EP1853471A1 - Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associe - Google Patents
Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associeInfo
- Publication number
- EP1853471A1 EP1853471A1 EP06709530A EP06709530A EP1853471A1 EP 1853471 A1 EP1853471 A1 EP 1853471A1 EP 06709530 A EP06709530 A EP 06709530A EP 06709530 A EP06709530 A EP 06709530A EP 1853471 A1 EP1853471 A1 EP 1853471A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- electric machine
- torque
- clutch
- heat engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
- B60K2006/268—Electric drive motor starts the engine, i.e. used as starter motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/13—Machine starters
Definitions
- a method of transmitting power between a heat engine and wheels of a motor vehicle and associated device is described.
- the present invention relates to a device for transmitting power between a heat engine and wheels of a motor vehicle.
- the invention aims to make more comfortable driving this vehicle, ensuring in particular the continuity of the torque applied to the wheels.
- the invention finds a particularly advantageous application in the field of motor vehicles, but it could also be implemented in any type of hybrid land vehicle.
- start is used to designate the rotation of the crankshaft of the engine.
- take-off is used to refer to the motion of the vehicle as it moves from zero speed to non-zero speed.
- actuation is used for the electric machine when it is turned on.
- Hybrid vehicles are known that combine the use of thermal energy and electrical energy to achieve traction. This combination of energies is carried out so as to optimize the energy efficiency of such vehicles. This optimization of fuel efficiency allows the hybrid vehicle to pollute and consume much less than vehicles that operate solely on thermal energy and whose performance is not optimized.
- Several types of hybrid power transmission devices are known.
- Hybrid type transmission devices comprising a motor and a pair of electrical machines are known first.
- the wheel shaft, the motor shaft and the shafts of the two machines are interconnected via a mechanical assembly.
- This mechanical assembly generally consists of at least two planetary gear trains.
- Such a transmission device is described in the French application FR-A-2832357.
- Hybrid type transmission devices including a heat engine and a single electric machine are also known.
- a shaft of this engine and a shaft of this electric machine are connected between them via a clutch.
- Such a device is likely to operate in two different modes. In a first mode called electric mode, only the electric machine drives the wheel shaft of the vehicle. In a second mode called hybrid mode, the electric machine and the engine together drive the wheel shaft of the vehicle.
- each member of the transmission device heat engine, clutch, electric machine and speed variator element
- a close control device which is itself controlled by a specific computer called supervisory computer.
- This calculator can be independent or integrated into another computer, such as the engine computer.
- This supervision computer executes programs for synchronizing among themselves the actions of the different elements of the transmission device. This synchronization is performed in such a way as to best respond to a desire to accelerate a driver.
- FIG. 1 shows a schematic representation of a transmission device 1 according to the state of the art.
- This transmission device 1 comprises a heat engine 2, a clutch 3, an electric machine 4, a speed variator element 5 such as a gearbox or a variator, and wheels 6 which form a power train.
- the clutch 3 comprises a first disk 8 and a second disc 9 clutch.
- the first clutch disk 8 is connected to a shaft 10 of the heat engine 2.
- the second clutch disk 9 is connected to a shaft 11 of the electric machine 4.
- the shaft 11 of the electric machine 4 and a shaft 12 of the wheels 6 are respectively connected to an input 13 and an output 14 of the speed variator element.
- the transmission device 1 is capable of operating in two different modes.
- the shaft 12 of the wheels 6 is driven by the electric machine 4 only.
- the clutch 3 is then open, so that the shaft 10 of the motor 2 and the shaft 11 of the electric machine 4 are not coupled to each other.
- the electric machine 4 generally behaves as a motor.
- the machine 4 draws energy from a storage system 18, such as a battery, particularly via an inverter 19.
- the battery 18 delivers a DC voltage signal.
- the inverter 19 thus transforms the DC voltage signal observable between the terminals 20 and 21 of the battery, into AC voltage signals which are applied to phases 22-24 of the electric machine 4.
- the shaft 12 of the wheels 6 is driven by the heat engine 2 and the electric machine 4.
- the clutch 3 is then closed, so that the shaft 10 of the engine 2 and the shaft 11 of the wheels 6 be coupled together.
- the electric machine 4 generally behaves as a motor or a generator and transmits power to the shaft 12 of the wheels 6 to adjust the observable torque on the shaft 12 of the wheels 6 to the target torque. In the same way as that explained above, the machine 4 transfers energy with the battery 18.
- the electric machine 4 behaves as a generator. During these recovery phases, the electric machine 4 supplies energy to the battery 18.
- the inverter 19 then transforms the AC voltage signals observable on the phases 22-24 of the electric machine 4 into a continuous voltage signal which is applied to the terminals 20 and 21 of the battery 18.
- the electric machine 4 is a three-phase synchronous machine. Machines of this type have the advantage of being compact and to have a good return.
- the transmission device 1 comprises a flywheel 25.
- This flywheel 25 contributes to ensuring a filtration function of the ascyclism to ensure continuity in the transmission of the torque of the engine 2 to the shaft 6 of the wheels 12.
- the transmission device 1 comprises an independent control unit here constituted by a supervision computer 26.
- This supervision computer 26 comprises a microprocessor 26.1, a program memory 26.2, a data memory 26.3, and an interface 26.4 of inputs-outputs connected to each other via a communication bus 31.
- the data memory 26.3 comprises data D1-DN corresponding in particular to the characteristics of the various organs of the transmission device 1, namely the heat engine 2, the clutch 3, the electric machine 4 and the speed variator element 5. Some of the data D1-DN correspond for example to the response times of these organs 2-5. Other data D1-DN correspond, for example, to maximum torques and minimum torques applicable to shafts associated with members 2-5.
- the input-output interface 26.4 receives M1-MN signals observable at the output of sensors (not shown). These sensors make it possible to detect the driving conditions of the vehicle. For example, acceleration and speed sensors make it possible to know respectively the acceleration and the speed of the vehicle at a given instant. A tilt sensor can tell if the vehicle is on a slope or not.
- the interface 26.4 receives a MACC signal corresponding to a torque to the desired wheel by a driver. Indeed, when he wants to accelerate, the driver presses with his foot 30 on a pedal 29. Depending on the degree of depression of this pedal 29, the MACC signal is generated.
- the microprocessor 26.1 executes one of the programs P1-PN which generates the operation of the transmission device 1 in a particular mode, and the adjustment of the observable torque on the shaft 12 of the wheels 6. More precisely, when the execution of one of the programs P1-PN, the microprocessor 26 controls the interface 26.4, so that signals OMTH, OEMB, OMEL and OBV are respectively transmitted to the engine 2, the clutch 3, the electric machine 4 and the dimmer element 5 to control them.
- some of the P1-PN programs generate OMTH, OEMB, OMEL, and OBV signal transmissions to transition from one mode to another.
- organs 2-5 of the transmission device 1 each comprise an internal control system which is not shown. These control systems make it possible to regulate the value of the observable torques on trees associated with these members 2-5.
- the supervision computer 26 controls the various members 2-5, so as to operate the transmission device 1 in the electrical mode.
- the torque applied to the shaft 12 of the wheels 6 is then equal to the observable torque on the shaft 11 of the electric machine 4, to a gear ratio.
- the supervision computer 26 controls the various members 2-5, so as to operate the transmission device 1 in the hybrid mode.
- the torque applied to the shaft 12 of the wheels 6 is then equal to the observable torque on the shaft 11 of the electric machine 4, which is then equal to the sum of the observable torque on the shaft 10 of the heat engine 2 and that of the machine 4.
- the supervision computer 26 must therefore control the clutch 3 in a specific and precise manner, so that the driver does not even realize the change in vehicle mode.
- the response time of the engine 2 must therefore be minimal during an acceleration.
- FIG. 2 shows, in particular, chronograms of signals observable on the various members 2-5 of the transmission device 1 according to the state of the art. These signals are observable during a transient regime, when the transmission device 1 passes from an electrical operating mode to a hybrid operating mode. More specifically, FIG. 2 shows the torque signals CEMB,
- CMEL and CMTH which respectively correspond to the observable torque on the clutch 3, on the shaft 11 of the electric machine 4, and on the shaft 10 of the heat engine 2.
- FIG. 2 also shows the evolution over time of torque signals CCONS and CREEL respectively corresponding to the setpoint torque to be applied to the shaft 12 of the wheels 6 and to the torque actually observable on this shaft 12 of the wheels 6.
- the signal of DCONS torque setpoint is developed from the MACC signal and M1-MN signals from the sensors.
- the signals OEMB and OMEL are emitted by the computer 26 to the clutch 3 and the electric machine 4 to control them.
- the OMTH and OBV signals which respectively control the heat engine 2 and the electric machine 4 are not shown.
- Figure 2 shows on the same chronogram the evolution in the time of the speed of rotation WMEL of the electric machine 4, and the speed of rotation WMTH of the heat engine 2.
- the reference torque CCONS increases exponentially, in particular in correspondence with a request for acceleration of the driver.
- This setpoint torque CCONS increases, so that at time t1, it has already reached the peak torque CMELMAX of the electric machine 4.
- the electric machine 4 has a pair CMEL which increases to stabilize at the nominal torque CMELNOM of this electric machine 4.
- the rotation speed WMEL of the electric machine 4 is non-zero and increases linearly.
- the heat engine 2 is at a standstill and its shaft 10 is not coupled with the shaft 11 of the electric machine 4.
- the heat engine 2 therefore has a pair CMTH and a rotation speed WMTH which are both zero .
- the torque CREEL measured on the shaft 12 of the wheels 6 is equal to the torque CMEL of the electric machine
- the torque CREEL measured on the shaft 12 is therefore less than the expected torque CCONS expected. No torque is observable on the clutch 3.
- the transmission device 1 enters a first transient phase.
- the reference torque CCONS is always globally equal to the peak torque CMELMAX of the electrical machine 4.
- a first signal 31 is emitted by the supervision computer 26 to the clutch 3.
- This signal 31 controls this clutch 3, so that this clutch 3 transmits a breakaway torque CARR to the engine 2 to make it come into rotation.
- This breakaway torque CARR is taken from the drive train. Therefore, a second signal 32 is emitted by the computer 26 at the same time as the signal 31, and to the electrical machine 4. This signal 32 controls the electric machine 4, so that its CMEL couple compensates for the torque.
- the clutch torque signal CEMB decreases and reaches a negative value equal to the value of the tearing torque CARR.
- the torque signal CMEL of the electric machine 4 increases by a value - CARR opposite the value of the tearing torque CARR.
- a torque signal CMTH of the heat engine 2 corresponding to the starting torque of this engine 2 is then observable.
- the heat engine 2 then has a speed of rotation WMTH which increases, but which remains lower than the speed of rotation WMEL of the electric machine 4.
- the heat engine 2 still does not transmit its torque to the shaft 6 of wheels 12, since it is not coupled with the shaft 11 of the electric machine 4.
- the torque CREEL measured on the shaft 12 is therefore always less than the expected torque CCONS expected on this shaft 12.
- the first transitional phase aims to to pass to the heat engine 2 his first compressions.
- the heat engine 2 performs between two and four revolutions, without its shaft 10 being coupled with the shaft 11 of the electric machine 4. After these few turns, the heat engine 2 operates at a speed WMTH sufficient to be independent.
- the transmission device 1 enters a second transient phase.
- the setpoint torque CCONS is always globally equal to CMELMAX.
- the torque signal CMEL of the electrical machine 4 decreases from a value CNOM-CARR to the nominal torque value CMELNOM of the electric machine 4.
- the torque signal CEMB of the clutch 3 becomes zero again.
- the transmission phase of the tearing torque thus ends between t2 and t3.
- the torque CREEL is always equal to the CMEL couple of the electric machine 4 and remains below the setpoint torque CCONS.
- the rotation speed WMEL of the shaft 11 of the electric machine 4 increases linearly.
- the speed of rotation WMTH of the shaft 10 of the heat engine 2 increases to reach at time t3 the speed of rotation WMEL of the electric machine 4.
- This second transient phase is thus intended to rev up the engine 2 to allow, as will be seen below, a sliding of the clutch disks 8 and 9 relative to each other.
- the transmission device 1 enters a third transient phase.
- the set torque CCONS is always globally equal to the peak torque CMELMAX of the electric machine 4.
- a signal 33 is emitted by the supervision computer 26 to the clutch 3. This signal 33 controls the sliding of the disks 8 and 9 clutch relative to each other.
- the heat engine 2 then transmits a portion of its torque CMTH to the shaft 12 of the wheels 6 via the clutch 3.
- the torque signal CEMB observable on the clutch 3 then increases linearly, while the signal of CMEL torque of the electric machine 4 decreases globally symmetrically with respect to the torque signal CEMB of the clutch 3.
- the torque CREEL then increases linearly since the heat engine 2 begins to transmit torque to the shaft 12 of the wheels 6.
- the torque of the electric machine 4 could be controlled so that its torque maintains the CMELMAX value.
- the heat engine 2 then adapts its torque, so that the target torque CCONS is satisfied.
- the transmission device 1 enters a fourth transitional phase.
- this fourth transient phase it firstly occurs a docking of the engine, then, in a second step, a closure of the clutch 3. More specifically, during the docking of the engine 2, the rotational speed WMTH of the heat engine 2 converges towards that of the electric machine 4. When these two speeds are equal, a signal 34 is emitted to the clutch 3 by the supervision computer 26. This signal 34 controls the closing of this clutch 3.
- the rotational speeds of the engine WMTH and the machine WMEL are then identical throughout this phase between t4 and t5.
- the torque CEMB of the clutch 3 increases, while the torque signal CMEL of the electric machine 4 decreases in a generally symmetrical manner with respect to the torque signal CEMB of the clutch 3. This torque CMEL compensates for the torque CEMB in order to achieve CCONS.
- the transmission device 1 enters a fifth transitional phase.
- the reference torque CCONS increases slightly, in the manner of a step for example.
- the motor members 2 and 4 of the device 1 then converge to their optimal torque setpoint signal, if they have not already reached it.
- the clutch is kept closed and its torque CEMB increases to exceed the CMTH. Rotational speeds of the engine WMTH and WMEL electric machine increase with the speed of the vehicle.
- the CREEL torque signal follows the evolution of the reference torque signal CCONS.
- the electric machine 4 can not supply its CMELMAX peak torque to achieve the CCONS setpoint torque.
- the electric machine 4 can not operate at its peak torque because it must have a torque guard to compensate for the breakaway torque CARR taken by the clutch 3, regardless of the speed of the vehicle. In other words, the electric machine 4 must always operate at its maximum nominal torque CMELNOM, so as to be able to operate at any time at a higher torque allowing it to compensate for the breakaway torque CARR.
- FIG. 3 thus shows that the torque guard of the electric machine 4 is available only when its WMEL operating regime is lower than its basic WB regime. More precisely, FIG. 3 represents the observable CMEL couple on the shaft 11 of the electric machine 4 as a function of its rotation speed WMEL, for a given power.
- the curve PCRETE represented in dashed lines corresponds to a peak power of the electric machine 4.
- the PNOM curve represented in dashed lines corresponds to a nominal power of the electric machine 4.
- the hatched portion of the figure corresponds to the torque guard of the electric machine 4.
- the difference between the value of the peak torque CMELMAX and the value of the nominal torque CNOM corresponds to a sufficient torque guard to compensate the torque of tearing CARR.
- the difference in the torque of the electric machine 4 operating at its peak power PCRETE and the torque of the electric machine 4 operating at its nominal power PNOM corresponds insufficient torque protection to compensate for the application of the CARR breakaway torque. Indeed, when the electric machine 4 operates at a higher speed than the basic speed, the torque guard decreases rapidly, substantially in 1 / x.
- the starting of the heat engine 2 therefore inevitably results in a sample of torque at the wheel 6.
- This torque sampling causes a failure between the actual acceleration of the vehicle and the desired acceleration by the driver.
- the value of the basic WB regime is 2000 rpm.
- the invention therefore proposes in particular to solve these problems of guard torque and synchronization during the transmission of the tearing torque.
- the invention proposes to start the engine without ever taking torque from the wheel and with identical starting times, regardless of the speed of the electric machine and the temperature of the engine.
- the known architecture of the transmission device is completed by a starting system which is independent of the electric machine.
- this independent starting system drives the heat engine independently of the machine electric.
- it is no longer the clutch but the starter system that transmits the heat engine its tearing torque in order to start it.
- this starting system makes it possible to separate the problems of starting the engine with those of the vehicle power train.
- the introduction of the starter system leads to a simplification of the control of the clutch and the electric machine during transient conditions.
- the new architecture thus makes it possible to avoid synchronization between the actions of the clutch and the electric machine.
- the problem of estimating the torque applied by the electric machine to compensate for the breakaway torque has disappeared, since the clutch is no longer directly involved in starting the engine.
- This starting system also allows a better exploitation of the characteristics of the clutch and the machine. Thus, it is no longer necessary for the electric machine to have a torque guard to compensate for the torque taken by the clutch. If an acceleration so requires, the electric machine can operate at its peak torque to ensure traction of the vehicle, even if the engine is not available. Thus, in general, when acceleration requires, the electric machine operates at its peak torque as the clutch remains open, when starting the engine. And when the clutch is closed, the electric machine is operated at its peak torque, or at a lower torque if a set torque can be met.
- the starter system takes the form of a controlled starter.
- the invention therefore relates to a power transmission method implementing a power transmission device of a motor vehicle comprising an electric machine connected on the one hand to a heat engine by a clutch and on the other hand to a motor shaft. wheels, in which, to start the engine, when the electric machine is already rotating,
- the shaft of the heat engine is rotated by means of a starting system mechanically independent of the electric machine.
- the invention relates to a power transmission device of a motor vehicle comprising an electric machine connected on the one hand to a heat engine by a clutch and on the other hand to a wheel shaft, characterized in that it comprises a mechanically independent starting system of the electric machine, this starting system being connected to the heat engine.
- FIG. 1 (already described): a schematic representation of a power transmission device according to the state of the art
- - Figure 3 (already described): a graphical representation of a torque guard of an electric machine
- - Figure 4 a schematic representation of a transmission device according to the invention comprising a starter system
- FIG. 4 shows a schematic representation of a transmission device 1.1 according to the invention.
- this transmission device 1.1 comprises a heat engine 2, a clutch 3, an electric machine 4, a speed variator element and wheels 6.
- the four components 2- 5 and the wheels 6 of the vehicle form a pull chain, and are arranged in the same manner as in the transmission device 1 according to the state of the art.
- the transmission device 1.1 comprises a starting system 7 connected to the heat engine 2.
- This starting system 7 is connected to the engine 2 and drives it in rotation in order to start it.
- the boot system 7 is mechanically independent of the electric machine 4.
- the starting system 7 starts the heat engine 2 without drawing power to the traction chain. Consequently, the starting of the heat engine 2 has no longer any impact on the continuity of the torque applied to the shaft 12 of wheels 6.
- the electric machine 4 no longer has to operate under power to be able to transmit at any time the tearing torque to the heat engine 2. Indeed, as we will see, in the invention, it is the system 7 startup that provides the tearing torque. The starter system 7 therefore never participates in traction.
- the heat engine 2 comprises a first pulley 15 which is attached to one end of its shaft 10.
- the starting system 7 comprises a second pulley 16 which is attached to one end of its shaft 31.
- a belt 17 passes through a groove of these two pulleys 15 and 16, so as to connect the starting system 7 to the heat engine 2.
- the electrical machine 4 is here connected to a storage device 18, such as a battery.
- a storage device 18 such as a battery.
- the storage system 18 is an inertia machine, or a supercapacitor.
- the transmission device 1.1 may also include the flywheel 25.
- This flywheel 25 is connected to the shaft 10 of the engine 2, between this engine 2 and the clutch 3.
- the transmission device 1.1 also comprises the supervision computer 26.
- the microprocessor 26.1 controls the interface 26.4, so that, in addition to the signals OMTH, OEMB, OMEL, OBV, an ODEM signal is sent to the system 7 start to order it.
- the OMTH and OMEL signals respectively control the heat engine 2 and the electric machine 4, so that the heat engine 2 is still operating at its optimum operating point where, for a given power, its consumption is minimum.
- some of the P1-PN programs generate OMTH, OEMB, OMEL, OBV, and ODEM signal transmissions for transition from one mode to another.
- the starting system 7 also includes an internal control system which is not shown. This control system makes it possible to regulate the value of the breakaway torque that this starting system 7 applies to the shaft 10 of the heat engine 2.
- the clutch 3 is a dry or wet clutch.
- FIG. 5 shows, in particular, chronograms of the signals observable on the various members 2-5 of the transmission device 1.1 according to the invention. As for FIG. 2, these signals are observable during the transient regime, when the transmission device 1.1 changes from an electrical operating mode to a hybrid operating mode.
- the signals associated with the transmission device 1 according to the state of the art are shown in dotted lines to be able to compare them with the signals associated with the transmission device 1.1 according to the invention shown in solid lines.
- the reference torque signal CCONS is the same as that of FIG. 2.
- the electric machine 4 has already been actuated, that is to say that it is already rotating.
- the vehicle has therefore a priori already taken off, that is to say that it is already moving.
- the heat engine 2 is in turn off: it therefore has a rotation speed WMTH and a torque CMTH zero at time tO.
- the setpoint torque CCONS increases, so that at time t1, it has already reached the peak torque CMELMAX of the electric machine 4.
- the pair CMEL of the Electric machine 4 increases, so as to follow the requested torque CCONS set.
- the electric machine 4 operates at its peak torque CMELMAX when the heat engine 2 is not available.
- the fact that the machine 4 can operate at its peak torque CMELMAX allows the transmission device 1.1 to provide a torque equal to the requested setpoint torque CCONS.
- the torque CREEL measured on the shaft 12 of the wheels 6 corresponds exactly to the torque CCONS of deposit.
- the torque guard is no longer necessary, since the electric machine 4 is no longer directly involved in starting the heat engine 2.
- the speed of rotation WMEL of the electric machine 4 is non-zero and increases linearly.
- the heat engine 2 is still at a standstill and its shaft 10 is not coupled with the shaft 11 of the electric machine 4.
- the heat engine 2 therefore always has a torque CMTH and a rotation speed WMTH which are zero both.
- the transmission device 1.1 enters a first transient phase.
- the reference torque CCONS is always equal to the peak torque CMELMAX of the electric machine 4.
- no torque CEMB is observable on the clutch 3 since this clutch 3 does not transmits more the breakaway torque CARR ensuring the starting of the heat engine 2.
- the electric machine 4 therefore still operates at its peak torque CMELMAX because it no longer has to compensate during this first phase the breakaway torque CARR.
- the torque CREEL measured on the shaft 12 is therefore still equal to the reference torque CCONS.
- a signal 35 is sent to the system 7 start.
- This signal 35 controls the starting system 7 which drives the heat engine 2.
- a torque signal CMTH corresponding to the starting torque of this heat engine 2 is then observable.
- the heat engine 2 then has a speed WMTH of rotation which is lower than that of the electric machine 4.
- the heat engine 2 does not yet transmit torque to the shaft 12 of the wheels 6, since it is not yet coupled. with the shaft 11 of the electric machine 4.
- the heat engine 2 thus passes its first compressions so as to reach a sufficient regime to be autonomous.
- a signal is emitted by the computer 26 to the starter system 7, so as to cut the starter system 7, in other words stop it.
- the transmission device 1.1 enters a second transient phase.
- the electric machine 4 still operates at its peak torque CMELMAX.
- the torque signals CCONS, CREEL, CMEL therefore always have values equal to CMELMAX.
- the torque signal CMTH of the heat engine 2 decreases slightly, while the speed of rotation WMTH of this heat engine 2 increases to reach at time t3 the speed of rotation WMEL of the electric machine 4.
- No torque CEMB is observable on the clutch 3.
- the second phase is again intended to rev up the engine 2 to allow, as will be seen below, a sliding of the discs 8 and 9 clutch 3 the one compared to the other.
- the transmission device 1.1 enters a third transient phase.
- the set torque CCONS is always equal to the peak torque CMELMAX of the electric machine 4.
- a signal 36 is transmitted to the clutch when executing one of the programs P1-PN. This signal 36 controls the sliding of the disks 8 and 9 clutch relative to each other.
- the heat engine 2 then transmits a portion of its torque CMTH to the shaft 12 of the wheels 6 via the clutch 3.
- the observable torque on the clutch 3 increases in a calibrated manner and in an example in a linear manner.
- this clutch 3 transmits a torque to the traction chain.
- the torque signal CMEL of the electric machine 4 then decreases in an example linearly.
- the CREEL torque is therefore always equal to the setpoint DCONS torque.
- the torque signal CMTH of the heat engine 2 then enters a second oscillation.
- the electric machine 4 retains a torque equal to CMELMAX and the motor 2 adapts its torque to satisfy the CCONS setpoint.
- the transmission device 1.1 enters a fourth transitional phase.
- the set torque CCONS is always equal to the peak torque CMELMAX of the electric machine 4.
- it first occurs a docking of the engine, then in a second step, closing the clutch 3.
- the rotation speed WMTH of the heat engine 2 converges to that WMEL of the electric machine 4, and when these two speeds are substantially equal, a signal 37 is emitted to the clutch 3 to control its closure.
- this signal 37 is emitted when the difference between the speed of rotation WMTH of the heat engine 2 and the speed of rotation WMEL of the electric machine 4 is lower in absolute value to a value between 0 and 15% of the speed. 4.
- the clutch torque CEMB increases until the clutch 3 closes and then stabilizes.
- the torque signal CMEL of the electric machine 4 always decreases symmetrically with respect to the torque CEMB of the clutch 3.
- the torque signal CREEL measured on the shaft 12 of wheels 6 is identical to the reference torque signal CCONS.
- the transmission device 1.1 enters a fifth transitional phase.
- the reference torque signal CCONS increases slightly, in a calibrated manner, in the manner of a step, for example.
- the motor members 2 and 4 of the device 1 converge to their optimal torque setpoint with respect to a consumption of the heat engine 2, if they have not already reached it.
- the clutch torque signal CEMB increases to maintain the closing of the clutch 3, and exceeds the torque signal of the heat engine 2.
- the speeds of rotation WMTH and WMEL of the engine 2 and the electric machine 4 increase with the speed of the vehicle.
- the clutch 3 when starting the heat engine 2, the clutch 3 is open and remains open for a predetermined time which extends between t0 and t3. This duration may be a function of the setpoint torque CCONS requested by the driver and / or the time that the engine 2 to become autonomous. In a variant, the clutch 3 is already closed when the engine 2 is started. In this variant, the starting system 7 and the electric machine 4 participate together in the transmission of the breakaway torque CARR to the engine 2.
- the starting system 7 is connected to the heat engine 2 by means of a first reduction unit which has a lower ratio than that of a second reduction unit through which the electric machine 4 and the heat engine 2 are connected, so that the torque applied to the shaft 10 of the heat engine 2 by the system of start 7 is greater than the torque applied to this shaft 10 by the electric machine.
- the electric machine 4 has a higher rotation speed WMEL than it possesses when it is used with the transmission device 1 of the state of the art.
- the hatched portion on the timing diagram of the rotation speeds WMEL and WMTH thus represents the acceleration gain achieved by a device 1.1 according to the invention with respect to the device 1 according to the state of the art.
- the actions applied to the clutch 3 by the heat engine 2 and the electric machine 4 are independently of one another.
- An action on the clutch 3 by the electric machine 4 is that of driving the vehicle.
- An action on the clutch 3 by the engine 2 is actually an action by the starter system 7 which is that of starting the engine 2. The independence of these actions implies that it would be possible to use a clutch 3 that would not be mechanical.
- the torque CREEL measured on the shaft 12 of the wheels 6 is always equal to the target torque CCONS when this target torque is less than or equal to CMELMAX.
- the measured torque CREEL was lower than the setpoint torque CCONS.
- the invention therefore eliminates jolts during a start of the engine 2. Indeed, since the start of the engine 2 is performed independently of the electric machine 4, the impact of the start on a Longitudinal dynamic of the vehicle is zero.
- the boot is more robust. Indeed, the starting system 7 starts the heat engine 2 with a generally constant torque, whatever the WMEL speed of the electric machine 4. The start of the engine 2 are fast and of equal quality, regardless of the speed of the electric machine 4.
- the electric machine 4 of the device 1.1 according to the invention is dimensioned in the same way as the electric machine 4 of the device 1 of the state of the art.
- peak torque CMELMAX for the traction of the vehicle the time that the engine 2 starts and is available, the response to a desire for acceleration of the driver is almost instantaneous.
- the signals associated with the device 1.1 during the transient regime are represented here for a setpoint torque CCONS generally equal to the peak torque CMELMAX of the electric machine 4.
- the pace of these signals would be very similar to that shown in Figure 5 for CCONS setpoint pairs of different values.
- the device 1.1 is used to start the engine 2 during a take-off of the vehicle, when the electric machine 4 has not yet been actuated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Of Transmissions (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
La présente invention concerne essentiellement un dispositif (1.1) de transmission de puissance d'un véhicule automobile. Ce dispositif (1.1) comporte une chaîne de traction formée d'un moteur thermique (2), d'un embrayage (3) comportant un premier et un deuxième disque (8, 9) d'embrayage, d'une machine électrique (4), et de roues (6). L'arbre (10) de la machine (4) est en outre relié à un arbre (12) des roues (6). Conformément à l'invention, ce dispositif (1.1) de transmission comporte un système de démarrage (7) indépendant mécaniquement de la machine électrique (4). Ce système de démarrage (7) est relié au moteur thermique (2).
Description
Procédé de transmission de puissance entre un moteur thermique et des roues d'un véhicule automobile et dispositif associé.
La présente invention concerne un dispositif de transmission de puissance entre un moteur thermique et des roues d'un véhicule automobile. L'invention a pour but de rendre plus confortable la conduite de ce véhicule, en assurant notamment la continuité du couple appliqué aux roues. L'invention trouve une application particulièrement avantageuse dans le domaine des véhicules automobiles, mais elle pourrait aussi être mise en œuvre dans tout type de véhicule terrestre à motorisation hybride.
Dans le présent texte, le terme "démarrage" est utilisé pour désigner la mise en rotation du vilebrequin du moteur thermique. Le terme de "décollage" est utilisé pour désigner la mise en mouvement du véhicule, lorsqu'il passe d'une vitesse nulle à une vitesse non nulle. Le terme "actionnement" est utilisé pour la machine électrique, lorsqu'elle est mise sous tension.
On connaît des véhicules dits hybrides qui combinent l'utilisation d'une énergie thermique et d'une énergie électrique pour réaliser leur traction. Cette combinaison des énergies est réalisée de manière à optimiser le rendement énergétique de tels véhicules. Cette optimisation du rendement énergétique permet au véhicule hybride de polluer et consommer largement moins que les véhicules qui fonctionnent uniquement à l'énergie thermique et dont le rendement n'est pas optimisé. Plusieurs types de dispositifs de transmission de puissance pour véhicule hybride sont connus.
On connaît d'abord des dispositifs de transmission de type hybride comportant un moteur et une paire de machines électriques. L'arbre de roues, l'arbre de moteur et les arbres des deux machines sont reliés entre eux par l'intermédiaire d'un ensemble mécanique. Cet ensemble mécanique est constitué généralement d'au moins deux trains épicycloïdaux. Un tel dispositif de transmission est décrit dans la demande française FR-A- 2832357.
On connaît aussi des dispositifs de transmission de type hybride comportant un moteur thermique et une seule machine électrique. Un arbre de ce moteur thermique et un arbre de cette machine électrique sont reliés
entre eux par l'intermédiaire d'un embrayage. Un tel dispositif est susceptible de fonctionner dans deux modes différents. Dans un premier mode appelé mode électrique, seule la machine électrique entraîne l'arbre des roues du véhicule. Dans un second mode appelé mode hybride, la machine électrique et le moteur thermique entraînent ensemble l'arbre des roues du véhicule.
Dans le mode hybride, la puissance fournie par la machine électrique permet d'ajuster le couple appliqué sur l'arbre de roues tout en adaptant le couple et le régime du moteur thermique à un point de fonctionnement où la consommation énergétique est optimisée. A cet effet, chaque organe du dispositif de transmission : moteur thermique, embrayage, machine électrique et élément variateur de vitesse, est piloté par un dispositif de contrôle rapproché qui est lui-même commandé par un calculateur spécifique appelé calculateur de supervision. Ce calculateur peut être indépendant ou intégré dans un autre calculateur, tel que le calculateur moteur. Ce calculateur de supervision exécute des programmes pour synchroniser notamment entre elles des actions des différents éléments du dispositif de transmission. Cette synchronisation est réalisée de manière à répondre au mieux à une volonté d'accélération d'un conducteur. Plus précisément, en fonction de l'accélération souhaitée par l'utilisateur et de conditions de roulage du véhicule, le calculateur de supervision, pilote les différents organes du dispositif, décide du mode de fonctionnement, coordonne les phases transitoires des différents organes, et choisit des points de fonctionnement du moteur et de la machine électrique. Par conditions de roulage, on entend des paramètres du véhicule ainsi que des paramètres extérieurs susceptibles d'influencer la conduite du véhicule. La vitesse et l'accélération du véhicule sont par exemple des paramètres du véhicule, tandis que le degré d'inclinaison d'une pente sur laquelle roule le véhicule ou la température ambiante constituent des paramètres extérieurs. La figure 1 montre une représentation schématique d'un dispositif 1 de transmission selon l'état de la technique. Ce dispositif 1 de transmission comporte un moteur thermique 2, un embrayage 3, une machine électrique 4, un élément 5 variateur de vitesse tel qu'une boîte de vitesses ou un variateur, et des roues 6 qui forment une chaîne de traction. Plus précisément, l'embrayage 3 comporte un premier disque 8 et un
deuxième disque 9 d'embrayage. Le premier disque 8 d'embrayage est relié à un arbre 10 du moteur thermique 2. Et le deuxième disque 9 d'embrayage est relié à un arbre 11 de la machine électrique 4. En outre, l'arbre 11 de la machine électrique 4 et un arbre 12 des roues 6 sont reliés respectivement à une entrée 13 et à une sortie 14 de l'élément 5 variateur de vitesse.
Comme on l'a vu, le dispositif 1 de transmission est susceptible de fonctionner dans deux modes différents. Dans le mode électrique, l'arbre 12 des roues 6 est entraîné par la machine électrique 4 seulement. L'embrayage 3 est alors ouvert, de manière que l'arbre 10 du moteur 2 et l'arbre 11 de la machine électrique 4 ne soient pas accouplés entre eux. Dans ce mode électrique, la machine électrique 4 se comporte généralement en moteur. Ainsi, dans une réalisation particulière, la machine 4 prélève de l'énergie à un système 18 de stockage, tel qu'une batterie, par l'intermédiaire notamment d'un onduleur 19. La batterie 18 délivre un signal de tension continue. Dans le mode électrique, l'onduleur 19 transforme donc le signal de tension continue observable entre les bornes 20 et 21 de la batterie, en signaux de tension alternatifs qui sont appliqués sur des phases 22-24 de la machine électrique 4.
Dans le mode hybride, l'arbre 12 des roues 6 est entraîné par le moteur thermique 2 et la machine électrique 4. L'embrayage 3 est alors fermé, de manière que l'arbre 10 du moteur 2 et l'arbre 11 des roues 6 soient accouplés entre eux. La machine électrique 4 se comporte généralement en moteur ou en générateur et transmet une puissance à l'arbre 12 des roues 6 pour ajuster le couple observable sur l'arbre 12 des roues 6 au couple de consigne. De la même manière que celle expliquée précédemment, la machine 4 transfère de l'énergie avec la batterie 18.
Dans le mode électrique et le mode hybride, pendant des phases de récupération qui correspondent à un ralentissement du véhicule, la machine électrique 4 se comporte en générateur. Pendant ces phases de récupération, la machine électrique 4 fournit de l'énergie à la batterie 18. L'onduleur 19 transforme alors les signaux de tension alternatifs observables sur les phases 22-24 de la machine électrique 4 en un signal de tension continu qui est appliqué aux bornes 20 et 21 de la batterie 18.
Dans la pratique, la machine électrique 4 est une machine synchrone triphasée. Les machines de ce type présentent l'intérêt d'être compactes et
de posséder un bon rendement.
Dans une réalisation particulière, le dispositif 1 de transmission comporte un volant 25 d'inertie. Ce volant d'inertie 25 contribue à assurer une fonction de filtration des ascyclismes pour assurer une continuité dans la transmission du couple du moteur thermique 2 à l'arbre 6 des roues 12.
Par ailleurs, le dispositif 1 de transmission selon l'état de la technique comporte une unité de commande indépendante constituée ici par un calculateur 26 de supervision. Ce calculateur 26 de supervision comporte un microprocesseur 26.1 , une mémoire programme 26.2, une mémoire de données 26.3, et une interface 26.4 d'entrées-sorties reliés entre eux par l'intermédiaire d'un bus 31 de communication.
La mémoire de données 26.3 comporte des données D1-DN correspondant notamment aux caractéristiques des différents organes du dispositif 1 de transmission, à savoir le moteur thermique 2, l'embrayage 3, la machine électrique 4 et l'élément 5 variateur de vitesses. Certaines des données D1-DN correspondent par exemple aux temps de réponse de ces organes 2-5. D'autres données D1-DN correspondent par exemple à des couples maximums et à des couples minimums applicables sur des arbres associés aux organes 2-5. L'interface 26.4 d'entrées-sorties reçoit des signaux M1-MN observables en sortie de capteurs (non représentés). Ces capteurs permettent de détecter les conditions de roulage du véhicule. Par exemple, des capteurs d'accélération et de vitesse permettent de connaître respectivement l'accélération et la vitesse du véhicule à un instant donné. Un capteur d'inclinaison peut permettre de savoir si le véhicule se trouve dans une pente ou pas. En outre, l'interface 26.4 reçoit un signal MACC correspondant à un couple à la roue souhaité par un conducteur. En effet, lorsqu'il souhaite accélérer, le conducteur appuie à l'aide de son pied 30 sur une pédale 29. En fonction du degré d'enfoncement de cette pédale 29, le signal MACC est engendré.
En fonction des données D1-DN, des conditions de roulage, et de l'accélération souhaitée par le conducteur, le microprocesseur 26.1 exécute un des programmes P1-PN qui engendre la mise en fonctionnement du dispositif 1 de transmission dans un mode particulier, et l'ajustement du couple observable sur l'arbre 12 des roues 6. Plus précisément, lors de
l'exécution d'un des programmes P1-PN, le microprocesseur 26 commande l'interface 26.4, de manière que des signaux OMTH, OEMB, OMEL et OBV soient émis respectivement à destination du moteur thermique 2, de l'embrayage 3, de la machine électrique 4 et de l'élément 5 variateur pour les commander.
Dans le cas d'un changement de mode de fonctionnement, certains des programmes P1-PN engendrent des émissions de signaux OMTH, OEMB, OMEL, et OBV assurant la transition d'un mode à un autre.
En outre, les organes 2-5 du dispositif 1 de transmission comportent chacun un système de contrôle interne qui n'est pas représenté. Ces systèmes de contrôle permettent de réguler la valeur des couples observables sur des arbres associés à ces organes 2-5.
Dans un exemple, pour une demande d'accélération faible de la part du conducteur, le calculateur 26 de supervision commande les différents organes 2-5, de manière à faire fonctionner le dispositif 1 de transmission dans le mode électrique. Le couple appliqué sur l'arbre 12 des roues 6 est alors égal au couple observable sur l'arbre 11 de la machine électrique 4, à un rapport de démultiplication près. En revanche, pour une demande d'accélération forte, le calculateur 26 de supervision commande les différents organes 2-5, de manière à faire fonctionner le dispositif 1 de transmission dans le mode hybride. Le couple appliqué sur l'arbre 12 des roues 6 est alors égal au couple observable sur l'arbre 11 de la machine électrique 4, lequel est alors égal à la somme du couple observable sur l'arbre 10 du moteur thermique 2 et de celui de la machine 4. Lorsqu'on passe du mode électrique au mode hybride, il existe un régime transitoire, pendant lequel le couple du moteur thermique 2 n'est pas disponible. En effet, lors de ce régime transitoire, le moteur thermique 2 démarre et son arbre 10 commence à s'accoupler avec l'arbre 11 de la machine électrique 4, sans que le couple du moteur thermique 2 ne soit transmis à l'arbre 6 des roues 12. Ce régime transitoire est particulièrement critique puisqu'il peut survenir plus de deux cents fois par heure de roulage, quelle que soit la vitesse du véhicule et le rapport de boîte de vitesses engagé.
Lors du régime transitoire, le calculateur 26 de supervision doit donc piloter l'embrayage 3 de manière spécifique et précise, de manière que le
conducteur ne se rende même pas compte du changement de mode du véhicule. Le temps de réponse du moteur thermique 2 doit donc être minimal lors d'une accélération. Par ailleurs, il faut veiller au respect du niveau d'accélération souhaité par le conducteur tout au long du régime transitoire, tout en assurant un confort acoustique au conducteur. En effet, les emballements du moteur thermique doivent être évités, et le bruit de démarrage du moteur ne doit pas être entendu.
Dans les dispositifs 1 de transmission existants, pour passer d'un mode électrique à un mode hybride, l'embrayage 3 transmet un couple d'arrachement au moteur thermique 2. Ce couple d'arrachement a pour objet d'entraîner ce moteur thermique 2 en rotation et le faire démarrer. Pendant la transmission du couple d'arrachement, la machine électrique 4 applique un couple qui compense ce couple d'arrachement, de manière qu'il n'y ait pas de variations dans le couple appliqué à l'arbre 12 des roues 6. La figure 2 montre notamment des chronogrammes de signaux observables sur les différents organes 2-5 du dispositif 1 de transmission selon l'état de la technique. Ces signaux sont observables lors d'un régime transitoire, lorsque le dispositif 1 de transmission passe d'un mode de fonctionnement électrique à un mode de fonctionnement hybride. Plus précisément, la figure 2 montre les signaux de couple CEMB,
CMEL et CMTH qui correspondent respectivement au couple observable sur l'embrayage 3, sur l'arbre 11 de la machine électrique 4, et sur l'arbre 10 du moteur thermique 2.
La figure 2 montre également l'évolution dans le temps de signaux de couple CCONS et CREEL correspondant respectivement au couple de consigne à appliquer sur l'arbre 12 des roues 6 et au couple effectivement observable sur cet arbre 12 des roues 6. Le signal de couple CCONS de consigne est élaboré à partir du signal MACC et des signaux M1-MN issus des capteurs. Les signaux OEMB et OMEL sont émis par le calculateur 26 à destination de l'embrayage 3 et de la machine électrique 4 pour les commander. Pour plus de simplicité, les signaux OMTH et OBV qui commandent respectivement le moteur thermique 2 et la machine électrique 4 ne sont pas représentés. Enfin, la figure 2 montre sur un même chronogramme l'évolution dans
le temps de la vitesse de rotation WMEL de la machine électrique 4, et de la vitesse de rotation WMTH du moteur thermique 2.
Entre les instants tO et t1 , le couple CCONS de consigne augmente de manière exponentielle, en correspondance notamment avec une demande d'accélération du conducteur. Ce couple CCONS de consigne augmente, si bien qu'à l'instant t1 , il a déjà atteint le couple crête CMELMAX de la machine électrique 4. Par ailleurs, entre les instants tO et t1 , la machine électrique 4 possède un couple CMEL qui augmente pour se stabiliser au couple nominal CMELNOM de cette machine électrique 4. La vitesse de rotation WMEL de la machine électrique 4 est non nulle et augmente linéairement. Le moteur thermique 2 est à l'arrêt et son arbre 10 n'est pas accouplé avec l'arbre 11 de la machine électrique 4. Le moteur thermique 2 possède donc un couple CMTH et une vitesse WMTH de rotation qui sont nuls tous les deux. Comme le moteur est arrêté, le couple CREEL mesuré sur l'arbre 12 des roues 6 est égal au couple CMEL de la machine électrique
4. Le couple CREEL mesuré sur l'arbre 12 est donc inférieur au couple de consigne CCONS attendu. Aucun couple n'est observable sur l'embrayage 3.
Entre les instants t1 et t2, le dispositif 1 de transmission entre dans une première phase transitoire. Dans cette première phase, le couple CCONS de consigne est toujours globalement égal au couple crête CMELMAX de la machine électrique 4. A l'instant t1 , un premier signal 31 est émis par le calculateur 26 de supervision à destination de l'embrayage 3. Ce signal 31 commande cet embrayage 3, de manière que cet embrayage 3 transmette un couple d'arrachement CARR au moteur thermique 2 pour le faire entrer en rotation. Ce couple d'arrachement CARR est prélevé à la chaîne de traction. De ce fait, un deuxième signal 32 est émis par le calculateur 26 en même temps que le signal 31 , et à destination de la machine électrique 4. Ce signal 32 commande la machine électrique 4, de manière que son couple CMEL compense le couple d'arrachement CARR prélevé par l'embrayage 3. Ainsi, dans cette première phase transitoire, le signal de couple CEMB d'embrayage décroît et atteint une valeur négative égale à la valeur du couple d'arrachement CARR. Pendant ce temps, le signal de couple CMEL de la machine électrique 4 augmente d'une valeur - CARR opposée à la valeur du couple d'arrachement CARR. Un signal de couple CMTH du moteur thermique 2 correspondant au couple de démarrage
de ce moteur thermique 2 est alors observable. Le moteur thermique 2 possède alors une vitesse de rotation WMTH qui augmente, mais qui reste inférieure à la vitesse de rotation WMEL de la machine électrique 4. Le moteur thermique 2 ne transmet toujours pas son couple à l'arbre 6 de roues 12, puisqu'il n'est pas accouplé avec l'arbre 11 de la machine électrique 4. Le couple CREEL mesuré sur l'arbre 12 est donc toujours inférieur au couple de consigne CCONS attendu sur cet arbre 12. La première phase transitoire a pour but de faire passer au moteur thermique 2 ses premières compressions. Ainsi, le moteur thermique 2 effectue entre deux et quatre tours, sans que son arbre 10 ne soit accouplé avec l'arbre 11 de la machine électrique 4. Après avoir effectué ces quelques tours, le moteur thermique 2 fonctionne à un régime WMTH suffisant pour être autonome.
Entre les instants t2 et t3, le dispositif 1 de transmission entre dans une deuxième phase transitoire. Dans cette deuxième phase, le couple de consigne CCONS est toujours globalement égal à CMELMAX. Par ailleurs, le signal de couple CMEL de la machine électrique 4 diminue pour passer d'une valeur CNOM-CARR à la valeur de couple CMELNOM nominal de la machine électrique 4. Et le signal de couple CEMB de l'embrayage 3 redevient nul. La phase de transmission du couple d'arrachement se termine ainsi entre t2 et t3. Comme l'arbre 10 du moteur thermique 2 n'est toujours pas accouplé avec l'arbre 11 de la machine électrique 4, le couple CREEL est toujours égal au couple CMEL de la machine électrique 4 et reste inférieur au couple de consigne CCONS. La vitesse de rotation WMEL de l'arbre 11 de la machine électrique 4 augmente linéairement. La vitesse de rotation WMTH de l'arbre 10 du moteur thermique 2 augmente pour atteindre à l'instant t3 la vitesse de rotation WMEL de la machine électrique 4. Cette deuxième phase transitoire a ainsi pour objet de faire monter en régime le moteur thermique 2 pour permettre, comme on va le voir ci-après, une mise en glissement des disques d'embrayage 8 et 9 l'un par rapport à l'autre. Entre les instants t3 et t4, le dispositif 1 de transmission entre dans une troisième phase transitoire. Dans cette troisième phase, le couple CCONS de consigne est toujours globalement égal au couple crête CMELMAX de la machine électrique 4. Dès que la vitesse de rotation WMTH du moteur thermique 2 est supérieure à celle de la machine électrique 4, un signal 33 est émis par le calculateur 26 de supervision à destination de
l'embrayage 3. Ce signal 33 commande la mise en glissement des disques 8 et 9 d'embrayage l'un par rapport à l'autre. Le moteur thermique 2 transmet alors une partie de son couple CMTH à l'arbre 12 des roues 6 par l'intermédiaire de l'embrayage 3. Le signal de couple CEMB observable sur l'embrayage 3 augmente alors linéairement, tandis que le signal de couple CMEL de la machine électrique 4 diminue de manière globalement symétrique par rapport au signal de couple CEMB de l'embrayage 3. Le couple CREEL augmente alors de manière linéaire puisque le moteur thermique 2 commence à transmettre du couple à l'arbre 12 des roues 6. En variante, le couple de la machine électrique 4 pourrait être commandée de manière que son couple conserve la valeur CMELMAX. Le moteur thermique 2 adapte alors son couple, de manière que le couple CCONS de consigne soit satisfait.
Entre les instants t4 et t5, le dispositif 1 de transmission entre dans une quatrième phase transitoire. Dans cette quatrième phase transitoire, il se produit dans un premier temps un accostage du moteur, puis, dans un deuxième temps, une fermeture de l'embrayage 3. Plus précisément, lors de l'accostage du moteur thermique 2, la vitesse de rotation WMTH du moteur thermique 2 converge vers celle de la machine électrique 4. Lorsque ces deux vitesses sont égales, un signal 34 est émis à destination de l'embrayage 3 par le calculateur 26 de supervision. Ce signal 34 commande la fermeture de cet embrayage 3. Les vitesses de rotation du moteur WMTH et de la machine WMEL sont alors identiques pendant toute cette phase entre t4 et t5. Le couple CEMB de l'embrayage 3 augmente, tandis que le signal de couple CMEL de la machine électrique 4 décroît de manière globalement symétrique par rapport au signal de couple CEMB de l'embrayage 3. Ce couple CMEL compense le couple CEMB afin de réaliser CCONS.
Entre les instants t5 et t6, le dispositif 1 de transmission entre dans une cinquième phase transitoire. Dans cette cinquième phase, le couple CCONS de consigne augmente légèrement, à la manière d'un échelon par exemple. Les organes moteur 2 et 4 du dispositif 1 convergent alors vers leur signal de consigne de couple optimal, s'ils ne l'ont pas déjà atteinte. L'embrayage est maintenu fermé et son couple CEMB augmente de manière à dépasser le couple CMTH. Les vitesses de rotation du moteur thermique
WMTH et de la machine électrique WMEL augmentent avec la vitesse du véhicule. Le signal de couple CREEL suit l'évolution du signal de couple de consigne CCONS.
La gestion de ce régime transitoire présente de grosses difficultés de mise en œuvre. Ces difficultés sont dues essentiellement à la grande sensibilité des organes 2-5. En effet, d'une température à une autre, les organes 2-5 ne possèdent pas les mêmes caractéristiques. Par ailleurs, d'une température à une autre, des couples observables sur des arbres 2-5 associés à ces organes varient. Avec un tel dispositif 1 de transmission, il est donc difficile d'obtenir un temps de démarrage constant, quelles que soient les conditions de roulage. En effet, ce temps de démarrage varie de manière non négligeable suivant la température du moteur thermique 2. Ce temps de démarrage est beaucoup plus court lorsque le moteur thermique 2 est chaud que lorsqu'il est froid. En outre, il est difficile de faire coïncider parfaitement dans le temps le prélèvement du couple CARR d'arrachement sur l'embrayage 3 et l'application du couple CNOM-CARR de compensation par la machine électrique 4. Or cette synchronisation dans les prélèvements des couples est nécessaire pour garantir l'absence de rupture de couple lors du démarrage du moteur thermique 2.
Il est aussi difficile d'appliquer un couple de compensation exactement égal au couple prélevé par l'embrayage. En effet, il est difficile d'estimer le couple à appliquer sur l'embrayage 3 lors de la transmission du couple d'arrachement CARR suivant la température du moteur thermique 2. Par ailleurs, entre les instants t1 et t4, la machine électrique 4 ne peut pas fournir son couple crête CMELMAX pour réaliser le couple de consigne CCONS. La machine électrique 4 ne peut pas fonctionner à son couple de crête car elle doit posséder une garde de couple permettant de compenser le couple d'arrachement CARR prélevé par l'embrayage 3, quel que soit le régime du véhicule. Autrement dit, la machine électrique 4 doit toujours fonctionner au maximum à son couple nominal CMELNOM, de manière à pouvoir fonctionner à tout moment à un couple supérieur lui permettant de compenser le couple d'arrachement CARR.
Toutefois, cette garde de couple n'est pas toujours disponible. La figure 3 montre ainsi que la garde de couple de la machine électrique 4 n'est
disponible que lorsque son régime WMEL de fonctionnement est inférieur à son régime WB de base. Plus précisément, la figure 3 représente le couple CMEL observable sur l'arbre 11 de la machine électrique 4 en fonction de sa vitesse de rotation WMEL, pour une puissance donnée. La courbe PCRETE représentée en traits pointillés correspond à une puissance de crête de la machine électrique 4. La courbe PNOM représentée en traits pointillés correspond à une puissance nominale de la machine électrique 4. La partie hachurée de la figure correspond à la garde de couple de la machine électrique 4. Pour un régime WMEL de la machine électrique 4 inférieur au régime WB de base, la différence entre la valeur du couple crête CMELMAX et la valeur du couple nominal CNOM correspond à une garde de couple suffisante pour compenser le couple d'arrachement CARR. En revanche, pour les régimes WMEL de la machine électrique 4 supérieurs au régime de base WB, la différence du couple de la machine électrique 4 fonctionnant à sa puissance de crête PCRETE et du couple de la machine électrique 4 fonctionnant à sa puissance nominale PNOM correspond à une garde de couple insuffisante pour compenser l'application du couple d'arrachement CARR. En effet, lorsque la machine électrique 4 fonctionne à un régime supérieur au régime de base, la garde de couple diminue rapidement, sensiblement en 1/x. Pour des régimes de la machine électrique 4 supérieurs au régime de base WB, le démarrage du moteur thermique 2 se traduit donc inévitablement par un prélèvement de couple à la roue 6. Ce prélèvement de couple engendre un non respect entre l'accélération effective du véhicule et l'accélération souhaitée par le conducteur. Dans un exemple, la valeur du régime WB de base vaut 2000 tours/min.
L'invention se propose donc notamment de résoudre ces problèmes de couple de garde et de synchronisation lors de la transmission du couple d'arrachement. L'invention se propose de faire démarrer le moteur sans jamais prélever de couple à la roue et avec des temps de démarrage identiques, quel que soit le régime de la machine électrique et la température du moteur thermique.
A cette fin, dans l'invention, l'architecture connue du dispositif de transmission est complétée par un système de démarrage qui est indépendant de la machine électrique. En effet, ce système de démarrage indépendant entraîne le moteur thermique indépendamment de la machine
électrique. Dans l'invention, ce n'est donc plus l'embrayage mais le système de démarrage qui transmet au moteur thermique son couple d'arrachement afin de le faire démarrer. Ainsi, ce système de démarrage permet de dissocier les problèmes de démarrage du moteur avec ceux de la chaîne de traction du véhicule.
L'introduction du système de démarrage entraîne une simplification du pilotage de l'embrayage et de la machine électrique lors des régimes transitoires. La nouvelle architecture permet ainsi d'éviter la synchronisation entre les actions de l'embrayage et de la machine électrique. Dans cette nouvelle architecture, le problème d'estimation du couple appliqué par la machine électrique pour compenser le couple d'arrachement a disparu, puisque l'embrayage ne participe plus directement au démarrage du moteur.
Ce système de démarrage permet aussi une meilleure exploitation des caractéristiques de l'embrayage et de la machine. Ainsi, il n'est plus nécessaire que la machine électrique possède une garde de couple pour compenser le couple prélevé par l'embrayage. Si une accélération le demande, la machine électrique peut donc fonctionner à son couple de crête pour assurer la traction du véhicule, même si le moteur thermique n'est pas disponible. Ainsi, en général, lorsqu'une accélération le demande, la machine électrique fonctionne à son couple crête tant que l'embrayage demeure ouvert, lors d'un démarrage du moteur thermique. Et lorsque l'embrayage est fermé, on fait fonctionner la machine électrique soit à son couple crête, soit à un couple inférieur si un couple de consigne peut être respecté.
Dans une réalisation particulière, le système de démarrage prend la forme d'un démarreur piloté.
L'invention concerne donc un procédé de transmission de puissance mettant en œuvre un dispositif de transmission de puissance d'un véhicule automobile comportant une machine électrique reliée d'une part à un moteur thermique par un embrayage et d'autre part à un arbre de roues, dans lequel, pour démarrer le moteur thermique, lorsque la machine électrique est déjà en rotation,
- on transmet un couple d'arrachement à l'arbre du moteur thermique, caractérisé en ce que :
- pour transmettre ce couple d'arrachement, on entraîne en rotation l'arbre du moteur thermique, à l'aide d'un système de démarrage
indépendant mécaniquement de la machine électrique.
En outre, l'invention concerne un dispositif de transmission de puissance d'un véhicule automobile comportant une machine électrique reliée d'une part à un moteur thermique par un embrayage et d'autre part à un arbre des roues, caractérisé en ce qu'il comporte un système de démarrage indépendant mécaniquement de la machine électrique, ce système de démarrage étant relié au moteur thermique.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures sont données à titre illustratif mais nullement limitatif de l'invention. Ces figures montrent :
- Figure 1 (déjà décrite): une représentation schématique d'un dispositif de transmission de puissance selon l'état de la technique ;
- Figure 2 (déjà décrite): des chronogrammes représentant l'évolution dans le temps de signaux observables sur des organes d'un dispositif de transmission de l'état de la technique, lors d'un changement de mode ;
- Figure 3 (déjà décrite): une représentation graphique d'une garde de couple d'une machine électrique ; - Figure 4 : une représentation schématique d'un dispositif de transmission selon l'invention comportant un système de démarrage ;
- Figure 5 : des chronogrammes représentant notamment l'évolution dans le temps de signaux observables sur des organes d'un dispositif de transmission selon l'invention, lors d'un changement de mode. La figure 4 montre une représentation schématique d'un dispositif 1.1 de transmission selon l'invention. Comme le dispositif 1 de transmission selon l'état de la technique, ce dispositif 1.1 de transmission comporte un moteur thermique 2, un embrayage 3, une machine électrique 4, un élément 5 variateur de vitesse et des roues 6. Les quatre organes 2-5 et les roues 6 du véhicule forment une chaîne de traction, et sont agencés de la même manière que dans le dispositif 1 de transmission selon l'état de technique. En outre, conformément à l'invention, le dispositif 1.1 de transmission comporte un système 7 de démarrage relié au moteur thermique 2.
Ce système 7 de démarrage est relié au moteur thermique 2 et l'entraîne en rotation afin de le faire démarrer. Le système 7 de démarrage
est indépendant mécaniquement de la machine électrique 4. En effet, le système 7 de démarrage démarre le moteur thermique 2 sans prélever de puissance à cette chaîne de traction. En conséquence, le démarrage du moteur thermique 2 n'a plus d'impact sur la continuité du couple appliqué sur l'arbre 12 de roues 6. Par ailleurs, la machine électrique 4 n'a plus à fonctionner en sous régime pour pouvoir transmettre à tout moment le couple d'arrachement au moteur thermique 2. En effet, comme on va le voir, dans l'invention, c'est le système 7 de démarrage qui fournit le couple d'arrachement. Le système de démarrage 7 ne participe donc jamais à la traction.
Il est de ce fait dimensionné en conséquence pour générer une puissance juste suffisante pour faire démarrer le moteur thermique 2, puissance qui est sensiblement inférieure à celle de la machine électrique 4 et qui ne nécessite pas de tension d'alimentation élevée. Dans une réalisation particulière, le moteur thermique 2 comporte une première poulie 15 qui est accrochée à une extrémité de son arbre 10. Et le système 7 de démarrage comporte une deuxième poulie 16 qui est accrochée à une extrémité de son arbre 31. Une courroie 17 passe par une gorge de ces deux poulies 15 et 16, de manière à relier le système 7 de démarrage au moteur thermique 2.
La machine électrique 4 est ici reliée à un dispositif 18 de stockage, tel qu'une batterie. En variante, le système 18 de stockage est une machine à inertie, ou un supercondensateur.
Dans une réalisation particulière, le dispositif 1.1 de transmission peut aussi comporter le volant 25 d'inertie. Ce volant 25 d'inertie est relié à l'arbre 10 du moteur thermique 2, entre ce moteur thermique 2 et l'embrayage 3.
Par ailleurs, le dispositif 1.1 de transmission selon l'invention comporte aussi le calculateur 26 de supervision. Lors de l'exécution d'un des programmes P1-PN, le microprocesseur 26.1 commande l'interface 26.4, de manière que, outre les signaux OMTH, OEMB, OMEL, OBV, un signal ODEM soit émis à destination du système 7 de démarrage pour le commander. Les signaux OMTH et OMEL commandent respectivement le moteur thermique 2 et la machine électrique 4, de manière que ce moteur thermique 2 fonctionne toujours à son point de fonctionnement optimal où, pour une puissance donnée, sa consommation est minimum.
Là encore, dans le cas d'un changement de mode de fonctionnement, certains des programmes P1-PN engendrent des émissions de signaux OMTH, OEMB, OMEL, OBV et ODEM permettant la transition d'un mode à un autre. Le système 7 de démarrage comporte aussi un système de contrôle interne qui n'est pas représenté. Ce système de contrôle permet de réguler la valeur du couple d'arrachement que ce système 7 de démarrage applique à l'arbre 10 du moteur thermique 2.
Dans l'invention, l'embrayage 3 est un embrayage sec ou humide. La figure 5 montre notamment des chronogrammes des signaux observables sur les différents organes 2-5 du dispositif 1.1 de transmission selon l'invention. Comme pour la figure 2, ces signaux sont observables lors du régime transitoire, lorsque le dispositif 1.1 de transmission passe d'un mode de fonctionnement électrique à un mode de fonctionnement hybride. Les signaux associés au dispositif 1 de transmission selon l'état de la technique sont représentés en traits pointillés pour pouvoir les comparer avec les signaux associés au dispositif 1.1 de transmission selon l'invention représentés en traits pleins. Par ailleurs, pour pouvoir comparer les différents signaux, le signal de couple CCONS de consigne est le même que celui de la figure 2.
A l'instant tO, la machine électrique 4 a déjà été actionnée, c'est à dire qu'elle est déjà en rotation. Le véhicule a donc a priori déjà décollé, c'est à dire qu'il est déjà en mouvement. Le moteur thermique 2 est quant à lui éteint: il possède donc une vitesse de rotation WMTH et un couple CMTH nuls à l'instant tO.
Entre les instants tO et t1 , le couple CCONS de consigne augmente, si bien qu'à l'instant t1 , il a déjà atteint le couple crête CMELMAX de la machine électrique 4. Entre les instants t1 et t2, le couple CMEL de la machine électrique 4 augmente, de manière à suivre le couple CCONS de consigne demandé. Contrairement à la figure 2, la machine électrique 4 fonctionne à son couple crête CMELMAX, lorsque le moteur thermique 2 n'est pas disponible. Le fait que la machine 4 puisse fonctionner à son couple crête CMELMAX permet au dispositif 1.1 de transmission de fournir un couple égal au couple de consigne CCONS demandé. Ainsi, le couple CREEL mesuré sur l'arbre 12 des roues 6 correspond exactement au couple
CCONS de consigne. La garde de couple n'est plus nécessaire, puisque la machine électrique 4 n'intervient plus directement dans le démarrage du moteur thermique 2. La vitesse de rotation WMEL de la machine électrique 4 est non nulle et augmente linéairement. Le moteur thermique 2 est toujours à l'arrêt et son arbre 10 n'est pas accouplé avec l'arbre 11 de la machine électrique 4. Le moteur thermique 2 possède donc toujours un couple CMTH et une vitesse WMTH de rotation qui sont nuls tous les deux.
Entre les instants t1 et t2, le dispositif 1.1 de transmission entre dans une première phase transitoire. Dans cette première phase, le couple CCONS de consigne est toujours égal au couple crête CMELMAX de la machine électrique 4. Contrairement au dispositif 1 de l'art antérieur, aucun couple CEMB n'est observable sur l'embrayage 3 puisque cet embrayage 3 ne transmet plus le couple d'arrachement CARR assurant le démarrage du moteur thermique 2. La machine électrique 4 fonctionne donc toujours à son couple crête CMELMAX car elle n'a plus à compenser pendant cette première phase le couple d'arrachement CARR. Le couple CREEL mesuré sur l'arbre 12 est donc encore égal au couple CCONS de consigne. A l'issue de l'exécution d'un des programmes P1-PN par le calculateur 26, un signal 35 est émis à destination du système 7 de démarrage. Ce signal 35 commande le système 7 de démarrage qui entraîne le moteur thermique 2. Un signal de couple CMTH correspondant au couple de démarrage de ce moteur thermique 2 est alors observable. Le moteur thermique 2 possède alors une vitesse WMTH de rotation qui est inférieure à celle de la machine électrique 4. Le moteur thermique 2 ne transmet pas encore de couple à l'arbre 12 des roues 6, puisqu'il n'est pas encore accouplé avec l'arbre 11 de la machine électrique 4. Comme dans la première phase transitoire précédente, le moteur thermique 2 passe donc ses premières compressions de manière à atteindre un régime suffisant pour être autonome. Une fois que le moteur thermique 2 est autonome, un signal est émis par le calculateur 26 à destination du système de démarrage 7, de manière à couper ce système de démarrage 7, autrement dit l'arrêter.
Entre les instants t2 et t3, le dispositif 1.1 de transmission entre dans une deuxième phase transitoire. Dans cette deuxième phase, la machine électrique 4 fonctionne toujours à son couple crête CMELMAX. Les signaux de couple CCONS, CREEL, CMEL possèdent donc toujours des valeurs
égales à CMELMAX. Le signal de couple CMTH du moteur thermique 2 diminue légèrement, tandis que la vitesse de rotation WMTH de ce moteur thermique 2 augmente pour atteindre à l'instant t3 la vitesse de rotation WMEL de la machine électrique 4. Aucun couple CEMB n'est observable sur l'embrayage 3. La deuxième phase a là encore pour objet de faire monter en régime le moteur thermique 2 pour permettre, comme on va le voir ci-après, une mise en glissement des disques 8 et 9 d'embrayage 3 l'un par rapport à l'autre.
Entre les instants t3 et t4, le dispositif 1.1 de transmission entre dans une troisième phase transitoire. Dans cette troisième phase, le couple CCONS de consigne est toujours égal au couple crête CMELMAX de la machine électrique 4. Comme avec le dispositif 1 de l'état de la technique, dès que la vitesse de rotation WMTH du moteur thermique 2 est supérieure à celle WMEL de la machine électrique 4, un signal 36 est émis à destination de l'embrayage lors de l'exécution d'un des programmes P1-PN. Ce signal 36 commande la mise en glissement des disques 8 et 9 d'embrayage l'un par rapport à l'autre. Le moteur thermique 2 transmet alors une partie de son couple CMTH à l'arbre 12 des roues 6 par l'intermédiaire de l'embrayage 3. Le couple observable sur l'embrayage 3 augmente de manière calibrable et dans un exemple de manière linéaire. En effet, cet embrayage 3 transmet un couple à la chaîne de traction. Le signal de couple CMEL de la machine électrique 4 diminue alors dans un exemple de manière linéaire. Le couple CREEL est en conséquence toujours égal au couple CCONS de consigne. Le signal de couple CMTH du moteur thermique 2 entre alors dans une deuxième oscillation. En variante, la machine électrique 4 conserve un couple égal à CMELMAX et le moteur 2 adapte son couple pour satisfaire à la consigne CCONS.
Entre les instants t4 et t5, le dispositif 1.1 de transmission entre dans une quatrième phase transitoire. Le couple CCONS de consigne est toujours égal au couple crête CMELMAX de la machine électrique 4. Comme avec le dispositif 1 de l'état de la technique, dans cette quatrième phase transitoire, il se produit dans un premier temps un accostage du moteur, puis, dans un deuxième temps, une fermeture de l'embrayage 3. Lors de l'accostage du moteur thermique 2, la vitesse de rotation WMTH du moteur thermique 2 converge vers celle WMEL de la machine électrique 4, et, lorsque ces deux
vitesses sont sensiblement égales, un signal 37 est émis à destination de l'embrayage 3 pour commander sa fermeture. Dans la pratique, ce signal 37 est émis lorsque la différence entre la vitesse de rotation WMTH du moteur thermique 2 et la vitesse de rotation WMEL de la machine électrique 4 est inférieure en valeur absolue à une valeur comprise entre 0 et 15% de la vitesse de rotation WMEL de la machine 4. Le couple CEMB de l'embrayage augmente jusqu'à la fermeture de cet embrayage 3, puis se stabilise. Le signal de couple CMEL de la machine électrique 4 diminue toujours de manière symétrique par rapport au couple CEMB de l'embrayage 3. Le signal de couple CREEL mesuré sur l'arbre 12 de roues 6 est identique au signal de couple de consigne CCONS.
Entre les instants t5 et t6, le dispositif 1.1 de transmission entre dans une cinquième phase transitoire. Dans cette cinquième phase, le signal de couple CCONS de consigne augmente légèrement, de manière calibrée, à la manière d'un échelon par exemple. Comme précédemment, dans cette cinquième phase, les organes moteur 2 et 4 du dispositif 1 convergent vers leur consigne de couple optimal au regard d'une consommation du moteur thermique 2, s'ils ne l'ont pas déjà atteinte. Par ailleurs, le signal de couple CEMB d'embrayage augmente pour maintenir la fermeture de l'embrayage 3, et dépasse le signal de couple du moteur thermique 2. Les vitesses de rotation WMTH et WMEL du moteur thermique 2 et de la machine électrique 4 augmentent avec la vitesse du véhicule.
Ainsi, lors du démarrage du moteur thermique 2, l'embrayage 3 est ouvert et demeure ouvert pendant une durée prédéterminée qui s'étend entre tO et t3. Cette durée peut être fonction du couple de consigne CCONS demandé par le conducteur et / ou du temps que met le moteur thermique 2 pour devenir autonome. En variante, l'embrayage 3 est déjà fermé lors du démarrage du moteur thermique 2. Dans cette variante, le système de démarrage 7 et la machine électrique 4 participent ensemble à la transmission du couple d'arrachement CARR au moteur thermique 2. Dans un exemple, le système 7 de démarrage est relié au moteur thermique 2 par l'intermédiaire d'un premier ensemble réducteur qui possède un rapport inférieur à celui d'un deuxième ensemble réducteur par l'intermédiaire duquel la machine électrique 4 et le moteur thermique 2 sont reliés, de manière que le couple appliqué à l'arbre 10 du moteur thermique 2 par le système de
démarrage 7 soit supérieur au couple appliqué à cet arbre 10 par la machine électrique.
Grâce à l'invention, pendant toute la durée du régime transitoire, entre t1 et t6, la machine électrique 4 possède une vitesse WMEL de rotation supérieure à celle qu'elle possède lorsqu'elle est utilisée avec le dispositif 1 de transmission de l'état de la technique. La partie hachurée sur le chronogramme des vitesses de rotation WMEL et WMTH représente ainsi le gain d'accélération réalisé par un dispositif 1.1 selon l'invention par rapport au dispositif 1 selon l'état de la technique. Par ailleurs, dans l'invention, lors de la transmission du couple d'arrachement, les actions appliquées sur l'embrayage 3 par le moteur thermique 2 et par la machine électrique 4 le sont indépendamment l'une de l'autre. Une action sur l'embrayage 3 par la machine électrique 4 est celle d'entraîner le véhicule. Une action sur l'embrayage 3 par le moteur thermique 2 est en fait une action par le système de démarrage 7 qui est celle de démarrer le moteur thermique 2. L'indépendance de ces actions implique qu'il serait envisageable d'utiliser un embrayage 3 qui ne serait pas mécanique.
En outre, pendant toute la durée du régime transitoire t1-t6, le couple CREEL mesuré sur l'arbre 12 des roues 6 est toujours égal au couple CCONS de consigne lorsque ce couple de consigne est inférieur ou égal à CMELMAX. En revanche, avec le dispositif 1 de l'état de la technique le couple mesuré CREEL était inférieur au couple de consigne CCONS.
Grâce à l'invention, on supprime donc des à-coups lors d'un démarrage du moteur thermique 2. En effet, comme le démarrage de ce moteur thermique 2 est réalisé indépendamment de la machine électrique 4, l'impact du démarrage sur une dynamique longitudinale du véhicule est nul.
Par ailleurs, le démarrage est plus robuste. En effet, le système 7 de démarrage démarre le moteur thermique 2 avec un couple globalement constant, quel que soit le régime WMEL de la machine électrique 4. Les démarrage du moteur thermique 2 sont donc rapides et de qualité égale, quel que soit le régime de la machine électrique 4.
La machine électrique 4 du dispositif 1.1 selon l'invention est dimensionnée de la même manière que la machine électrique 4 du dispositif 1 de l'état de la technique. Toutefois, comme il est possible d'exploiter son
couple crête CMELMAX pour la traction du véhicule le temps que le moteur thermique 2 démarre et soit disponible, la réponse à une volonté d'accélération du conducteur est quasiment instantanée.
Pour montrer l'intérêt de l'invention, les signaux associés au dispositif 1.1 lors du régime transitoire sont représentés ici pour un couple de consigne CCONS globalement égal au couple crête CMELMAX de la machine électrique 4. Toutefois, l'allure de ces signaux serait très semblable à celle représentée sur la figure 5 pour des couples de consigne CCONS de valeurs différentes. En variante, le dispositif 1.1 est utilisé pour démarrer le moteur thermique 2 lors d'un décollage du véhicule, lorsque la machine électrique 4 n'a pas encore été actionnée.
Claims
REVENDICATIONS
1 - Procédé de transmission de puissance mettant en œuvre un dispositif (1.1) de transmission de puissance d'un véhicule automobile comportant une machine électrique (4) reliée d'une part à un moteur thermique (2) par un embrayage (3) et d'autre part à un arbre (12) de roues (6), dans lequel, pour démarrer le moteur thermique (2), lorsque la machine électrique (4) est déjà en rotation,
- on transmet un couple d'arrachement (CARR) à l'arbre (10) du moteur thermique (2) en entraînant en rotation l'arbre (10) du moteur thermique (2), à l'aide d'un système de démarrage (7) indépendant mécaniquement de la machine électrique (4), caractérisé en ce que :
- le système de démarrage (7) ne participe pas à la traction du véhicule.
2 - Procédé selon la revendication 1 , caractérisé en ce que :
- lors du démarrage du moteur thermique (2), l'embrayage (3) est ouvert et demeure ouvert pendant une durée prédéterminée.
3 - Procédé selon la revendication 2, caractérisé en ce que : - on fait fonctionner la machine électrique (4) à son couple crête
(CMELMAX), tant que l'embrayage (3) demeure ouvert.
4 - Procédé selon l'une des revendications 2 à 3, caractérisé en ce que :
- après avoir démarré le moteur thermique (2), on augmente une vitesse de rotation (WMTH) de l'arbre (10) du moteur thermique (2) jusqu'à ce que cette vitesse de rotation (WMTH) soit supérieure à celle (WMEL) de l'arbre (11 ) de la machine électrique (4).
5 - Procédé selon l'une des revendications 2 à 4, caractérisé en ce que : - après avoir démarré le moteur thermique (2), on fait glisser les disques (8, 9) d'embrayage l'un par rapport à l'autre, un des disques (8) de cet embrayage (3) étant relié à un arbre (10) du moteur thermique (2), un autre disque (9) de cet embrayage (3) étant relié à un arbre (11 ) de la machine électrique (4). 6 - Procédé selon la revendication 5, caractérisé en ce que :
- on fait converger une vitesse de rotation (WMTH) de l'arbre (10) du moteur thermique (2) vers une vitesse de rotation (WMEL) de l'arbre (11 ) de la machine (4), et
- on ferme l'embrayage (3) lorsque la vitesse de rotation (WMTH) de l'arbre (10) du moteur thermique (2) est sensiblement égale à la vitesse de rotation (WMEL) de l'arbre (11 ) de la machine électrique (4).
7 - Procédé selon l'une des revendications 2 à 6, caractérisé en ce que :
- après avoir fermé l'embrayage (3), on fait converger le moteur thermique (2), et la machine électrique (4) vers leur couple de consigne optimal au regard d'une consommation du moteur thermique (2).
8 - Procédé selon l'une des revendications 1 à 7, caractérisé en ce que :
- une fois que le moteur thermique (2) est démarré, on attend qu'il passe ses premières compressions pour être autonome, puis on coupe le système de démarrage (7).
9 - Dispositif (1.1) de transmission de puissance d'un véhicule automobile comportant une machine électrique (4) reliée d'une part à un moteur thermique (2) par un embrayage (3) et d'autre part à un arbre (12) des roues (6), ce dispositif (1.1 ) comportant un système de démarrage (7) indépendant mécaniquement de la machine électrique (4), ce système de démarrage (7) étant relié au moteur thermique (2), caractérisé en ce que :
- le système de démarrage (7) est tel qu'il ne participe pas à la traction du véhicule.
10 - Dispositif selon la revendication 9, caractérisé en ce que l'embrayage (3) est un embrayage mécanique.
11 - Dispositif selon la revendication 10, caractérisé en ce qu'il comporte un premier et un deuxième disque (8, 9), le premier disque (8) étant relié à un arbre (10) du moteur (2) thermique, le deuxième disque (9) d'embrayage étant relié à un arbre (11) de la machine électrique (4).
12 - Dispositif selon l'une des revendications 9 à 11 , caractérisé en ce que :
- un arbre (31 ) du système de démarrage (7) est relié à un arbre (10) du moteur (2) thermique par l'intermédiaire d'une courroie (17), cette courroie
(17) passant par une première poulie (15) accrochée à l'arbre (10) du moteur thermique (2) et par une deuxième poulie (16) accrochée à l'arbre (31) du système de démarrage (7).
13 - Dispositif selon l'une des revendications 9 à 12, caractérisé en ce qu'il est muni d'un volant (25) d'inertie, ce volant (25) d'inertie étant relié à l'arbre (10) du moteur thermique (2), entre ce moteur thermique (2) et l'embrayage (3).
14 - Dispositif selon l'une des revendications 9 à 13, caractérisé en ce qu'il comporte un système (18) de stockage d'énergie relié à la machine électrique (4).
15 - Dispositif selon la revendication 14, caractérisé en ce que :
- le système (18) de stockage est une batterie.
16 - Dispositif selon l'une des revendications 9 à 15, caractérisé en ce qu'il comporte un calculateur de supervision (26) qui commande des changements de mode de fonctionnement du dispositif en fonction de signaux reçus (MACC, M 1-MN) correspondant notamment à une accélération demandée.
17 - Dispositif selon la revendication 16, caractérisé en ce que :
- le calculateur de supervision (26) comporte des moyens (26.1-26.4) pour faire fonctionner le moteur thermique (2) et la machine électrique (4) à des points de fonctionnement particuliers.
18 - Dispositif selon l'une des revendications 9 à 17, caractérisé en ce que le système de démarrage (7) est un démarreur piloté.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0550541A FR2882700B1 (fr) | 2005-03-01 | 2005-03-01 | Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associe |
PCT/FR2006/050160 WO2006092521A1 (fr) | 2005-03-01 | 2006-02-23 | Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associe |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1853471A1 true EP1853471A1 (fr) | 2007-11-14 |
Family
ID=35079467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06709530A Withdrawn EP1853471A1 (fr) | 2005-03-01 | 2006-02-23 | Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associe |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080146406A1 (fr) |
EP (1) | EP1853471A1 (fr) |
JP (1) | JP2008532827A (fr) |
CN (1) | CN101189150A (fr) |
BR (1) | BRPI0606198A2 (fr) |
FR (1) | FR2882700B1 (fr) |
WO (1) | WO2006092521A1 (fr) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3775012B2 (ja) * | 1997-08-29 | 2006-05-17 | アイシン・エィ・ダブリュ株式会社 | 車両用ハイブリッド駆動装置 |
JP3480316B2 (ja) * | 1998-06-15 | 2003-12-15 | 日産自動車株式会社 | ハイブリッド車両の制御装置 |
JP3409701B2 (ja) * | 1998-07-03 | 2003-05-26 | 日産自動車株式会社 | ハイブリッド車両の制御装置 |
US6672415B1 (en) * | 1999-05-26 | 2004-01-06 | Toyota Jidosha Kabushiki Kaisha | Moving object with fuel cells incorporated therein and method of controlling the same |
JP4066616B2 (ja) * | 2000-08-02 | 2008-03-26 | トヨタ自動車株式会社 | 内燃機関の自動始動制御装置及び動力伝達状態検出装置 |
JP3867521B2 (ja) * | 2000-09-05 | 2007-01-10 | トヨタ自動車株式会社 | 電動オイルポンプ制御装置 |
JP3454245B2 (ja) * | 2000-10-26 | 2003-10-06 | トヨタ自動車株式会社 | 車両の始動制御装置 |
JP4682416B2 (ja) * | 2000-11-16 | 2011-05-11 | トヨタ自動車株式会社 | 車両駆動装置 |
FR2832357B1 (fr) | 2001-11-21 | 2004-02-27 | Peugeot Citroen Automobiles Sa | Dispositif de transmission de puissance a au moins deux trains epicycloidaux |
US7689331B2 (en) * | 2004-12-01 | 2010-03-30 | Ise Corporation | Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles |
US7689330B2 (en) * | 2004-12-01 | 2010-03-30 | Ise Corporation | Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles |
FR2882699B1 (fr) * | 2005-03-01 | 2008-10-31 | Peugeot Citroen Automobiles Sa | Procede de decollage d'un vehicule en pente montante et ou lourdement charge |
FR2882697B1 (fr) * | 2005-03-01 | 2008-10-31 | Peugeot Citroen Automobiles Sa | Procede de changement de rapport de vitesse |
-
2005
- 2005-03-01 FR FR0550541A patent/FR2882700B1/fr not_active Expired - Fee Related
-
2006
- 2006-02-23 JP JP2007557550A patent/JP2008532827A/ja active Pending
- 2006-02-23 US US11/817,673 patent/US20080146406A1/en not_active Abandoned
- 2006-02-23 WO PCT/FR2006/050160 patent/WO2006092521A1/fr not_active Application Discontinuation
- 2006-02-23 CN CNA2006800065955A patent/CN101189150A/zh active Pending
- 2006-02-23 BR BRPI0606198-2A patent/BRPI0606198A2/pt not_active IP Right Cessation
- 2006-02-23 EP EP06709530A patent/EP1853471A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2006092521A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20080146406A1 (en) | 2008-06-19 |
BRPI0606198A2 (pt) | 2009-06-13 |
CN101189150A (zh) | 2008-05-28 |
JP2008532827A (ja) | 2008-08-21 |
FR2882700B1 (fr) | 2008-10-31 |
FR2882700A1 (fr) | 2006-09-08 |
WO2006092521A1 (fr) | 2006-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1853472B1 (fr) | Procede de decollage rapide d'un vehicule hybride | |
EP1853452B1 (fr) | Procede de changement de rapport de vitesse | |
WO2006092523A1 (fr) | Procede de decollage en pente montante et ou lourdement charge | |
WO2007045785A1 (fr) | Procede de demarrage d'un moteur thermique de vehicule hybride | |
EP2512894B1 (fr) | Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride | |
FR2956637A1 (fr) | Procede de gestion d'un systeme d'entrainement pour vehicule automobile | |
EP1885575B1 (fr) | Procede de transmission de puissance d'un vehicule hybride entre un arbre d'un moteur thermique et un arbre de roues d'un vehicule | |
EP2512898A1 (fr) | Procede et systeme de desaccouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hydride | |
FR2947790A1 (fr) | Procede et installation de gestion d'un vehicule hybride | |
WO2011072765A1 (fr) | Procede de pilotage d'un dispositif de motorisation de vehicule hybride, et dispositif associe | |
EP2197724A2 (fr) | Procede et systeme de commande d'un groupe motopropulseur a derivation de puissance | |
EP3356174B1 (fr) | Procédé de commande d'une transmission notamment de véhicule automobile | |
WO2006092521A1 (fr) | Procede de transmission de puissance entre un moteur thermique et des roues d'un vehicule automobile et dispositif associe | |
WO2013104867A2 (fr) | Procede de gestion de la vitesse d'un vehicule hybride | |
EP2400188A1 (fr) | Système de pilotage d'une boîte de vitesse automatique à embrayages à passage de rapports sans rupture à la roue | |
EP1431623A1 (fr) | Récupération d'énergie lors d'un changement de rapport montant sur un véhicule hybride série | |
WO2013104868A2 (fr) | Procede de coupure d'un moteur electrique d'un vehicule hybride | |
EP3894251B1 (fr) | Procede de commande du demarrage d'un moteur thermique de vehicule hybride | |
EP2802494A2 (fr) | Procede de demarrage d'un vehicule hybride comprenant un moteur electrique et un moteur thermique | |
EP1068088A1 (fr) | Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride | |
FR2985705A1 (fr) | Procede de commande d'un vehicule hybride | |
FR2833888A1 (fr) | Procede de commande d'un systeme d'entrainement hybride et systeme d'entrainement associe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20081112 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091215 |