EP1850069B1 - Method and Control Loop for Controlling a Combustion Process - Google Patents

Method and Control Loop for Controlling a Combustion Process Download PDF

Info

Publication number
EP1850069B1
EP1850069B1 EP06008487A EP06008487A EP1850069B1 EP 1850069 B1 EP1850069 B1 EP 1850069B1 EP 06008487 A EP06008487 A EP 06008487A EP 06008487 A EP06008487 A EP 06008487A EP 1850069 B1 EP1850069 B1 EP 1850069B1
Authority
EP
European Patent Office
Prior art keywords
control
state variables
actions
setpoint
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06008487A
Other languages
German (de)
French (fr)
Other versions
EP1850069A1 (en
Inventor
Franz Wintrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powitec Intelligent Technologies GmbH
Original Assignee
Powitec Intelligent Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE502006001331T priority Critical patent/DE502006001331D1/en
Priority to AT06008487T priority patent/ATE404823T1/en
Priority to ES06008487T priority patent/ES2313488T3/en
Priority to PL06008487T priority patent/PL1850069T3/en
Priority to EP06008487A priority patent/EP1850069B1/en
Application filed by Powitec Intelligent Technologies GmbH filed Critical Powitec Intelligent Technologies GmbH
Priority to KR1020070036467A priority patent/KR101390917B1/en
Priority to US11/788,165 priority patent/US7637735B2/en
Publication of EP1850069A1 publication Critical patent/EP1850069A1/en
Application granted granted Critical
Publication of EP1850069B1 publication Critical patent/EP1850069B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Definitions

  • the invention relates to a method for controlling a combustion process, with the features of the preamble of claim 1 and a control loop having the features of the preamble of claim 8.
  • either the setpoint values of the state variables are automatically regulated by comparing the actual values with the setpoint values and, if appropriate, performing actions, normally control interventions, or regulating the stability of the combustion process, by performing actions only in small scale.
  • the present invention has for its object to improve a method of the type mentioned. This object is achieved by a method having the features of claim 1 and by a control circuit having the features of claim 8. Further advantageous embodiments are the subject of the dependent claims.
  • the invention can be used in various stationary thermodynamic systems, in particular power plants, waste incineration plants and cement works.
  • a plant 1 for example a coal, oil or gas-fired power plant, a waste incineration plant or a cement plant, comprises a furnace 3, which is also to be understood as a grate, at least one observation device 5 which encloses the interior of the furnace 3 (or the grate). can capture, preferably further Sensors 7, at least one adjusting device 9, and a computer 11, to which the observation device (s) 5, further sensors 7 and adjusting device (s) 9 are connected.
  • the furnace 3 is fuel or other material to be reacted, referred to as Good G for short, for example, coal, oil, gas, refuse, lime or the like, and primary air (or oxygen) and secondary air (or oxygen), short as air L referred, supplied, this supply is controlled by the controllable by the computer 11 actuators 9.
  • Good G for short
  • a combustion process takes place.
  • the resulting flame body F (and, where appropriate, emissions of the walls of the furnace 3) is continuously detected by the observation devices 5.
  • the observation devices 5 each include adjacent to a wall of the furnace 3 penetrating optical access, such as a lance or in the EP 1 621 813 A1 disclosed apparatus, nor a camera or the like, which operates in the optical region or adjacent regions of electromagnetic waves.
  • Preferred is a temporally, spatially and spectrally high-resolution camera, as for
  • the images of the flame body F are evaluated in the computer 11, for example, according to an eigenvalue method, which in the WO 2004/018940 A1 is described.
  • EP 1 524 470 A1 A method is described how to obtain a few characteristic values from a spectrum.
  • a control loop is defined.
  • a conventional control loop can also be provided only with furnace 3, sensors 7, computer 11 and adjusting devices 9 and without the monitoring device (s) 5, the control of which takes into account only a few state variables s t (ie is low-dimensional) and then by the inclusion of the observation device (en) 5 is optimized.
  • the system in Appendix 1, for example, can be regulated to specific setpoint values or to a stable process (ie a quiet, quasi-stationary operation of system 1).
  • disturbances as (unwanted) actions a i can be included in the process model.
  • An evaluation of the situation independent of the process model, ie the stored links, designed in the manner of a simplified quality is, evaluated for a certain time t, the values of the state variables s (t) with respect to predetermined optimization goals r j , ie how close the state of the system at the time t is the optimal state.
  • three (or four) process models are stored in the computer 11 (each in its own neural network), one each of which has a short (t 1 -t 0 ), one (or two) mean (t 2 -t 0 ) and contains a longer (t 2 -t 0 ) time interval learned links.
  • short-term, medium-term and longer-term forecasts are possible.
  • the said time intervals vary depending on the system 1 between about a few seconds and a few hours.
  • the state variables s (t) should and can usually vary within certain limits, ie within an interval, for example between a lower limit s l and an upper limit S h around an optimum setpoint S o .
  • the values s l , s h and s o can be time-dependent.
  • a change from the normal control, the so-called command control, to a fault control (and back) is possible, in which the computer 11 emits test signals, so that - regardless of the optimization goals r j - different actions a 'are made to different Directions specifically adjacent (ie adjacent to each current state with respect to the state variable s (t) adjacent states) and preferably - by successively stringing the start - to reach even more remote states.
  • the computer 11 starts a "regular" fault control regularly, for example, about every seven days, but at the latest every four weeks, with as many as possible, preferably as far as possible evenly distributed within the limits states are approached. If the same problem often occurs in the control, the computer 11 starts an "extraordinary" fault control. Such a problem exists, for example, when the state variables s (t) often tend toward a limit (threshold values s l , s h ), ie the mean drifts, and / or frequent actions a 'are necessary to compensate for deviations, and / or other incompatibilities of the rules to target values (optimization goals r j ) and to a stable process occur. In the case of the extraordinary disturbance control, it is possible to approach states which are tuned to the triggering problem, for example, depending on the solution strategy, in the direction of the problem or chosen exactly the opposite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

A method includes operating in a setpoint control mode and occasionally changing over to operate in disturbance control mode. Each operation mode includes selecting actions to control adjustment devices (9) that supply air and material to the combustion by evaluation of state variables. The setpoint control mode is operated to achieve an optimal setpoint for the state variables, stability of the combustion, or any combination. The disturbance control mode is operated to approach a state in which the state variables deviates in a targeted manner within predetermined limits from the setpoint. Independent claims are included for the following: (1) control loop for regulating combustion in an installation; (2) computer readable medium having computer executable instructions.

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Verbrennungsprozesses, mit den Merkmalen des Oberbegriffs des Anspruches 1 sowie ein Regelkreis mit den Merkmalen des Oberbegriffs des Anspruches 8.The invention relates to a method for controlling a combustion process, with the features of the preamble of claim 1 and a control loop having the features of the preamble of claim 8.

Bei einem bekannten Verfahren dieser Art wird entweder automatisch auf Soll-Werte der Zustandsvariablen geregelt, indem die Ist-Werte mit den Soll-Werten verglichen und gegebenenfalls Aktionen, normalerweise Stelleingriffe, durchgeführt werden, oder auf eine Stabilität des Verbrennungsprozesses geregelt, indem Aktionen nur in geringem Umfang durchgeführt werden.In a known method of this type, either the setpoint values of the state variables are automatically regulated by comparing the actual values with the setpoint values and, if appropriate, performing actions, normally control interventions, or regulating the stability of the combustion process, by performing actions only in small scale.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu verbessern. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 1 und durch einen Regelkreis mit den Merkmalen des Anspruches 8 gelöst. Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.The present invention has for its object to improve a method of the type mentioned. This object is achieved by a method having the features of claim 1 and by a control circuit having the features of claim 8. Further advantageous embodiments are the subject of the dependent claims.

Dadurch, dass zeitweilig von der Führungsregelung zu einer Störungsregelung gewechselt wird, gemäß welcher Aktionen auswählt werden, um Zustände des Systems in der Anlage anzufahren, bei denen die Zustandsvariablen innerhalb vorgegebener Grenzen gezielt vom optimalen Soll-Wert abweichen, werden zusätzliche Informationen beschafft, die eine verbesserte Regelung ermöglichen. Insbesondere kann dadurch vermieden werden, dass der Zustand des Systems in einem lokalen Minimum verharrt. Derartige Aktionen würden weder bei der Regelung auf Soll-Werte, welche gerade den Soll-Wert anstrebt, noch - da sie größere Änderungen des Zustandes anstreben - bei der Regelung auf die Stabilität des Verbrennungsprozesses durchgeführt werden. Es sind Kombinationen der beiden Regelungsfälle in der Art von Kompromissen möglich.By temporarily switching from the lead control to a fault control, according to which actions are selected to start states of the system in the plant in which the state variables within specified limits deliberately deviate from the optimum target value, additional information is obtained, the one allow for improved regulation. In particular, it can be avoided that the state of the system remains at a local minimum. Such actions would neither regulate to setpoint values which are currently targeting the set point, nor - as they seek greater changes in the state - control the stability of the combustion process be performed. Combinations of the two control cases are possible in the way of compromises.

Die Informationsbeschaffung kann in einer ordentlichen Störungsregelung regelmä-ßig und in möglichst umfassender Breite erfolgen. Zusätzlich (oder gegebenenfalls alternativ) können in einer außerordentlichen Störungsregelung bestimmte Bereiche von Zuständen intensiver getestet werden.Information can be procured regularly and in as wide a range as possible in a regular system of disruptions. In addition (or alternatively, if necessary), in an extraordinary disturbance regulation, certain regions of states may be more intensively tested.

Die Erfindung kann bei verschiedenen stationären thermodynamischen Anlagen, insbesondere Kraftwerken, Müllverbrennungsanlagen und Zementwerken, eingesetzt werden.The invention can be used in various stationary thermodynamic systems, in particular power plants, waste incineration plants and cement works.

Im folgenden ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

Fig. 1
eine schematische Darstellung des zeitlichen Verlaufs einer Zustandsvariablen s(t) bis zu einem Zeitpunkt t0 und die Vorhersagen für den weiteren Verlauf,
Fig. 2
eine schematische Darstellung des tatsächlichen zeitlichen Verlaufs einer Zustandsvariablen s(t) im Vergleich zu den zum Zeitpunkt t0 getroffenen Vorhersagen,
Fig. 3
eine schematische Darstellung des zeitlichen Verlaufs einer Zustandsvariablen s(t) mit einer Aktion ai zum Zeitpunkt t0 und
Fig. 4
eine schematische Darstellung eine Anlage.
In the following the invention with reference to an embodiment shown in the drawing is explained in more detail. Show it
Fig. 1
a schematic representation of the time course of a state variable s (t) up to a time t 0 and the predictions for the further course,
Fig. 2
a schematic representation of the actual time course of a state variable s (t) compared to the predictions made at time t 0 ,
Fig. 3
a schematic representation of the time course of a state variable s (t) with an action a i at time t 0 and
Fig. 4
a schematic representation of a plant.

Eine Anlage 1, beispielsweise ein Kohle-, Öl- oder Gaskraftwerk, eine Müllverbrennungsanlage oder ein Zementwerk, umfasst einen Ofen 3, worunter auch ein Rost verstanden werden soll, wenigstens eine Beobachtungsvorrichtung 5, welche das Innere des Ofens 3 (bzw. den Rost) bildlich erfassen kann, vorzugsweise weitere Sensoren 7, wenigstens eine Stellvorrichtung 9, und einen Rechner 11, an welchen die Beobachtungsvorrichtung(en) 5, weiteren Sensoren 7 und Stellvorrichtung(en) 9 angeschlossen sind.A plant 1, for example a coal, oil or gas-fired power plant, a waste incineration plant or a cement plant, comprises a furnace 3, which is also to be understood as a grate, at least one observation device 5 which encloses the interior of the furnace 3 (or the grate). can capture, preferably further Sensors 7, at least one adjusting device 9, and a computer 11, to which the observation device (s) 5, further sensors 7 and adjusting device (s) 9 are connected.

Dem Ofen 3 wird Brennstoff oder anderes umzusetzendes Material, kurz als Gut G bezeichnet, beispielsweise Kohle, Öl, Gas, Müll, Kalk oder dergleichen, sowie Primärluft (bzw. -sauerstoff) und Sekundärluft (bzw. -sauerstoff), kurz als Luft L bezeichnet, zugeführt, wobei diese Zufuhr durch die vom Rechner 11 ansteuerbaren Stellvorrichtungen 9 gesteuert wird. Im Ofen 3 findet ein Verbrennungsprozess statt. Der dadurch erzeugter Flammenkörper F (sowie gegebenenfalls Emissionen der Wände des Ofens 3) wird von den Beobachtungsvorrichtungen 5 laufend erfasst. Die Beobachtungsvorrichtungen 5 umfassen jeweils neben einem die Wand des Ofens 3 durchdringenden optischen Zugang, wie beispielsweise einer Lanze oder einer in der EP 1 621 813 A1 offenbarten Vorrichtung, noch eine Kamera oder dergleichen, welche im optischen Bereich oder benachbarten Bereichen elektromagnetischer Wellen arbeitet. Bevorzugt ist eine zeitlich, örtlich und spektral hochauflösende Kamera, wie sie beispielsweise in der WO 02/070953 A1 beschrieben ist.The furnace 3 is fuel or other material to be reacted, referred to as Good G for short, for example, coal, oil, gas, refuse, lime or the like, and primary air (or oxygen) and secondary air (or oxygen), short as air L referred, supplied, this supply is controlled by the controllable by the computer 11 actuators 9. In the furnace 3, a combustion process takes place. The resulting flame body F (and, where appropriate, emissions of the walls of the furnace 3) is continuously detected by the observation devices 5. The observation devices 5 each include adjacent to a wall of the furnace 3 penetrating optical access, such as a lance or in the EP 1 621 813 A1 disclosed apparatus, nor a camera or the like, which operates in the optical region or adjacent regions of electromagnetic waves. Preferred is a temporally, spatially and spectrally high-resolution camera, as for example in the WO 02/070953 A1 is described.

Die Bilder des Flammenkörpers F (und der eventuellen Emissionen der Wände des. Ofens 3) werden im Rechner 11 ausgewertet, beispielsweise nach einem Eigenwert-Verfahren, das in der WO 2004/018940 A1 beschrieben ist. In der EP 1 524 470 A1 ist ein Verfahren beschrieben, wie aus einem Spektrum wenige charakteristische Werte gewonnen werden können. Die aus den Bildern des Flammenkörpers F gewonnenen Daten sowie die Daten der weiteren Sensoren 7, welche beispielsweise die Zufuhr des Gutes G und der Luft L, Schadstoffkonzentrationen in den Abgasen oder die Konzentration des Freikalks (FCAO) messen, werden als Zustandsvariablen s(t) behandelt, die (zeitabhängig) den Zustand des Systems in der Anlage 1 im allgemeinen und des Verbrennungsprozesses im besonderen beschreiben und als Vektor zu betrachten sind.The images of the flame body F (and the possible emissions of the walls of the furnace 3) are evaluated in the computer 11, for example, according to an eigenvalue method, which in the WO 2004/018940 A1 is described. In the EP 1 524 470 A1 A method is described how to obtain a few characteristic values from a spectrum. The data obtained from the images of the flame body F and the data of the other sensors 7, which measure, for example, the supply of the goods G and the air L, pollutant concentrations in the exhaust gases or the concentration of free lime (FCAO), as state variables s (t) which describe (time-dependent) the state of the system in Appendix 1 in general and the combustion process in particular, and are to be regarded as a vector.

Durch den Ofen 3 als (Regel-)Strecke, die Beobachtungsvorrichtung(en) 5 und die weiteren Sensoren 7, den Rechner 11 und die Stellvorrichtungen 9 wird ein Regelkreis definiert. Es kann auch ein konventioneller Regelkreis nur mit Ofen 3, Sensoren 7, Rechner 11 und Stellvorrichtungen 9 und ohne die Beobachtungsvorrichtung(en) 5 vorgesehen sein, dessen Regelung nur wenige Zustandsvariablen st berücksichtigt (d.h. niederdimensional ist) und dann durch die Einbeziehung der Beobachtungsvorrichtung(en) 5 optimiert wird. Das System in der Anlage 1 ist beispielsweise auf bestimmte Soll-Werte oder auf einen stabilen Prozess (d.h. einen ruhigen, quasistationären Betrieb der Anlage 1) hin regelbar. In beiden Fällen werden der durch die Ist-Werte der Zustandsvariablen s(t) beschriebene Zustand bewertet und gegebenenfalls geeignete Stellaktionen (Stelleingriffe), kurz als Aktionen ai bezeichnet, ausgewählt, welche von den Stellvorrichtungen 9 auszuführen sind. Neben der Zufuhr von Gut G und Luft L können weitere Tätigkeiten von Stellvorrichtungen 9 und gegebenenfalls auch eine Probenentnahme eine Aktion ai in erfindungsgemäßen Sinne sein. Auch Störungen können als ungewollte Aktionen ai behandelt werden. Es sind einstellbare Kombinationen der beiden vorgenannten Regelungsfälle denkbar, die dann Kompromisse darstellen.Through the furnace 3 as (control) route, the observation device (s) 5 and the other sensors 7, the computer 11 and the adjusting devices 9, a control loop is defined. A conventional control loop can also be provided only with furnace 3, sensors 7, computer 11 and adjusting devices 9 and without the monitoring device (s) 5, the control of which takes into account only a few state variables s t (ie is low-dimensional) and then by the inclusion of the observation device (en) 5 is optimized. The system in Appendix 1, for example, can be regulated to specific setpoint values or to a stable process (ie a quiet, quasi-stationary operation of system 1). In both cases, the state described by the actual values of the state variables s (t) is evaluated and, if appropriate, suitable positioning actions (control actions), briefly referred to as actions a i , are selected, which are to be executed by the actuating devices 9. In addition to the supply of good G and air L further activities of adjusting devices 9 and optionally also a sampling can be an action a i in the sense of the invention. Also disorders can be treated as unwanted actions a i . There are conceivable combinations of the two aforementioned regulatory cases conceivable, which then represent compromises.

Die Bewertung des Zustandes und die Auswahl der geeigneten Aktionen ai kann beispielsweise gemäß einem Verfahren erfolgen, wie es in der WO 02/077527 A1 beschrieben ist. Im Rechner 11 ist wenigstens ein neuronales Netz implementiert, welches als ein Prozessmodell die Reaktionen der Zustände des Systems auf Aktionen ai speichert, also die (nicht-linearen) Verknüpfungen zwischen den Werten der Zustandsvariablen s(t) zu einem Zeitpunkt t = t0 und den dann getätigten Aktionen ai einerseits und den resultierenden Werten der Zustandsvariablen s(t) zu einem späteren (d.h. um ein bestimmtes Zeitintervall späteren) Zeitpunkt t = t1 (oder t1, t2 , t3...) andererseits, und zwar zu möglichst vielen Zeitpunkten t in der Vergangenheit. In diesem Sinne können auch Störungen als (ungewollte) Aktionen ai in das Prozessmodell einbezogen werden. Eine vom Prozessmodell, d.h. den gespeicherten Verknüpfungen unabhängige, Situationsbewertung, die in der Art einer vereinfachten Güte konzipiert ist, bewertet für einen bestimmten Zeitpunkt t die Werte der Zustandsvariablen s(t) in Hinblick auf vorgegebene Optimierungsziele rj, d.h. wie nahe der Zustand des Systems zum Zeitpunkt t dem optimalen Zustand ist. Mit einer Bewertung eines - mit dem Prozessmodell in Abhängigkeit von einer bestimmten Aktion ai - vorhergesagten Zustandes zu einem zukünftigen Zeitpunkt lässt sich die Eignung der bestimmten Aktion ai zur Annäherung an das Optimierungsziel rj feststellen.The evaluation of the state and the selection of suitable actions a i can be carried out, for example, according to a method as described in the WO 02/077527 A1 is described. At least one neural network is implemented in the computer 11, which stores as a process model the reactions of the states of the system to actions a i , ie the (non-linear) links between the values of the state variables s (t) at a time t = t 0 and the actions a i then taken a on the one hand and the resulting values of the state variables s (t) at a later (ie later by a specific time interval) time t = t 1 (or t 1 , t 2 , t 3 ...) on the other hand, and indeed at as many times t in the past. In this sense, also disturbances as (unwanted) actions a i can be included in the process model. An evaluation of the situation independent of the process model, ie the stored links, designed in the manner of a simplified quality is, evaluated for a certain time t, the values of the state variables s (t) with respect to predetermined optimization goals r j , ie how close the state of the system at the time t is the optimal state. By evaluating a state predicted with the process model as a function of a specific action a i at a future point in time, the suitability of the particular action a i for approximating the optimization target r j can be determined.

Vorzugsweise sind im Rechner 11 drei (oder vier) Prozessmodelle (in jeweils einem eigenen neuronalen Netz) gespeichert, von denen je eines auf ein kurzes (t1-t0), ein (oder zwei) mittleres (t2-t0) und ein längeres (t2-t0) Zeitintervall hin gelernte Verknüpfungen enthält. Entsprechend sind damit kurzfristige, mittelfristige und längerfristige Vorhersagen möglich. Die besagten Zeitintervalle bewegen sich je nach Anlage 1 zwischen etwa einigen Sekunden und einigen Stunden. Die Zustandsvariablen s(t) sollen und können in der Regel innerhalb bestimmter Grenzen, d.h. innerhalb eines Intervalls, variieren, beispielsweise zwischen einem unteren Grenzwert sl und einem oberen Grenzwert Sh um einen optimalen Soll-Wert So herum. Die Werte sl, sh und so können zeitabhängig sein. Die kurzfristigen, mittelfristigen und längerfristigen Vorhersagen dienen dazu, den Unterschied von s(t) zum optimalen Soll-Wert so (das Optimierungsziel rj wäre vorliegend beispielsweise, dass s(t) - so = 0 oder zumindest minimal wird) und die Einhaltung dieser Grenzen (Grenzwerte sl, sh) abzuschätzen und das voraussichtliche Erfordernis von Aktionen a' zu erkennen. Die zeitliche Entwicklung einer Zustandsvariable s(t) bis zum Zeitpunkt t = t0 sowie die kurzfristige Vorhersage für t = t1, die mittelfristige Vorhersage für t = t2 und die langfristige Vorhersage für t = t3 sind vereinfacht in Fig. 1 dargestellt. In Fig. 2 ist dann die tatsächliche Entwicklung von s(t) im Vergleich zu den Vorhersagen dargestellt, wobei der besseren Vergleichbarkeit halber keine Aktion ai erfolgt ist.Preferably, three (or four) process models are stored in the computer 11 (each in its own neural network), one each of which has a short (t 1 -t 0 ), one (or two) mean (t 2 -t 0 ) and contains a longer (t 2 -t 0 ) time interval learned links. Accordingly, short-term, medium-term and longer-term forecasts are possible. The said time intervals vary depending on the system 1 between about a few seconds and a few hours. The state variables s (t) should and can usually vary within certain limits, ie within an interval, for example between a lower limit s l and an upper limit S h around an optimum setpoint S o . The values s l , s h and s o can be time-dependent. The short-term, medium-term and longer-term predictions are used to determine the difference from s (t) to the optimal target value s o (for example, the optimization target r j would be that s (t) - s o = 0 or at least minimal) and the Compliance with these limits (thresholds s l , s h ) estimate and recognize the probable requirement of actions a '. The temporal evolution of a state variable s (t) up to the time t = t 0 as well as the short-term prediction for t = t 1 , the medium-term prediction for t = t 2 and the long-term prediction for t = t 3 are simplified in Fig. 1 shown. In Fig. 2 Then, the actual development of s (t) compared to the predictions is shown, with no action a i for better comparability.

Zur Verbesserung der Genauigkeit werden nicht nur die Prozessmodelle durch die tatsächlichen Entwicklungen der Zustandsvariablen s(t) als Reaktion auf Aktionen a' laufend ergänzt, sondern es findet ein Wettbewerb mehrerer Prozessmodelle hinsichtlich der Qualität der Vorhersagen statt. Hierzu werden im Hintergrund alternative Prozessmodelle, beispielsweise mit anderen Topologien, aufgestellt und trainiert, deren Vorhersagen mit den aktuell verwendeten Prozessmodellen verglichen werden, um letztere gegebenenfalls zu ersetzen, wie es beispielsweise in der EP 1 396 770 A1 beschrieben ist.In order to improve the accuracy, not only the process models are continuously supplemented by the actual developments of the state variables s (t) in response to actions a ', but there is a competition of several process models with regard to the quality of the predictions. For this purpose, alternative process models, for example with other topologies, are set up in the background and trained whose predictions are compared with the currently used process models to replace the latter if necessary, as for example in the EP 1 396 770 A1 is described.

Erfindungsgemäß ist ein Wechsel von der normalen Regelung, der sogenannten Führungsregelung, zu einer Störungsregelung (und zurück) möglich, bei welcher der Rechner 11 Testsignale abgibt, damit - ohne Rücksicht auf die Optimierungsziele rj - verschiedene Aktionen a' vorgenommen werden, um in verschiedene Richtungen gezielt zunächst benachbarte (d.h. zum jeweils aktuellen Zustand bezüglich der Zustandsvariablen s(t) benachbarte) Zustände anzufahren und vorzugsweise - durch sukzessive Aneinanderreihung des Anfahrens - auch entfernter gelegene Zustände zu erreichen. Um den Betrieb der Anlage 1 nicht zu behindern oder gar zu stören, werden allerdings nur Zustände innerhalb der Grenzen (Grenzwerte sl, sh) der Zustandsvariablen s(t) als Ziel ausgewählt, d.h. nur Aktionen ausgewählt, auf die hin die Zustandsvariablen s(t) voraussichtlich innerhalb ihrer Grenzen bleiben.According to the invention, a change from the normal control, the so-called command control, to a fault control (and back) is possible, in which the computer 11 emits test signals, so that - regardless of the optimization goals r j - different actions a 'are made to different Directions specifically adjacent (ie adjacent to each current state with respect to the state variable s (t) adjacent states) and preferably - by successively stringing the start - to reach even more remote states. However, in order not to obstruct or even disturb the operation of the system 1, only states within the limits (limit values s l , s h ) of the state variable s (t) are selected as destination, ie only actions are selected on the basis of which the state variables s (t) are expected to remain within their limits.

Der Rechner 11 startet eine "ordentliche" Störungsregelung regelmäßig, beispielsweise ca. alle sieben Tage, spätestens jedoch alle vier Wochen, wobei möglichst viele, vorzugsweise innerhalb der Grenzen möglichst gleichmäßig verteilte Zustände angefahren werden. Wenn bei der Regelung häufig die gleiche Problematik auftritt, startet der Rechner 11 eine "außerordentliche" Störungsregelung. Eine solche Problematik liegt beispielsweise vor, wenn die Zustandsvariablen s(t) häufig zu einer Grenze (Grenzwerte sl, sh) hin tendieren, d.h. der Mittelwert driftet, und/oder häufig Aktionen a' notwendig sind, um Abweichungen auszugleichen, und/oder sonstige Unvereinbarkeiten der Regelungen auf Soll-Werte (Optimierungsziele rj) und auf einen stabilen Prozess auftreten. Bei der außerordentlichen Störungsregelung können besonders Zustände angefahren werden, die auf die auslösenden Problematik abgestimmt sind, beispielsweise je nach Lösungsstrategie in Richtung der Problematik oder genau entgegengesetzt gewählt werden.The computer 11 starts a "regular" fault control regularly, for example, about every seven days, but at the latest every four weeks, with as many as possible, preferably as far as possible evenly distributed within the limits states are approached. If the same problem often occurs in the control, the computer 11 starts an "extraordinary" fault control. Such a problem exists, for example, when the state variables s (t) often tend toward a limit (threshold values s l , s h ), ie the mean drifts, and / or frequent actions a 'are necessary to compensate for deviations, and / or other incompatibilities of the rules to target values (optimization goals r j ) and to a stable process occur. In the case of the extraordinary disturbance control, it is possible to approach states which are tuned to the triggering problem, for example, depending on the solution strategy, in the direction of the problem or chosen exactly the opposite.

In den Zeichnungen ist beispielsweise ein Fall dargestellt, dass s(t) sich ständig oberhalb des optimalen Soll-Wertes so bewegt (Fig. 2) und auch in den Vorhersagen (Fig. 1), insbesondere der längerfristigen Vorhersage über das Zeitintervall t3-t0, zum oberen Grenzwert sh hin tendiert. Im Rahmen der Führungsregelung würde bei t = t0, oder t = t1 eine Aktion a' ausgewählt werden, die s(t) näher zum optimalen Soll-Wert so bringt. In der Störungsregelung wird dagegen beispielsweise auch eine Aktion a' ausgewählt, die s(t) zum unteren Grenzwert sl bringt. Dies ist mit einer Aktion a' zum Zeitpunkt t = t0 in Fig. 3 dargestellt.In the drawings, for example, a case is shown that s (t) constantly moves above the optimum target value s o ( Fig. 2 ) and also in the forecasts ( Fig. 1 ), in particular the longer-term prediction over the time interval t 3 -t 0 , tends towards the upper limit value s h . In the context of the guidance regulation, an action a 'would be selected at t = t 0 , or t = t 1 , bringing s (t) closer to the optimum setpoint value s o . By contrast, in the disturbance control, for example, an action a 'is also selected which brings s (t) to the lower limit s l . This is with an action a 'at the time t = t 0 in Fig. 3 shown.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Anlageinvestment
33
Ofenoven
55
Beobachtungsvorrichtungobserver
77
Sensorsensor
99
Stellvorrichtunglocking device
1111
Rechnercomputer
ai a i
Aktionaction
FF
Flammenkörperflame body
GG
GutWell
LL
Luftair
rj r j
Optimierungszieloptimization goal
s(t)s (t)
Zustandsvariablestate variable
Sh S h
oberer Grenzwertupper limit
Sl S l
unterer Grenzwertlower limit
So S o
optimaler Soll-Wertoptimal target value
t0, t1, t2, t3 t 0 , t 1 , t 2 , t 3
Zeitpunkttime

Claims (10)

  1. A method for controlling a combustion process in an installation (1), in particular in a power-generating plant, a waste incinerator or a cement plant, in which, with air (L) being supplied, material (G) is converted by means of the combustion process with at least one flame body (F) being formed, wherein the state variables (s(t)) which describe the state of the system in the installation (1) are determined by using at least one observation device (5) that images the flame body (F) and also by using other sensors (7) and are evaluated in a computer (11), whereupon, if necessary, suitable actions (ai) are selected in order to control adjustment devices (9) for at least the supply of material (G) and/or air (L), and wherein setpoint control is carried out to achieve setpoints (so) of the state variables (s(t)) and/or stability of the combustion process, characterized in that occasionally a changeover is made from setpoint control to disturbance control and, according to the latter, actions (ai) are selected in order to approach states in the system in the installation (1) at which the state variables (s(t)) deviate in a targeted manner within predetermined limits (st, sh).from the optimal setpoint (so)
  2. A method according to Claim 1, characterized in that in the case of disturbance control, for each current state, states being adjacent with respect to the state variables s(t), are approached.
  3. A method according to any of the preceding claims, characterized in that a changeover is regularly made from setpoint control to ordinary disturbance control and back again.
  4. A method according to Claim 3, characterized in that in the case of ordinary disturbance control, as far as possible uniformly distributed states are approached within the predetermined limits (s1, sh).
  5. A method according to any of the preceding claims, characterized in that when the same problems frequently occur in the control process, in particular a frequent tendency of the state variables (s(t)) to tend towards a limit (s1, sh), and/or when there is a frequent need for actions (ai) to compensate for tendentially the same deviations, and/or when other inconsistencies occur in the control processes aimed at achieving setpoints (so) of the state variables (s(t)) and also a stable combustion process, a changeover is made from setpoint control to extraordinary disturbance control.
  6. A method according to Claim 5, characterized in that in the case of extraordinary disturbance control, states are approached that are matched to the triggering problems.
  7. A method according to any of the preceding claims, characterized in that several process models are used to evaluate the state variables (s(t)) and to select the actions (a'), in order to obtain short-term, medium-term and long-term predictions for the state variables (s(t)).
  8. A control loop for implementing a method according to one of the preceding claims, in an installation (1), in particular in a power-generating plant, a waste incinerator or a cement plant, having a (controlled) system (3) for converting material (G) by means of the combustion process, with air (L) being supplied, and at least one flame body (F) being formed, and having at least one observation device (5) imaging the flame body (F) and having further sensors (7) to determine the state variables (s(t)) describing the state of the system in the installation (1), and having a computer (11) to evaluate the state variables (s(t)) and, if necessary, to select suitable actions (ai), and having adjusting devices (9) that can be controlled by the actions (ai) to regulate at least the supply of material (G) and/or air (L), during setpoint control the computer (11) controlling to achieve setpoints (so) of the state variables (s(t)) and/or stability of the combustion process, characterized in that the computer (11) changes occasionally from setpoint control to disturbance control and, according to the latter, selects actions (ai) in order to approach states of the system in the installation (1) at which the state variables (s(t)) deviate in a targeted manner, within predetermined limits (s1, sh), from the optimal setpoint (so).
  9. A control loop according to Claim 8, characterized in that in the computer (11) there is implemented at least one neuronal network which in each case stores a process model for evaluating the state variables (s(t)) and selecting the actions (ai).
  10. A control loop according to Claim 9, characterized in that the computer (11) contains several neuronal networks with process models for short-term, medium-term and long-term predictions of the state variables (s(t)), and/or with process models which compete with each other as regards the quality of the predictions.
EP06008487A 2006-04-25 2006-04-25 Method and Control Loop for Controlling a Combustion Process Not-in-force EP1850069B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT06008487T ATE404823T1 (en) 2006-04-25 2006-04-25 METHOD AND CONTROL CIRCUIT FOR CONTROLLING A COMBUSTION PROCESS
ES06008487T ES2313488T3 (en) 2006-04-25 2006-04-25 PROCEDURE AND LOOP REGULATION TO REGULATE A COMBUSTION PROCESS.
PL06008487T PL1850069T3 (en) 2006-04-25 2006-04-25 Method and Control Loop for Controlling a Combustion Process
EP06008487A EP1850069B1 (en) 2006-04-25 2006-04-25 Method and Control Loop for Controlling a Combustion Process
DE502006001331T DE502006001331D1 (en) 2006-04-25 2006-04-25 Method and control circuit for controlling a combustion process
KR1020070036467A KR101390917B1 (en) 2006-04-25 2007-04-13 A procedure for regulating a combustion process
US11/788,165 US7637735B2 (en) 2006-04-25 2007-04-19 Procedure for regulating a combustion process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06008487A EP1850069B1 (en) 2006-04-25 2006-04-25 Method and Control Loop for Controlling a Combustion Process

Publications (2)

Publication Number Publication Date
EP1850069A1 EP1850069A1 (en) 2007-10-31
EP1850069B1 true EP1850069B1 (en) 2008-08-13

Family

ID=37002901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06008487A Not-in-force EP1850069B1 (en) 2006-04-25 2006-04-25 Method and Control Loop for Controlling a Combustion Process

Country Status (7)

Country Link
US (1) US7637735B2 (en)
EP (1) EP1850069B1 (en)
KR (1) KR101390917B1 (en)
AT (1) ATE404823T1 (en)
DE (1) DE502006001331D1 (en)
ES (1) ES2313488T3 (en)
PL (1) PL1850069T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149687A2 (en) 2009-06-24 2010-12-29 Siemens Aktiengesellschaft Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system
WO2020104255A1 (en) 2018-11-20 2020-05-28 Aixprocess Gmbh A method and device for regulating a process within a system, in particular a combustion process in a power station

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906092B1 (en) 2006-09-30 2014-04-30 STEAG Powitec GmbH Method for controlling a combustion process
EP1967792B1 (en) * 2007-03-01 2014-12-17 STEAG Powitec GmbH Control cycle for controlling a combustion process
PL2048553T3 (en) * 2007-10-12 2011-03-31 Powitec Intelligent Tech Gmbh Control circuit for regulating a process, in particular a combustion process
EP2080953B1 (en) * 2008-01-15 2014-12-17 STEAG Powitec GmbH Control loop and method for generating a process model therefor
FR3048278A1 (en) * 2016-02-25 2017-09-01 La Bonne Chauffe DEVICE FOR CONTINUOUSLY CONTROLLING THE POWER OF A HEATING SYSTEM AND ASSOCIATED METHOD

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486996A (en) * 1993-01-22 1996-01-23 Honeywell Inc. Parameterized neurocontrollers
DE19735139C1 (en) * 1997-08-13 1999-02-25 Martin Umwelt & Energietech Method for determining the average radiation from a combustion bed in incineration plants and controlling the combustion process
US6505475B1 (en) * 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
ES2240726T3 (en) 2001-03-02 2005-10-16 Powitec Intelligent Technologies Gmbh MEASUREMENT DEVICE, IN PARTICULAR FOR THE OBSERVATION OF THE FLAME DURING A COMBUSTION PROCESS.
MXPA03007505A (en) * 2001-03-02 2003-12-04 Powitec Intelligent Tech Gmbh Method for regulating a thermodynamic process in particular a combustion process.
DE10160411A1 (en) * 2001-12-10 2003-06-26 Powitec Intelligent Tech Gmbh Flame monitor splits images for spectral, spatial and temporal processing
DE50210420D1 (en) 2002-08-16 2007-08-16 Powitec Intelligent Tech Gmbh Method for controlling a thermodynamic process
US20050137995A1 (en) 2002-08-16 2005-06-23 Powitec Intelligent Technologies Gmbh Method for regulating a thermodynamic process by means of neural networks
EP1391655A1 (en) 2002-08-16 2004-02-25 Powitec Intelligent Technologies GmbH Method for monitoring a thermodynamic process
DE50313441D1 (en) 2003-10-15 2011-03-10 Powitec Intelligent Tech Gmbh METHOD FOR CONTROLLING A THERMODYNAMIC APPARATUS
PL1621813T3 (en) 2004-07-27 2010-07-30 Powitec Intelligent Tech Gmbh Observation apparatus with push-through device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149687A2 (en) 2009-06-24 2010-12-29 Siemens Aktiengesellschaft Method for controlling a combustion process, in particular in a combustion chamber of a fossil-fueled steam generator, and combustion system
DE102009030322A1 (en) 2009-06-24 2010-12-30 Siemens Aktiengesellschaft Concept for controlling and optimizing the combustion of a steam generator on the basis of spatially resolved measurement information from the combustion chamber
US9360209B2 (en) 2009-06-24 2016-06-07 Siemens Aktiengesellschaft Method for controlling a combustion process, in particular in a firing chamber of a fossil-fuel-fired steam generator, and combustion system
WO2020104255A1 (en) 2018-11-20 2020-05-28 Aixprocess Gmbh A method and device for regulating a process within a system, in particular a combustion process in a power station
US12031717B2 (en) 2018-11-20 2024-07-09 Aixprocess Gmbh Method and device for regulating a process within a system, in particular a combustion process in a power station

Also Published As

Publication number Publication date
US20070250216A1 (en) 2007-10-25
ATE404823T1 (en) 2008-08-15
KR101390917B1 (en) 2014-04-30
EP1850069A1 (en) 2007-10-31
KR20070105244A (en) 2007-10-30
ES2313488T3 (en) 2009-03-01
DE502006001331D1 (en) 2008-09-25
PL1850069T3 (en) 2009-01-30
US7637735B2 (en) 2009-12-29

Similar Documents

Publication Publication Date Title
EP1850069B1 (en) Method and Control Loop for Controlling a Combustion Process
EP2080953B1 (en) Control loop and method for generating a process model therefor
EP1364163B1 (en) Method for regulating a thermodynamic process in particular a combustion process
EP1890207B1 (en) Method of generating a process model
EP1906092B1 (en) Method for controlling a combustion process
EP2246755A1 (en) Control loop
EP2048553A1 (en) Control circuit for regulating a process, in particular a combustion process
DE102007001024B4 (en) Method for computer-aided control and / or control of a technical system, in particular of a gas turbine
EP3132317B1 (en) Method for computer-aided plant control optimisation using a simulation module
EP1967792B1 (en) Control cycle for controlling a combustion process
DE102012004803A1 (en) Crane control with drive limitation
EP2935633B1 (en) Method and device for predicting, controlling and/or regulating steelworks processes
DE3812697A1 (en) METHOD FOR REDUCING THE INTERFERENCE EFFECT IN FAN BURNER PLANTS AND FAN BURNER PLANT
DE19919222C1 (en) Method for controlling the combustion of fuel with a variable calorific value
DE19509412C2 (en) Method and device for controlling the firing of a steam generator system
DE102005044335A1 (en) Method for detecting and using changes in exhaust gases emitted from an engine
DE102009030322A1 (en) Concept for controlling and optimizing the combustion of a steam generator on the basis of spatially resolved measurement information from the combustion chamber
EP0616171A1 (en) Control method for thermal processes
EP3861256B1 (en) A method and device for regulating a process within a system, in particular a combustion process in a power station
EP0644376B1 (en) Method and apparatus for controlling a burner
EP3662262A1 (en) Sample-based gas quality control by means of raman spectroscopy
EP0643265A1 (en) Method and device for controlling excess-air premix gas burners
EP0657731B1 (en) Method & Apparates for determining characteristic absorption of a substance
EP3474090A1 (en) Method for regulating a process within a system, in particular the combustion process of a boiler or furnace
DE2657540A1 (en) METHOD OF CONTROLLING EXHAUST GASES IN AN OXYGEN BLOW CONVERTER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND CONTROL LOOP FOR CONTROLLING A COMBUSTION PROCESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006001331

Country of ref document: DE

Date of ref document: 20080925

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080403017

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313488

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

BERE Be: lapsed

Owner name: POWITEC INTELLIGENT TECHNOLOGIES G.M.B.H.

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001331

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001331

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Effective date: 20130424

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001331

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: POWITEC INTELLIGENT TECHNOLOGIES GMBH, 45219 ESSEN, DE

Effective date: 20130424

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001331

Country of ref document: DE

Owner name: STEAG POWITEC GMBH, DE

Free format text: FORMER OWNER: POWITEC INTELLIGENT TECHNOLOGIES GMBH, 45219 ESSEN, DE

Effective date: 20130424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20130424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140424

Year of fee payment: 9

Ref country code: FR

Payment date: 20140331

Year of fee payment: 9

Ref country code: ES

Payment date: 20140416

Year of fee payment: 9

Ref country code: GR

Payment date: 20140430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140418

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151106

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150425

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150425

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20080403017

Country of ref document: GR

Effective date: 20151106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001331

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45219 ESSEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001331

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001331

Country of ref document: DE

Owner name: STEAG POWITEC GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45219 ESSEN, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001331

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001331

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45128 ESSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210111

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001331

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103