EP1859439B1 - Multikanal-audiokompressions- und dekompressionsverfahren über virtuelle quellenfindungsinformationen - Google Patents

Multikanal-audiokompressions- und dekompressionsverfahren über virtuelle quellenfindungsinformationen Download PDF

Info

Publication number
EP1859439B1
EP1859439B1 EP06716366.7A EP06716366A EP1859439B1 EP 1859439 B1 EP1859439 B1 EP 1859439B1 EP 06716366 A EP06716366 A EP 06716366A EP 1859439 B1 EP1859439 B1 EP 1859439B1
Authority
EP
European Patent Office
Prior art keywords
channel
vector
angle
location information
audio signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06716366.7A
Other languages
English (en)
French (fr)
Other versions
EP1859439A4 (de
EP1859439A1 (de
Inventor
Jeong Il Seo
Seung Kwon Dormitory of Info. & Com. Uni. BEACK
In Seon Jang
Kyeong Ok Kang
Jin Woo Hong
Min Soo Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Priority claimed from KR1020060023545A external-priority patent/KR100714980B1/ko
Publication of EP1859439A1 publication Critical patent/EP1859439A1/de
Publication of EP1859439A4 publication Critical patent/EP1859439A4/de
Application granted granted Critical
Publication of EP1859439B1 publication Critical patent/EP1859439B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Definitions

  • the present invention relates to compression and decompression of a multi-channel audio signal, and more particularly, to a method for compressing and decompressing a multi-channel audio signal based on virtual source location information (VSLI) on a semicircular plane.
  • VSLI virtual source location information
  • an inter-channel level difference In a conventional binaural cue coding method, an inter-channel level difference (ICLD) is generally used as spatial cue information in compressing spectral information of a multi-channel audio signal.
  • the ICLD is subject to a quantization process before being transmitted. Since the quantization process assigns a limited number of bits, resolution is limited. Accordingly, such information loss in the ICLD deteriorates a decompressed audio signal.
  • Virtual source location information (VSCI) is known from the Ph.D. thesis of Han-gil Moon entitled A Multi-Channel Audio Compression Method with Virtual Source Location Information for MPEG-4 SAC, February 2005 .
  • One aspect of the present invention provides a method for estimating virtual source location information (VSLI) which is used as spatial cue information in compressing a multi-channel audio signal, the method comprising the steps of: (i) virtually assigning channels of the multi-channel audio signal on a semicircular plane; (ii) converting the multi-channel audio signal into a signal in a frequency domain; (iii) dividing the signal in the frequency domain into a plurality of sub-bands and calculating a signal size of each channel in each sub-band; (iv) estimating a global vector represented on the semicircular plane from the calculated signal size of each channel in each sub-band and virtual location information of each virtually assigned channel signal; and (v) determining whether an angle of the global vector in each sub-band is greater than zero, and estimating local vectors in a first set when the angle of the global vector is greater than zero and in a second set when the angle of the global vector is smaller than zero.
  • VSLI virtual source location information
  • Yet another aspect of the present invention provides a method for decompressing a compressed multi-channel audio signal represented by virtual source location information (VSLI) and an encoded down-mixed audio signal based on spatial cue information, the method comprising the steps of: (i) predicting inverse panning angle information from the VSLI using a constant power panning rule; (ii) obtaining an estimated power component of each channel in each sub-band using the predicted inverse panning angle information; and (iii) finally decompressing a signal of each channel in each sub-band using the estimated power component of each channel and the down-mixed audio signal.
  • VSLI virtual source location information
  • FIG. 1 schematically illustrates the configuration of a multi-channel audio encoder according to the present invention.
  • the multi-channel audio encoder includes a down mixer 110 for down-mixing an input multi-channel audio signal to generate a down-mixed audio signal, an advanced audio coding (AAC) encoding unit 120 for encoding the down-mixed audio signal, a virtual source location information (VSLI) estimating unit 130 for estimating virtual source location information from the multi-channel audio signal, a quantizing unit 140 for quantizing the VSLI, and a multiplexing unit 150 for multiplexing the down-mixed audio signal encoded by the AAC encoding unit 120 with the VSLI quantized by the quantizing unit 140 to finally generate a compressed multi-channel audio signal.
  • AAC advanced audio coding
  • VSLI virtual source location information
  • the virtual sound location vectors include a global vector Gv b , left and right half-plane vectors LHv b and RHv b , and left and right subsequent vectors LSv b and RSv b .
  • Angles between the respective vectors and the center channel are represented by Ga b , LHa b , RHa b , LSa b and RSa b , respectively.
  • FIG. 2 is a flowchart illustrating a process of estimating VSLI of a multi-channel audio signal according to an exemplary embodiment of the present invention.
  • step 210 respective channels of an input multi-channel audio signal are virtually assigned to a two-dimensional semicircular plane.
  • FIG. 3 shows an example of five channels of C, L, R, Ls and Rs of a multi-channel audio signal assigned on the semicircular plane at 45° intervals, and a global vector which is estimated from the channels, according to an exemplary embodiment of the present invention.
  • step 220 the multi-channel audio signal is converted into a signal in a frequency domain.
  • ch denotes one of a center channel (C), left channel (L), right channel (R), left surround channel (Ls), and right surround channel (Rs).
  • B b and B b+1 -1 denote frequency indexes corresponding to upper and lower boundaries of the sub-band B b , respectively.
  • a global vector represented on the semicircular plane assigned the channels is estimated from the signal magnitude of each channel in each sub-band.
  • step 250 it is determined whether the angle Ga b of the global vector in each sub-band is greater than zero.
  • step 260 if the angle of the global vector is greater than zero, a first set of local vectors are estimated.
  • step 270 if the angle of the global vector is smaller than zero, a second set of local vectors are estimated.
  • the first set of local vectors includes LHv b , LSv b , and RSv b
  • the second set of local vectors includes RHa b , RSa b , and LSa b .
  • step 280 the angle of the global vector and the angles of the local vectors estimated in step 260 or 270 are transmitted as the VSLI to the decoder. That is, if the angle Ga b of the global vector is smaller than zero, ⁇ Ga b , RHa b , RSa b , LSa b ⁇ is transmitted, and otherwise, ⁇ Ga b , LHa b , LSa b , RSa b ⁇ is transmitted.
  • the spatial cue information for N multi-channel audio signals can be represented by N-1 pieces of virtual source location information.
  • FIG. 5 is a flowchart illustrating a process of decoding a multi-channel audio signal that has been compressed and represented based on VSLI according to an exemplary embodiment of the present invention.
  • the decoder estimates vector information of original sound from virtual source location information received together with the encoded down-mixed audio signal.
  • the sound vector is represented by its magnitude and angle.
  • the vector angle can be obtained from the received VSLI, and the vector magnitude can be obtained from the received down-mixed audio signal.
  • an inverse panning angle is predicted from the VSLI using a constant power panning (CPP) rule (S510).
  • CCP constant power panning
  • a method for predicting the other inverse panning angles depends on the angle Ga b of the global vector.
  • an estimated power component for each channel in the sub-band is obtained from the predicted inverse panning angle.
  • each channel signal in each sub-band can be finally decompressed based on the down-mixed audio signal and the estimated power component for each channel according to the following equation:
  • U ch , k F ch , b ⁇ S k ⁇ , B b ⁇ k ⁇ B b + 1 - 1
  • S' k denotes a frequency component coefficient of the received down-mixed signal
  • U ch,k denotes the decompressed audio signal.
  • the present invention described above may be provided as one or more computer programs which are implemented on one or more computer-readable mediums.
  • the mediums may include a floppy disc, a hard disc, a CD-ROM, a flash memory card, a programmable read only memory (PROM), a random access memory (RAM), a read only memory (ROM), and a magnetic tape.
  • the computer program may be written in any programming language, such as C, C++, and JAVA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)

Claims (15)

  1. Verfahren zum Schätzen von virtuellen Quellenlokalisierungsinformationen (VSLI), die als räumliche Markierungsinformationen bei der Komprimierung eines Mehrkanal-Audiosignals verwendet werden, wobei das Verfahren die folgenden Schritte umfasst:
    (i) virtuelles Zuweisen jedes Kanals des Mehrkanal-Audiosignals zu einer Halbkreisebene unter Verwendung von virtuellen Lokalisierungsinformationen, die eine Abbildung jedes Kanals auf die Halbkreisebene angeben;
    (ii) Umsetzen des Mehrkanal-Audiosignals in ein Frequenzbereichssignal;
    (iii) Unterteilen des Frequenzbereichssignals in mehrere Unterbänder und Berechnen der Signalgröße jedes Kanals in jedem Unterband;
    (iv) für jedes Unterband Schätzen eines globalen Vektors, der auf der Halbkreisebene dargestellt wird, aus der berechneten Signalgröße jedes Kanals in dem Unterband und aus den virtuellen Lokalisierungsinformationen des Signals jedes virtuell zugewiesenen Kanals;
    (v) für jedes Unterband Bestimmen, ob ein Winkel zwischen dem globalen Vektor und einem mittleren Kanal größer als null ist, und
    Schätzen einer ersten Menge von virtuellen Quellenlokalisierungsvektoren, wenn der Winkel größer als null ist, und
    Schätzen einer zweiten Menge von virtuellen Quellenlokalisierungsvektoren, wenn der Winkel kleiner als null ist; und
    (vi) Verwenden von Informationen über einen Winkel zwischen jedem geschätzten virtuellen Quellenlokalisierungsvektor und dem mittleren Kanal als virtuelle Quellenlokalisierungsinformationen.
  2. Verfahren nach Anspruch 1, wobei der Schritt (iii) das Berechnen der Signalgröße jedes Kanals in jedem Unterband unter Verwendung der folgenden Gleichung umfasst: M ch , b = n = B b B b + 1 - 1 S ch , n
    Figure imgb0029

    wobei Sch,n einen Frequenzkoeffizienten des ch-th-Kanals bezeichnet, ch einen mittleren Kanal (C), einen linken Kanal (L), einen rechten Kanal (R), einen linken Surround-Kanal (Ls) oder einen rechten Surround-Kanal (Rs) bezeichnet und Bb und Bb+1 -1 Frequenzindizes bezeichnen, die einer oberen bzw. einer unteren Grenze des Unterbandes Bb entsprechen.
  3. Verfahren nach Anspruch 2, wobei der Schritt (iv) das Schätzen des globalen Vektors für jedes Unterband unter Verwendung der folgenden Gleichung umfasst: G Vb = A 1 × M c , b + A 2 × M L , b + A 3 × M R , b + A 4 × M Ls , b + A 5 × M Rs , b
    Figure imgb0030

    wobei A1 virtuelle Lokalisierungsinformationen des Mittelkanals bezeichnet, A2 virtuelle Lokalisierungsinformationen des linken Kanals bezeichnet, A3 virtuelle Lokalisierungsinformationen des rechten Kanals bezeichnet, A4 virtuelle Lokalisierungsinformationen des linken Surround-Kanals bezeichnet und A5 virtuelle Lokalisierungsinformationen des rechten Surround-Kanals bezeichnet.
  4. Verfahren nach Anspruch 3, wobei
    A1 = cos0° + jsin0°, A2 = cos45° - j sin45°, A3 = cos45° + jsin45°, A4 = cos90° - jsin90° und A5 = cos90° + jsin90°.
  5. Verfahren nach Anspruch 1, wobei im Schritt (v) die erste Menge lokaler Vektoren einen Vektor RHvb der rechten Halbebene, einen rechten nachfolgenden Vektor RSvb und einen linken nachfolgenden Vektor LSvb enthält und die zweite Menge lokaler Vektoren einen Vektor LHvb der linken Halbebene, einen linken nachfolgenden Vektor LSvb und einen rechten nachfolgenden Vektor RSvb enthält.
  6. Verfahren nach Anspruch 5, wobei im Schritt (v) der Vektor RHvb der rechten Halbebene unter Verwendung der Signalgröße des mittleren, des rechten Kanalsund des rechten Surround-Kanals, die im Schritt (iii) berechnet werden, geschätzt wird; der rechte nachfolgende Vektor RSvb unter Verwendung der Signalgröße des rechten Kanals und des rechten Surround-Kanals, die im Schritt (iii) berechnet werden, geschätzt wird; der Vektor LHvb der linken Halbebene unter Verwendung der Signalgröße des mittleren, des linken Kanals und des linken Surround-Kanals, die im Schritt (iii) berechnet werden, geschätzt wird; und der linke nachfolgende Vektor LSvb unter Verwendung der Signalgröße des linken Kanals und des linken Surround-Kanals, die im Schritt (iii) berechnet werden, geschätzt wird.
  7. Verfahren nach Anspruch 6, wobei der Vektor RHvb der rechten Halbebene, der rechte nachfolgende Vektor RSvb, der Vektor LHvb der linken Halbebene und der linke nachfolgende LSvb unter Verwendung der folgenden Gleichungen geschätzt werden: LH Vb = A 1 × M c , b + A 2 × M L , b + A 4 × M Ls , b
    Figure imgb0031
    RHv b = A 1 × M c , b + A 3 × M R , b + A 4 × M Rs , b
    Figure imgb0032
    LSv b = A 2 × M L , b + A 4 × M Ls , b
    Figure imgb0033

    und RSv b = A 3 × M R , b + A 5 × M Rs , b .
    Figure imgb0034
  8. Verfahren nach Anspruch 5, wobei dann, wenn der Winkel des globalen Vektors Gab größer als null ist, Winkelinformationen des globalen Vektors und der ersten Menge lokaler Vektoren an einen Decodierer gesendet werden und andernfalls Winkelinformationen des globalen Vektors und der zweiten Menge lokaler Vektoren zu dem Decodierer gesendet werden.
  9. Verfahren zum Komprimieren eines Mehrkanal-Audiosignals anhand virtueller Quellenlokalisierungsinformationen (VSLI), wobei das Verfahren die folgenden Schritte umfasst:
    Erhalten von Winkelinformationen eines globalen Vektors und mehrerer lokaler Vektoren, die die virtuellen Quellenlokalisierungsinformationen darstellen, die durch Ausführen des Verfahrens nach einem der Ansprüche 1 bis 7 geschätzt werden;
    Quantisieren der Winkelinformationen des globalen Vektors und der lokalen Vektoren;
    Abwärtsmischen und Codieren des eingehenden Mehrkanal-Audiosignals; und
    Multiplexieren des codierten, abwärts gemischten Audiosignals mit den quantisierten Winkelinformationen der Vektoren, um schließlich ein komprimiertes Mehrkanal-Audiosignal zu erzeugen.
  10. Verfahren zum Dekomprimieren eines komprimierten Mehrkanal-Audio-signals, das durch virtuelle Quellenlokalisierungsinformationen (VSLI) und ein codiertes abwärts gemischtes Audiosignal dargestellt wird, anhand von räumlichen Markierungsinformationen, wobei die virtuellen Quellenlokalisierungsinformationen Winkelinformationen über einen Winkel zwischen einem globalen Vektor, der aus den Kanälen des Mehrkanal-Audiosignals geschätzt wird, und einem mittleren Kanal des Mehrkanal-Audiosignals umfasst, wobei das Verfahren die folgenden Schritte umfasst:
    (i) Vorhersagen inverser Schwenkwinkelinformationen aus den VSLI unter Verwendung einer Konstantleistungs-Schwenkregel, wobei sich das Vorhersageschema der inversen Schwenkwinkelinformationen in Abhängigkeit von den Winkelinformationen des globalen Vektors unterscheidet;
    (ii) Erhalten einer geschätzten Leistungskomponente jedes Kanals in jedem Unterband unter Verwendung der vorhergesagten inversen Schwenkwinkelinformationen; und
    (iii) schließlich Dekomprimieren eines Signals jedes Kanals in jedem Unterband unter Verwendung der geschätzten Leistungskomponente jedes Kanals und des abwärts gemischten Audiosignals, wobei der Schritt (i) das Vorhersagen inverser Schwenkwinkel θ1, θ2, θ3 und θ4 aus dem Winkel Gab des globalen Vektors, dem Winkel LHab des Vektors der linken Halbebene, dem Winkel LSab des linken nachfolgenden Vektors und aus dem Winkel RSab des rechten nachfolgenden Vektors in den virtuellen Quellenlokalisierungsinformationen umfasst, wenn der Winkel GAb des globalen Vektors in den virtuellen Quellenlokalisierungsinformationen größer als null ist, und aus dem Winkel Gab des globalen Vektors, dem Winkel RHab des Vektors der rechten Halbebene, dem Winkel RSab des rechten nachfolgenden Vektors und dem Winkel LSab des linken nachfolgenden Vektors in den virtuellen Quellenlokalisierungsinformationen, wenn der Winkel GAb des globalen Vektors kleiner als null ist.
  11. Verfahren nach Anspruch 10, wobei im Schritt (i) die inversen Schwenkwinkel θ1, θ2, θ3 und θ4 unter Verwendung der folgenden Gleichungen geschätzt werden:
    falls Gab ≥ 0, θ 1 = Ga b - LHa b RSa b - LHa b × π 2 , θ 2 = LHa b - LSa b 0 - LSa b × π 2
    Figure imgb0035
    θ 3 = LSa b + π / 2 - π / 4 + π / 2 × π 2 , θ 4 = RSa b - π / 2 π / 4 - π / 2 × π 2
    Figure imgb0036
    und falls Gab < 0, θ 1 = Ga b - RHa b LSa b - RHa b × π 2 , θ 2 = RHa b - RSa b 0 - RSa b × π 2
    Figure imgb0037
    θ 3 = RSa b - π / 2 π / 4 - π / 2 × π 2 , θ 4 = LSa b + π / 2 - π / 4 + π / 2 × π 2 .
    Figure imgb0038
  12. Verfahren nach Anspruch 11, wobei der Schritt (ii) das Erhalten der geschätzten Leistungskomponente jedes Kanals in jedem Unterband unter Verwendung der folgenden Gleichungen umfasst:
    falls Gab ≥ 0, F C , b = cos θ 1 sin θ 2 ,
    Figure imgb0039
    F L , b = cos θ 1 cos θ 2 sin θ 3 ,
    Figure imgb0040
    F Ls , b = cos θ 1 cos θ 2 cos θ 3 ,
    Figure imgb0041
    F R , b = sin θ 1 sin θ 4 ,
    Figure imgb0042

    und F Rs , b = sin θ 1 cos θ 4 ;
    Figure imgb0043

    und
    falls Gab < 0, F C , b = cos θ 1 sin θ 2 ,
    Figure imgb0044
    F L , b = sin θ 1 sin θ 4 ,
    Figure imgb0045
    F Ls , b = sin θ 1 cos θ 4 ,
    Figure imgb0046
    F R , b = cos θ 1 cos θ 2 sin θ 3 .
    Figure imgb0047

    und F Rs , b = cos θ 1 cos θ 2 cos θ 3 .
    Figure imgb0048
  13. Verfahren nach Anspruch 12, wobei der Schritt (iii) das Dekomprimieren eines Signals jedes Kanals in jedem Unterband unter Verwendung der folgenden Gleichung umfasst: U ch , k = F ch , b k , B b k B b + 1 - 1
    Figure imgb0049

    wobei S'k einen Frequenzkomponentenkoeffizienten eines empfangenen abwärts gemischten Signals bezeichnet und Uch,k ein dekomprimiertes Audiosignal bezeichnet.
  14. Computerlesbares Medium, das ein Computerprogramm besitzt, das darauf aufgezeichnet ist, um das Verfahren nach einem der Ansprüche 1 bis 9 auszuführen.
  15. Computerlesbares Medium, das ein Computerprogramm besitzt, das darauf aufgezeichnet ist, um das Verfahren nach einem der Ansprüche 10 bis 13 auszuführen.
EP06716366.7A 2005-03-14 2006-03-14 Multikanal-audiokompressions- und dekompressionsverfahren über virtuelle quellenfindungsinformationen Not-in-force EP1859439B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20050021104 2005-03-14
KR1020060023545A KR100714980B1 (ko) 2005-03-14 2006-03-14 가상음원위치정보를 이용한 멀티채널 오디오 신호의 압축및 복원 방법
PCT/KR2006/000916 WO2006098583A1 (en) 2005-03-14 2006-03-14 Multichannel audio compression and decompression method using virtual source location information

Publications (3)

Publication Number Publication Date
EP1859439A1 EP1859439A1 (de) 2007-11-28
EP1859439A4 EP1859439A4 (de) 2010-12-22
EP1859439B1 true EP1859439B1 (de) 2013-10-30

Family

ID=36991912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06716366.7A Not-in-force EP1859439B1 (de) 2005-03-14 2006-03-14 Multikanal-audiokompressions- und dekompressionsverfahren über virtuelle quellenfindungsinformationen

Country Status (2)

Country Link
EP (1) EP1859439B1 (de)
WO (1) WO2006098583A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883257B (zh) 2006-12-27 2015-11-04 韩国电子通信研究院 用于编码多对象音频信号的设备和方法
US9025775B2 (en) 2008-07-01 2015-05-05 Nokia Corporation Apparatus and method for adjusting spatial cue information of a multichannel audio signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
US7292901B2 (en) * 2002-06-24 2007-11-06 Agere Systems Inc. Hybrid multi-channel/cue coding/decoding of audio signals

Also Published As

Publication number Publication date
EP1859439A4 (de) 2010-12-22
EP1859439A1 (de) 2007-11-28
WO2006098583A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US11798568B2 (en) Methods, apparatus and systems for encoding and decoding of multi-channel ambisonics audio data
US8817991B2 (en) Advanced encoding of multi-channel digital audio signals
US20150332679A1 (en) Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US20170164131A1 (en) Method and apparatus for decoding a compressed hoa representation, and method and apparatus for encoding a compressed hoa representation
US20240185869A1 (en) Combining spatial audio streams
JP2022509440A (ja) 空間オーディオパラメータの符号化及び対応する復号の決定
US20080187144A1 (en) Multichannel Audio Compression and Decompression Method Using Virtual Source Location Information
EP1859439B1 (de) Multikanal-audiokompressions- und dekompressionsverfahren über virtuelle quellenfindungsinformationen
JP2014026007A (ja) オーディオ復号装置、オーディオ復号方法、オーディオ復号用コンピュータプログラム
CN111179951B (zh) 包括编码hoa表示的位流的解码方法和装置、以及介质
JP6179122B2 (ja) オーディオ符号化装置、オーディオ符号化方法、オーディオ符号化プログラム
US9837085B2 (en) Audio encoding device and audio coding method
JP6051621B2 (ja) オーディオ符号化装置、オーディオ符号化方法、オーディオ符号化用コンピュータプログラム、及びオーディオ復号装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20101119

17Q First examination report despatched

Effective date: 20120418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006039029

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0019000000

Ipc: G10L0019008000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/008 20130101AFI20130502BHEP

Ipc: G10L 19/02 20130101ALN20130502BHEP

INTG Intention to grant announced

Effective date: 20130523

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/02 20130101ALN20130510BHEP

Ipc: G10L 19/008 20130101AFI20130510BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR

Free format text: EXCLUSIVE LICENSE

Name of requester: INTELLECTUAL DISCOVERY CO., LTD., KR

Effective date: 20130712

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR

Free format text: EXCLUSIVE LICENSE

Name of requester: INTELLECTUAL DISCOVERY CO., LTD., KR

Effective date: 20130712

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: ERGAENZUNG LIZENZEINTRAG: AUSSCHLIESSLICHE LIZENZ

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006039029

Country of ref document: DE

Effective date: 20131224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131030

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 638675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131030

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006039029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

26N No opposition filed

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006039029

Country of ref document: DE

Effective date: 20140731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140314

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140314

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R088

Ref document number: 602006039029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060314

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190220

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006039029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001