EP1861927A1 - Oscillator - Google Patents

Oscillator

Info

Publication number
EP1861927A1
EP1861927A1 EP06708676A EP06708676A EP1861927A1 EP 1861927 A1 EP1861927 A1 EP 1861927A1 EP 06708676 A EP06708676 A EP 06708676A EP 06708676 A EP06708676 A EP 06708676A EP 1861927 A1 EP1861927 A1 EP 1861927A1
Authority
EP
European Patent Office
Prior art keywords
oscillator
inverter
ring
node
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06708676A
Other languages
German (de)
French (fr)
Inventor
Gerd Rombach
Markus Dietel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Deutschland GmbH
Original Assignee
Texas Instruments Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/366,348 external-priority patent/US20070052483A1/en
Application filed by Texas Instruments Deutschland GmbH filed Critical Texas Instruments Deutschland GmbH
Publication of EP1861927A1 publication Critical patent/EP1861927A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators

Definitions

  • the present invention relates to an oscillator.
  • Ring oscillators are widely used in CMOS circuits.
  • a typical ring oscillator is made-up of an odd number of cascaded inverting delay stages connected into a ring. Each stage has an output connected to an input of a following stage, and the connection of an output of a stage with the input of the following stage is called a node.
  • the oscillating frequency of such a ring oscillator is controlled trough the delay caused by each of the stages in the ring.
  • the delay in each stage is due to an inherent capacitance that needs to be charged to a certain voltage level through an associated current source. Accordingly, the delay of each stage in the ring, and thus the oscillation frequency of the ring oscillator, can be controlled by adjusting the current from the current source.
  • a ring oscillator, the oscillation frequency of which is tuned trough a current source is of a partial-swing type since the voltage drop across the current source detracts from the possible output voltage swing of the delay stages in the ring.
  • Phase noise performance and a wide frequency pulling range are challenges to ring oscillators for use in advanced communication applications.
  • the present invention provides a ring oscillator that has an improved phase noise performance and a wide pulling range.
  • the ring oscillator comprises a first oscillator ring with a number of cascaded inverting delay stages and a second oscillator ring with a like number of cascaded inverting delay stages.
  • the ring oscillator also includes a like number of inverter pairs which each consists of a first inverter and a second inverter, an input of the first inverter being connected with an output of the second inverter and an input of the second inverter being connected with an output of the first inverter.
  • Each inverter pair connects a node of the first oscillator ring with a node of the second oscillator ring.
  • the invention proposes to use essentially all the consumed power for the switching process, implementing very steep edges of the oscillator signal.
  • the inverting delay stages of the first and second oscillator rings are connected to a single power supply. This leads to a stronger connection of the complementary phases and also determines the power of the switching edges.
  • the invention provides two possible implementations.
  • continuously variable capacitive elements are used. These continuously variable capacitive elements can be achieved in CMOS technology with a MOS transistor the source and drain of which are connected to a node and the gate of which is connected to a control voltage source.
  • the control voltage source supplies a pulsed voltage and the capacitance is controlled by adjusting the duty cycle of the pulsed voltage.
  • each capacitive element is formed by a combination of a plurality of capacitors.
  • FIG. 1 is a schematic circuit diagram of the inventive oscillator
  • FIG. 2 is a circuit diagram of a variable capacitive element
  • FIG. 3 is a schematic circuit diagram of a capacitive element with discrete capacitors.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In the CMOS circuit of FIG. 1 , a first oscillator ring is made up of five cascaded inverting delay stages 10, 12, 14, 16 and 18. Between successive stages, a node is formed by an output of an upstream stage and an input of a following downstream stage. Stage 18 has an output looped back to the input of stage 10, also forming a node of the oscillator ring.
  • a second oscillator ring is made up of five cascaded inverting delay stages 20, 22, 24, 26 and 28. Again, between successive stages, a node is formed by an output of an upstream stage and an input of a following downstream stage and stage 28 has an output looped back to the input of stage 20, also forming a node of the oscillator ring.
  • the nodes between stages 10 and 12, 12 and 14, 14 and 16, 16 and 18 of the first oscillator ring are connected to the nodes between stages 20 and 22, 22 and 24, 24 and 26, 26 and 28 of the second oscillator ring through pairs of inverters 30a and 30b, 32a and 32b, 24a and 34b, 36a and 36b, 38a and 38b, respectively.
  • each inverter pair an input of a first inverter is connected with an output of a second inverter. Accordingly, corresponding nodes of the two oscillator rings are coupled by two inverters in opposite directions; thereby the forcing corresponding nodes to be synchronized at exactly 180° of mutual phase shift.
  • inverters in CMOS technology have a full-swing output (i.e. the output voltage is rail-to-rail), the nodes in both oscillator rings are also full-swing. Also, it should be understood that nearly all the power consumed in the oscillator is consumed in the switching edges.
  • stages 12 to 18 are shown with a supply connection to a positive current supply source Ip
  • stages 22 to 28 are shown with a supply connection to a negative current supply source In, it being understood that the stages in both rings all have connections to both of the positive and negative current sources Ip, In.
  • each node of both oscillator rings is connected to an associated variable capacitive element, C1 to C5 in the first ring and C6 to C10 in the second ring.
  • the capacitive elements can have a continuously variable capacitance or a discontinuously controlled capacitance.
  • Figure 2 shows an example of a continuously variable capacitance.
  • a variable capacitive element shown in FIG. 2 is mainly a MOSFET having a source S, a drain D and a gate G, the bulk being connected to a ground potential VDD of the power supply.
  • the source S and drain D of the MOSFET are interconnected and are connected to a node in one of the oscillator rings in Figure 1.
  • the capacitance of the capacitive element is determined by the level of a control voltage Vctrl applied to the gate G of the MOSFET. If V th is the threshold voltage of the MOSFET and the voltage at the corresponding node of the oscillator exceeds the control voltage Vctrl plus the threshold voltage V th , then the channel of the MOSFET is open (i.e. conductive), and the inherent capacitance of the MOSFET is effective at the node. Otherwise, the node experiences a much lower capacitance.
  • a variable capacitive element is combined by a selective parallel connection of discrete fixed capacitors C A , C B , C c and C 0 .
  • capacitors C A to C D all have an electrode connected to a first terminal A and an electrode connected to a switching matrix 40.
  • Switching matrix 40 has an output terminal B and a control input to which a multi-bit digital control signal C MB is applied.
  • An effective capacitance is determined by a selective parallel connection of capacitors CA to CD.
  • the digital control signal C MB determines the switching condition of matrix 40 and thus the effective capacitance across terminals A and B.

Landscapes

  • Pulse Circuits (AREA)

Abstract

An oscillator includes a first oscillator ring (14) with a number of cascaded inverting delay stages and a second oscillator ring (24) with a number of cascaded inverting delay stages. The ring oscillator also includes a number of inverter pairs which each consists of a first inverter and a second inverter, an input of the first inverter being connected with an output of the second inverter and an input of the second inverter being connected with an output of the first inverter. Each inverter pair connects a node of the first oscillator ring with a node of the second oscillator ring. Since phase noise in an oscillator is dominated by the ratio of the power in the edges of the oscillator signal versus the voltage noise that affects the delay of one oscillator stage, essentially all the consumed power is used for the switching process, implementing very steep edges of the oscillator signal.

Description

OSCILLATOR
The present invention relates to an oscillator. BACKGROUND
Ring oscillators are widely used in CMOS circuits. A typical ring oscillator is made-up of an odd number of cascaded inverting delay stages connected into a ring. Each stage has an output connected to an input of a following stage, and the connection of an output of a stage with the input of the following stage is called a node. The oscillating frequency of such a ring oscillator is controlled trough the delay caused by each of the stages in the ring. The delay in each stage is due to an inherent capacitance that needs to be charged to a certain voltage level through an associated current source. Accordingly, the delay of each stage in the ring, and thus the oscillation frequency of the ring oscillator, can be controlled by adjusting the current from the current source. A ring oscillator, the oscillation frequency of which is tuned trough a current source, is of a partial-swing type since the voltage drop across the current source detracts from the possible output voltage swing of the delay stages in the ring.
Phase noise performance and a wide frequency pulling range are challenges to ring oscillators for use in advanced communication applications. The present invention provides a ring oscillator that has an improved phase noise performance and a wide pulling range. SUMMARY
The ring oscillator according to the present invention comprises a first oscillator ring with a number of cascaded inverting delay stages and a second oscillator ring with a like number of cascaded inverting delay stages. The ring oscillator also includes a like number of inverter pairs which each consists of a first inverter and a second inverter, an input of the first inverter being connected with an output of the second inverter and an input of the second inverter being connected with an output of the first inverter. Each inverter pair connects a node of the first oscillator ring with a node of the second oscillator ring. Due to the presence of the inverter pairs that interconnect corresponding nodes of the two oscillator rings, a 180° phase shift is forced to occur between both rings. More importantly, since inverters in CMOS technology inherently have a full-swing output, the output signal of the ring oscillator is also full-swing, i.e. from rail to rail. Since phase noise in an oscillator is dominated by the ratio of the power in the edges of the oscillator signal versus the voltage noise that affects the delay of one oscillator stage, the invention proposes to use essentially all the consumed power for the switching process, implementing very steep edges of the oscillator signal.
In the preferred embodiment of the invention, the inverting delay stages of the first and second oscillator rings are connected to a single power supply. This leads to a stronger connection of the complementary phases and also determines the power of the switching edges.
Tuning of the oscillator through a wide pulling range is possible with capacitive elements connected to the nodes of the two rings. The nodes of the inverting delay stages are each connected to a capacitive element and the oscillator has an oscillating frequency determined by the capacitance of the capacitive elements. Basically, the invention provides two possible implementations. For a continuous tuning, continuously variable capacitive elements are used. These continuously variable capacitive elements can be achieved in CMOS technology with a MOS transistor the source and drain of which are connected to a node and the gate of which is connected to a control voltage source. The control voltage source supplies a pulsed voltage and the capacitance is controlled by adjusting the duty cycle of the pulsed voltage. In an implementation with digital tuning, each capacitive element is formed by a combination of a plurality of capacitors. BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the present invention are described hereinafter with reference to the accompanying drawings. In the drawings:
FIG. 1 is a schematic circuit diagram of the inventive oscillator; FIG. 2 is a circuit diagram of a variable capacitive element; and FIG. 3 is a schematic circuit diagram of a capacitive element with discrete capacitors. DETAILED DESCRIPTION OF THE EMBODIMENTS In the CMOS circuit of FIG. 1 , a first oscillator ring is made up of five cascaded inverting delay stages 10, 12, 14, 16 and 18. Between successive stages, a node is formed by an output of an upstream stage and an input of a following downstream stage. Stage 18 has an output looped back to the input of stage 10, also forming a node of the oscillator ring. A second oscillator ring is made up of five cascaded inverting delay stages 20, 22, 24, 26 and 28. Again, between successive stages, a node is formed by an output of an upstream stage and an input of a following downstream stage and stage 28 has an output looped back to the input of stage 20, also forming a node of the oscillator ring. The nodes between stages 10 and 12, 12 and 14, 14 and 16, 16 and 18 of the first oscillator ring are connected to the nodes between stages 20 and 22, 22 and 24, 24 and 26, 26 and 28 of the second oscillator ring through pairs of inverters 30a and 30b, 32a and 32b, 24a and 34b, 36a and 36b, 38a and 38b, respectively. In each inverter pair, an input of a first inverter is connected with an output of a second inverter. Accordingly, corresponding nodes of the two oscillator rings are coupled by two inverters in opposite directions; thereby the forcing corresponding nodes to be synchronized at exactly 180° of mutual phase shift. As inverters in CMOS technology have a full-swing output (i.e. the output voltage is rail-to-rail), the nodes in both oscillator rings are also full-swing. Also, it should be understood that nearly all the power consumed in the oscillator is consumed in the switching edges.
All stages in both oscillator rings are supplied by just one current source. In Fig, 1 , stages 12 to 18 are shown with a supply connection to a positive current supply source Ip, and stages 22 to 28 are shown with a supply connection to a negative current supply source In, it being understood that the stages in both rings all have connections to both of the positive and negative current sources Ip, In.
For tuning the oscillator rings through the desired frequency pulling range, each node of both oscillator rings is connected to an associated variable capacitive element, C1 to C5 in the first ring and C6 to C10 in the second ring. Basically, the capacitive elements can have a continuously variable capacitance or a discontinuously controlled capacitance. Figure 2 shows an example of a continuously variable capacitance. A variable capacitive element shown in FIG. 2 is mainly a MOSFET having a source S, a drain D and a gate G, the bulk being connected to a ground potential VDD of the power supply. The source S and drain D of the MOSFET are interconnected and are connected to a node in one of the oscillator rings in Figure 1. The capacitance of the capacitive element is determined by the level of a control voltage Vctrl applied to the gate G of the MOSFET. If Vth is the threshold voltage of the MOSFET and the voltage at the corresponding node of the oscillator exceeds the control voltage Vctrl plus the threshold voltage Vth , then the channel of the MOSFET is open (i.e. conductive), and the inherent capacitance of the MOSFET is effective at the node. Otherwise, the node experiences a much lower capacitance. In the embodiment of FIG. 3, a variable capacitive element is combined by a selective parallel connection of discrete fixed capacitors CA, CB, Cc and C0. In a practical embodiment, many more discrete capacitors could be provided. The capacitors CA to CD all have an electrode connected to a first terminal A and an electrode connected to a switching matrix 40. Switching matrix 40 has an output terminal B and a control input to which a multi-bit digital control signal CMB is applied. An effective capacitance is determined by a selective parallel connection of capacitors CA to CD. The digital control signal CMB determines the switching condition of matrix 40 and thus the effective capacitance across terminals A and B.

Claims

1. An oscillator comprising: a first oscillator ring with a number of cascaded inverting delay stages; a second oscillator ring with a like number of cascaded inverting delay stages; and a like number of inverter pairs each consisting of a first inverter and a second inverter, an input of the first inverter being connected with an output of the second inverter and an input of the second inverter being connected with an output of the first inverter, each inverter pair connecting a node of the first oscillator ring with a node of the second oscillator ring.
2. The oscillator according to Claim 1 , wherein the inverting delay stages of the first and second oscillator rings are connected to a single power supply.
3. The oscillator according to Claim 1 , wherein the nodes of the inverting delay stages are each connected to a capacitive element and the oscillator has an oscillating frequency determined by the capacitance of the capacitive elements.
4. The oscillator according to Claim 3, wherein the capacitive elements have a variable capacitance.
5. The oscillator according to Claim 3, wherein the capacitive elements comprise a plurality of discrete capacitors and the capacitance of a capacitive element is determined by a combination of the discrete capacitors.
6. The oscillator according to Claim 3, wherein the capacitive elements are formed by a MOS transistor the source and drain of which are connected to a node and the gate of which is connected to a control voltage source.
7. The oscillator according to Claim 6, wherein the capacitance is controlled by adjusting the level of the control voltage.
EP06708676A 2005-03-09 2006-03-07 Oscillator Withdrawn EP1861927A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005010869 2005-03-09
US11/366,348 US20070052483A1 (en) 2005-03-09 2006-03-02 Oscillator
PCT/EP2006/060529 WO2006094985A1 (en) 2005-03-09 2006-03-07 Oscillator

Publications (1)

Publication Number Publication Date
EP1861927A1 true EP1861927A1 (en) 2007-12-05

Family

ID=36406044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06708676A Withdrawn EP1861927A1 (en) 2005-03-09 2006-03-07 Oscillator

Country Status (2)

Country Link
EP (1) EP1861927A1 (en)
WO (1) WO2006094985A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916768A1 (en) * 2006-10-27 2008-04-30 Interuniversitair Micro-Elektronica Centrum Vzw Device and method for generating a signal with predefined transient at start-up
EP1916769B1 (en) * 2006-10-27 2010-01-13 Imec Device and method for generating a signal with predefined transient at start-up
US7719373B2 (en) 2006-10-27 2010-05-18 Imec Device and method for generating a signal with predefined transcient at start-up
US9136862B2 (en) 2013-12-23 2015-09-15 Infineon Technologies Ag Quantizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322701C1 (en) * 1993-07-07 1994-08-18 Siemens Ag Circuit arrangement for a ring oscillator
JP2867889B2 (en) * 1994-08-30 1999-03-10 日本電気株式会社 Voltage controlled oscillator
US5677650A (en) * 1995-12-19 1997-10-14 Pmc-Sierra, Inc. Ring oscillator having a substantially sinusoidal signal
US6396358B1 (en) * 2001-01-31 2002-05-28 International Business Machines Corporation Dual-control ring voltage controlled oscillator
US6633202B2 (en) * 2001-04-12 2003-10-14 Gennum Corporation Precision low jitter oscillator circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006094985A1 *

Also Published As

Publication number Publication date
WO2006094985A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US9755574B2 (en) Injection-locked oscillator and method for controlling jitter and/or phase noise
US7298183B2 (en) High frequency divider circuits and methods
US10367514B2 (en) Passive phased injection locked circuit
US7292079B2 (en) DLL-based programmable clock generator using a threshold-trigger delay element circuit and a circular edge combiner
JPH06104638A (en) Current-/voltage-controlled high-speed oscillator circuit
US20070182497A1 (en) Electronic oscillators having a plurality of phased outputs and such oscillators with phase-setting and phase-reversal capability
US10727822B2 (en) Comparator and relaxation oscillator
US20070052483A1 (en) Oscillator
US8217725B2 (en) Electrical circuit and ring oscillator circuit including even-number inverters
US7106142B2 (en) Ring-type voltage oscillator with improved duty cycle
JP2004140471A (en) Voltage controlled oscillator
KR100914673B1 (en) Digital adjustment of an oscillator
EP1861927A1 (en) Oscillator
EP3424147B1 (en) A variable frequency rc oscillator
JP2000156629A (en) Oscillation circuit, phase synchronization circuit, phase interpolation circuit, phase adjustment circuit and phase coupling circuit
US7256657B2 (en) Voltage controlled oscillator having digitally controlled phase adjustment and method therefor
US6900703B2 (en) Method and system for adjusting a frequency range of a delay cell of a VCO
US6943633B2 (en) Widely tunable ring oscillator utilizing active negative capacitance
JP2007043691A (en) Voltage-controlled oscillator having duty correction
TW201308903A (en) Delay cell and digitally controlled oscillator
US6861911B2 (en) Self-regulating voltage controlled oscillator
Singh et al. Fully integrated CMOS frequency synthesizer for ZigBee applications
JP5100006B2 (en) Low power distributed CMOS oscillator circuit with capacitive coupling frequency control
WO2002097994A1 (en) Differential cmos controlled delay unit
CN110995253A (en) Time delay unit circuit and annular voltage-controlled oscillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080721

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081001