EP1846656B1 - Elektrische trennung in kraftstoffinjektoren - Google Patents

Elektrische trennung in kraftstoffinjektoren Download PDF

Info

Publication number
EP1846656B1
EP1846656B1 EP05823893.2A EP05823893A EP1846656B1 EP 1846656 B1 EP1846656 B1 EP 1846656B1 EP 05823893 A EP05823893 A EP 05823893A EP 1846656 B1 EP1846656 B1 EP 1846656B1
Authority
EP
European Patent Office
Prior art keywords
functional unit
valve
electrical
injector body
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05823893.2A
Other languages
English (en)
French (fr)
Other versions
EP1846656A1 (de
Inventor
Christoph Butscher
Juergen Frasch
Stephan Wehr
Michael Fleig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1846656A1 publication Critical patent/EP1846656A1/de
Application granted granted Critical
Publication of EP1846656B1 publication Critical patent/EP1846656B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid

Definitions

  • fuel injectors which contain one or more electrically controllable valves.
  • an electrically controllable solenoid or piezoelectric valve can be provided for controlling a needle valve and thus for controlling the course of the injection.
  • Other valves can be used for example for a pressure boosting.
  • the separate testing of the functionality of the individual valves and the components connected to or controlled by these valves often presents a challenge.
  • the testing of the various functionalities of the fuel injectors sometimes poses considerable problems.
  • the fuel injector when a malfunction occurs in the assembled state during testing, usually has to be laboriously disassembled again. After the repair or replacement of individual components (eg an electrically controllable valve) and reassembly, the functionality must then be tested again. This method is in many cases too time-consuming and thus unprofitable.
  • DE 10 2004 008 349 A1 refers to a fuel injection system comprising two common rail bodies for injecting fuel at two independently controlled pressures.
  • the fuel injection system comprises at least one fuel injector having an injector body divided into a fuel pressure part having a fuel pressure assembly and an injection part having a directly controlled nozzle assembly.
  • the fuel pressure assembly is coupled to a first electrical actuator, the directly controlled nozzle assembly to a second electrical actuator.
  • the second electrical actuator has a pair of electrical terminals with a mating electrical extension formed within the injector body. This opens into connections for insulated conductors outside of the fuel pressure part.
  • a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine and a method for producing such a fuel injector are proposed, which avoid the described disadvantages of the prior art.
  • a basic idea of the present invention is that an injector body of the fuel injector has at least two separate functional units which are independently operable (independently of each other, for example, at least with respect to at least one functionality) and can be tested independently of one another.
  • a first functional unit has a control module for controlling a pressure transmission of a fuel pressure and a second functional unit has a nozzle module for actuating an injection process by means of an injection valve member.
  • the functional units are reversibly connected to one another via at least one frictional connection element (for example a union nut) and at least one positioning pin.
  • at least one frictional connection element for example a union nut
  • at least one positioning pin instead of one or more positioning pins according to the invention also equivalent means can be used, for example, projections in the housing of a functional unit, which engage in corresponding grooves in the other functional unit and so prevent rotation of the functional units relative to each other and facilitate the positioning of the functional units relative to each other.
  • the two functional units each have at least one electrically controllable valve (for example a solenoid valve).
  • the fuel injector has at least one electrical injector body contact accessible from an outer side of the injector body, the second electrically controllable valve having at least one valve contact, and wherein the at least one electrical valve contact and the at least one electrical injector body contact at least partially under at least one of its own weight force in Substantially dimensionally stable electrical solid conductors are connected.
  • This electrical connection between valve contacts and injector body contact also includes at least one electrical plug contact, in which the at least one electrical solid conductor is inserted.
  • the fuel injector according to the invention allows a much simplified compared to the prior art manufacturing process.
  • a first functional unit can firstly be produced and tested, for example with respect to the functionality of an electrically controllable valve.
  • a second functional unit is manufactured and tested, again for example with regard to the functionality of an electrically controllable valve.
  • the functional units are reversibly connected to each other by means of the non-positive connecting element, wherein an electrical connection between the at least one injector body contact the at least one valve contact is made, for example by inserting into an electrical plug contact.
  • the separate testing of the individual functional units considerably increases the process stability during the production of the fuel injectors and makes it possible to detect faults (for example electrical faults of the individual valves) at an early stage and to correct them if necessary.
  • the functional units can thus also be produced separately and independently of each other. Even a simple disassembly and repair for maintenance is possible. This reduces overall manufacturing and maintenance costs and increases the reliability of the fuel injectors.
  • FIG. 1 an overall view of a preferred embodiment of an injector body 110 for a common rail injection system is shown.
  • the injector body 110 can be dismantled at the butt joints 124, 126, 128 and 130 into substantially five functional modules 132, 134, 136, 138, 140: a control module 132, a sealing plate 134, a line connection module 136, a pressure booster module 138 and a nozzle module 140.
  • the pressure booster module 138 essentially serves to translate a fuel pressure, which is provided by an external pressure source, for example via a high-pressure common space, to the fuel injector (for example 1000 bar) into a second pressure (for example 2200 bar). so that two working pressures are available for the injection process.
  • the nozzle module 140 has an injection valve member 146 (in FIG FIG. 1 symbolically indicated only), for example a nozzle needle, which controls the actual injection process into the combustion chamber of an internal combustion engine (for example via injection openings).
  • the modules 132, 134, 136 and 140 are grouped in this embodiment into two functional units 148, 150: one comprising the control module 132 and the sealing plate 134 Control unit 148 and a nozzle unit 150 comprising the line connection module 136, the pressure booster module 138 and the nozzle module 140.
  • These two functional units 148 and 150 are separated from each other by the second butt joint 126 and are reversibly connected by a cap nut 152.
  • the functional units 148, 150 are still connected via the positioning pins 154 (in the sectional view according to FIG. FIG. 1 only one of the positioning pins 154 can be seen), which are respectively received in corresponding positioning bores 156 in the control module 132, in the sealing plate 134 and in the line connection module 136.
  • the injector body 110 has two solenoid valves 111, 112: a first solenoid valve 111 arranged in the control module 132 for controlling the pressure transmission in the pressure booster module 138, and a second solenoid valve 112 arranged in the nozzle module 140 for controlling the actual injection process via the injection valve member 146.
  • the separability of the two functional units 148, 150 along the second butt joint 126 causes the ("dry") control module 132 and the ("wet") portion of the injector body 110 located below the first butt 124 to be designed, manufactured and tested separately, to be assembled afterwards.
  • the separability for maintenance purposes for example, easily replace individual components of the injector body 110, which accommodates the "system repair idea” (SIS).
  • SIS system repair idea
  • the solenoid valve 112 in the nozzle module 140 is electrically actuated via two electrical valve contacts 114.
  • the injector body 110 has at its upper end an electrical injector body contact 116 accessible from above.
  • the realization of a disassembly of the injector body 110 or a simple modular assembly consists in the illustrated modular design of the injector body 110 in such a way to electrically connect the valve contacts 114 to the injector body contact 116 that further ensures easy assembly and disassembly of the injector body.
  • two conductor channels 120 are provided in this embodiment, which extend through the modules 138, 136 and 134.
  • the conductor channels 120 are formed by bores in the pressure booster module 138, in the line connection module 136 and in the sealing plate 134. When the injector body 110 is assembled, these bores are in each case flush with the butt joints 128 and 126, so that a single, continuous conductor channel 120 results.
  • the individual holes of the conductor channel 120 have in this embodiment in the individual modules 138, 136, 134 each have a straight course. A curved course of the holes can be realized with the inventive solution.
  • the bores in the individual modules 138, 136, 134 each have a different inclination to an injector axis 142.
  • the conductor channel 120 in the pressure booster module 138 has an inclination of 1 ° to the injector axis 142
  • the inclination in this embodiment in the line connection module 136 is 2.2 °.
  • the connection between the two electrical valve contacts 114 of the solenoid valve 112 and the injector body 116 in this embodiment partially via two solid conductors 118.
  • the solid conductors 118 extend through the two conductor channels 120 and connect the valve contacts 114 with electrical plug contacts 122, which in turn via an electrical Connection 144 (for example, two each at one end with an electrical plug contact 122 and at another end with the injector body contact 116 soldered cables) are connected to the injector body contact 116.
  • the solid conductors 118 are fixed or detachably connected electrically to the valve contacts 114 of the solenoid valve 112.
  • connection of the solid conductors 118 with the plug contacts 122 is reversible, so that this connection can be made during assembly of the injector body 110, so when mating control unit 148 and nozzle unit 150 by simply pressing in the solid conductor 118 into the plug contacts 122.
  • the solid conductors 118 can be easily removed again from the plug contacts 122, and thus the injector body 110 can be broken down again into the two functional units 148, 150 without unsoldering of electrical connections.
  • the solid conductors 118 are stiff enough that they on the one hand do not change their shape substantially under their own weight and thus thread easily through the conductor channels 120 with their different inclinations to Injektorachse 142 and plug into the plug contacts 122.
  • the solid conductors should have a certain plasticity, so that no mechanical stresses occur at the transition between sections of the conductor channels 120 with different angles of inclination.
  • the term "solid conductor” does not necessarily restrict the selection of materials to solid materials, but it is also possible, for example, to use waveguides (tubes) as solid conductors 118, provided they have sufficient mechanical rigidity.
  • the solid conductors 118 CuSn6 with a Brinell hardness between 80 and 90 HB as a material, which is otherwise used for example as welding filler.
  • a material which is otherwise used for example as welding filler.
  • These materials meet the above requirements for hardness and plasticity and are also easily connected by welding with the valve contacts 114.
  • the hardness of the materials should be between 50 and 100 HB, preferably between 60 and 95 HB and particularly advantageously between 75 and 90 HB.
  • FIGS. 2A to 2C the composition of the fuel injector from the two individual functional units 148 and 150 is shown in perspective.
  • FIG. 2A It can be seen how the control unit 148 and the nozzle unit 150 along the butt joint 126 can be separated from each other by the union nut 152 is released.
  • the nozzle unit 150 has a fuel supply nozzle 210, via which the nozzle unit 150 can be supplied with fuel.
  • This fuel supply nozzle 210 may for example be connected to a high-pressure accumulator (common rail).
  • the sealing plate 134 see FIG.
  • the butt joint 126 separates the "wet” nozzle unit 150 from the "dry” control unit 148. This also helps to make both functional units 148, 150 separately manufacturable and separately testable.
  • FIG. 2B a control unit is shown in perspective view. It can be seen here that the injector body contact 116, which is arranged on the upper side of the control unit 148, has four individual connection bolts 212 in this exemplary embodiment. In each case one of the two solenoid valves 111, 112 can be actuated via in each case two of these connection bolts 212.
  • positioning pins 154 are embedded in the control unit 148. These positioning pins 154 may, for example, be permanently or detachably embedded in corresponding positioning bores 156 of the control unit 148 (see FIG FIG. 1 ). As already described above, according to the invention, instead of positioning pins 154, other devices can also be used which simplify positioning of the functional units 148, 150 relative to one another and prevent the functional units 148, 150 from rotating relative to one another. In particular, projections and corresponding grooves are to be mentioned here.
  • FIG. 2C is shown in perspective partial view, the upper end of the nozzle unit 150. It can be seen that the upper ends of the solid conductors 118 protrude from the line connection module 136. The solid conductors 118 are encased for insulation against the injector body 110 with shrink tubing 214, but the upper ends are stripped to make contact. As related to FIG. 1 can be seen when mating the functional units 148, 150, the upper ends of the solid conductors 118 pushed through conductor channels 120 in the sealing plate 134 and inserted into the plug contacts 122.
  • O-rings 216 are plugged, which are intended to additionally prevent the penetration of fuel from the nozzle unit 150 along the solid conductors 118 into the control unit 148.
  • FIG. 2C also to recognize the mouths of the positioning holes 156, in which the positioning pins 154 of the control unit 148 when assembling the two functional units 148, 150 are inserted to ensure an exact positioning of the control unit 148 relative to the nozzle unit 150 and so a "blind" plugging the solid conductors 118 in the plug contacts 122 to allow.
  • FIGS. 3A to 3C an assembly of the functional units 148, 150 is shown in perspective.
  • the positioning pins 154 which, as in FIG. 2B can be seen, in this embodiment, fixedly connected to the control unit 148, inserted into the positioning holes 156 of the nozzle unit 150.
  • the control unit 148 is positioned relative to the nozzle unit 150, so that both functional units 148, 150 can no longer rotate relative to one another.
  • the plug contacts 122 relative to the upper ends of the solid conductors 118 already have the correct position.
  • both functional units 148, 150 are connected to one another in a force-locking manner by screwing down the union nut 152.
  • this connection can be easily released again by the union nut 152, so that, for example, both functional units 148, 150 can be checked and maintained separately from each other.
  • FIG. 4 is a schematic flow diagram of a method according to the invention for producing a fuel injector shown schematically.
  • the illustrated process steps do not necessarily have to be performed in the order shown, and there may also be other, in FIG. 4 not shown process steps are performed.
  • a first functional unit 148 of a fuel injector is produced, which has at least one injector body contact 116 and at least one first electrically controllable valve 111.
  • a second functional unit 150 is produced in method step 414, which has at least one second electrically controllable valve 112 with at least one electrical valve contact 114.
  • a second functionality of this second functional unit 150 in particular an electrical function of the second electrically controllable valve 112, is checked.
  • both functional units 148, 150 are then positioned relative to one another by at least one positioning pin 154.
  • the first functional unit 148 and the second functional unit 150 are reversibly connected to each other at a butt joint 126 by means of at least one non-positive connecting element 152, wherein an electrical connection between the at least one injector body contact 116 and the at least one valve contact 114 is established.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Technisches Gebiet
  • Bei Kraftstoffeinspritzsystemen für direkteinspritzende Verbrennungskraftmaschinen kommen Kraftstoffinjektoren zum Einsatz, welche ein oder mehrere elektrisch ansteuerbare Ventile enthalten. So kann beispielsweise ein elektrisch ansteuerbares Magnet- oder Piezoventil zur Steuerung eines Nadelventils und somit zur Steuerung des Einspritzverlaufs vorgesehen sein. Weitere Ventile können beispielsweise für eine Druckübersetzung eingesetzt werden. Das separate Testen der Funktionalität der einzelnen Ventile und der mit diesen Ventilen verbundenen oder von diesen Ventilen gesteuerten Komponenten stellt jedoch häufig eine Herausforderung dar.
  • Stand der Technik
  • Da das bzw. die elektrisch ansteuerbaren Ventile typischerweise im Inneren eines Injektorkörpers untergebracht sind, bereitet die Herstellung, das Testen und die elektrische Kontaktierung dieser elektrisch ansteuerbaren Ventile sowie die Wartung der elektrisch ansteuerbaren Ventile oft erhebliche technische Schwierigkeiten.
  • In vielen Fällen befindet sich an der Oberseite des Injektorkörpers ein elektrischer Kontakt, welcher mit einem entsprechenden, außerhalb des Injektorkörpers befindlichen Steuersystem und Energieversorgungssystem verbunden werden kann. Über diesen Kontakt (wobei es sich um Mehrfachstecker oder um mehrere einzelne Stecker handeln kann) werden in der Regel alle im Inneren des Injektorkörpers aufgenommenen elektrisch ansteuerbaren Ventile angesteuert. Im Inneren des Injektorkörpers muss dieser elektrische Kontakt mit entsprechenden Kontakten des bzw. der elektrisch ansteuerbaren Ventile des Einspritzsystems verbunden werden. Diese Verbindung erfolgt üblicherweise mittels flexibler elektrischer Kabel und eines einfachen Lötprozesses.
  • Dieses Verfahren zur elektrischen Kontaktierung der elektrisch ansteuerbaren Ventile ist jedoch mit verschiedenen Nachteilen verbunden. So ist das Verfahren technisch sehr aufwändig, da üblicherweise die Kabel von Hand an die entsprechenden elektrischen Kontakte angelötet werden müssen. Dieser Prozessschritt verursacht in der Praxis einen hohem Aufwand und Zeitbedarf. Weiterhin ist die Verbindung zwischen den elektrisch ansteuerbaren Ventilen und dem elektrischen Kontakt auf dem Injektorkörper nur schwer wieder lösbar. Für eine Demontage bzw. ein Zerlegen des Injektorkörpers müssen typischerweise gelötete oder geschweißte Verbindungen wieder getrennt werden. Ein derartig aufwändiger Prozess bewirkt, dass eine Wartung der Injektoren bzw. einen Austausch von Einzelteilen des Injektorkörpers in vielen Fällen unrentabel ist.
  • Zudem bereitet bei diesem Verfahren das Testen der verschiedenen Funktionalitäten der Kraftstoffinjektoren teilweise erhebliche Probleme. In vielen Fällen muss der Kraftstoffinjektor, wenn im montierten Zustand beim Testen eine Fehlfunktion auftritt, zumeist wieder aufwändig zerlegt werden. Nach erfolgter Reparatur bzw. nach Austausch einzelner Komponenten (z. B. eines elektrisch ansteuerbaren Ventils) und erneuter Montage muss dann wiederum die Funktionalität getestet werden. Dieses Verfahren ist in vielen Fällen zu aufwändig und somit unrentabel.
  • DE 10 2004 008 349 A1 bezieht sich auf ein Brennstoffeinspritzsystem, das zwei Common-Rail-Körper zur Einspritzung von Brennstoff mit zwei unabhängig voneinander gesteuerten Drücken umfasst. Das Brennstoffeinspritzsystem weist mindestens eine Brennstoffeinspritzvorrichtung auf, mit einem Einspritzvorrichtungskörper, der unterteilt ist in einen Brennstoffdruckteil mit einer Brennstoffdruckanordnung und ein Einspritzteil mit einer direkt gesteuerten Düsenanordnung. Die Brennstoffdruckanordnung ist mit einer ersten elektrischen Betätigungsvorrichtung gekoppelt, die direkt gesteuerte Düsenanordnung mit einer zweiten elektrischen Betätigungsvorrichtung. Die zweite elektrische Betätigungsvorrichtung weist ein Paar elektrischer Anschlüsse auf, wobei eine dazu passende elektrische Verlängerung innerhalb des Einspritzvorrichtungskörpers ausgebildet ist. Diese mündet in Anschlüsse für isolierte Leiter außerhalb des Brennstoffdruckteiles.
  • DE 10 2004 008 349 A1 beschreibt einen Krafstoffinjektor gemäß dem Oberbegriff des Anspruchs 1.
  • Darstellung der Erfindung
  • Erfindungsgemäß wird daher ein Kraftstoffinjektor zum Einspritzen von Kraftstoff in eine Brennkammer eines Verbrennungsmotors sowie ein Verfahren zur Herstellung eines derartigen Kraftstoffinjektors vorgeschlagen, welche die beschriebenen Nachteile des Standes der Technik vermeiden. Ein Grundgedanke der vorliegenden Erfindung besteht darin, dass ein Injektorkörper des Kraftstoffinjektors mindestens zwei getrennte Funktionseinheiten aufweist, welche (beispielsweise zumindest bezüglich jeweils mindestens einer Funktionalität) unabhängig voneinander funktionsfähig und unabhängig voneinander testbar sind. Erfindungsgemäß weist eine erste Funktionseinheit ein Steuermodul zur Steuerung einer Druckübersetzung eines Kraftstoffdrucks und eine zweite Funktionseinheit ein Düsenmodul zum Ansteuern eines Einspritzvorgangs durch ein Einspritzventilglied auf. Die Funktionseinheiten sind reversibel über mindestens ein kraftschlüssiges Verbindungselement (beispielsweise eine Überwurfmutter) und mindestens einen Positionierungsstift miteinander verbunden. Anstelle eines oder mehrere Positionierungsstifte können erfindungsgemäß auch gleichwirkende Mittel eingesetzt werden, beispielsweise Vorsprünge im Gehäuse einer Funktionseinheit, welche in entsprechende Nuten in der jeweils anderen Funktionseinheit eingreifen und so ein Verdrehen der Funktionseinheiten relativ zueinander verhindern und die Positionierung der Funktionseinheiten relativ zueinander erleichtern.
  • Die beiden Funktionseinheiten weisen jeweils mindestens ein elektrisch ansteuerbares Ventil (beispielsweise ein Magnetventil) auf. Weiterhin weist der Kraftstoffinjektor mindestens einen von einer Außenseite des Injektorkörpers zugänglichen elektrischen Injektorkörperkontakt auf, wobei das zweite elektrisch ansteuerbare Ventil mindestens einen Ventilkontakt aufweist, und wobei der mindestens eine elektrische Ventilkontakt und der mindestens eine elektrische Injektorkörperkontakt zumindest teilweise über mindestens einen unter seiner eigenen Gewichtskraft im Wesentlichen formstabilen elektrischen Massivleiter verbunden sind. Diese elektrische Verbindung zwischen Ventilkontakten und Injektorkörperkontakt umfasst auch mindestens einen elektrischen Steckkontakt, in welchen der mindestens eine elektrische Massivleiter eingesteckt wird.
  • Der erfindungsgemäße Kraftstoffinjektor ermöglicht ein im Vergleich zum Stand der Technik stark vereinfachtes Herstellungsverfahren. So kann insbesondere zunächst eine erste Funktionseinheit hergestellt und getestet werden, beispielsweise bezüglich der Funktionalität eines elektrisch ansteuerbaren Ventils. Anschließend oder parallel dazu wird eine zweite Funktionseinheit hergestellt und getestet, beispielsweise wiederum bezüglich der Funktionalität eines elektrisch ansteuerbaren Ventils. Schließlich werden die Funktionseinheiten mittels des kraftschlüssigen Verbindungselements reversibel miteinander verbunden, wobei eine elektrische Verbindung zwischen dem mindestens einen Injektorkörperkontakt dem mindestens einen Ventilkontakt hergestellt wird, beispielsweise mittels Einsteckens in einen elektrischen Steckkontakt.
  • Das separate Testen der einzelnen Funktionseinheiten erhöht die Prozessstabilität bei der Herstellung der Kraftstoffinjektoren erheblich und ermöglicht es, Fehler (beispielsweise elektrische Fehler der einzelnen Ventile) frühzeitig zu erkennen und ggf. zu beheben. Die Funktionseinheiten können somit auch getrennt und unabhängig voneinander produziert werden. Auch eine einfache Demontage und Instandsetzung zu Wartungszwecken ist möglich. Dadurch werden Herstellungs- und Instandhaltungskosten insgesamt gesenkt und die Zuverlässigkeit der Kraftstoffinjektoren erhöht.
  • Zeichnung
  • Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispielen näher beschrieben. Gleiche Bezugsziffern bezeichnen dabei gleiche bzw. einander in ihrer Funktion entsprechende Bauteile.
  • Im Einzelnen zeigt:
  • Figur 1
    eine Schnittdarstellung eines eine erste Funktionseinheit (Steuereinheit) und eine zweite Steuereinheit (Düseneinheit) aufweisenden Kraftstoffinjektors;
    Figur 2A
    eine perspektivische Darstellung der Trennung von Steuereinheit und Düseneinheit;
    Figur 2B
    eine perspektivische Darstellung der Steuereinheit;
    Figur 2C
    eine perspektivische Teildarstellung der Düseneinheit;
    Figur 3A
    eine perspektivische Darstellung einer mittels Positionierstiften relativ zu einer Düseneinheit positionierten Steuereinheit;
    Figur 3B
    eine perspektivische Darstellung der Funktionseinheiten gemäß Figur 3A nach Zusammenstecken von Steuereinheit und Düseneinheit;
    Figur 3C
    eine perspektivische Darstellung einer kraftschlüssigen Verbindung der beiden Funktionseinheiten gemäß Figur 3B mittels einer Überwurfmutter; und
    Figur 4
    einen Ablaufplan eines erfindungsgemäßen Verfahrens.
    Ausführungsvarianten
  • In Figur 1 ist eine Gesamtansicht eines bevorzugten Ausführungsbeispiels eines Injektorkörpers 110 für ein Common-Rail-Einspritzsystem dargestellt. Der Injektorkörper 110 ist an den Stoßfugen 124, 126, 128 und 130 in im Wesentlichen fünf Funktionsmodule 132, 134, 136, 138, 140 zerlegbar: ein Steuermodul 132, eine Dichtplatte 134, ein Leitungsanschlussmodul 136, ein Druckübersetzermodul 138 und ein Düsenmodul 140. Das Druckübersetzermodul 138 dient im Wesentlichen dazu, einen Kraftstoffdruck, welcher von einer externen Druckquelle beispielsweise über einen Hochdrucksammelraum (Common Rail), an dem Kraftstoffinjektor zur Verfügung gestellt wird (beispielsweise 1000 bar), in einen zweiten Druck (beispielsweise 2200 bar) zu übersetzen, damit zwei Arbeitsdrücke für den Einspritzvorgang zur Verfügung stehen. Das Düsenmodul 140 weist ein Einspritzventilglied 146 (in Figur 1 nur symbolisch angedeutet), beispielsweise eine Düsennadel, auf, welches den eigentlichen Einspritzvorgang in den Brennraum einer Verbrennungskraftmaschine (beispielsweise über Einspritzöffnungen) steuert.
  • Die Module 132, 134, 136 und 140 sind in diesem Ausführungsbeispiel in zwei Funktionseinheiten 148, 150 gruppiert: eine das Steuermodul 132 und die Dichtplatte 134 umfassende Steuereinheit 148 und eine das Leitungsanschlussmodul 136, das Druckübersetzermodul 138 und das Düsenmodul 140 umfassende Düseneinheit 150. Diese beiden Funktionseinheiten 148 und 150 sind durch die zweite Stoßfuge 126 voneinander getrennt und werden durch eine Überwurfmutter 152 reversibel miteinander verbunden. Weiterhin sind die Funktionseinheiten 148, 150 noch über die Positionierstifte 154 (in der Schnittdarstellung gem. Figur 1 ist nur einer der Positionierstifte 154 zu erkennen) miteinander verbunden, welche jeweils in entsprechenden Positionierbohrungen 156 im Steuermodul 132, in der Dichtplatte 134 und im Leitungsanschlussmodul 136 aufgenommen sind.
  • Weiterhin weist der Injektorkörper 110 zwei Magnetventile 111, 112 auf: ein im Steuermodul 132 angeordnetes erstes Magnetventil 111 zur Steuerung der Druckübersetzung im Druckübersetzermodul 138, sowie ein zweites, im Düsenmodul 140 angeordnetes Magnetventil 112 zur Steuerung des eigentlichen Einspritzvorgangs über das Einspritzventilglied 146.
  • Die Trennbarkeit der beiden Funktionseinheiten 148, 150 entlang der zweiten Stoßfuge 126 bewirkt, dass das ("trockene") Steuermodul 132 und der unterhalb der ersten Stoßfuge 124 liegende ("nasse") Teil des Injektorkörpers 110 getrennt konstruiert, gefertigt und getestet werden können, um anschließend zusammengesetzt zu werden. Zudem lassen sich aufgrund dieser Trennbarkeit zu Wartungszwecken beispielsweise leicht einzelne Komponenten des Injektorkörpers 110 austauschen, was dem "System-Instandsetzungsgedanken" (SIS) entgegenkommt.
  • Das Magnetventil 112 im Düsenmodul 140 ist über zwei elektrische Ventilkontakte 114 elektrisch ansteuerbar. Der Injektorkörper 110 weist an seinem oberen Ende einen von oben zugänglichen elektrischen Injektorkörperkontakt 116 auf. Die Realisierung einer Zerlegbarkeit des Injektorkörpers 110 bzw. einer einfachen modularen Montage besteht bei der dargestellten modularen Bauweise des Injektorkörpers 110 darin, die Ventilkontakte 114 derart elektrisch mit dem Injektorkörperkontakt 116 zu verbinden, dass weiterhin eine einfache Montage und Zerlegbarkeit des Injektorkörpers gewährleistet ist.
  • Zur Verbindung der beiden elektrischen Ventilkontakte 114 mit dem Injektorkörperkontakt 116 sind in diesem Ausführungsbeispiel zwei Leiterkanäle 120 vorgesehen, welche sich durch die Module 138, 136 und 134 erstrecken. Die Leiterkanäle 120 werden dabei durch Bohrungen im Druckübersetzermodul 138, im Leitungsanschlussmodul 136 und in der Dichtplatte 134 gebildet. Bei zusammengesetztem Injektorkörper 110 sind diese Bohrungen jeweils an den Stoßfugen 128 und 126 bündig, so dass sich ein einzelner durchgehender Leiterkanal 120 ergibt.
  • Die einzelnen Bohrungen des Leiterkanals 120 weisen in diesem Ausführungsbeispiel in den einzelnen Modulen 138, 136, 134 jeweils einen geraden Verlauf auf. Auch ein gekrümmter Verlauf der Bohrungen ist mit der erfmdungsgemäßen Lösung realisierbar. Die Bohrungen in den einzelnen Modulen 138, 136, 134 weisen jedoch jeweils eine unterschiedliche Neigung zu einer Injektorachse 142 auf. Während der Leiterkanal 120 im Druckübersetzermodul 138 eine Neigung von 1° zur Injektorachse 142 aufweist, beträgt die Neigung in diesem Ausführungsbeispiel im Leitungsanschlussmodul 136 2,2°. Diese unterschiedlichen Neigungswinkel relativ zur Injektorachse 142 sind dadurch bedingt, dass sich der Injektorkörper 110 nach unten hin, also vom Steuermodul 132 hin zum Düsenmodul 140, in seinem Querschnitt verjüngt.
  • Die Verbindung zwischen den beiden elektrischen Ventilkontakten 114 des Magnetventils 112 und dem Injektorkörperkontakt 116 erfolgt in diesem Ausführungsbeispiel teilweise über zwei Massivleiter 118. Die Massivleiter 118 erstrecken sich durch die beiden Leiterkanäle 120 und verbinden die Ventilkontakte 114 mit elektrischen Steckkontakten 122, welche wiederum über eine elektrische Verbindung 144 (beispielsweise zwei jeweils an einem Ende mit einem elektrischen Steckkontakt 122 und an einem anderen Ende mit dem Injektorkörperkontakt 116 verlöteten Kabeln) mit dem Injektorkörperkontakt 116 verbunden sind. Dabei sind die Massivleiter 118 fest oder lösbar mit den Ventilkontakten 114 des Magnetventils 112 elektrisch verbunden.
  • Die Verbindung der Massivleiter 118 mit den Steckkontakten 122 erfolgt reversibel, so dass diese Verbindung bei der Montage des Injektorkörpers 110, also beim Zusammenstecken von Steuereinheit 148 und Düseneinheit 150 durch einfaches Hineinpressen der Massivleiter 118 in die Steckkontakte 122 erfolgen kann. Bei einer Wartung lassen sich die Massivleiter 118 hingegen leicht wieder aus den Steckkontakten 122 entfernen und somit der Injektorkörper 110 ohne Ablöten von elektrischen Verbindungen wieder in die beiden Funktionseinheiten 148, 150 zerlegen.
  • Die Massivleiter 118 sind dabei steif genug gewählt, dass sie einerseits ihre Form unter ihrem Eigengewicht nicht wesentlich verändern und sich somit problemlos durch die Leiterkanäle 120 mit ihren verschiedenen Neigungen zur Injektorachse 142 hindurchfädeln und in die Steckkontakte 122 einstecken lassen. Dabei sollten die Massivleiter eine gewisse Plastizität aufweisen, damit auch am Übergang zwischen Abschnitten der Leiterkanäle 120 mit verschiedenen Neigungswinkeln keine mechanischen Spannungen auftreten. Die Bezeichnung "Massivleiter" engt die Auswahl der Materialien nicht notwendigerweise auf Vollmaterialien ein, sondern es lassen sich beispielsweise auch Hohlleiter (Röhren) als Massivleiter 118 einsetzen, sofern sie eine ausreichende mechanische Steifigkeit aufweisen.
  • In dem in Figur 1 dargestellten Ausführungsbeispiel weisen die Massivleiter 118 CuSn6 mit einer Brinell-Härte zwischen 80 und 90 HB als Werkstoff auf, welches sonst beispielsweise als Schweißzusatz eingesetzt wird. Alternativ lassen sich jedoch beispielsweise auch CuA18, CuA18Ni2, CuA18Ni6, CuA19Fe, CuMn13A17, CuSi3, CuSn, Kupfer oder Neusilber einsetzen. Diese Werkstoffe erfüllen die oben genannten Anforderungen an die Härte und die Plastizität und sind weiterhin auch leicht durch Schweißen mit den Ventilkontakten 114 verbindbar. Die Härte der Werkstoffe sollte dabei zwischen 50 und 100 HB liegen, vorzugsweise zwischen 60 und 95 HB und besonders vorteilhaft zwischen 75 und 90 HB.
  • In den Figuren 2A bis 2C ist die Zusammensetzung des Kraftstoffinjektors aus den beiden einzelnen Funktionseinheiten 148 und 150 perspektivisch dargestellt. Insbesondere in Figur 2A ist zu erkennen, wie die Steuereinheit 148 und die Düseneinheit 150 entlang der Stoßfuge 126 voneinander getrennt werden können, indem die Überwurfmutter 152 gelöst wird. Dabei ist in Figur 2A auch zu erkennen, dass die Düseneinheit 150 einen Kraftstoffzufuhrstutzen 210 aufweist, über welchen die Düseneinheit 150 mit Kraftstoff versorgt werden kann. Dieser Kraftstoffzufuhrstutzen 210 kann beispielsweise mit einem Hochdrucksammelraum (Common-Rail) verbunden sein. Insbesondere kann dabei in diesem Ausführungsbeispiel die Dichtplatte 134 (siehe Figur 1), welche in der Steuereinheit 148 angeordnet ist, derart ausgestaltet sein, dass sie ein Eindringen von Kraftstoff über die Stoßfuge 126 aus der Düseneinheit 150 in die Steuereinheit 148 verhindert. Somit trennt, wie oben bereits beschrieben, die Stoßfuge 126 die "nasse" Düseneinheit 150 von der "trockenen" Steuereinheit 148. Dies trägt ebenfalls dazu bei, dass beide Funktionseinheiten 148, 150 separat herstellbar und separat testbar sind.
  • In Figur 2B ist eine Steuereinheit in perspektivischer Darstellung abgebildet. Hierbei ist zu erkennen, dass der Injektorkörperkontakt 116, welcher an der Oberseite der Steuereinheit 148 angeordnet ist, in diesem Ausführungsbeispiel vier einzelne Anschlussbolzen 212 aufweist. Über jeweils zwei dieser Anschlussbolzen 212 kann jeweils eines der beiden Magnetventile 111, 112 angesteuert werden.
  • Weiterhin ist in Figur 2B zu erkennen, dass in diesem Ausführungsbeispiel zwei Positionierungsstifte 154 in die Steuereinheit 148 eingelassen sind. Diese Positionierungsstifte 154 können beispielsweise fest oder lösbar in entsprechende Positionierbohrungen 156 der Steuereinheit 148 eingelassen sein (siehe Figur 1). Wie oben bereits beschrieben, können dabei erfindungsgemäß anstelle von Positionierungsstiften 154 auch andere Vorrichtung eingesetzt werden, welche eine Positionierung der Funktionseinheiten 148, 150 relativ zueinander vereinfachen und ein Verdrehen der Funktionseinheiten 148, 150 relativ zueinander verhindern. Insbesondere sind hierbei Vorsprünge und entsprechende Nuten zu nennen.
  • In Figur 2C ist in perspektivischer Teildarstellung das obere Ende der Düseneinheit 150 dargestellt. Dabei ist zu erkennen, dass die oberen Enden der Massivleiter 118 aus dem Leitungsanschlussmodul 136 herausragen. Die Massivleiter 118 sind zur Isolierung gegen den Injektorkörper 110 mit Schrumpfschläuchen 214 umhüllt, wobei jedoch die oberen Enden zur Kontaktierung abisoliert sind. Wie im Zusammenhang mit Figur 1 zu erkennen, werden beim Zusammenstecken der Funktionseinheiten 148, 150 die oberen Enden der Massivleiter 118 durch Leiterkanäle 120 in der Dichtplatte 134 geschoben und in die Steckkontakte 122 eingesteckt. Zusätzlich sind oben auf die Enden der Massivleiter 118 in diesem Ausführungsbeispiel O-Ringe 216 aufgesteckt, welche ein Eindringen von Kraftstoff aus der Düseneinheit 150 entlang der Massivleiter 118 in die Steuereinheit 148 zusätzlich verhindern sollen.
  • Weiterhin sind in Figur 2C auch die Mündungen der Positionierbohrungen 156 zu erkennen, in welche die Positionierstifte 154 der Steuereinheit 148 beim Zusammenfügen der beiden Funktionseinheiten 148, 150 eingeschoben werden, um eine exakte Positionierung von Steuereinheit 148 relativ zur Düseneinheit 150 zu gewährleisten und so ein "blindes" Einstecken der Massivleiter 118 in die Steckkontakte 122 zu ermöglichen.
  • In den Figuren 3A bis 3C ist ein Zusammenfügen der Funktionseinheiten 148, 150 perspektivisch dargestellt. Zunächst werden, wie in Figur 3A dargestellt, die Positionierstifte 154, welche, wie in Figur 2B zu erkennen, in diesem Ausführungsbeispiel fest mit der Steuereinheit 148 verbunden sind, in die Positionierbohrungen 156 der Düseneinheit 150 eingeschoben. Dadurch wird die Steuereinheit 148 relativ zur Düseneinheit 150 positioniert, so dass sich beide Funktionseinheiten 148, 150 nicht mehr relativ zueinander verdrehen können. Damit haben auch die Steckkontakte 122 relativ zu den oberen Enden der Massivleiter 118 bereits die richtige Position. Somit ist ein "blindes" Zusammenfügen beider Funktionseinheiten 148, 150 durch eine Bewegung der Steuereinheit 148 in Fügerichtung 310 möglich, wobei die oberen Enden der Massivleiter 118 in die Steckkontakte 122 eingesteckt werden und somit eine elektrische Verbindung zwischen den Ventilkontakten 114 des zweiten Magnetventils 112 und dem Injektorkörperkontakt 116 hergestellt wird (siehe Figur 1). Der Zustand der beiden Funktionseinheiten 148, 150 nach Zusammenstecken der beiden Funktionseinheiten 148, 150 ist in Figur 2B perspektivisch dargestellt. Die Überwurfmutter 152 ist dabei in den Figuren 3A und 3B aus Übersichtlichkeitsgründen weggelassen. Nach dem Zusammenstecken der beiden Funktionseinheiten 148, 150 werden beide Funktionseinheiten 148, 150 durch Niederschrauben der Überwurfmutter 152 kraftschlüssig miteinander verbunden. Zu Wartungszwecken kann diese Verbindung durch die Überwurfmutter 152 leicht wieder gelöst werden, so dass beispielsweise beide Funktionseinheiten 148, 150 separat voneinander überprüft und gewartet werden können.
  • In Figur 4 ist ein schematischer Ablaufplan eines erfindungsgemäßen Verfahren zur Herstellung eines Kraftstoffinjektors schematisch dargestellt. Die abgebildeten Verfahrensschritte müssen nicht notwendigerweise in der dargestellten Reihenfolge durchgeführt werden, und es können auch noch weitere, in Figur 4 nicht dargestellte Verfahrensschritte durchgeführt werden.
  • In einem ersten Verfahrensschritt 410 wird eine erste Funktionseinheit 148 eines Kraftstoffinjektors hergestellt, welche mindestens einen Injektorkörperkontakt 116 und mindestens ein erstes elektrisch ansteuerbares Ventil 111 aufweist. In Verfahrensschritt 412 wird eine erste Funktionalität der ersten Funktionseinheit 148, insbesondere eine elektrische Funktion des ersten elektrisch ansteuerbaren Ventils 111, überprüft.
  • Unabhängig von den Verfahrensschritten 410 und 412 wird in Verfahrensschritt 414 eine zweite Funktionseinheit 150 hergestellt, welche mindestens ein zweites elektrisch ansteuerbares Ventil 112 mit mindestens einem elektrischen Ventilkontakt 114 aufweist. In Verfahrensschritt 416 wird eine zweite Funktionalität dieser zweiten Funktionseinheit 150, insbesondere eine elektrische Funktion des zweiten elektrisch ansteuerbaren Ventils 112, überprüft. In dem (optionalen) Verfahrensschritt 418 werden dann beide Funktionseinheiten 148, 150 durch mindestens einen Positionierungsstift 154 relativ zueinander positioniert. Anschließend werden in Verfahrensschritt 420 die erste Funktionseinheit 148 und die zweite Funktionseinheit 150 an einer Stoßfuge 126 mittels mindestens eines kraftschlüssigen Verbindungselements 152 reversibel miteinander verbunden, wobei eine elektrische Verbindung zwischen dem mindestens einen Injektorkörperkontakt 116 und dem mindestens einen Ventilkontakt 114 hergestellt wird. Bezugszeichenliste
    110 Injektorkörper 410 Herstellung erste Funktionseinheit
    111 Magnetventil im Steuermodul 412 Testen erste Funktionseinheit
    112 Magnetventil im Düsenmodul 414 Herstellung zweite Funktionseinheit
    114 Ventilkontakt 416 Testen zweite Funktionseinheit
    116 Injektorkörperkontakt 418 Positionierung der Funktionseinheiten
    118 Massivleiter 420 Verbindung der Funktionseinheiten
    120 Leiterkanal
    122 Steckkontakte
    124 erste Stoßfuge
    126 zweite Stoßfuge
    128 dritte Stoßfuge
    130 vierte Stoßfuge
    132 Steuermodul
    134 Dichtplatte
    136 Leitungsanschlussmodul
    138 Druckübersetzermodul
    140 Düsenmodul
    142 Injektorachse
    144 elektrische Verbindung
    146 Einspritzventilglied
    148 Steuereinheit
    150 Düseneinheit
    152 Überwurfmutter
    154 Positionierstifte
    156 Positionierbohrungen
    210 Kraftstoffzufuhrstutzen
    212 Anschlussbolzen
    214 Schrumpfschlauch
    216 O-Ringe
    310 Fügerichtung

Claims (6)

  1. Kraftstoffinjektor zum Einspritzen von Kraftstoff in eine Brennkammer eines Verbrennungsmotors,
    - wobei der Kraftstoffinjektor einen Injektorkörper (110) aufweist,
    - wobei der Injektorkörper (110) eine erste Funktionseinheit (148) aufweist, umfassend ein Steuermodul (132) mit mindestens einem ersten elektrisch ansteuerbaren Ventil (111) zur Steuerung einer Druckübersetzung in einem Druckübersetzungsmodul (138),
    - wobei der Injektorkörper (110) mindestens eine von der ersten Funktionseinheit (148) verschiedene und mindestens ein zweites elektrisch ansteuerbares Ventil (112) aufweisende zweite Funktionseinheit (150) aufweist, umfassend das Druckübersetzermodul (138) und ein Düsenmodul (140),
    - wobei die erste Funktionseinheit (148) und die zweite Funktionseinheit (148) durch mindestens ein kraftschlüssiges Verbindungselement (152) und mindestens einen Positionierungsstift (154) an einer Stoßfuge (126) reversibel verbunden sind,
    dadurch gekennzeichnet, dass die erste Funktionseinheit (148) mindestens einen von einer Außenseite des Injektorkörpers (110) zugänglichen elektrischen Injektorkörperkontakt (116) aufweist, wobei das zweite elektrisch ansteuerbare Ventil (112) mindestens einen Ventilkontakt (114) aufweist, und wobei der mindestens eine elektrische Ventilkontakt (114) und der mindestens eine elektrische Injektorkörperkontakt (116) zumindest teilweise über mindestens einen unter seiner eigenen Gewichtskraft im Wesentlichen formstabilen elektrischen Massivleiter (118) verbunden sind, wobei der Injektorkörperkontakt (116) von oben zugänglich ist.
  2. Kraftstoffinjektor gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das kraftschlüssige Verbindungselement (152) mindestens eine Überwurfmutter (152) aufweist.
  3. Kraftstoffinjektor gemäß dem vorhergehenden Anspruch, gekennzeichnet durch mindestens einen elektrischen Steckkontakt (122) zum Einstecken des mindestens einen elektrischen Massivleiters (118) zum Herstellen einer elektrischen Verbindung zwischen dem Injektorkörperkontakt (116) und dem mindestens einen Ventilkontakt (114).
  4. Kraftstoffinjektor gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste elektrisch ansteuerbare Ventil (111) und/oder das zweite elektrisch ansteuerbare Ventil (112) mindestens ein Magnetventil (111, 112) aufweist.
  5. Verfahren zur Herstellung eines Kraftstoffinjektors gemäss einem der vorhergehenden Ansprüche mit folgenden Schritten:
    a) eine erste Funktionseinheit (148) des Kraftstoffinjektors wird hergestellt, wobei die erste Funktionseinheit (148) mindestens einen Injektorkörperkontakt (116) und mindestens ein Steuermodul (132) mit mindestens einem ersten elektrisch ansteuerbaren Ventil (111) zur Steuerung einer Druckübersetzung aufweist;
    b) eine erste Funktionalität der ersten Funktionseinheit (148), insbesondere eine elektrische Funktion des ersten elektrisch ansteuerbaren Ventils (111), wird überprüft;
    c) eine zweite Funktionseinheit (150) wird hergestellt, wobei die zweite Funktionseinheit (150) mindestens ein Druckübersetzermodul (138) und ein Düsenmodul (140) mit einem zweiten elektrisch ansteuerbaren Ventil (112) und mindestens einem elektrischen Ventilkontakt (114) aufweist;
    d) eine zweite Funktionalität der zweiten Funktionseinheit (150), insbesondere eine elektrische Funktion des zweiten elektrisch ansteuerbaren Ventils (112), wird überprüft;
    e) die erste Funktionseinheit (148) und die zweite Funktionseinheit (150) werden an einer Stoßfuge (126) mittels mindestens eines kraftschlüssigen Verbindungselements (152) reversibel miteinander verbunden, wobei eine elektrische Verbindung zwischen dem mindestens einen Injektorkörperkontakt (116) und dem mindestens einen Ventilkontakt (114) hergestellt wird,
    dadurch gekennzeichnet, dass im Verfahrensschritt e) mindestens ein unter seiner eigenen Gewichtskraft im Wesentlichen formstabiler elektrischer Massivleiter (118) in mindestens einen elektrischen Steckkontakt (122) eingesteckt wird, und der Injektorkörperkontakt (116) von oben zugänglich ist.
  6. Verfahren gemäß dem vorhergehenden Anspruch, gekennzeichnet durch folgenden zusätzlichen Schritt:
    f) die erste Funktionseinheit (148) und die zweite Funktionseinheit (150) werden durch mindestens einen Positionierungsstift (154) relativ zueinander positioniert.
EP05823893.2A 2005-01-31 2005-12-16 Elektrische trennung in kraftstoffinjektoren Not-in-force EP1846656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005004327A DE102005004327A1 (de) 2005-01-31 2005-01-31 Elektrische Trennung in Kraftstoffinjektoren
PCT/EP2005/056850 WO2006081896A1 (de) 2005-01-31 2005-12-16 Elektrische trennung in kraftstoffinjektoren

Publications (2)

Publication Number Publication Date
EP1846656A1 EP1846656A1 (de) 2007-10-24
EP1846656B1 true EP1846656B1 (de) 2017-04-12

Family

ID=35810302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05823893.2A Not-in-force EP1846656B1 (de) 2005-01-31 2005-12-16 Elektrische trennung in kraftstoffinjektoren

Country Status (4)

Country Link
US (1) US7571715B2 (de)
EP (1) EP1846656B1 (de)
DE (1) DE102005004327A1 (de)
WO (1) WO2006081896A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316825B1 (en) * 2008-08-04 2012-11-27 French Iii Jack M Adjustable racing injector
AT510462B1 (de) * 2010-09-22 2014-04-15 Bosch Gmbh Robert Verfahren zum überprüfen und instandsetzen eines kraftstoffinjektors
DE102018007614B4 (de) 2018-09-25 2023-04-27 Otto-Von-Guericke-Universität Magdeburg Injektor und Verfahren zur Einspritzung von Kraftstoff und einer Zusatzflüssigkeit sowie Verwendung des Injektors
WO2020214140A1 (en) * 2019-04-15 2020-10-22 Cummins Inc. Fuel injector with radially orientable nozzle holes using splines
WO2023059662A1 (en) 2021-10-04 2023-04-13 Billet Machine And Fabrication, Inc. Fuel injector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224664A1 (en) * 2002-05-31 2003-12-04 Brock Gregory D. Electrical adapter encompassing multiple press-fit electrical receptacles
DE102004008349A1 (de) * 2003-02-28 2004-09-09 Caterpillar Inc., Peoria Brennstoffeinspritzsystem, welches zwei Common-Rails zur Einspritzung von Brennstoff mit zwei unabhängig gesteuerten Drücken aufweist

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412971A (en) * 1966-03-03 1968-11-26 Armstrong Cork Co Electrically-controlled valve apparatus and control circuit suitable for use therein
US4295453A (en) * 1979-02-09 1981-10-20 Lucas Industries Limited Fuel system for an internal combustion engine
EP0186167B1 (de) * 1984-12-27 1991-09-18 Toyota Jidosha Kabushiki Kaisha Elektromagnetisches Strömungsregelungsventil
JP2758064B2 (ja) * 1989-12-08 1998-05-25 トヨタ自動車株式会社 燃料噴射弁
US6036120A (en) * 1998-03-27 2000-03-14 General Motors Corporation Fuel injector and method
US6113014A (en) * 1998-07-13 2000-09-05 Caterpillar Inc. Dual solenoids on a single circuit and fuel injector using same
GB2341893A (en) * 1998-09-23 2000-03-29 Lucas Industries Ltd Two-stage electromagnetically actuated fuel injector for i.c. engines
US6206304B1 (en) * 1999-01-13 2001-03-27 Toyota Jidosha Kabushiki Kaisha Injector
US6520421B2 (en) * 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
DE10149514A1 (de) * 2001-10-08 2003-04-24 Bosch Gmbh Robert Kraftstoffinjektor mit Kompensationselement für Kraftstoffeinspritzsysteme
DE10152172A1 (de) * 2001-10-23 2003-04-30 Bosch Gmbh Robert Magnetventil
DE10154576C1 (de) 2001-11-07 2003-04-17 Bosch Gmbh Robert Kraftstoffinjektor mit düsennaher Magnetventilanordnung
DE10159003A1 (de) * 2001-11-30 2003-06-18 Bosch Gmbh Robert Injektor mit einem Magnetventil zur Steuerung eines Einspritzventils
US6732959B2 (en) * 2002-09-04 2004-05-11 Delphi Technologies, Inc. Dual-coil outwardly-opening fuel injector
DE102004008478B4 (de) 2004-02-20 2007-05-10 Siemens Ag Fördermengenregelung einer Hochdruckpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224664A1 (en) * 2002-05-31 2003-12-04 Brock Gregory D. Electrical adapter encompassing multiple press-fit electrical receptacles
DE102004008349A1 (de) * 2003-02-28 2004-09-09 Caterpillar Inc., Peoria Brennstoffeinspritzsystem, welches zwei Common-Rails zur Einspritzung von Brennstoff mit zwei unabhängig gesteuerten Drücken aufweist

Also Published As

Publication number Publication date
EP1846656A1 (de) 2007-10-24
US20080121215A1 (en) 2008-05-29
DE102005004327A1 (de) 2006-08-03
US7571715B2 (en) 2009-08-11
WO2006081896A1 (de) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1634340B1 (de) Rohrfeder für aktor und verfahren zur montage der rohrfeder
EP1817492B1 (de) Elektrische überbrückung in kraftstoffinjektoren
EP2385238A2 (de) Hochdruckinjektor
EP1212530A1 (de) Ansaugeinrichtung für eine brennkraftmaschine
DE602004000933T2 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
EP1623468B1 (de) Aktoreinheit für ein piezoelektrisch gesteuertes kraftstoffeinspritzventil
EP1114273A1 (de) Anschlussstutzen und gehäuse, insbesondere kraftstoffhochdruckspeicher, mit vorgespannt angeschweisstem anschlussstutzen für ein kraftstoffeinspritzsystem für brennkraftmaschinen
EP1846656B1 (de) Elektrische trennung in kraftstoffinjektoren
DE102007000194A1 (de) Einspritzvorrichtung
EP1682769A1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
DE102005017424B4 (de) Weiterführung des elektrischen Stromes in Kraftstoffinjektoren
WO2004047191A2 (de) Piezoaktorkontaktierung für einspritzventil und verfahren zu dessen herstellung
EP1630408B1 (de) Kraftstoffinjektor für eine Brennkraftmaschine sowie Verfahren zur Montage eines derartigen Kraftstoffinjektors
EP1846654B1 (de) Ausrichtung elektrischer überbrückungen in injektoren
EP2396535B1 (de) Piezoelektrischer aktor, verfahren zur herstellung des aktors und injektor
DE102004058715B4 (de) Kraftstoffinjektor für eine Brennkraftmaschine sowie Verfahren zur Herstellung eines Kraftstoffinjektors
DE60304569T2 (de) Zusammenbau eines Injektors
WO2005080786A1 (de) Kontaktierung der ventilnadel eines injektors für verbrennungsmotoren
DE102010000215A1 (de) Kraftstoffeinspritzventil
DE102015211937A1 (de) Piezoaktormodul, Verfahren zum Herstellen eines Piezoaktormoduls und Piezoinjektor
DE19942990A1 (de) Common-Rail-Injektor
EP1929554B1 (de) Anordnung mit einem piezoaktor und ein verfahren zu dessen herstellung
DE102005012634B3 (de) Gasregelgerät
EP1417406B1 (de) Aktor als antriebseinheit für einen injektor sowie verfahren zur herstellung des injektors
DE19959105A1 (de) Anschlussstutzen und Gehäuse, insbesondere Kraftstoffhochdruckspeicher, mit vorgespannt angeschweißtem Anschlussstutzen für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100305

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 57/02 20060101ALI20161031BHEP

Ipc: F02M 47/02 20060101ALI20161031BHEP

Ipc: F02M 63/00 20060101ALI20161031BHEP

Ipc: F02M 65/00 20060101AFI20161031BHEP

Ipc: F02M 61/16 20060101ALI20161031BHEP

Ipc: F02M 51/00 20060101ALI20161031BHEP

Ipc: F02M 59/10 20060101ALI20161031BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 884164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015558

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170412

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015558

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 884164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181218

Year of fee payment: 14

Ref country code: IT

Payment date: 20181218

Year of fee payment: 14

Ref country code: GB

Payment date: 20181219

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230223

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015558

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702