EP1849157A1 - Procede de mesure de la gene due au bruit dans un signal audio - Google Patents

Procede de mesure de la gene due au bruit dans un signal audio

Info

Publication number
EP1849157A1
EP1849157A1 EP06709505A EP06709505A EP1849157A1 EP 1849157 A1 EP1849157 A1 EP 1849157A1 EP 06709505 A EP06709505 A EP 06709505A EP 06709505 A EP06709505 A EP 06709505A EP 1849157 A1 EP1849157 A1 EP 1849157A1
Authority
EP
European Patent Office
Prior art keywords
noise
signal
frame
frames
coefficients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06709505A
Other languages
German (de)
English (en)
Other versions
EP1849157B1 (fr
Inventor
Nicolas Le Faucheur
Valérie GAUTIER-TURBIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1849157A1 publication Critical patent/EP1849157A1/fr
Application granted granted Critical
Publication of EP1849157B1 publication Critical patent/EP1849157B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/69Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for evaluating synthetic or decoded voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering

Definitions

  • the present invention is generally in the fields of speech signal processing and psychoacoustics. More specifically, the invention relates to a method and a device for objective evaluation of the annoyance due to noise in audio signals.
  • a noise reduction function also known as a noise canceling or denoising function
  • a noise reduction function is intended to reduce the background noise level in a voice communication, or having at least one component voice. It has a specific interest when one of the interlocutors of this communication is immersed in a noisy environment that greatly impairs the intelligibility of his voice.
  • the noise reduction algorithms are based on a continuous estimation of the background noise level from the incident signal and a speech activity detection to distinguish the noise periods only from those with the useful speech signal. A filtering of the incident speech signal corresponding to the noisy speech signal is then performed to reduce the noise contribution determined from the noise estimate.
  • the invention will be used to evaluate noise annoyance at the output of communication equipment implementing a noise reduction function, the invention also applies to noisy signals. not treated by such a function.
  • the case of use of the invention on any noisy audio signal is therefore a particular case of the more general case of use of the invention on an audio signal processed by a noise reduction function.
  • the present invention aims to overcome the disadvantages of the prior art by providing a method and an objective computing device of a score equivalent to the subjective score as indicated in the document "ITU-T Recommendation P.835", characterizing the annoyance due to the presence of noise in an audio signal.
  • the method according to the invention varies according to whether the invention is used on any noisy audio signal or on an audio signal processed by a noise reduction function, in particular in the parameters for calculating the objective score according to the invention.
  • two embodiments that can also be considered as two distinct processes are presented.
  • the second embodiment applying to any noisy audio signal, and more general than the first embodiment, is easily deduced therefrom.
  • the invention proposes a method of calculating an objective note of the annoyance due to noise in an audio signal processed by a noise reduction function, said method comprising a preliminary step of obtaining an audio signal.
  • predefined test device comprising a useful signal devoid of noise, a noisy signal obtained by adding a predefined noise signal to said test signal, and a processed signal obtained by applying the noise reduction function to said noisy signal said method being characterized in that it includes a step of measuring loudness of frames of said noisy signal and said processed signal, and measures of frame pitch coefficients of said processed signal.
  • this method according to the invention comprises the steps of;
  • the step of calculating average loudness densities and tonality coefficients is followed by a step averaging & - &", pam ie, Sr Pamie, 5V bn, u ar _ and brown said average loudness densities and said tone coefficients over all the relevant frames of the corresponding signals, and the objective noise noise score is calculated according to the following equation: s NOB -] jT ⁇ factor (i) + o & ,
  • SY_ word factor (3) Type_offset _ word) - Sr (m _ speech)), the operator
  • the invention also relates to a method for calculating an objective note of the annoyance due to noise in an audio signal, said method comprising a preliminary step of obtaining a predefined test audio signal containing a useful signal devoid of noise, and a noisy signal obtained by adding a predefined noise signal to said test signal, said method being characterized by including a loudness measurement and frame tone coefficient measurement of said noisy signal.
  • This method has the same advantages as the previous method, but applies to any noisy audio signal.
  • this method according to the invention comprises the steps of:
  • the step of calculating mean loudness densities and tone coefficients is followed by a calculation step average s M, S x b ⁇ speech, MS ⁇ brmt and axi, bmn desd SIU densities average loudness of said tone coefficients over all the relevant frames of the corresponding signals, and in that said objective score of the noise interference is calculated according to the following equation:
  • the coefficients of this linear combination have the advantage of being able to be recalculated if new subjective test data substantially modify the previously established correlation. This makes it possible to improve an objective model fed by the method according to the invention, of calculating the annoyance due to the noise in an audio signal, by a simple reconfiguration of the parameters of the method.
  • the step of calculating loudness densities and tone coefficients is preceded by a voice activity detection step sot the test signal, so as to determine if a current frame of the noisy signal, and the signa! treated in the case of the first method, is a "m_noise" frame containing only noise, or a "m_parole” frame containing speech, called a useful signal frame.
  • This voice activity detection step makes it possible to very simply separate the different types of frames of the noisy signal, and of the signal processed in the case of the first method, by the use of the test signal.
  • the step of calculating the objective score is followed by a step of calculating an objective score on the MOS scale of the annoyance due to the noise, calculated according to the following equation:
  • NOB _ MOS ⁇ t (NOB) '- 1 ,
  • the step of calculating loudness densities and tone coefficients, calculating the average loudness density Su (m) of a frame of any index m, a given audio signal u comprises the following steps:
  • windowing for example of the Hanning type, of the frame of index m and obtaining a windowed frame u_w [m],
  • the calculation of the tone coefficient ⁇ (m) of a frame of any index m of a given audio signal u comprises the following steps: windowing, for example of the Hanning type, of the frame of index m and obtaining a windowed frame u_w [m], applying a fast Fourier transform to the windowed frame u w w [m] and obtaining a corresponding frame U (m, f) in the frequency domain, calculating the power spectral density ⁇ u (m, f) of the frame U (m, f), calculation of the tone coefficient ⁇ (m) according to the following equation:
  • f represents the frequency index of the power spectral density
  • N denotes the size of the fast Fourier transform
  • the invention also relates to a test equipment for evaluating an objective note of the annoyance due to noise in an audio signal, characterized in that it comprises means adapted to implement one or the other of the methods according to the invention.
  • the test equipment includes computer means and a computer program, said program comprising instructions adapted to implement one or the other of said methods, when it is executed by said computer means. .
  • the invention also relates to a computer program on an information carrier " comprising instructions adapted to the implementation of one or the other of the methods according to the invention, when the program is loaded and executed in a computer system.
  • FIG. 1 represents a test environment intended to calculate an objective score of the annoyance due to the noise in an audio signal processed by a noise reduction function, according to a first embodiment of the invention
  • FIG. 2 is a flowchart illustrating a method for calculating an objective note of the annoyance due to noise in an audio signal processed by a noise reduction function according to a first embodiment of the method according to the invention
  • FIG. 3 is a flowchart illustrating a method for calculating an objective note of the annoyance due to noise in an audio signal according to a second embodiment of the method according to the invention
  • FIG. 4 is a flowchart illustrating the method of calculating the mean loudness density and the tone coefficient of an audio signal frame according to the invention.
  • the first being applied to an audio signal processed by a noise reduction function
  • the second being applied to any noisy audio signal.
  • the principle of the method according to the invention is the same in these two embodiments, in particular the calculation method is exactly the same, but in the second embodiment ie signa! audio processed by a noise reduction function is taken equal to the signa! noisy.
  • the second embodiment can indeed be considered as a special case of the first embodiment, with an inhibited noise reduction function.
  • the annoyance due to the presence of noise in an audio signal processed by a function of noise reduction is objectively evaluated in a test environment shown in FIG. 1.
  • Such a test environment comprises a source of SSA audio signals delivering a test audio signal x (n) containing only the wanted signal, and that is to say, without noise, for example a speech signal, and a noise source SB delivering a predefined noise signal.
  • this predefined noise signal is added to the selected test signal x (n), as represented by the AD addition operator.
  • the audio signal resulting from this addition of noise to the test signal x (n) is denoted xb (n) and is designated by the expression "noisy signal”.
  • the noisy signal xb (n) then constitutes the input signal of a module
  • MRB noise reduction implementing a noise reduction function outputting an audio signal y (n) designated by the expression "processed signal".
  • the processed signal y (n) is therefore an audio signal containing useful signal and residual noise.
  • the processed signal y (n) is then delivered to a test equipment EQT implementing a method of objective evaluation of the annoyance due to the noise in the processed signal, according to the invention.
  • the method according to the invention is implemented in the EQT test equipment in the form of a computer program.
  • the EQT test equipment optionally comprises electronic hardware to implement the method according to the invention.
  • the test equipment EQT receives as input the test signal x (n) and the noisy signal xb (n). The EQT test equipment outputs an evaluation result
  • the aforementioned audio signals x (n), xb (n) and y (n) are signals sampled in a digital format, n designating a sample any. These signals are for example supposed to be sampled at the sampling frequency of 8 kHz (kilo Hertz).
  • the test signal x (n) is a speech signal devoid of noise.
  • the noisy signal xb (n) then represents the initial speech signal x (n) degraded by a noisy environment (background or ambient noise), and the signal y (n) represents the signal xb (n) after noise reduction.
  • the signal x (n) is generated in an anechoic chamber.
  • the signal x (n) can also be generated in a "quiet" room having an "average" reverberation time of less than 0.5 seconds.
  • the noisy signal xb (n) is obtained by adding a predetermined contribution of noise to the signal x (n).
  • the signal y (n) is obtained either at the output of a noise reduction algorithm implanted on a personal computer, or at the output of a noise reduction network equipment and in the latter case, the signal y (n) is taken at the level of a PCM encoder (pulse modulation and coding).
  • the method for calculating the objective note NOB_MOS of the annoyance due to the noise in the processed signal y (n) according to the invention is represented in the form of an algorithm comprising steps a1 to a7.
  • ai the signals x (n), xb (n) and y (n) are respectively divided into successive time windows called frames.
  • Each signal frame, noted m, contains a predetermined number of samples of the signal, step a thus consists of a change of rate of each of these signals.
  • the signals x (n), xb (n) and y ⁇ n) passed in frame rate respectively produce the signals x [m], xb [m], and y [m].
  • a second step a2 voice activity detection (DAV) is performed on the signal x [m] so as to determine whether each respective current frame of index m has signals xb [m] and y [m]. is a frame containing only noise, denoted "m noise”, or a frame containing ia speech, that is to say the useful signal, and noted “m_parole”. This determination is made by comparing the signals xb [m] and y [m] with the test signal x [m] devoid of noise.
  • DAV voice activity detection
  • Each silence frame of x [m] corresponds in fact to a noise frame for the signals xb [m] and y [m], while each speech frame of x [m] corresponds to a speech frame for the signals xb [m] and y [m].
  • step a2 As represented in FIG. 2, at the output of step a2, three types of frames are selected from the signals x [m], xb [m] and y [m]:
  • a third step a3 loudness measurements are made on at least sets of y [m_noise], y [m_parole], xb [m_parole] frames from the previous step a2, and at least one set of frames of the signal y [m] at the output of step ai. For example, if 8 seconds of sampled test signal at 8 kHz is used, it will be possible to work on 250 fields y [m] of 256 samples of signal y (n). In addition, the tone coefficients of at least one set of y [m_noise] frames are measured.
  • this step one calculates the loudness densities average ⁇ S ⁇ b (word m_), ⁇ S ⁇ ⁇ ⁇ m_ speech), ⁇ S ⁇ ⁇ m), and £ y (m _bruit) of respectively each of the frames xb [m_parole], y [m_parole], y [m] and y [rn_noise] sets of frames considered.
  • the tone coefficients a > - (m noise) of each of the frames y [m_noise] of the considered set of frames y [m] are calculated.
  • the calculation of an average loudness density Su (m) and a tone coefficient ⁇ (m) of a frame of any index m of a given audio signal u will be detailed later in connection with FIG. 4.
  • NOB is obtained by linear combination of the five factors calculated in step a5, according to the following equation:
  • the coefficients ⁇ i to ⁇ % are predefined weighting coefficients. These coefficients were determined in order to obtain a maximum correlation between the subjective data from a subjective test database, and the objective scores NOB calculated by this linear combination using the test signals, noisy and processed x [m ], xb [m] and y [m] used in these same subjective tests.
  • the subjective test database is, for example, a database of scores obtained with groups of listeners in accordance with the "Recommendation UiT-T P.835 TM, in which these notes are called background noise notes. It should be noted that the obtaining of the weighting coefficients by the use of a database of subjective tests is not essential for each step of calculating an objective score NOB. Indeed, these coefficients must be obtained prior to the first use of the process, and may be the same for all uses of the process. These coefficients are nevertheless likely to evolve when new subjective data come to feed the database of subjective tests used.
  • an objective note NOB_MOS of the annoyance due to the noise in the processed signal y (n) on the MOS scale is calculated using for example a polynomial function of order 3, according to the following equation:
  • NOB _ MOS ⁇ X 1 (NOB) w ,
  • the annoyance due to the presence of noise in any noisy audio signal is evaluated objectively.
  • the same test environment is used as in Figure 1, but by removing the MRB noise reduction module.
  • the audio signal source SSA delivers a test audio signal x (n) containing only the wanted signal, to which is added a predefined noise signal generated by the noise source SB, to obtain at the output of the addition operator AD a noisy signal xb (n).
  • the test signal x (n) and the noisy signal xb (n) are then directly sent to the input of the test equipment EQT implementing a method of objective evaluation of the annoyance due to the noise in the noisy signal.
  • the signals x (n) and xb (n) are assumed to be sampled at the sampling frequency 8 kHz.
  • the test equipment EQT outputs an evaluation result RES, which is an objective note NOB_MOS of the annoyance due to the presence of noise in the noisy signal xb (n).
  • the method for calculating the objective noise-noise rating NOB-MOS in the noisy signal xb (n) according to the invention is represented in the form of an algorithm comprising steps b1 to b7.
  • a first step b1 the signals x (n) and xb (n) are split into frames x [m] and xb [m] of time index m.
  • a voice activity detection is performed on the signal x [m] so as to determine whether each current frame of index m of the noisy signal xb [m] is a frame containing only noise, denoted " m_noise ", or a frame also containing speech, denoted” m_parole ".
  • Two types of frames are thus selected from the signals x [m] and xb [m] at the output of step b2: the speech frames of the noisy signal xb [m], denoted xb [m_parole],
  • a third step b3 loudness measurements are made on at least sets of frames xb [m_noise] and xb [m_parole] from the previous step b2, and at least one set of frames of the signal xb [m] in exit from step b1. More tone coefficients * at least one set of frames kB [m_noise] are measured.
  • the average output densities Si /. (»I), ⁇ Sxb (m _ speech) and ⁇ S ⁇ b (m _hruit) of respectively each of the frames xb [m], xb [m_parole] are calculated. and xb [m_noise] sets of frames considered.
  • the tone coefficients a-Mm noise) of each frames xb [m_noise] of the considered set of frames xb [m_noise] are calculated.
  • the average ton coefficients aw (m_noise) previously calculated on the considered set of frames xb [m_noise] is also calculated.
  • step b6 the calculation of an intermediate objective score NOB is obtained by linear combination of the four factors calculated in step b5, according to the following equation:
  • the coefficients ⁇ i to ⁇ s are predefined weighting coefficients. These coefficients were determined in order to obtain a maximum correlation between the subjective data from a subjective test database, and the objective scores NOB calculated by this linear combination using the test signals and the noisy signals x [m ] and xb [m] used in these same subjective tests.
  • obtaining the weighting coefficients by the use of a database of subjective tests is not indispensable at each step of calculating an objective score NOB.
  • an objective note NOBJVlOS of the annoyance due to the noise in the noisy signal xb (n) on the MOS scale is calculated using for example a polynomial function of order 3, according to the following equation:
  • NOB _ MOS ] T ⁇ i (NOB) '-', i- ⁇ where the coefficients ⁇ i to ⁇ 4 are determined in such a way that the objective score obtained NOB_MOS characterizes the annoyance due to the noise on the MOS scale, c on a scale of 1 to 5.
  • the calculation according to the invention of the mean loudness density Su (m) of a frame of any index m of a given audio signal u [m], comprises the steps d to c7 shown in FIG. -after.
  • the calculation according to the invention of the tone coefficient ⁇ (m) of a frame of any index m of a given audio signal u [m] comprises the steps d, c2, c3 and c8 shown in FIG. described below.
  • the signal u [mj represents any of the signals x [m], xb [m], or y [m] defined above.
  • a first step " is applied to ia frame of index m of the signal u [mj windowing, e.g. type windowing Hanning, Hamming or equivalent. We then obtain a windowed frame u_w [m].
  • a fast Fourier transform FFT is applied to the windowed frame u_w [m] and a corresponding frame U (m, f) in the frequency domain is accordingly obtained.
  • the power spectral density ⁇ y (m, f) of the frame U (m, f) is calculated. Such a calculation is known to those skilled in the art and will not, therefore, be detailed here.
  • step c8 is used to calculate the coefficient of tone, then at step c4 for the calculation of the average loudness density Su (m), since for these two signals the two calculations are necessary.
  • step c4 is used to calculate the average loudness density Su (m). It should be noted that the calculation of the tone coefficient is independent of the calculation of the mean loudness density Su (m), the two calculations can therefore be carried out in parallel or one after the other.
  • step c4 a frequency conversion of the frequency axis at the Barks scale is applied to the power spectral density ⁇ u (m, f) obtained in the previous step, and a spectral density is consequently obtained.
  • power, B, j (m, b), on the Barks scale also called Bark's spectrum.
  • B, j (m, b) on the Barks scale
  • 18 critical bands must be considered. This type of conversion is known to those skilled in the art, the principle of this Hertz / Bark conversion consists in adding all the frequential contributions present in the critical band of the Barks scale.
  • E 1J (m, b) obtained previously in loudness densities expressed in sones.
  • a calibration of the spectral density spread on the Barks scale, Ey (m, b) is performed by the respective power scaling and loudness scaling factors commonly used in psychoacoustics.
  • the size obtained is then converted on the scale of the phones.
  • the conversion on the scale of the phones is carried out based on the isosonic curves (Fletcher curves) in accordance with the standard NF ISO 226 "Normal isosonic lines".
  • the conversion to sones is effected in accordance with Zwicker's law according to which: f N (phonc) ⁇ 0 x ;
  • step c6 there is a number B of loudness density values, S 1 ; (m, b), of the frame of index m for the critical band b, B being the number of critical bands considered in the Barks scale and the index b varying from 1 to B.
  • step c7 the average loudness density Su (m) of the frame of index m is calculated from said B loudness density values, according to the following equation:
  • the average loudness density Su (m) according to the invention of a frame of index m is therefore the average of the B loudness density values S LI (m, b), of the frame of index m for a critical band b considered.
  • step c8 the tone coefficient ⁇ (m) of the frame of index m is calculated according to the following equation:
  • the tone coefficient ⁇ of a basic signal is a measure to show whether certain pure frequencies emerge from this signal. It is equivalent to a tonal density. Indeed, the closer the tone coefficient ⁇ is to 0, the more the signal is assimilated to noise, the more the tone coefficient ⁇ is close to 1, the more the signal is component tonal majority. A tone coefficient ⁇ close to 1 attests to the presence of useful signal, or speech signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)
  • Noise Elimination (AREA)

Description

Procédé de mesure de Ia gêne due au bruit dans un signal audio
La présente invention se situe de manière générale dans les domaines du traitement du signal de parole et de la psychoacoustique. Plus précisément l'invention concerne un procédé et un dispositif d'évaluation objective de la gêne due au bruit dans des signaux audio.
L'invention permet notamment de noter objectivement la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit. Dans le domaine de la transmission de signaux audio, une fonction de réduction de bruit, aussi appelée fonction de suppression de bruit ou de débruitage, a pour objectif de réduire le niveau de bruit de fond dans une communication vocale, ou ayant au moins une composante vocale. Elle présente un intérêt spécifique lorsque l'un des interlocuteurs de cette communication est immergé dans un milieu bruité qui nuit fortement à l'intelligibilité de sa voix. Les algorithmes de réduction de bruit sont basés sur une estimation en continu du niveau du bruit de fond à partir du signal incident et d'une détection d'activité vocale permettant de distinguer les périodes de bruit seul de celles avec du signal de parole utile. Un filtrage du signal de parole incident, correspondant au signal de parole bruité, est ensuite effectué de façon à réduire la contribution du bruit déterminée à partir de l'estimée du bruit.
La gêne due à la présence de bruit dans un signal audio traité par une telle fonction de réduction de bruit est évaluée aujourd'hui de manière subjective seulement en se basant sur l'exploitation de résultats de tests mis en œuvre selon le document "Recommandation UIT-T P.835 (11/2003)", Cette évaluation est faîte sur une échelle de type MOS, d'après l'anglais Mean Opinion Score, qui donne une note de un à cinq de la gêne due au bruit, appelée "background noise" dans ce même document. L'inconvénient majeur de cette technique d'évaluation est la nécessité de mettre en œuvre des tests subjectifs, cette mise en œuvre étant très lourde et très coûteuse. En effet chaque contexte particulier, c'est-à-dire un type de signal incident associé à un type de bruit et une fonction de réduction de bruit, nécessite de mettre un panel de personnes en situation d'écoute réelle d'échantillons de parole afin de leur demander de noter la gêne due au bruit selon une échelle de type MOS.
C'est pourquoi le développement de méthodes objectives alternatives pouvant compléter ou suppléer les méthodes subjectives est un sujet de grand intérêt. L'illustration la plus frappante de ce phénomène est le modèle de qualité d'écoute, en constante évolution, contenu dans le document "Recommandation UIT-T P.862 (02/2001 )", Néanmoins ce modèle ne s'applique pas à l'évaluation de la gêne due au bruit. L'invention concerne en effet des signaux de parole dans lesquels la gêne due au bruit peut être importante, ceci avant ou après traitement de ces signaux par une éventuelle fonction de réduction de bruit.
Il est de plus à noter que bien qu'en général l'invention sera utilisée pour évaluer la gêne due au bruit en sortie d'un équipement de communication implémentant une fonction de réduction de bruit, l'invention s'applique aussi aux signaux bruités non traités par une telle fonction. Le cas d'utilisation de l'invention sur un signal audio bruité quelconque est donc un cas particulier du cas plus général d'utilisation de l'invention sur un signal audio traité par une fonction de réduction de bruit.
La présente invention a pour but de résoudre les inconvénients de la technique antérieure en fournissant un procédé et un dispositif de calcul objectif d'une note équivalente à la note subjective telle qu'indiquée dans le document "Recommandation UIT-T P.835", caractérisant Ia gêne due à la présence de bruit dans un signal audio. Le procédé selon l'invention varie suivant que l'invention est utilisé sur un signal audio bruité quelconque ou sur un signal audio traité par une fonction de réduction de bruit, notamment dans les paramètres de calcul de la note objective selon l'invention. Afin de bien décrire ces deux cas d'utilisation, deux modes de réalisation pouvant aussi être considérés comme deux procédés distincts sont présentés. Cependant le second mode de réalisation, s'appliquant à un signal audio bruité quelconque, et plus général que le premier mode de réalisation, se déduit aisément de celui-ci.
A cette fin, l'invention propose un procédé de calcul d'une note objective de la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit, ledit procédé comprenant une étape préalable d'obtention d'un signal audio prédéfini de test contenant un signal utile dépourvu de bruit, d'un signal bruité, obtenu en additionnant un signal de bruit prédéfini audit signal de test, et d'un signal traité, obtenu par application de la fonction de réduction de bruit audit signal bruité, ledit procédé étant caractérisé en ce qu'il inclut une étape de mesures de sonie de trames dudit signal bruité et dudit signal traité, et de mesures de coefficients de tonalité de trames dudit signal traité.
Ce procédé a l'avantage d'une mise en œuvre simple, immédiate et rapide contrairement aux tests subjectifs. On rappellera ici que l'expression "sonie psychoacoustique" peut être définie comme le caractère de la sensation auditive lié à la pression acoustique et à la structure du son. En d'autres termes, il s'agit de la force sonore d'un son ou d'un bruit en tant que sensation auditive (cf. Office de la langue française, 1988). La sonie est représentée par une échelle de sonie psychoacoustique (en sones). D'autre part, la densité de sonie, encore désignée par "intensité subjective", est une mesure particulière de Ia sonie.
Selon une caractéristique préférée, ce procédé selon l'invention comprend les étapes de ;
- Calcul de densités de sonie moyenne Sr(Vn) de trames du signal traité, de densités de sonie moyenne respectives parole) et s-djn parole) d& trames de signai utile "m_parole" respectivement du signal bruité et du signal traité, de densités de sonie moyenne ~Sr{m _bruit) de trames de bruit "m_bruit" du signal traité, et de coefficients de tonalité ar(m bruit) de trames de bruit "m_bruit" du signal traité, - Calcul d'une note objective de la gêne due au bruit dans le signal traité, à partir desdites densités de sonie moyenne et desdits coefficients de tonalité calculés, et de coefficients de pondération prédéfinis.
Selon une caractéristique préférée, l'étape de calcul de densités de sonie moyenne et de coefficients de tonalité est suivie d'une étape de calcul des moyennes &- , &«, pamie , Sr pamie , 5V bn,u et ar _ brun desdites densités de sonie moyenne et desdits coefficients de tonalité sur l'ensemble des trames concernées des signaux correspondants, et la note objective de la gêne due au bruit est calculée selon l'équation suivante: s NOB - ]jT ωfacteur(i) + o& ,
où fartrurHY- 1^-*""''
X . /n\ Sr bruit facteur(2)= -=- -
SY _ parole facteur(3)= Ecart_type _ parole) - Sr(m _ parole)) , l'opérateur
"Ecart_type (v(m))" désignant Pécart-type de la variable v sur l'ensemble des trames d'indice m, facteur(4)= ar_bru,t , facteur(5)= Ecart_type (m (m _ bruit)) , et les coefficients coi à ωe sont déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs et tes notes objectives calculées par ledit procédé pour les signaux de tests, bruités et traités correspondants utilisés lors desdîts tests subjectifs. Les coefficients de cette combinaison linéaire ont l'avantage de pouvoir être recalculés si de nouvelles données de tests subjectifs modifient de manière sensible la corrélation précédemment établie. Ceci permet d'améliorer un modèle objectif alimenté par le procédé selon l'invention, de calcul de la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit, par une simple reconfiguration des paramètres du procédé.
L'invention concerne aussi un procédé de calcul d'une note objective de la gêne due au bruit dans un signal audio, ledit procédé comprenant une étape préalable d'obtention d'un signal audio prédéfini de test contenant un signal utile dépourvu de bruit, et d'un signal bruité, obtenu en additionnant un signal de bruit prédéfini audit signal de test, ledit procédé étant caractérisé en ce qu'il inclut une étape de mesures de sonie et de mesures de coefficients de tonalité de trames dudit signal bruité.
Ce procédé a les mêmes avantages que le procédé précédent, mais s'applique à un signal audio bruité quelconque.
Selon une caractéristique préférée, ce procédé selon l'invention comporte les étapes de:
- Calcul de densités de sonie moyenne ~sxh(m)àe trames du signal bruité, de densités de sonie moyenne S χb{m_ parole) de trames de signal utile "m_parole" du signal bruité, de densités de sonie moyenne
S.χ!,(m_bruit)àe trames de bruit "m_bruit" du signal bruité, et de coefficients de tonalité a,u(m_bruit) àe trames de bruit "m_bruit" du signal bruité,
- Calcul d'une note objective de la gêne due au bruit dans le signal bruité, à partir desdites densités de sonie moyennes et desdits coefficients de tonalité calculés, et de coefficients de pondération prédéfinis.
Selon une caractéristique préférée, l'étape de calcul de densités de sonie moyenne et de coefficients de tonalité est suivie d'une étape de calcul des moyennes s M , S xb ^ parole, S M^ brmt et axi, bmn desd'ûes densités de sonie moyenne et desdits coefficients de tonalité sur l'ensemble des trames concernées des signaux correspondants, et en ce que ladite note objective de la gêne due au bruit est calculée selon l'équation suivante:
4
NOB = ]T ωf acteur (i) + ωs ,
r . I Λ \ S Xb bruit facteur(1 )= — =
S Xb Sxb bruit facteur(2)=
S Xh _ parole facteur(3)= cκ»_w , facteur(4)= Ecart Jy pe(aχb(m_ bruit)), l'opérateur "Ecart type (v(m))" désignant l'écart-type de la variable v sur l'ensemble des trames d'indice m, et les coefficients ωi à ωs sont déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs et les notes objectives calculées par ledit procédé pour les signaux de tests et les signaux bruités correspondants utilisés lors desdits tests subjectifs.
Comme pour le procédé précédent, les coefficients de cette combinaison linéaire ont l'avantage de pouvoir être recalculés si de nouvelles données de tests subjectifs modifient de manière sensible la corrélation précédemment établie. Ceci permet d'améliorer un modèle objectif alimenté par Ie procédé selon l'invention, de calcul de la gêne due au bruit dans un signal audio, par une simple reconfiguration des paramètres du procédé.
Selon une caractéristique préférée de ces deux procédés selon l'invention, l'étape de calcul de densités de sonie et de coefficients de tonalité est précédée d'une étape de détection d'activité vocale sot le signal de test, de manière à déterminer si une trame courante du signal bruité, et du signa! traité dans le cas du premier procédé, est une trame "m_bruit" contenant seulement du bruit, ou une trame "m_parole" contenant de la parole, dite trame de signal utile.
Cette étape de détection d'activité vocale permet de séparer très simplement les différents types de trames du signal bruité, et du signal traité dans le cas du premier procédé, par l'utilisation du signal de test.
Selon une caractéristique préférée de ces deux procédés selon l'invention, l'étape de calcul de la note objective est suivie d'une étape de calcul d'une note objective sur l'échelle MOS de la gêne due au bruit, calculée selon l'équation suivante:
4 NOB _ MOS = ∑λt (NOB)'-1 ,
dans laquelle les coefficients λi à λ4 sont déterminés de manière à ce que ladite nouvelle note objective obtenue caractérise la gêne due au bruit sur l'échelle MOS.
Le fait d'utiliser une fonction polynomiale d'ordre 3 permet d'obtenir une note objective sur l'échelle MOS très proche de la note subjective MOS que donnerait un groupe d'auditeurs dans le cadre d'un test subjectif conforme à la "Recommandation UIT-T P.835".
Selon une caractéristique préférée de ces deux procédés selon l'invention, l'étape de calcul de densités de sonie et de coefficients de tonalité, le calcul de la densité de sonie moyenne Su (m) d'une trame d'indice m quelconque d'un signal audio donné u, comprend les étapes suivantes :
- fenêtrage, par exemple de type Hanning, de la trame d'indice m et obtention d'une trame fenêtrée u_w[m],
- application d'une transformée de Fourier rapide à la trame fenêtrée u_w[m] et obtention d'une trame correspondante U(m,f) dans le domaine fréquentiei,
- calcul de la densité spectrale de puissance γ{ (m, f) de la trame U(m,f), application à la densité spectrale de puissance γυ (m, f) d'une conversion de l'axe des fréquences à l'échelle des Barks et obtention d'une densité spectrale de puissance B,j(m,b) sur l'échelle des Barks,
- convolution de la densité spectrale de puissance sur l'échelle des Barks, BLi (m,b) , avec la fonction d'étalement couramment utilisée en psychoacoustique et obtention d'une densité spectrale étalée sur l'échelle des Barks, Eu(m,b),
- calibration de la densité spectrale étalée sur l'échelle des Barks, E1J (m, b) , par les facteurs respectifs d'échelonnement en puissance et d'échelonnement en sonie couramment utilisés en psychoacoustique, conversion de la grandeur ainsi obtenue sur l'échelle des phones puis conversion sur l'échelle des sones de la grandeur précédemment convertie en phones, et obtention en conséquence d'un nombre B de valeurs de densité de sonie, S1, (m, b) , de la trame d'indice m pour la bande critique b, B étant le nombre de bandes critiques considérées dans l'échelle des Barks et l'indice b variant de 1 à B ,
- calcul de la densité de sonie moyenne Su (m) de la trame d'indice m à partir desdites B valeurs de densités de sonie Sυ (m, b) , selon l'équation suivante : Su (m) = -^ ∑Su(m,b) t> b=l
Selon une caractéristique préférée de ces deux procédés selon l'invention, dans l'étape de calcul de densités de sonie et de coefficients de tonalité, Ie calcul du coefficient de tonalité α(m) d'une trame d'indice m quelconque d'un signal audio donné u, comprend ies étapes suivantes : - fenêtrage, par exemple de type Hanning, de la trame d'indice m et obtention d'une trame fenêtrée u_w[m], application d'une transformée de Fourier rapide à Ia trame fenêtrée u__w[m] et obtention d'une trame correspondante U(m,f) dans le domaine fréquentiel, calcul de la densité spectrale de puissance γu (m,f) de la trame U(m,f), calcul du coefficient de tonalité α(m) selon l'équation suivante:
* symbolise l'opérateur de multiplication dans l'espace des nombres réels, f représente l'indice fréquentiel de la densité spectrale de puissance, et N désigne la taille de la transformée de Fourier rapide.
L'invention concerne également un équipement de test destiné à évaluer une note objective de la gêne due au bruit dans un signal audio, caractérisé en ce qu'il comporte des moyens adaptés à mettre en œuvre l'un ou l'autre des procédés selon l'invention. Selon une caractéristique préférée, l'équipement de test inclut des moyens informatiques et un programme d'ordinateur, ledit programme comportant des instructions adaptées à mettre en oeuvre l'un ou l'autre desdits procédés, lorsqu'il est exécuté par lesdits moyens informatiques.
L'invention concerne encore un programme d'ordinateur sur un support d'informations» comportant des instructions adaptées à la mise en œuvre de l'un ou l'autre des procédés selon l'invention, lorsque le programme est chargé et exécuté dans un système informatique.
Les avantages de cet équipement de test ou de ce programme d'ordinateur sont identiques à ceux mentionnés pius haut en relation avec les procédés de l'invention, D'autres caractéristiques et avantages apparaîtront à la lecture de modes de réalisation préférés décrits en référence aux figures dans lesquelles: - la figure 1 représente un environnement de test destiné à calculer une note objective de la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit, selon un premier mode de réalisation de l'invention,
- la figure 2 est un organigramme illustrant un procédé de calcul d'une note objective de la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit selon un premier mode de réalisation du procédé selon l'invention,
- la figure 3 est un organigramme illustrant un procédé de calcul d'une note objective de la gêne due au bruit dans un signal audio selon un second mode de réalisation du procédé selon l'invention,
- la figure 4 est un organigramme illustrant le mode de calcul de la densité de sonie moyenne et du coefficient de tonalité d'une trame de signal audio selon l'invention.
Deux modes de réalisation du procédé selon l'invention sont décrits dans la suite, le premier étant appliqué à un signal audio traité par une fonction de réduction de bruit, et le second étant appliqué à un signal audio bruité quelconque. Le principe du procédé selon l'invention est le même dans ces deux modes de réalisation, en particulier le procédé de calcul est exactement le même, mais dans le second mode de réalisation ie signa! audio traité par une fonction de réduction de bruit est pris égal au signa! bruité. Le second mode de réalisation peut en effet être considéré comme un cas particulier du premier mode de réalisation, avec une fonction de réduction de bruit inhibée. Sefon ie premier mode de réalisation du procédé l'invention, la gêne due à Ia présence de bruit dans un signal audio traité par une fonction de réduction de bruit est évaluée de manière objective dans un environnement de test représenté à la figure 1. Un tel environnement de test comprend une source de signaux audio SSA délivrant un signal audio de test x(n) ne contenant que du signal utile, c'est-à-dire dépourvu de bruit, par exemple un signal de parole, et une source de bruit SB délivrant un signal de bruit prédéfini.
Aux fins de test, ce signal de bruit prédéfini est ajouté au signal de test x(n) choisi, comme représenté par l'opérateur d'addition AD. Le signal audio résultant de cette addition de bruit au signal de test x(n) est noté xb(n) et est désigné par l'expression "signal bruité".
Le signal bruité xb(n) constitue alors le signal d'entrée d'un module
MRB de réduction de bruit mettant en œuvre une fonction de réduction de bruit délivrant en sortie un signal audio y(n) désigné par l'expression "signal traité". Le signal traité y(n) est donc un signal audio contenant du signal utile et un bruit résiduel.
Le signal traité y(n) est ensuite délivré à un équipement de test EQT mettant en œuvre un procédé d'évaluation objective de la gêne due au bruit dans le signal traité, selon l'invention. Typiquement le procédé selon l'invention est implémenté dans l'équipement de test EQT sous la forme d'un programme d'ordinateur. En plus ou en remplacement de moyens logiciels, l'équipement de test EQT comporte éventuellement des moyens matériels électroniques pour implémenter le procédé selon l'invention. Outre le signal y(n), l'équipement de test EQT reçoit en entrée le signal de test x(n) et le signal bruité xb(n). L'équipement de test EQT délivre en sortie un résultat d'évaluation
RES5 qui est une note objective NOBJvIOS de Sa gêne due à !a présence de bruit dans le signal traité y(n). Le mode de calcul de cette note objective NQBJvIOS sera décrit plus bas.
Les signaux audio précités x(n), xb(n) et y(n) sont des signaux échantillonnés dans un format numérique, n désignant un échantillon quelconque. Ces signaux sont par exemple supposés échantillonnés à la fréquence d'échantillonnage de 8 kHz (kilo Hertz).
Dans le mode de réalisation décrit et représenté ici, le signal de test x(n) est un signal de parole dépourvu de bruit. Le signal bruité xb(n) représente alors le signal vocal initial x(n) dégradé par un environnement bruité (bruit de fond ou bruit ambiant), et le signal y(n) représente le signal xb(n) après réduction de bruit.
Selon un exemple de mise en oeuvre de l'invention, le signal x(n) est généré dans une chambre anéchoïque. Cependant, le signal x(n) peut être aussi généré dans une pièce "calme" ayant un temps de réverbération "moyen", inférieur à 0,5 seconde.
Le signal bruité xb(n) est obtenu en ajoutant une contribution prédéterminée de bruit au signal x(n). Le signal y(n) est obtenu soit en sortie d'un algorithme de réduction de bruit implanté sur un ordinateur personnel, soit à la sortie d'un équipement réseau réducteur de bruit et dans ce dernier cas, le signal y(n) est prélevé au niveau d'un codeur MIC (modulation par impulsion et codage).
En référence à la figure 2, le procédé de calcul de la note objective NOB_MOS de la gêne due au bruit dans le signal traité y(n) selon l'invention est représenté sous la forme d'un algorithme comportant des étapes ai à a7.
Dans une première étape ai , les signaux x(n), xb(n) et y(n) sont respectivement découpés en fenêtres temporelles successives appelées trames. Chaque trame de signal, notée m, contient un nombre prédéterminé d'échantillons du signal, l'étape ai consiste donc en un changement de cadence de chacun de ces signaux. Les signaux x(n), xb(n) et y{n) passés en cadence trames produisent respectivement les signaux x[m], xb[m], et y[m].
Dans une seconde étape a2, une détection d'activité vocale (DAV) est effectuée sur le signal x[m] de manière à déterminer si chaque trame respective courante d'indice m des signaux xb[m] et y[m]. est une trame contenant seuiemenî du bruit, notée "m bruit", ou une trame contenant de ia parole, c'est-à-dire du signal utile, et notée "m_parole". Cette détermination se fait par comparaison des signaux xb[m] et y[m] avec le signal de test x[m] dénué de bruit. Chaque trame de silence de x[m] correspond en effet à une trame de bruit pour les signaux xb[m] et y[m], tandis que chaque trame de parole de x[m] correspond à une trame de parole pour les signaux xb[m] et y[m].
Comme représenté sur la figure 2, en sortie de l'étape a2, trois types de trames sont sélectionnés à partir des signaux x[m], xb[m] et y[m] :
- les trames de parole du signal bruité xb[m], notées xb[m_parole], - les trames de parole du signal traité y[m], notées y[m_parole],
- les trames de bruit du signal traité y[m], notées y[m_bruit].
Dans une troisième étape a3, des mesures de sonie sont effectuées sur au moins des ensembles de trames y[m_bruit], y[m_parole], xb[m_parole] issues de l'étape précédente a2, et au moins un ensemble de trames du signal y[m] en sortie de l'étape ai . Par exemple si on utilise 8 secondes de signal de test échantillonné à 8kHz, on pourra travailler sur 250 trames y[m] de 256 échantillons de signal y(n). De plus les coefficients de tonalité d'au moins un ensemble de trames y[m_bruit] sont mesurées.
Plus précisément, à cette étape, on calcule les densités de sonie moyennes ~b(m_ parole) , ~S~γ{m_ parole) , ~Sγ{m) , et £y(m _bruit) de respectivement chacune des trames xb[m_parole], y[m_parole], y[m] et y[rn_bruit] des ensembles de trames considérés. De même les coefficients de tonalité a>- (m bruit) de chacune des trames y[m_bruit] de l'ensemble considéré de trames y[m__bruit] sont calculés. Le calcul d'une densité de sonie moyenne Su (m) et d'un coefficient de tonalité α(m) d'une trame d'indice m quelconque d'un signal audio donné u, sera détaillé plus loin en liaison avec la figure 4.
Dans une quatrième étape a4. on calcule les moyennes respectives
~S «•_ rarok S natoie S^ et 5% fu t des densités de sonse moyenne Sv,(w _ parole) • ~S< (m _ parole) ~Sï(m) et ~S,(m _brtut) précédemment calculées sur les ensembles respectifs considérés des trames xb[m_parole], y[m_parole], y[m] et y[m_bruit]. La moyenne ccr_bruitàes coefficients de tonalité a,γ{m bruit) précédemment calculés sur l'ensemble considéré de trames y[m_bruit] est également calculée.
Dans une cinquième étape a5, on calcule cinq facteurs facteur(i), i étant un entier variant de un à cinq, caractéristiques de la gêne due au bruit dans le signal y(n), selon les formules suivantes; r , , . . Sr bruit facteur(1)= — = — ,
Sr e t. tn\ Sï bruit facteur(2)= —
SY _ parole facteur(3)= Ecart_type parole)) , l'opérateur
"Ecart_type (v(m))" désignant l'écart-type de la variable v sur l'ensemble des trames m, facteur(4)= ar_bmt , facteu r(5)= Ecart_type (m (m _ bruit)) . Dans une sixième étape a6, le calcul d'une note objective intermédiaire
NOB est obtenue par combinaison linéaire des cinq facteurs calculés à l'étape a5, suivant l'équation suivante:
5
NOB - ∑ o)fi acteur(ï) + <y« ,
M où les coefficients ωi à ω% sont des coefficients de pondération prédéfinis. Ces coefficients ont été déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs, et les notes objectives NOB calculées par cette combinaison linéaire en utilisant les signaux de tests, bruités et traités x[m], xb[m] et y[m] utilisés lors de ces mêmes tests subjectifs. La base de données de tests subjectifs est par exempte une base de données de notes obtenues avec des groupes d'auditeurs conformément à ia "Recommandation UiT-T P.835™, dans laquelle ces notes sont appelées notes "background noise". II est à noter que l'obtention des coefficients de pondération par l'utilisation d'une base de données de tests subjectifs n'est pas indispensable à chaque étape de calcul d'une note objective NOB. En effet, ces coefficients doivent être obtenus préalablement à la première utilisation du procédé, et peuvent être les mêmes pour toutes les utilisations du procédé. Ces coefficients sont néanmoins amenés à évoluer lorsque de nouvelles données subjectives viendront alimenter la base de données de tests subjectifs utilisée.
Enfin dans une dernière étape a7, une note objective NOB_MOS de la gêne due au bruit dans le signal traité y(n) sur l'échelle MOS est calculée en utilisant par exemple une fonction polynomiale d'ordre 3, suivant l'équation suivante:
NOB _ MOS = ∑ X1 (NOB) w ,
où les coefficients λi à λ4 sont déterminés de manière à ce que la note objective obtenue NOB_MOS caractérise la gêne due au bruit sur l'échelle MOS, c'est-à-dire sur une échelle de 1 à 5.
Selon un second mode de réalisation du procédé l'invention, la gêne due à la présence de bruit dans un signal audio bruité quelconque est évaluée de manière objective. On utilise le même environnement de test qu'à la figure 1 , mais en ôtant le module MRB de réduction de bruit. La source de signaux audio SSA délivre un signal audio de test x(n) ne contenant que du signal utile, auquel est ajouté un signal de bruit prédéfini généré par la source de bruit SB, pour obtenir en sortie de l'opérateur d'addition AD un signal bruité xb(n). Le signal de test x(n) et le signai bruité xb(n) sont alors directement envoyés à l'entrée de l'équipement de test EQT mettant en œuvre un procédé d'évaluation objective de la gêne due au bruit dans le signal bruité xb(n) selon l'invention, Comme dans le premier mode de réalisation, fes signaux x(n) et xb(n) sont supposés échantillonnés â la fréquence d'échantillonnage 8 kHz, L'équipement de test EQT délivre en sortie un résultat d'évaluation RES, qui est une note objective NOB_MOS de la gêne due à la présence de bruit dans le signal bruité xb(n).
En référence à Ia figure 3, le procédé de calcul de la note objective NOB-MOS de la gêne due au bruit dans le signal bruité xb(n) selon l'invention est représenté sous la forme d'un algorithme comportant des étapes b1 à b7.
Ces étapes sont similaires aux étapes ai à a7 précédemment décrites dans le premier mode de réalisation, et seront donc un peu moins détaillées. Il est en effet à noter que si l'on applique les étapes de calcul a3 à a7 avec le signal y(n) égal au signal xb(n) dans le cas du premier mode de réalisation, on aboutit au deuxième mode de réalisation.
Dans une première étape b1 , les signaux x(n) et xb(n) sont découpés en trames x[m] et xb[m] d'indice temporel m.
Dans une seconde étape b2, une détection d'activité vocale est effectuée sur le signal x[m] de manière à déterminer si chaque trame courante d'indice m du signal bruité xb[m] est une trame contenant seulement du bruit, notée "m_bruit", ou une trame contenant aussi de la parole, notée "m_parole". Deux types de trames sont donc sélectionnés à partir des signaux x[m] et xb[m] en sortie de l'étape b2: - les trames de parole du signal bruité xb[m], notées xb[m_parole],
- et les trames de bruit du signal bruité xb[m], notées xb[m_bruit]. Dans une troisième étape b3, des mesures de sonie sont effectuées sur au moins des ensembles de trames xb[m_bruit] et xb[m_parole] issues de l'étape précédente b2, et au moins un ensemble de trames du signal xb[m] en sortie de i'étape b1. De plus les coefficients de tonalité d*au moins un ensemble de trames κb[m_bruit] sont mesurées.
Plus précisément, à cette étape, on calcule les densités de sortie moyennes Si/.(»i) , ~Sxb(m _ parole) et ~Sχb(m _hruit) de respectivement chacune des trames xb[m], xb[m_parole] et xb[m_bruit] des ensembles de trames considérés. De même ies coefficients de tonalité a-Mm bruit) de chacune des trames xb[m_bruit] de l'ensemble considéré de trames xb[m_bruit] sont calculés.
Dans une quatrième étape b4, on calcule les moyennes respectives
~Sy, , ÏSλb _ parole , et IM des densités de sonie moyenne ~s.Α(m) , ~Sxb(m parole) et ~s.xb(m bruit) précédemment calculées sur les ensembles respectifs considérés des trames xb[m], xb[m_parole] et xb[m_bruit]. La moyenne des coefficients de tonalité a.w(m _bruit) précédemment calculés sur l'ensemble considéré de trames xb[m_bruit] est également calculée. Dans une cinquième étape b5, on calcule quatre facteurs facteur(i), i étant un entier variant de un à quatre, caractéristiques de la gêne due au bruit dans le signal bruité xb(n), selon les formules suivantes: i i. / A \ S Xb bruit facteur(1 )= — == ,
S Xb x i. /<-ιs S Xb bruit facteur(2)= =-
Sxb _ parole facteu r(3 )= cCxt __ bmu , facteur(4)= l'opérateur "Ecart_type (v(m))" désignant l'écart-type de la variable v sur l'ensemble des trames m.
Dans une sixième étape b6, le calcul d'une note objective intermédiaire NOB est obtenue par combinaison linéaire des quatre facteurs calculés à l'étape b5, suivant l'équation suivante:
NOB = ]T ohfacteur(i) -r ωs ,
où les coefficients ωi à ωs sont des coefficients de pondération prédéfinis. Ces coefficients ont été déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs, et îes notes objectives NOB calculées par cette combinaison linéaire en utilisant les signaux de tests et îes signaux bruités x[m] et xb[m] utilisés lors de ces mêmes tests subjectifs. Tout comme pour l'étape a6, l'obtention des coefficients de pondération par l'utilisation d'une base de données de tests subjectifs n'est pas indispensable à chaque étape de calcul d'une note objective NOB.
Enfin dans une dernière étape b7, une note objective NOBJVlOS de la gêne due au bruit dans le signal bruité xb(n) sur l'échelle MOS est calculée en utilisant par exemple une fonction polynomiale d'ordre 3, suivant l'équation suivante:
NOB _ MOS = ]T λi (NOB)'-' , i-\ où les coefficients λi à λ4 sont déterminés de manière à ce que la note objective obtenue NOB_MOS caractérise la gêne due au bruit sur l'échelle MOS, c'est-à-dire sur une échelle de 1 à 5.
Le calcul de densité de sonie moyenne et du coefficient de tonalité d'une trame d'un signal audio, utilisé dans les étapes a3 et b3, est maintenant décrit en relation avec la figure 4, selon un mode de réalisation préféré de l'invention.
Le calcul selon l'invention de la densité de sonie moyenne Su (m) d'une trame d'indice m quelconque d'un signal audio donné u[m], comprend les étapes d à c7 représentées à la figure 4 et exposées ci-après. Le calcul selon l'invention du coefficient de tonalité α(m) d'une trame d'indice m quelconque d'un signal audio donné u[m], comprend les étapes d , c2, c3 et c8 représentées à la figure 4 et exposées ci-après.
Dans ce qui suit, on considère une trame d'indice m quelconque d'un signai u[m], sachant que tout ou partie des trames du signal considéré subissent le même traitement. Le signal u[mj représente n'importe lequel des signaux x[m], xb[m], ou y[m] définis plus haut.
A Ia première étape d » on applique à ia trame d'indice m du signal u[mj un fenêtrage, par exemple un fenêtrage de type Hannîng, Hamming ou équivalent. On obtient alors une trame fenêtrée u_w[m]. A l'étape suivante c2, on applique à la trame fenêtrée u_w[m], une transformée de Fourier rapide (FFT) et on obtient en conséquence une trame correspondante U(m,f) dans le domaine fréquentiel.
A l'étape suivante c3, on calcule la densité spectrale de puissance γy (m, f) de la trame U(m,f). Un tel calcul est connu de l'homme du métier et ne sera pas, par conséquent, détaillé ici.
A l'issue de l'étape c3, pour le signal y[m_bruit] de l'étape a3 ou le signal xb[m_bruit] de l'étape b3, on passe par exemple à l'étape c8 pour le calcul du coefficient de tonalité, puis à l'étape c4 pour le calcul de la densité de sonie moyenne Su (m) , puisque pour ces deux signaux les deux calculs sont nécessaires. Pour les autres signaux des étapes a3 et b3 on passe à l'étape c4 pour le calcul de la densité de sonie moyenne Su (m) . Il est à noter que le calcul du coefficient de tonalité est indépendant du calcul de la densité de sonie moyenne Su (m) , les deux calculs peuvent donc s'effectuer en parallèle ou l'un après l'autre.
A l'étape c4, on applique à la densité spectrale de puissance γu(m,f) obtenue à l'étape précédente, une conversion de l'axe des fréquences à l'échelle des Barks, et on obtient en conséquence une densité spectrale de puissance, B,j(m,b) , sur l'échelle des Barks, appelée aussi spectre de Bark. Pour une fréquence d'échantillonnage de 8kHz, 18 bandes critiques doivent être considérées. Ce type de conversion est connu de l'homme du métier, le principe de cette conversion Hertz/Bark consiste à additionner toutes les contributions fréquentielfes présentes dans la bande critique considérée de ('échelle des Barks. Ensuite, à l'étape cδ, on applique à Ia densité spectrale de puissance sur l'échelle des Barks, By (m, b) , une convolution avec la fonction d'étalement couramment utilisée en psycho-acoustique, et on obtient en conséquence une densité spectrale étalée sur l'échelle des Barks» notée E L, (m,b) . Cette fonction d'étalement a été formulée mathématiquement et une expression possible est:
101oglO(£(è)) = 15.81 + 7.5 *(b + 0.474) - 17.5 * y (1 + Φ + 0.474)2) , où E(b) est la fonction d'étalement appliquée à la bande critique b considérée dans l'échelle des Barks et * symbolise l'opérateur de multiplication dans l'espace des nombres réels. Cette étape permet de prendre en compte l'interaction des bandes critiques adjacentes.
A l'étape suivante c6, on convertit la densité spectrale étalée
E1J (m, b) obtenue précédemment en densités de sonie exprimées en sones. Pour cela, on opère une calibration de la densité spectrale étalée sur l'échelle des Barks, Ey (m, b) , par les facteurs respectifs d'échelonnement en puissance et d'échelonnement en sonie couramment utilisés en psychoacoustique. Le document "Recommandation UIT-T P.862", sections 10.2.1.3 et 10.2.1.4, donne un exemple d'une telle calibration par les facteurs précités. On convertit ensuite sur l'échelle des phones la grandeur obtenue. La conversion sur l'échelle des phones est effectuée en s'appuyant sur les courbes d'isosonie (courbes de Fletcher) conformément à la norme NF ISO 226 "Lignes isosoniques normales". On effectue alors une conversion sur l'échelle des sones de la grandeur précédemment convertie en phones. La conversion en sones est effectuée conformément à la loi de Zwicker selon laquelle : f N(phonc)-4Ûx;
N(sone) = 2^ 10 '
Pour obtenir plus d'information sur Ia conversion phone/sone, on pourra se reporter au document "PSYCHOACOUSTiQUE, L'oreille récepteur d'information", de E. Zwicker et R. Feldtkeller, édition Masson, 1981.
A l'issue de l'étape c6, on dispose d'un nombre B de valeurs de densité de sonie, S1; (m, b) , de la trame d'indice m pour ia bande critique b, B étant le nombre de bandes critiques considérées dans l'échelle des Barks et l'indice b variant de 1 à B. Enfin, à l'étape c7, on calcule la densité de sonie moyenne Su (m) de la trame d'indice m à partir desdites B valeurs de densité de sonie, selon l'équation suivante :
Sϋ(m) = ^ ∑Su(m,b)
B b=i Autrement dit, la densité de sonie moyenne Su (m) selon l'invention d'une trame d'indice m, est donc la moyenne des B valeurs de densité de sonie SLI (m,b) , de la trame d'indice m pour une bande critique b considérée.
Ces deux dernières étapes c6 et c7 correspondent à une conversion du domaine des Barks vers le domaine des Sones, permettant de calculer une intensité subjective moyenne, c'est-à-dire telle que perçue par l'oreille humaine.
En outre à l'étape c8, le coefficient de tonalité α(m) de la trame d'indice m est calculé selon l'équation suivante:
* symbolise l'opérateur de multiplication dans l'espace des nombres réels, f représente l'indice fréquentiel de la densité spectrale de puissance, et N désigne la taille de la transformée de Fourier rapide. Ce calcul est effectué selon le principe défini par J. D. Johnston dans son article "Transform coding of audio signais using perceptual noise criteria" du journal "IEEE Journa! on selected areas in communications» vol.6, n°2, February 1988".
Le coefficient de tonalité α d'un signal de base est une mesure permettant de montrer si certaines fréquences pures ressortent de ce signal. II est équivalent à une densité tonale. En effet, plus le coefficient de tonalité α est proche de 0, plus Ie signal est assimilé à du bruit, A l'inverse, plus le coefficient de tonalité α est proche de 1 , plus le signal est à composante tonale majoritaire. Un coefficient de tonalité α proche de 1 atteste donc de la présence de signal utile, ou signal de parole.

Claims

REVENDICATIONS
1. Procédé de calcul d'une note objective (NOB) de la gêne due au bruit dans un signal audio traité par une fonction de réduction de bruit, ledit procédé comprenant une étape préalable d'obtention d'un signal audio prédéfini de test (x[m]) contenant un signal utile dépourvu de bruit, d'un signal bruité (xb[m]), obtenu en additionnant un signal de bruit prédéfini audit signal de test (x[m]), et d'un signal traité (y[m]), obtenu par application de la fonction de réduction de bruit audit signal bruité (xb[m]), ledit procédé étant caractérisé en ce qu'il inclut une étape (a3, a4) de mesures de sonie de trames dudit signal bruité (xb[m]) et dudit signal traité (y[m]), et de mesures de coefficients de tonalité de trames dudit signal traité (y[m]).
2. Procédé selon la revendication 1 , caractérisé en ce qu'il comprend les étapes de :
- Calcul (a3) de densités de sonie moyenne & (m) de trames du signal traité (y[m]), de densités de sonie moyenne respectives ~Sxb(m _ parole) & 5 V (m _ par vie) de trames de signal utile "m_parole" respectivement du signal bruité (xb[m]) et du signal traité (y[m]), de densités de sonie moyenne Sγ(m_bruit)àe trames de bruit "m_bruit" du signal traité (y[m|), et de coefficients de tonalité aγ(m_bruit) àe trames de bruit "m_bruiî" du signal traité (y[m]}, - Calcul (a5, a6) d'une note objective (NOB) de Ia gêne due au bruit dans le signal traité (y[mj), à partir desdites densités de sonie moyenne et desdits coefficients de tonalité calculés, et de coefficients de pondération prédéfinis.
3. Procédé selon la revendication 2, caractérisé en ce que l'étape de calcul (a3) de densités de sonie moyenne et de coefficients de tonalité est suivie d'une étape de calcul (a4) des moyennes 5Y , 5,» _ parole , Sr __ parole , Sr _bruu - et CCY bruit desdites densités de sonie moyenne et desdits coefficients de tonalité sur l'ensemble des trames concernées des signaux correspondants, et en ce que la note objective (NOB) de la gêne due au bruit est calculée selon l'équation suivante:
NOi? = ^ ωfacteur(i) + ωo ,
1=1
r , . . . facteur(1 )= ,
Γ , ,,-... Sr bruit facteur(2)= =-
Sr _ parole facteur(3)= Ecart_type [S.v>(m _ parole) - Sγ(m _ parole) J , l'opérateur "Ecart_type (v(m))" désignant Pécart-type de la variable v sur l'ensemble des trames d'indice m, facteur(4)= ar_bruu , facteur(5)= Ecart_type (ar(m _ bruit)) , et les coefficients ωi à K>Q sont déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs et les notes objectives (NOB) calculées par ledit procédé pour îes signaux de tests, bruités et traités (x[m], xb[m], y[m]) correspondants utilisés lors desdîts tests subjectifs.
4. Procédé de calcul d'une note objective (NOB) de la gêne due au bruit dans un signal audio, ledit procédé comprenant une étape préalable d'obtention d'un signai aodîo prédéfini de test (x[m]) contenant un signa! utile dépourvu de bruit, et d'un signal bruité (xb[m]), obtenu en additionnant un signal de bruit prédéfini audit signa! de test (x[m]), ledit procédé étant caractérisé en ce qu'il inclut une étape (b3, b4) de mesures de sonie et de mesures de coefficients de tonalité de trames dudit signal bruité (xb[m]).
5. Procédé selon la revendication 4, caractérisé en ce qu'il comprend les étapes de :
- Calcul (b3) de densités de sonie moyenne £.»(/«) de trames du signal bruité (xb[m]), de densités de sonie moyenne Sχb(m_ parole) de trames de signal utile "m_parole" du signal bruité (xb[m]), de densités de sonie moyenne s,vj(m _bmit) àe trames de bruit "m_bruit" du signal bruité (xb[m]), et de coefficients de tonalité dxb{m_ bruit) de trames de bruit
"m_bruit" du signal bruité (xb[m]),
- Calcul (b5, bδ) d'une note objective (NOB) de la gêne due au bruit dans le signal bruité (xb[m]), à partir desdites densités de sonie moyennes et desdits coefficients de tonalité calculés, et de coefficients de pondération prédéfinis.
6. Procédé selon la revendication 5, caractérisé en ce que l'étape de calcul (b3) de densités de sonie moyenne et de coefficients de tonalité est suivie d'une étape de calcul (b4) des moyennes s^, , s,» ^αro/e, S.» _>-ι«γ et ŒM ^ brun desdites densités de sonie moyenne et desdits coefficients de tonalité sur l'ensemble des trames concernées des signaux correspondants, et en ce que ladite note objective (NOB) de la gêne due au bruit est calculée selon l'équation suivante: ,¥05 = Y ωf, acteur(i) • - COS
OU
, . . . S Xb brun facteur(1 )== — ==
Sxb facteur(3)= a.v,_bruu , facteur(4)= Ecaύjype (aχb(m _bruit)) , l'opérateur "Ecart_type (v(m))" désignant l'écart-type de la variable v sur l'ensemble des trames d'indice m, et les coefficients ωi à ω5 sont déterminés de manière à obtenir une corrélation maximale entre les données subjectives issues d'une base de données de tests subjectifs et les notes objectives (NOB) calculées par ledit procédé pour les signaux de tests et les signaux bruités (x[m], xb[m]) correspondants utilisés lors desdits tests subjectifs.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ladite étape de calcul (a3, b3, a4, b4) de densités de sonie et de coefficients de tonalité est précédée d'une étape (a2, b2) de détection d'activité vocale sur le signal de test, de manière à déterminer si une trame courante d'indice m du signal bruité (xb[m]), et du signal traité (y[m]) dans le cas des revendications 1 à 3, est une trame "m_bruit" contenant seulement du bruit, ou une trame "mj>arole" contenant de la parole, dite trame de signal utile.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'étape de calcul (a6, b6) de la note objective (NOB) est suivie d'une étape de calcul (a7, b7) d'une note objective sur l'échelle MOS (NOB_MOS) de Ia gêne due au bruit» calculée selon l'équation suivante:
NOB _ MOS = £ K (NOB)''1 ,
dans laquelle les coefficients λi à /»4 sont déterminés de manière à ce que ladite nouvelle note objective obtenue (NOBJvIOS) caractérise la gêne due au bruit sur fécheϋβ MOS.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, dans l'étape de calcul (a3, b3, a4, b4) de densités de sonie et de coefficients de tonalité, le calcul de la densité de sonie moyenne Su (m) d'une trame d'indice m quelconque d'un signal audio donné u, comprend les étapes suivantes :
- fenêtrage (d ), par exemple de type Hanning, de la trame d'indice m et obtention d'une trame fenêtrée u_w[m],
- application (c2) d'une transformée de Fourier rapide à la trame fenêtrée u_w[m] et obtention d'une trame correspondante U(m,f) dans le domaine fréquentiel,
- calcul (c3) de la densité spectrale de puissance yu On,!") de la trame
U(m,f),
- application (c4) à la densité spectrale de puissance γ,j (m,f) d'une conversion de l'axe des fréquences à l'échelle des Barks et obtention d'une densité spectrale de puissance By(In, b) sur l'échelle des Barks,
- convolution (c5) de la densité spectrale de puissance sur l'échelle des Barks, BL (m,b) , avec la fonction d'étalement couramment utilisée en psychoacoustique et obtention d'une densité spectrale étalée sur l'échelle des Barks, Eu(m,b), - calibration (c6) de la densité spectrale étalée sur l'échelle des Barks,
Eu (In5I)) , par les facteurs respectifs d'échelonnement en puissance et d'échelonnement en sonie couramment utilisés en psychoacoustique, conversion de la grandeur ainsi obtenue sur l'échelle des phones puis conversion sur l'échelle des soπes de la grandeur précédemment convertie en phones, et obtention en conséquence d'un nombre B de valeurs de densité de sonie, SL (m.b) . de Ia trame d'indice m pour la bande critique b, B étant Ie nombre de bandes critiques considérées dans i'échβlfe des Barks et l'indice b variant de 1 à B , - calcul (c7) de la densité de sonie moyenne SL (m) de la trame d'indice m à partir desdites B valeurs de densités de sonie SL! (m,b) , selon l'équation suivante :
Su(m) = i ∑Su(m,b)
B b=l
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, dans l'étape de calcul (a3, b3, a4, b4) de densités de sonie et de coefficients de tonalité, le calcul du coefficient de tonalité α(m) d'une trame d'indice m quelconque d'un signal audio donné u, comprend les étapes suivantes :
- fenêtrage (d ), par exemple de type Haπning, de la trame d'indice m et obtention d'une trame fenêtrée u_w[m],
- application (c2) d'une transformée de Fourier rapide à la trame fenêtrée u_w[m] et obtention d'une trame correspondante U(m,f) dans le domaine fréquentiel,
- calcul (c3) de la densité spectrale de puissance γ^m,!") de la trame
U(m,f),
- calcul (c8) du coefficient de tonalité α(m) selon l'équation suivante:
où * symbolise l'opérateur de multiplication dans l'espace des nombres réels, f représente l'indice fréquentiel de Ia densité spectrale de puissance, et N désigne la taille de la transformée de Fourier rapide.
11 , Equipement de test destiné à évaluer une note objective de la gêne due au bruit dans un signa! audîo, caractérisé en ce qu'il comporte des moyens adaptés à mettre en œuvre un procédé selon l'une quelconque des revendications 1 à 10.
12. Equipement de test selon la revendication 11 , caractérisé en ce qu'il inclut des moyens informatiques et un programme d'ordinateur, ledit programme comportant des instructions adaptées à mettre en œuvre ledit procédé, lorsqu'il est exécuté par lesdits moyens informatiques.
13. Programme d'ordinateur sur un support d'informations, caractérisé en ce qu'il comporte des instructions adaptées à la mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 10, lorsque le programme est chargé et exécuté dans un système informatique.
EP06709505A 2005-02-18 2006-02-13 Procede de mesure de la gene due au bruit dans un signal audio Not-in-force EP1849157B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0501747A FR2882458A1 (fr) 2005-02-18 2005-02-18 Procede de mesure de la gene due au bruit dans un signal audio
PCT/FR2006/050126 WO2006087490A1 (fr) 2005-02-18 2006-02-13 Procede de mesure de la gene due au bruit dans un signal audio

Publications (2)

Publication Number Publication Date
EP1849157A1 true EP1849157A1 (fr) 2007-10-31
EP1849157B1 EP1849157B1 (fr) 2009-07-29

Family

ID=34981381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709505A Not-in-force EP1849157B1 (fr) 2005-02-18 2006-02-13 Procede de mesure de la gene due au bruit dans un signal audio

Country Status (7)

Country Link
US (1) US20080267425A1 (fr)
EP (1) EP1849157B1 (fr)
AT (1) ATE438173T1 (fr)
DE (1) DE602006008111D1 (fr)
ES (1) ES2329932T3 (fr)
FR (1) FR2882458A1 (fr)
WO (1) WO2006087490A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052630A1 (de) * 2005-08-25 2007-03-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung der Lästigkeit von Quietschgeräuschen
KR100810077B1 (ko) * 2006-05-26 2008-03-05 권대훈 표준 청력특성을 이용한 이퀄라이제이션 방법
CN104378075B (zh) 2008-12-24 2017-05-31 杜比实验室特许公司 频域中的音频信号响度确定和修改
EP2685448B1 (fr) * 2012-07-12 2018-09-05 Harman Becker Automotive Systems GmbH Synthèse de son moteur
PT2939235T (pt) 2013-01-29 2017-02-07 Fraunhofer Ges Forschung Quantização de sinal de áudio de tonalidade adaptativa de baixa complexidade
WO2017218990A1 (fr) 2016-06-17 2017-12-21 Predictive Safety Srp, Inc. Système et procédé de commande d'accès à une zone
CN110688712A (zh) * 2019-10-11 2020-01-14 湖南文理学院 汽车风振噪声声品质客观烦恼度评价指标及其计算方法
CN113473314A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 音频信号处理方法以及相关设备
CN116429245B (zh) * 2023-06-13 2023-09-01 江铃汽车股份有限公司 一种雨刮电机噪声测试方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574824A (en) * 1994-04-11 1996-11-12 The United States Of America As Represented By The Secretary Of The Air Force Analysis/synthesis-based microphone array speech enhancer with variable signal distortion
FI100840B (fi) * 1995-12-12 1998-02-27 Nokia Mobile Phones Ltd Kohinanvaimennin ja menetelmä taustakohinan vaimentamiseksi kohinaises ta puheesta sekä matkaviestin
US6446038B1 (en) * 1996-04-01 2002-09-03 Qwest Communications International, Inc. Method and system for objectively evaluating speech
EP0980064A1 (fr) * 1998-06-26 2000-02-16 Ascom AG Méthode pour effectuer une évaluation automatique de la qualité de transmission de signaux audio
FI114833B (fi) * 1999-01-08 2004-12-31 Nokia Corp Menetelmä, puhekooderi ja matkaviestin puheenkoodauskehysten muodostamiseksi
US6490552B1 (en) * 1999-10-06 2002-12-03 National Semiconductor Corporation Methods and apparatus for silence quality measurement
FI116643B (fi) * 1999-11-15 2006-01-13 Nokia Corp Kohinan vaimennus
EP1253581B1 (fr) * 2001-04-27 2004-06-30 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement Procédé et dispositif pour améliorer la qualité de la parole dans un environnement bruité
US7590530B2 (en) * 2005-09-03 2009-09-15 Gn Resound A/S Method and apparatus for improved estimation of non-stationary noise for speech enhancement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006087490A1 *

Also Published As

Publication number Publication date
EP1849157B1 (fr) 2009-07-29
ATE438173T1 (de) 2009-08-15
ES2329932T3 (es) 2009-12-02
FR2882458A1 (fr) 2006-08-25
DE602006008111D1 (de) 2009-09-10
US20080267425A1 (en) 2008-10-30
WO2006087490A1 (fr) 2006-08-24

Similar Documents

Publication Publication Date Title
EP1849157B1 (fr) Procede de mesure de la gene due au bruit dans un signal audio
EP2419900B1 (fr) Procede et dispositif d&#39;evaluation objective de la qualite vocale d&#39;un signal de parole prenant en compte la classification du bruit de fond contenu dans le signal
EP2415047B1 (fr) Classification du bruit de fond contenu dans un signal sonore
Jørgensen et al. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing
Santos et al. An improved non-intrusive intelligibility metric for noisy and reverberant speech
RU2420813C2 (ru) Повышение качества речи с использованием множества датчиков с помощью модели состояний речи
JP5542206B2 (ja) オーディオ・システムの知覚品質を判定する方法およびシステム
CN104919525B (zh) 用于评估退化语音信号的可理解性的方法和装置
RU2312405C2 (ru) Способ осуществления машинной оценки качества звуковых сигналов
Monaghan et al. Auditory inspired machine learning techniques can improve speech intelligibility and quality for hearing-impaired listeners
EP0994464A1 (fr) Procédé destiné à génére un signal large bande a partir d&#39;un signal en bande étroite, appareil pour realiser un tel procédé et equipement téléphonique comportant un tel appareil
EP1958186A1 (fr) Procede de mesure de la qualite percue d&#39;un signal audio degrade par la presence de bruit
Kumar Comparative performance evaluation of MMSE-based speech enhancement techniques through simulation and real-time implementation
Westhausen et al. Reduction of subjective listening effort for TV broadcast signals with recurrent neural networks
Tsilfidis et al. Blind single-channel suppression of late reverberation based on perceptual reverberation modeling
Xie et al. Noisy-to-noisy voice conversion framework with denoising model
Goehring et al. Speech enhancement for hearing-impaired listeners using deep neural networks with auditory-model based features
EP1792305A1 (fr) Procédé et dispositif d&#39;évaluation de l&#39;efficacité d&#39;une fonction de réduction de bruit destinée à être appliquée à des signaux audio
Toyin et al. Speech enhancement in wireless communication system using hybrid spectral-kalman filter
Jørgensen Modeling speech intelligibility based on the signal-to-noise envelope power ratio
WO2020049263A1 (fr) Dispositif de rehaussement de la parole par implementation d&#39;un reseau de neurones dans le domaine temporel
Pourmand et al. Computational auditory models in predicting noise reduction performance for wideband telephony applications
Graetzer et al. Comparison of ideal mask-based speech enhancement algorithms for speech mixed with white noise at low mixture signal-to-noise ratios
Ghimire Speech intelligibility measurement on the basis of ITU-T Recommendation P. 863
FR3051958A1 (fr) Procede et dispositif pour estimer un signal dereverbere

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080310

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRANCE TELECOM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006008111

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2329932

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100503

BERE Be: lapsed

Owner name: FRANCE TELECOM

Effective date: 20100228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091030

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100213

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729