 Harris Corporation Dispositif de couplage directionnel de radiofréquence et procédés apparentés
US8169277B2 (en) 2010-02-19 2012-05-01 Harris Corporation Radio frequency directional coupler device and related methods

Also Published As

Publication number Publication date
FR2901919A1 (fr) 2007-12-07
US7671698B2 (en) 2010-03-02
US20070279147A1 (en) 2007-12-06
DE602007000501D1 (de) 2009-03-12
EP1863116B1 (fr) 2009-01-21

Similar Documents

Publication Publication Date Title
EP1863116B1 (fr) Coupleur directif large bande
EP1427053B1 (fr) Coupleur directif
EP2483965B1 (fr) Amelioration de la selectivite d'un coupleur bi-bande
FR2923950A1 (fr) Coupleur bidirectionnel integre.
EP2267910A2 (fr) Circuit de couplage multibandes
FR2877163A1 (fr) Reglage du rapport d'impedances d'un balun
FR2928508A1 (fr) Circuit integrant une antenne accordable a correction de taux d'onde stationnaire
FR2762729A1 (fr) Diviseur de puissance rf
EP1995740B1 (fr) Structure inductive plane
FR2938378A1 (fr) Ligne a retard bi-ruban differentielle coplanaires, filtre differentiel d'ordre superieur et antenne filtrante munis d'une telle ligne
EP1367714A1 (fr) Coupleur haute frequence
EP1429458A2 (fr) Transformateur à changement de mode sélectif en fréquences
EP2178152A1 (fr) Dispositif de commutation électronique pour signaux a haute fréquence
EP2432129B1 (fr) Architecture de couplage multi-bande
FR3004007A1 (fr) Coupleur large bande
WO2011003724A1 (fr) Coupleur de wilkinson intégré dans un circuit imprimé et dispositif hyperfréquence comportant un tel coupleur
CN100440726C (zh) 带域内群延迟平坦电路及失真补偿型放大器
EP0015610A1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
FR2714531A1 (fr) Atténuateur variable.
EP2147478B1 (fr) Coupleur de signaux hyperfrequences en technologie microruban
FR2802737A1 (fr) Composant composite pour hautes frequences et appareil de telecommunications mobile l'incorporant
EP2515373B1 (fr) Duplexeur fréquentiel à faible masse et faible encombrement
FR2809245A1 (fr) Filtre passe-bas et dispositif de telecommunications mobiles l'utilisant
EP0790503B1 (fr) Dispositif de mesure de puissance radiofréquence
EP3301751B1 (fr) Dispositif électronique à antenne isolée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602007000501

Country of ref document: DE

Date of ref document: 20090312

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110503

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120625

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007000501

Country of ref document: DE

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531