EP1844499B1 - Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method - Google Patents

Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method Download PDF

Info

Publication number
EP1844499B1
EP1844499B1 EP06709079A EP06709079A EP1844499B1 EP 1844499 B1 EP1844499 B1 EP 1844499B1 EP 06709079 A EP06709079 A EP 06709079A EP 06709079 A EP06709079 A EP 06709079A EP 1844499 B1 EP1844499 B1 EP 1844499B1
Authority
EP
European Patent Office
Prior art keywords
component
superconductive
frequency
wave
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06709079A
Other languages
German (de)
French (fr)
Other versions
EP1844499A1 (en
Inventor
Pierre Bernstein
Jean-François HAMET
Laurence Mechin
Nabil Touitou
Séverine MOUCHEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1844499A1 publication Critical patent/EP1844499A1/en
Application granted granted Critical
Publication of EP1844499B1 publication Critical patent/EP1844499B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive

Definitions

  • the present invention relates to a use of a thin-film superconductor component as variable inductance. It also relates to devices performing such use, as well as a method of controlling the inductance of such a component.
  • This invention is in the field of superconductive electrical and electronic components for the electrical engineering or electronics, telephony, antennas and high frequency components sectors. These components are useful in particular for medical imaging, radar and defense electronics, mobile telephony, as well as television or satellite communication.
  • the production of superconductive inductive components in thin layers is generally carried out by deposition of a superconductive film, generally by vacuum methods such as sputtering or pulsed laser ablation, and then by lithographic photo-etching of one or more turns.
  • vacuum methods such as sputtering or pulsed laser ablation
  • lithographic photo-etching of one or more turns In this technique the dimension of the device increases with the value of its inductance.
  • a practical example of embodiment consists of a coil comprising 5 turns whose external diameter is 15 mm, with tracks of 0.4 mm width spaced 0.3 mm having an inductance of 2.12 ⁇ H, which is described in the thesis dissertation supported by Jean-Christophe Ginefri on December 16, 1999 at the University of Paris XI and entitled "Superconducting miniature surface antenna for 1.5 Tesla NMR imaging".
  • inductive components whose inductance can be adjusted after implantation, for example to perform a calibration, measurement, adjustment or adjustment within an apparatus including such components.
  • the components obtained may be subject to wear. Often, they impose a significant amount of space. They also have limitations in terms of frequency ranges and / or usable performance. In addition, they are often difficult to integrate in circuits manufactured industrially and low cost.
  • An object of the present invention is to overcome all or part of these disadvantages.
  • This inductive superconductive component has at least two terminals and comprises at least one line segment integrating at least one of these terminals, this line segment constituting a conductive or superconducting layer within a stack of alternately superconductive and insulating films.
  • this line segment may consist of a superconducting line passing through the component and on which this stack is deposited.
  • the present invention proposes to use, as variable-inductance component as a function of the current flowing through it, an inductive superconductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals. line segment constituting a conductive or superconducting layer within an impalement of alternately superconductive and insulating films.
  • the invention proposes an electronic device comprising at least one such inductive superconducting inductor variable component depending on the current flowing therethrough, said superconducting inductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack of alternately superconductive and insulating films.
  • the invention proposes such a use in which the inductance value of the superconductive inductive component is modified or controlled by current control means acting on a direct current which passes through said component.
  • the invention proposes in particular a method for controlling the inductance of a superconductive inductive component, this superconductive inductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals, this line segment. constituting a conductive or superconductive layer within a stack of alternately superconductive and insulating films, this component being subjected to a voltage or an alternating current, this method comprising an injection of a substantially continuous control current in superposition of the alternating current passing through said superconductive inductive component.
  • a device comprises at least one superconductive inductive component which is crossed by an alternating current.
  • This device further comprises means for controlling or modifying the inductance value of said superconductive inductive component, these means acting on the intensity of a direct current passing through said superconductive inductive component and superimposed on the alternating current.
  • the superconductive inductive component can be used in an electronic circuit performing a frequency filtering, at least one characteristic of which is modified by modifying the inductance of said superconducting inductive component.
  • the superconductive inductive component can also be used within an electronic circuit producing a delay line, at least one of which is modified by modifying the inductance of said superconducting inductive component.
  • the superconductive inductive component may be used in an electronic circuit producing an antenna manufactured from a thin superconducting film, at least one characteristic of this antenna being controlled or modified by modifying the inductance of said inductive component superconductor.
  • the invention also proposes a phase shift radar device comprising a plurality of antennas each comprising at least one electronic circuit including a delay line, this delay line being arranged so that each of said antennas transmits or receives a signal whose phase is shifted relative to that of the neighboring antennas, this arrangement being controlled by modifying the inductance of said superconductive inductive component.
  • Another object of the invention is then to use these variations of inductance to perform new electronic treatments or to perform new electronic treatments that were made in the state of the art very differently or with other types of components.
  • the invention also proposes such a use in which the superconductive inductive component is subjected to a voltage or a wave current. constituting at least one wave, to which it reacts with an inductive behavior varying within the same period of this wave, this variation producing a modification of at least one characteristic of this wave.
  • a device comprises at least one such superconducting inductive component which is subjected to a voltage or an undulatory current constituting at least one wave, to which said component reacts with a varying inductive behavior within the same period of this wave, this variation producing a modification of at least one characteristic of this wave.
  • the invention proposes such a use for producing a frequency mixer, as well as a device implementing this use.
  • the inductive behavior of said superconductive inductive component then produces an output wave comprising at least a second undulatory component according to a second frequency, called low frequency, approximately equal to the high frequency less the oscillation frequency, said second component constituting an output signal depending on the input signal.
  • such a mixer comprises at least one superconductive inductive component mounted in parallel with an oscillator component.
  • such a mixer comprises at least one oscillator component in parallel as well as a serial superconducting inductive component mounted downstream and at the output of which is connected at least one capacitive and inductive assembly producing a low-pass filtered.
  • the invention also proposes a system for receiving an electromagnetic radio transmission signal comprising such a mixer.
  • the invention also proposes such a use for producing a frequency modulator, as well as a device implementing this use.
  • the inductive behavior of said superconductive inductive component then produces an output wave comprising at least a second wave component according to a second frequency, referred to as the high frequency, approximately equal to the sum of the low frequency and the oscillation frequency, said second component constituting a output signal dependent on the input signal.
  • such a modulator comprises at least one oscillator component in parallel and a superconducting inductive component in series mounted downstream and at the output of which is connected at least one capacitive and inductive assembly producing a high-pass filter.
  • the invention then proposes a system for transmitting a signal.
  • electromagnetic transmission system comprising such a modulator.
  • the invention provides an audiovisual broadcasting system or communication or satellite using at least one of these devices.
  • the principle used in the component and its production method according to the invention comprises a stack E of thin films, or thin layers, alternately superconducting C1 and insulating C2, deposited on a substrate S, with reference to FIG. figure 1 , or on a superconducting line LS. It is important for C2 films to be insulative and to control any growth defects that may put two adjacent superconducting films in direct contact. This stack makes it possible to obtain particularly efficient components, inter alia because of a very high inductance value with respect to their size.
  • the principle consists in obtaining a modification of this inductive behavior by passing it through a determined continuous current IDC.
  • the first deposited film for making the stack E is insulating as indicated on FIG. figure 1 .
  • inductive components in a superconducting circuit can be carried out in the manner indicated on the Figures 2A and 2B using thin film deposition techniques well known to those skilled in the art, for example laser ablation, radio frequency sputtering, vacuum evaporation, chemical vapor deposition and generally any deposit technique for obtaining thin layers.
  • thin film deposition techniques well known to those skilled in the art, for example laser ablation, radio frequency sputtering, vacuum evaporation, chemical vapor deposition and generally any deposit technique for obtaining thin layers.
  • the materials chosen are compounds YBa 2 Cu 3 O 7 - ⁇ for superconductive films and LaAlO 3 for insulating films.
  • the thicknesses are 10 nm (10 -8 m) for superconducting films and 4 nm (4.10 -9 m) for insulating films. 14 pairs of films have been deposited.
  • the films were etched to obtain the pattern shown on the figure 3A in which one distinguishes the metallized contacts I1, I2 which make it possible to bring the current in the sample and those which make it possible to measure the voltages V1 and V2 at the terminals of the central element, called bridge, of the pattern.
  • the size of the bridge is 10 microns x 20 microns.
  • the modification of the value of the inductance can however also be obtained with patterns of the same shape but of different dimensions or with patterns of different shape from that shown in the figures.
  • the measuring device used to characterize the samples of superconductive inductive components according to the invention comprises a generator GBF creating a variable current in time I (t) which passes through the resistor R and the sample Ech via the contacts I1 and I2.
  • the potential difference across the resistor R is amplified by a differential amplifier AI and sent to an input.
  • YI oscilloscope Osc It makes it possible to know the intensity I (t) of the current passing through the sample.
  • the potential difference at the terminals of the sample is taken at V1 and V2, amplified by the amplifier Av and sent to the input Yv of oscilloscope Osc.
  • the figure 5 shows the signals collected in YI and Yv when the sample is at a temperature of 37 K.
  • the sample was placed in a helium cryogenerator but any process making it possible to obtain a temperature below the critical temperature of the sample studied is suitable.
  • the generator delivers a sawtooth current at the frequency of 1000 Hz.
  • the value of the current I (t) has been directly reported. It is observed that the potential difference V (t) between V1 and V2 has the form of slots, which indicates that V (t) is proportional to the derivative with respect to the time of I (t). This characteristic indicates that the sample behaves well as an inductive component.
  • the V (t) signals measured at 700 Hz and 2 kHz for a peak current value equal to 10 ⁇ A in both cases.
  • the ratio of the amplitude of the signals obtained is in the ratio of the applied frequencies, which again is typical of an inductive component.
  • a second curve for this voltage V is obtained.
  • IDC 5 ⁇ A (microamperes); which can be considered as continuous with respect to the frequency of the alternating current IAC.
  • This second curve then indicates a lower inductance than the curve obtained with alternating current alone.
  • IDC 10 ⁇ A (microamperes)
  • a third curve for this voltage V indicates an inductance of the same device tested even lower than the first and second curves.
  • the figure 11 represents a measurement of the inductance of the test device over a frequency range between 100 Hz and 10 kHz, for superimposed continuous DCI values taking the values of 0.5 ⁇ A, + 10 ⁇ A, and -10 ⁇ A (microamperes) . Over all of this frequency range, it is found that the value of the inductance decreases when the DC current IDC increases in intensity, and in both directions of this current IDC. More particularly in the frequency range where the inductance is substantially constant, ie between 1 and 10 kHz, this inductance is a decreasing function of the intensity of this superimposed continuous current IDC.
  • the invention thus provides an inductive component with variable inductance as a function of current flows through it.
  • the invention thus provides an adjustable or tunable inductive component by controlling a current flowing through it.
  • the instantaneous intensity flowing through it varies during each period.
  • the inductance of the component also varies during each period.
  • this variation of inductance within a period then produces an alternating voltage across the component which represents a modified version of the signal carried by this current.
  • this voltage produced would be the time derivative of the current flowing through the component.
  • the voltage produced is a modified image of this derivative, and therefore represents a modified version of the input signal.
  • the invention also provides an inductive modification or signal processing component.
  • the superconducting inductive components obtained by the method according to the invention can find applications in the fields of electrical engineering or electronics, telephony, antennas and passive high frequency components, in particular for medical imaging. as well as radar and defense electronics.
  • superconductive inductive components are implemented in antenna systems.
  • MRI magnetic resonance imaging
  • using tuned antennas it is then possible to make an agreement of an antenna by adjusting the inductance of one or more of the inductive components that it comprises.
  • An important parameter in the efficiency of the antenna is the overvoltage coefficient which is proportional to its inductance.
  • a superconducting antenna makes it possible to increase this coefficient because its ohmic resistance is very weak. It is conceivable to obtain a new increase in the overvoltage coefficient by including in the antenna circuit a device of the type of those described here.
  • a particularly favorable case will be that where the antenna itself is made from a thin superconducting film.
  • superconductive inductive components are implemented in delay lines.
  • Delay lines are in common use in all areas of electronics. The simplest form that a delay line can take is represented on the figure 7 .
  • the presence in the circuit of the inductance L and the capacitor C causes a phase difference between the voltage V and the current I.
  • An example of use is that of the phase shift radars which make it possible to explore the surrounding space with a fixed antenna system.
  • a schematic diagram for such a system is reported on the figure 8 .
  • the main line carrying the current 1 is coupled to the different antennas.
  • Each of these includes in its circuit a delay line.
  • each antenna transmits or receives a signal whose phase is offset from that of the neighboring antennas.
  • By varying this phase shift the direction of the emitted radiation is changed.
  • defense electronics we have long studied the introduction of superconducting components in electronic circuits, particularly for radar and more generally countermeasures. The presence of high inductance components, small in size and whose manufacturing uses processes similar to those used for the rest of the circuit would be an important innovation in this area.
  • the component according to the invention because it is tunable in use, can be advantageously used to modify the characteristics or the behavior of a device in which it is included. This makes it possible, for example, to modify or calibrate the characteristics of a composite and / or active antenna, by global adjustment or differentiated inductance within the delay lines of the individual antennas that compose it.
  • Such powerful and easily integrable inductive components can also be used generically in most general electronics applications, in particular to perform filtering functions of all types, for example high-pass, low-pass or pass-through. bandaged. It is then possible to produce highly integrated and / or miniaturized filters.
  • the component according to the invention can also be used advantageously to produce a type of electronic device called a mixer, and used in particular in heterodyne detection.
  • a mixer is used in the vicinity of a receiving antenna to decode 12 GHz signals received from a direct television satellite, and draw a signal at a frequency of 2 GHz which will be sent by coaxial cable to a demodulator.
  • the mixers are typically made using discrete components which are causes of cost and fragility encumbrance, or using non-linear components, for example diodes, which have certain disadvantages, such as a significant dissipation of energy or the fact of requiring a high signal level.
  • the figure 14 thus illustrates a schematic diagram of such a diode mixer.
  • the figure 15 represents a block diagram of a variable inductive component according to the invention, used to perform a mixer function in a simple way.
  • the current to be detected 11 of frequency f1 with the current i0 coming from a local oscillator at the frequency f0, is sent on a variable inductance component Lv1. according to the invention.
  • the value of the inductance of the component according to the invention Lv1 then depends on the current received, according to a function of the magnitude i1 + i0. More particularly under certain conditions, for example over certain frequency ranges, this function can be written in the form of a relation comprising a coefficient a that can be determined by different types of measurements, for example similar to those illustrated in FIG. Figures 9 and 10 . Such a relation can then be written in the following form:
  • the v The 0 - ⁇ . i 1 + i 0
  • L0 is the inductance value of the component when the DC superimposed current I DC is zero.
  • This operation can be used, for example, to obtain a signal S2 by extracting it from the signal S1 coming, for example, from a reception antenna.
  • the tunable inductive component according to the invention can also be advantageously used to produce a device including a modulator.
  • a modulator is typically used to obtain a signal at a high frequency f1 from a signal component S2 at a relatively low frequency f2 by adding a wave at a frequency f0 close to f1.
  • FIGS. 17 and 18 thus represent diagrams of the principle of modulators respectively made using diodes ( fig.17 ) and using transistors ( fig.18 ).
  • the inductances that are not specified as variable or controlled can of course also be made in the form of a superconductive inductive component, so as to homogenize the device obtained and maintain or improve the gains of the invention, for example in terms of cost, reliability, performance or bulk.
  • the current control according to the invention in particular makes it possible to drive a greater part of functions and adjustments in a fully electronic manner. Such control then allows greater flexibility in the design of the devices concerned, but also to provide new features and performance compared to the state of the art.
  • the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention.
  • the number of respectively insulating and superconductive films is not limited to the examples described.
  • the dimensions of the superconductive inductive components as well as their surfaces can evolve according to the specific applications of these components.
  • the respectively superconductive and insulating films can be made from other compounds than those proposed in the example described, provided that these compounds satisfy the physical conditions required for the applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Use, as a component with variable inductance which is a function of the current passing through it, of an inductive superconductive component having at least two terminals and comprising at least one line segment working with said terminals and integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack of films alternately superconductive and insulating.

Description

La présente invention concerne une utilisation d'un composant supraconducteur en couches minces comme inductance variable. Elle vise également des dispositifs réalisant une telle utilisation, ainsi qu'un procédé de commande de l'inductance d'un tel composant.The present invention relates to a use of a thin-film superconductor component as variable inductance. It also relates to devices performing such use, as well as a method of controlling the inductance of such a component.

Cette invention s'inscrit dans le domaine des composants électriques et électroniques supraconducteurs pour les secteurs de l'électrotechnique ou de l'électronique, de la téléphonie, des antennes et des composants à haute fréquence. Ces composants sont utiles en particulier pour l'imagerie médicale, les radars et l'électronique de défense, la téléphonie mobile, ainsi que la télévision ou la communication par satellite.This invention is in the field of superconductive electrical and electronic components for the electrical engineering or electronics, telephony, antennas and high frequency components sectors. These components are useful in particular for medical imaging, radar and defense electronics, mobile telephony, as well as television or satellite communication.

La réalisation de composants inductifs supraconducteurs en couches minces est généralement effectuée par dépôt d'un film supraconducteur, généralement par des méthodes de vide telles que la pulvérisation cathodique ou l'ablation laser pulsée, puis la définition par photo lithogravure de une ou plusieurs spires. Dans cette technique la dimension du dispositif croit avec la valeur de son inductance.The production of superconductive inductive components in thin layers is generally carried out by deposition of a superconductive film, generally by vacuum methods such as sputtering or pulsed laser ablation, and then by lithographic photo-etching of one or more turns. In this technique the dimension of the device increases with the value of its inductance.

Un exemple pratique de réalisation consiste en une bobine comportant 5 spires dont le diamètre extérieur est de 15mm, avec des pistes de 0,4mm de largeur espacées de 0,3mm présentant une inductance de 2,12µH, qui est décrite dans le mémoire de thèse soutenu par Jean-Christophe Ginefri le 16 décembre 1999 à l'Université de Paris XI et intitulé « Antenne de surface supraconductrice miniature pour l'imagerie RMN à 1,5 Tesla »..A practical example of embodiment consists of a coil comprising 5 turns whose external diameter is 15 mm, with tracks of 0.4 mm width spaced 0.3 mm having an inductance of 2.12 μH, which is described in the thesis dissertation supported by Jean-Christophe Ginefri on December 16, 1999 at the University of Paris XI and entitled "Superconducting miniature surface antenna for 1.5 Tesla NMR imaging".

La technique décrite ci-dessus présente deux inconvénients principaux :

  • la surface occupée par chaque composant inductif est importante. Par exemple, le composant décrit au paragraphe précédent occupe une surface de plus de 700mm2 :
  • si le composant est intégré dans un circuit, il est souvent nécessaire de raccorder l'extrémité de la spire intérieure à une ligne supraconductrice.
The technique described above has two main disadvantages:
  • the area occupied by each inductive component is important. For example, the component described in the previous paragraph occupies an area of more than 700mm 2 :
  • if the component is integrated in a circuit, it is often necessary to connect the end of the inner coil to a superconducting line.

Ceci implique un processus complexe comportant après le dépôt et la gravure des spires :

  1. a) le dépôt et la gravure d'un film isolant,
  2. b) le dépôt et la gravure sur cet isolant d'un deuxième film supraconducteur présentant des propriétés similaires à celles du premier film. Cette dernière étape est particulièrement délicate car il est nécessaire de réaliser une reprise d'épitaxie, technique qui est difficilement maîtrisable. Il existe d'autres procédés permettant de déposer une bobine en couches minces, mais ils présentent des difficultés de réalisation identiques à celles décrites ici.
This involves a complex process involving after the deposition and etching of the turns:
  1. a) depositing and etching an insulating film,
  2. b) depositing and etching on this insulator a second superconducting film having properties similar to those of the first film. This last step is particularly delicate because it is necessary to carry out a recovery of epitaxy, a technique that is difficult to control. There are other methods for depositing a coil in thin layers, but they have difficulties of realization identical to those described here.

Par contre, ces techniques ne permettent pas d'obtenir des composants inductifs dont les caractéristiques d'inductance sont réglables facilement, une fois implantés dans un circuit ou un dispositif électrique ou électronique.On the other hand, these techniques do not make it possible to obtain inductive components whose inductance characteristics are easily adjustable once they are implanted in a circuit or an electrical or electronic device.

Or il peut-être très utile de disposer de composants inductifs dont l'inductance peut être réglée après implantation, par exemple pour effectuer un étalonnage, une mesure, un réglage ou un ajustement au sein d'un appareil incluant de tels composants.However it may be very useful to have inductive components whose inductance can be adjusted after implantation, for example to perform a calibration, measurement, adjustment or adjustment within an apparatus including such components.

Les dispositifs ou procédés connus pour cela utilisent souvent un ajustement ou un réglage de cette inductance par modification de la géométrie par une action mécanique. Il s'agit par exemple d'ajuster ou de régler la position d'un noyau de ferrite au coeur d'une bobine comme dans le brevet US 4 558 295 , ou d'une électrode métallique entre deux parties diélectriques comme le décrit le brevet US 6 556 415 dans le cas d'un circuit résonnant. Il peut s'agir également d'un déplacement de contact sur une piste conductrice formant un méandre déposé en couche mince, tel qu'enseigné par la demande de brevet US 2002/01 90835 .Devices or methods known for this often use adjustment or adjustment of this inductance by changing the geometry by mechanical action. This is for example to adjust or adjust the position of a ferrite core in the core of a coil as in the patent US 4,558,295 , or a metal electrode between two dielectric parts as described in the patent US 6,556,415 in the case of a resonant circuit. It can also be a displacement of contact on a conductive track forming a meander deposited in a thin layer, as taught by the patent application. US 2002/01 90835 .

Il est également possible d'associer sélectivement, par connexion électrique ou électronique, un certain nombre de sous composants d'inductance connue, comme le propose le brevet US 5 872 489 , ce qui présente des limites évidentes, par exemple en terme de nombre de valeurs obtenues et de complexité de réalisation.It is also possible to selectively associate, by electrical or electronic connection, a certain number of known inductance sub-components, as proposed by the patent. US 5,872,489 , which has obvious limits, for example in terms of number of values obtained and complexity of implementation.

Une autre méthode est proposée par le brevet US 5 426 409 , qui consiste à contrôler par un courant variable le degré de saturation magnétique du noyau d'une bobine. Lorsque les contraintes et les fréquences concernées le permettent, il est également possible d'ajuster une inductance par variation de fréquence sur un matériau semi-conducteur (technologie MESFET GaAs, décrite dans le brevet US 6 211 753 ). Ce type de solution n'est toutefois pas applicable dans tous les cas, et n'est pas toujours non plus miniaturisable au-delà d'une certaine limite.Another method is proposed by the patent US 5,426,409 which consists of controlling the degree of saturation with a variable current magnetic core of a coil. When the constraints and the frequencies concerned allow it, it is also possible to adjust a frequency variation inductance on a semiconductor material (MESFET GaAs technology, described in the patent US 6,211,753 ). This type of solution is however not applicable in all cases, and is not always miniaturizable beyond a certain limit.

Avec les solutions connues, les composants obtenus peuvent être sujets à l'usure. Souvent, ils imposent un encombrement non négligeable. Ils présentent également des limites en matière de plages de fréquences et/ou de performances utilisables. De plus, ils sont souvent difficiles à intégrer dans des circuits fabriqués industriellement et à faible coût.With the known solutions, the components obtained may be subject to wear. Often, they impose a significant amount of space. They also have limitations in terms of frequency ranges and / or usable performance. In addition, they are often difficult to integrate in circuits manufactured industrially and low cost.

Un but de la présente invention est de remédier à tout ou partie de ces inconvénients.An object of the present invention is to overcome all or part of these disadvantages.

Dans la demande de brevet français n° 03 09212 du 28 Juillet 2003 , les auteurs de la présente invention proposent un procédé de réalisation d'un composant supraconducteur inductif en couches minces, de bonnes performances en valeur d'inductance comme en matière de miniaturisation et d'intégration.In the French patent application No. 03 09212 of July 28, 2003 , the authors of the present invention propose a method of producing an inductive superconductive component in thin layers, good performance in inductance value as in miniaturization and integration.

Ce composant supraconducteur inductif présente au moins deux bornes et comprend au moins un segment de ligne intégrant au moins une de ces bornes, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empilement de films alternativement supraconducteurs et isolants.This inductive superconductive component has at least two terminals and comprises at least one line segment integrating at least one of these terminals, this line segment constituting a conductive or superconducting layer within a stack of alternately superconductive and insulating films.

Plus particulièrement, ce segment de ligne peut être constitué d'une ligne supraconductrice traversant le composant et sur laquelle est déposé cet empilement.More particularly, this line segment may consist of a superconducting line passing through the component and on which this stack is deposited.

Au cours du développement et des essais de ce type de composant, dans certaines conditions, les inventeurs ont observé un comportement inductif dont l'inductance varie lorsque l'intensité d'un courant traversant ce composant varie.During the development and testing of this type of component, under certain conditions, the inventors have observed an inductive behavior whose inductance varies when the intensity of a current flowing through this component varies.

La présente invention propose d'utiliser, en tant que composant à inductance variable en fonction du courant le traversant, un composant supraconducteur inductif présentant au moins deux bornes et comprenant au moins un segment de ligne intégrant au moins une de ces bornes, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empalement de films alternativement supraconducteurs et isolants.The present invention proposes to use, as variable-inductance component as a function of the current flowing through it, an inductive superconductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals. line segment constituting a conductive or superconducting layer within an impalement of alternately superconductive and insulating films.

Dans le même esprit, l'invention propose un dispositif électronique comprenant au moins un tel composant inductif supraconducteur à inductance variable en fonction du courant le traversant, ledit composant inductif supraconducteur présentant au moins deux bornes et comprenant au moins un segment de ligne intégrant au moins une de ces bornes, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empilement de films alternativement supraconducteurs et isolants.In the same spirit, the invention proposes an electronic device comprising at least one such inductive superconducting inductor variable component depending on the current flowing therethrough, said superconducting inductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack of alternately superconductive and insulating films.

Selon un premier mode de réalisation, l'invention propose une telle utilisation dans laquelle la valeur d'inductance du composant inductif supraconducteur est modifiée ou commandée par des moyens de commande de courant agissant sur un courant continu qui traverse ledit composant.According to a first embodiment, the invention proposes such a use in which the inductance value of the superconductive inductive component is modified or controlled by current control means acting on a direct current which passes through said component.

L'invention propose en particulier un procédé de commande de l'inductance d'un composant inductif supraconducteur, ce composant inductif supraconducteur présentant au moins deux bornes et comprenant au moins un segment de ligne intégrant au moins une de ces bornes, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empilement de films alternativement supraconducteurs et isolants, ce composant étant soumis à une tension ou un courant alternatif, ce procédé comprenant une injection d'un courant de commande sensiblement continu en superposition du courant alternatif traversant ledit composant inductif supraconducteur.The invention proposes in particular a method for controlling the inductance of a superconductive inductive component, this superconductive inductive component having at least two terminals and comprising at least one line segment integrating at least one of these terminals, this line segment. constituting a conductive or superconductive layer within a stack of alternately superconductive and insulating films, this component being subjected to a voltage or an alternating current, this method comprising an injection of a substantially continuous control current in superposition of the alternating current passing through said superconductive inductive component.

Dans ce mode de réalisation, un dispositif selon l'invention comprend au moins un composant inductif supraconducteur qui est traversé par un courant alternatif. Ce dispositif comprend en outre des moyens pour commander ou modifier la valeur d'inductance dudit composant inductif supraconducteur, ces moyens agissant sur l'intensité d'un courant continu traversant ledit composant inductif supraconducteur et se superposant au courant alternatif.In this embodiment, a device according to the invention comprises at least one superconductive inductive component which is crossed by an alternating current. This device further comprises means for controlling or modifying the inductance value of said superconductive inductive component, these means acting on the intensity of a direct current passing through said superconductive inductive component and superimposed on the alternating current.

Dans un tel dispositif, le composant inductif supraconducteur peut être utilisé au sein d'un circuits électronique réalisant un filtrage de fréquence, dont au moins une caractéristique est modifiée par modification de l'inductance dudit composant inductif supraconducteur.In such a device, the superconductive inductive component can be used in an electronic circuit performing a frequency filtering, at least one characteristic of which is modified by modifying the inductance of said superconducting inductive component.

Le composant inductif supraconducteur peut également être utilisé au sein d'un circuit électronique réalisant une ligne à retard, dont au moins une caractéristique est modifiée par modification de l'inductance dudit composant inductif supraconducteur.The superconductive inductive component can also be used within an electronic circuit producing a delay line, at least one of which is modified by modifying the inductance of said superconducting inductive component.

Plus particulièrement, le composant inductif supraconducteur peut être utilisé au sein d'un circuit électronique réalisant une antenne fabriquée à partir d'un film mince supraconducteur, au moins une caractéristique de cette antenne étant commandée ou modifiée par modification de l'inductance dudit composant inductif supraconducteur.More particularly, the superconductive inductive component may be used in an electronic circuit producing an antenna manufactured from a thin superconducting film, at least one characteristic of this antenna being controlled or modified by modifying the inductance of said inductive component superconductor.

L'invention propose alors également un dispositif de radar à décalage de phase comprenant une pluralité d'antennes comprenant chacune au moins un circuit électronique incluant une ligne à retard, cette ligne à retard étant agencée de sorte que chacune des desdites antennes émet ou reçoit un signal dont la phase est décalée par rapport à celle des antennes voisines, cet agencement étant commandé par modification de l'inductance dudit composant inductif supraconducteur.The invention also proposes a phase shift radar device comprising a plurality of antennas each comprising at least one electronic circuit including a delay line, this delay line being arranged so that each of said antennas transmits or receives a signal whose phase is shifted relative to that of the neighboring antennas, this arrangement being controlled by modifying the inductance of said superconductive inductive component.

De plus, dans nombre d'applications il peut être utile de disposer d'un traitement modifiant certaines caractéristiques d'une ou plusieurs ondes mettant en jeu un courant alternatif, en particulier pour traiter une composante de cette onde lorsque cette composante représente un signal porteur d'informations.In addition, in many applications it may be useful to have a treatment modifying certain characteristics of one or more waves involving an alternating current, in particular to treat a component of this wave when this component represents a carrier signal. information.

Un autre but de l'invention est alors d'utiliser ces variations d'inductance pour réaliser des traitements électroniques nouveaux ou pour réaliser de façon nouvelle des traitements électroniques qui étaient réalisés dans l'état de la technique de façon très différente ou avec d'autres types de composants.Another object of the invention is then to use these variations of inductance to perform new electronic treatments or to perform new electronic treatments that were made in the state of the art very differently or with other types of components.

Selon un deuxième mode de réalisation, l'invention propose également une telle utilisation dans laquelle le composant inductif supraconducteur est soumis à une tension ou un courant ondulatoire constituant au moins une onde, à laquelle il réagit avec un comportement inductif variant au sein d'une même période de cette onde, cette variation produisant une modification d'au moins une caractéristique de cette onde.According to a second embodiment, the invention also proposes such a use in which the superconductive inductive component is subjected to a voltage or a wave current. constituting at least one wave, to which it reacts with an inductive behavior varying within the same period of this wave, this variation producing a modification of at least one characteristic of this wave.

Dans ce mode de réalisation, un dispositif selon l'invention comprend au moins un tel composant inductif supraconducteur qui est soumis à une tension ou un courant ondulatoire constituant au moins une onde, à laquelle ledit composant réagit avec un comportement inductif variant au sein d'une même période de cette onde, cette variation produisant une modification d'au moins une caractéristique de cette onde.In this embodiment, a device according to the invention comprises at least one such superconducting inductive component which is subjected to a voltage or an undulatory current constituting at least one wave, to which said component reacts with a varying inductive behavior within the same period of this wave, this variation producing a modification of at least one characteristic of this wave.

Plus particulièrement, l'invention propose une telle utilisation pour réaliser un mélangeur de fréquence, ainsi qu'un dispositif réalisant cette utilisation.More particularly, the invention proposes such a use for producing a frequency mixer, as well as a device implementing this use.

Au sein de ce mélangeur, au moins un tel composant inductif supraconducteur est soumis :

  • d'une part à une onde d'entrée comprenant au moins une première composante constituant un signal, dit signal d'entrée, à une première fréquence, dite fréquence haute, et
  • d'autre part à une onde régulière à une fréquence d'oscillation proche de la fréquence haute.
Within this mixer, at least one such superconducting inductive component is subjected:
  • on the one hand to an input wave comprising at least a first component constituting a signal, called an input signal, at a first frequency, referred to as the high frequency, and
  • on the other hand, to a regular wave at an oscillation frequency close to the high frequency.

Le comportement inductif dudit composant inductif supraconducteur produit alors une onde de sortie comprenant au moins une deuxième composante ondulatoire selon une deuxième fréquence, dite fréquence basse, valant approximativement la fréquence haute diminuée de la fréquence d'oscillation, ladite deuxième composante constituant un signal de sortie dépendant du signal d'entrée.The inductive behavior of said superconductive inductive component then produces an output wave comprising at least a second undulatory component according to a second frequency, called low frequency, approximately equal to the high frequency less the oscillation frequency, said second component constituting an output signal depending on the input signal.

Selon une particularité, un tel mélangeur comprend au moins un composant inductif supraconducteur monté en parallèle avec un composant oscillateur.According to a feature, such a mixer comprises at least one superconductive inductive component mounted in parallel with an oscillator component.

Selon une autre particularité, un tel mélangeur comprend au moins un composant oscillateur en parallèle ainsi qu'un composant inductif supraconducteur en série monté en aval et à la sortie duquel est connecté au moins un montage capacitif et inductif réalisant un filtré passe-bas.According to another particularity, such a mixer comprises at least one oscillator component in parallel as well as a serial superconducting inductive component mounted downstream and at the output of which is connected at least one capacitive and inductive assembly producing a low-pass filtered.

L'invention propose également un système de réception d'un signal électromagnétique de transmission hertzienne comprenant un tel mélangeur.The invention also proposes a system for receiving an electromagnetic radio transmission signal comprising such a mixer.

Dans le même esprit, l'invention propose également une telle utilisation pour réaliser un modulateur de fréquence, ainsi qu'un dispositif réalisant cette utilisation.In the same spirit, the invention also proposes such a use for producing a frequency modulator, as well as a device implementing this use.

Au sein de ce modulateur, au moins un tel composant inductif supraconducteur est soumis :

  • d'une part à une onde d'entrée comprenant au moins une première composante constituant un signal d'entrée à une première fréquence, dite fréquence basse, et
  • d'autre part à une onde régulière à une fréquence d'oscillation.
Within this modulator, at least one such superconducting inductive component is subjected:
  • on the one hand to an input wave comprising at least a first component constituting an input signal at a first frequency, called a low frequency, and
  • on the other hand to a regular wave at an oscillation frequency.

Le comportement inductif dudit composant inductif supraconducteur produit alors une onde de sortie comprenant au moins une deuxième composante ondulatoire selon une deuxième fréquence, dite fréquence haute, valant approximativement la somme de la fréquence basse et de la fréquence d'oscillation, ladite deuxième composante constituant un signal de sortie dépendant du signal d'entrée.The inductive behavior of said superconductive inductive component then produces an output wave comprising at least a second wave component according to a second frequency, referred to as the high frequency, approximately equal to the sum of the low frequency and the oscillation frequency, said second component constituting a output signal dependent on the input signal.

Selon une particularité, un tel modulateur comprend au moins un composant oscillateur en parallèle ainsi qu'un composant inductif supraconducteur en série monté en aval et à la sortie duquel est connecté au moins un montage capacitif et inductif réalisant un filtre passe-haut.According to a feature, such a modulator comprises at least one oscillator component in parallel and a superconducting inductive component in series mounted downstream and at the output of which is connected at least one capacitive and inductive assembly producing a high-pass filter.

L'invention propose alors un système d'émission d'un signal. électromagnétique de transmission hertzienne comprenant un tel modulateur.The invention then proposes a system for transmitting a signal. electromagnetic transmission system comprising such a modulator.

Ainsi, l'invention propose un système de diffusion audiovisuelle ou de communication ou par satellite utilisant au moins l'un de ces dispositifs.Thus, the invention provides an audiovisual broadcasting system or communication or satellite using at least one of these devices.

D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée de modes de mise en oeuvre nullement limitatifs, et des dessins annexés sur lesquels :

  • la figure 1 est un schéma d'un empilement E de couches alternativement supraconductrices C1 et isolantes C2 déposées sur un substrat S de façon à réaliser un composant inductif ;
  • la figure 2A est une vue de dessus d'une ligne supraconductrice LS comportant un composant inductif constitué de films alternativement supraconducteurs C1 et isolants C2 ;
  • la figure 2B est une vue en coupe d'une ligne supraconductrice LS comportant un composant inductif E constitué de films alternativement supraconducteurs C1 et isolants C2 ;
  • la figure 3A est une photographie du motif utilisé pour les tests montrant l'emplacement des entrées de courant I1 et I2, les plots de mesure V1 et V2 de la différence de potentiel aux bornes d'un pont recevant un composant inductif en couches minces, ainsi que l'emplacement de celui-ci ;
  • la figure 3B représente le masque de photolithogravure utilisé pour réaliser le motif de test de la figure3A ;
  • La figure 4 est un schéma du dispositif de mesure utilisé pour
caractériser un composant inductif supraconducteur selon l'invention ;
  • la figure 5 illustre une différence de potentiel mesurée entre les plots V1 et V2 (traits pleins) lorsqu'un courant (pointillés) en dents de scie à la fréquence de 1000 Hz circule dans l'échantillon ;
  • la figure 6 représente une comparaison des différences de potentiel mesurées entre les plots V1 et V2 lorsque deux courants en dents de scie de même amplitude Imax =10 microampères mais de fréquences différentes circulent dans l'échantillon ;
  • la figure 7 illustre une ligne de retard implémentant un composant inductif supraconducteur selon l'invention
  • la figure 8 illustre un schéma de principe d'une antenne à décalage de phase utilisant de telles lignes à retard ;
  • la figure 9 est une courbe représentant la valeur de la différence de potentiel mesurée entre les plots V1 et V2 en fonction de l'intensité circulant entre les plots I1 et I2, au cours d'une période d'un courant alternatif IAC à une fréquence de 2 kHz ;
  • la figure 10 est une courbe représentant la valeur de la différence de potentiel mesurée entre les plots V1 et V2 en fonction du temps, lorsqu'un courant alternatif IAC en dents de scie (pointillés) à la fréquence de 10 kHz circule dans l'échantillon, dans le cas où un courant continu IDC circule également dans l'échantillon, et pour des intensités de ce courant continu IDC valant respectivement 0 A, 5 µA, et 10 µA.
  • la figure 11 illustre des valeurs d'inductance selon la fréquence et pour différentes intensités de ce courant continu IDC valant respectivement 0 A (points carrés), 5 µA (cercles), 10 µA (triangles montants) et -10 µA (triangles descendants) ;
  • la figure 12 est un schéma de principe d'un filtre passe-haut accordable selon l'invention ;
  • la figure 13 est un schéma de principe d'un filtre passe-bas accordable selon l'invention
  • la figure 14 est un schéma de principe d'un mélangeur hétérodyne selon l'art antérieur, utilisant une diode ;
  • les figures 15 et 16 sont des schémas de principe de mélangeurs hétérodynes selon l'invention ;
  • les figures 17 et 18 sont des schémas de principe de modulateurs selon l'art antérieur, à base de diodes et respectivement de transistors ;
  • la figure 19 est un schéma de principe d'un modulateur selon l'invention.
Other advantages and characteristics of the invention will appear on examining the detailed description of non-limiting embodiments, and the appended drawings in which:
  • the figure 1 is a diagram of a stack E of alternately superconducting layers C 1 and insulating layers C 2 deposited on a substrate S so as to produce an inductive component;
  • the Figure 2A is a top view of a superconducting line LS comprising an inductive component consisting of alternately superconductive C1 and insulating C2 films;
  • the Figure 2B is a sectional view of a superconducting line LS comprising an inductive component E consisting of alternately superconductive C1 and insulating films C2;
  • the figure 3A is a photograph of the pattern used for the tests showing the location of the current inputs I1 and I2, the measurement pads V1 and V2 of the potential difference across a bridge receiving an inductive thin-film component, and the location of it;
  • the figure 3B represents the photolithographic mask used to make the test pattern of the figure3A ;
  • The figure 4 is a diagram of the measuring device used to
characterize a superconductive inductive component according to the invention;
  • the figure 5 illustrates a potential difference measured between the pads V1 and V2 (solid lines) when a current (dotted) sawtooth at the frequency of 1000 Hz flows in the sample;
  • the figure 6 represents a comparison of the potential differences measured between the pads V1 and V2 when two sawtooth currents of the same amplitude Imax = 10 microamperes but of different frequencies circulating in the sample;
  • the figure 7 illustrates a delay line implementing a superconductive inductive component according to the invention
  • the figure 8 illustrates a block diagram of a phase shift antenna using such delay lines;
  • the figure 9 is a curve representing the value of the potential difference measured between the pads V1 and V2 as a function of the intensity flowing between the pads I 1 and I 2, during a period of an AC current I AC at a frequency of 2 kHz;
  • the figure 10 is a curve representing the value of the potential difference measured between the pads V1 and V2 as a function of time, when an alternating current I AC sawtooth (dotted) at the frequency of 10 kHz flows in the sample, in the case where a DC current I DC also circulates in the sample, and for intensities of this direct current I DC respectively worth 0 A, 5 μA, and 10 μA.
  • the figure 11 illustrates inductance values according to the frequency and for different intensities of this DC current I DC respectively 0 A (square points), 5 μA (circles), 10 μA (rising triangles) and -10 μA (descending triangles);
  • the figure 12 is a block diagram of a tunable high-pass filter according to the invention;
  • the figure 13 is a schematic diagram of a tunable low-pass filter according to the invention
  • the figure 14 is a block diagram of a heterodyne mixer according to the prior art, using a diode;
  • the Figures 15 and 16 are schematic diagrams of heterodyne mixers according to the invention;
  • the Figures 17 and 18 are schematic diagrams of modulators according to the prior art, based on diodes and respectively on transistors;
  • the figure 19 is a block diagram of a modulator according to the invention.

Le principe mis en oeuvre dans le composant et son procédé de réalisation selon l'invention comprend un empilement E de films minces, ou couches minces, alternativement supraconducteurs C1 et isolants C2, déposés sur un substrat S, en référence à la figure 1, ou bien sur une ligne supraconductrice LS. Il est important que les films C2 soient isolants et de bien contrôler d'éventuels défauts de croissance risquant de mettre deux film supraconducteurs voisins en contact direct. Cet empilement permet l'obtention de composants particulièrement performants, entre autres parce que de valeur d'inductance très élevée par rapport à leur taille.The principle used in the component and its production method according to the invention comprises a stack E of thin films, or thin layers, alternately superconducting C1 and insulating C2, deposited on a substrate S, with reference to FIG. figure 1 , or on a superconducting line LS. It is important for C2 films to be insulative and to control any growth defects that may put two adjacent superconducting films in direct contact. This stack makes it possible to obtain particularly efficient components, inter alia because of a very high inductance value with respect to their size.

Au sein du comportement inductif de ce composant lorsqu'il reçoit un courant IAC ou une tension alternatifs ou transitoires, le principe consiste à obtenir une modification de ce comportement inductif en le faisant traverser par un courant continu IDC déterminé.Within the inductive behavior of this component when it receives an IAC current or an alternating or transient voltage, the principle consists in obtaining a modification of this inductive behavior by passing it through a determined continuous current IDC.

En commandant la valeur de ce courant continu IDC, il est alors possible de commander la valeur d'inductance obtenue pour ce composant.By controlling the value of this direct current IDC, it is then possible to control the inductance value obtained for this component.

Il est ainsi possible de réaliser des composants présentant une inductance de la valeur voulue, ou d'une inductance pouvant être commandée en fonction des besoins.It is thus possible to produce components having an inductance of the desired value, or an inductance that can be controlled according to the needs.

Il est également possible de réaliser des composants dont la valeur d'inductance peut être modifiée par le passage d'un courant à détecter ou à mesurer, ou par une ou plusieurs grandeurs physico-chimiques à détecter entraînant une variation d'un tel courant.It is also possible to make components whose inductance value can be modified by the passage of a current to be detected or measured, or by one or more physico-chemical quantities to be detected causing a variation of such a current.

Dans une forme de réalisation préférée de l'invention, le premier film déposé pour réaliser l'empilement E est isolant comme indiqué sur la figure 1.In a preferred embodiment of the invention, the first deposited film for making the stack E is insulating as indicated on FIG. figure 1 .

L'intégration de composants inductifs dans un circuit supraconducteur peut être effectuée de la façon Indiquée sur les figures 2A et 2B en utilisant les techniques de dépôt de films minces bien connues de l'homme de l'art, par exemple l'ablation laser, la pulvérisation cathodique radio-fréquence, l'évaporation sous vide, le dépôt chimique en phase vapeur et de manière générale toute technique de dépôt permettant l'obtention de couches minces.The integration of inductive components in a superconducting circuit can be carried out in the manner indicated on the Figures 2A and 2B using thin film deposition techniques well known to those skilled in the art, for example laser ablation, radio frequency sputtering, vacuum evaporation, chemical vapor deposition and generally any deposit technique for obtaining thin layers.

Il est à noter que dans cette version particulière du procédé selon l'invention correspondant aux figures 2A et 2B, un film supraconducteur L1 déposé sur un substrat S, une fois gravé, constitue une ligne supraconductrice LS sur laquelle sera placé l'empilement inductif E.It should be noted that in this particular version of the method according to the invention corresponding to the Figures 2A and 2B , a superconductive film L1 deposited on a substrate S, once etched, constitutes a superconducting line LS on which the inductive stack E will be placed.

Dans un exemple particulier de réalisation selon l'invention fourni à titre non limitatif, les matériaux choisis sont les composés YBa2Cu3O7-δ pour les films supraconducteurs et LaAlO3 pour les films isolants. Les épaisseurs sont de 10nm (10-8m) pour les films supraconducteurs et de 4nm (4.10-9m) pour les films isolants. 14 paires de films ont été déposées.In a particular embodiment of the invention provided in a non-limiting manner, the materials chosen are compounds YBa 2 Cu 3 O 7 -δ for superconductive films and LaAlO 3 for insulating films. The thicknesses are 10 nm (10 -8 m) for superconducting films and 4 nm (4.10 -9 m) for insulating films. 14 pairs of films have been deposited.

Après dépôt, les films ont été gravés de façon à obtenir le motif représenté sur la figure 3A dans laquelle on distingue les contacts métallisés I1, I2 qui permettent d'amener le courant dans l'échantillon et ceux qui permettent de mesurer les tensions V1 et V2 aux bornes de l'élément central, appelé pont, du motif. A titre indicatif et non limitatif, la taille du pont est de 10µm x 20µm. La modification de la valeur de l'inductance peut toutefois être aussi obtenue avec des motifs de même forme mais de dimensions différentes ou avec des motifs de forme différente de celle présentée sur les figures.After deposition, the films were etched to obtain the pattern shown on the figure 3A in which one distinguishes the metallized contacts I1, I2 which make it possible to bring the current in the sample and those which make it possible to measure the voltages V1 and V2 at the terminals of the central element, called bridge, of the pattern. As an indication and not limitation, the size of the bridge is 10 microns x 20 microns. The modification of the value of the inductance can however also be obtained with patterns of the same shape but of different dimensions or with patterns of different shape from that shown in the figures.

Le dispositif de mesure utilisé pour caractériser les échantillons de composants inductifs supraconducteurs selon l'invention, représenté en figure 4, comporte un générateur GBF créant un courant variable dans le temps I(t) qui traverse la résistance R et l'échantillon Ech via les contacts I1 et I2. La différence de potentiel aux bornes de la résistance R est amplifiée par un amplificateur différentiel AI et envoyée sur une entée. YI de l'oscilloscope Osc. Elle permet de connaître l'intensité I(t) du courant traversant l'échantillon. La différence de potentiel aux bornes de l'échantillon est prélevée en V1 et V2, amplifiée par l'amplificateur Av et envoyée sur l'entrée Yv de l'oscilloscope Osc.The measuring device used to characterize the samples of superconductive inductive components according to the invention, represented in FIG. figure 4 , comprises a generator GBF creating a variable current in time I (t) which passes through the resistor R and the sample Ech via the contacts I1 and I2. The potential difference across the resistor R is amplified by a differential amplifier AI and sent to an input. YI oscilloscope Osc. It makes it possible to know the intensity I (t) of the current passing through the sample. The potential difference at the terminals of the sample is taken at V1 and V2, amplified by the amplifier Av and sent to the input Yv of oscilloscope Osc.

La figure 5 montre les signaux recueillis en YI et Yv lorsque l'échantillon est à une température de 37 K. Dans le cas présent, l'échantillon était placé dans un cryogénérateur à hélium mais tout procédé permettant d'obtenir une température inférieure à la température critique de l'échantillon étudié convient.The figure 5 shows the signals collected in YI and Yv when the sample is at a temperature of 37 K. In the present case, the sample was placed in a helium cryogenerator but any process making it possible to obtain a temperature below the critical temperature of the sample studied is suitable.

Le générateur délivre un courant en dents de scie à la fréquence de 1000 Hz. On a directement reporté la valeur du courant I(t). On observe que la différence de potentiel V(t) entre V1 et V2 présente la forme de créneaux, ce qui indique que V(t) est proportionnelle à la dérivée par rapport au temps de I(t). Cette caractéristique indique que l'échantillon se comporte bien comme un composant inductif. On a reporté sur la figure 6 les signaux V(t) mesurés à 700 Hz et 2kHz pour une valeur du courant crête égale à 10 µA dans les deux cas. Dans cette figure, le trait plein correspond à la tension relevée pour un courant à la fréquence F=700Hz et le trait pointillé à celle relevée pour un courant à la fréquence F=2000Hz.The generator delivers a sawtooth current at the frequency of 1000 Hz. The value of the current I (t) has been directly reported. It is observed that the potential difference V (t) between V1 and V2 has the form of slots, which indicates that V (t) is proportional to the derivative with respect to the time of I (t). This characteristic indicates that the sample behaves well as an inductive component. We reported on the figure 6 the V (t) signals measured at 700 Hz and 2 kHz for a peak current value equal to 10 μA in both cases. In this figure, the solid line corresponds to the voltage recorded for a current at the frequency F = 700 Hz and the dashed line to that recorded for a current at the frequency F = 2000 Hz.

On observe que le rapport de l'amplitude des signaux obtenus est dans le rapport des fréquences appliquées, ce qui là aussi est typique d'un composant inductif.It is observed that the ratio of the amplitude of the signals obtained is in the ratio of the applied frequencies, which again is typical of an inductive component.

Des résultats présentés sur la figure 6, on déduit que l'inductance du composant réalisé selon l'invention est égale à 535 µH ± 10µH. Les composants testés n'ont pas tous présenté une inductance aussi élevée mais des valeurs de l'ordre de quelques dizaines de microhenry ont été couramment obtenues avec des composants de forme identique à celui présenté ici.Results presented on the figure 6 it is deduced that the inductance of the component produced according to the invention is equal to 535 μH ± 10 μH. The components tested did not all have such a high inductance but values of the order of a few tens of microhenry were commonly obtained with components of identical shape to that presented here.

Sur la figure 9, on constate que la valeur absolue de la tension V entre les plots V1 et V2 décroît lorsque l'intensité du courant IAC augmente en valeur absolue. Cette décroissance correspond à une réduction de l'inductance du dispositif de test quand le courant IAC croît en intensité au sein d'une de ses périodes.On the figure 9 it is found that the absolute value of the voltage V between the pads V1 and V2 decreases when the intensity of the current IAC increases in absolute value. This decrease corresponds to a reduction of the inductance of the test device when the current IAC increases in intensity within one of its periods.

Sur la figure 10, est représentée la valeur de la différence de potentiel V mesurée entre les plots V1 et V2, au cours d'une période du courant alternatif IAC en dents de scie à une fréquence de 10 kHz, et dans l'état supraconducteur. Cette différence de potentiel V est représentée sur trois courbes différentes obtenues en faisant traverser ou non le dispositif de test par un courant continu IDC.On the figure 10 , is shown the value of the potential difference V measured between the pads V1 and V2, during a period of the sawtooth alternating current IAC at a frequency of 10 kHz, and in the superconducting state. This potential difference V is represented on three different curves obtained by passing or not the test device by a continuous current IDC.

Une première de ces courbes représente la situation avec IDC=0, soit avec un courant uniquement alternatif, et représente un comportement inductif du dispositif de test, Sur cette même figure et pour le même dispositif testé, une deuxième courbe pour cette tension V est obtenue avec un courant superposé IDC=5 µA (micro-ampères); pouvant être considéré comme continu par rapport à la fréquence du courant alternatif IAC. Cette deuxième courbe indique alors une inductance plus faible que la courbe obtenue avec courant alternatif seul. Avec un courant continu superposé plus important, valant IDC=10 µA (micro-ampères), une troisième courbe pour cette tension V indique une inductance du même dispositif testé encore plus faible que les première et deuxième courbes.A first of these curves represents the situation with IDC = 0, ie with a purely alternating current, and represents an inductive behavior of the test device. In this same figure and for the same device tested, a second curve for this voltage V is obtained. with a superimposed current IDC = 5 μA (microamperes); which can be considered as continuous with respect to the frequency of the alternating current IAC. This second curve then indicates a lower inductance than the curve obtained with alternating current alone. With a larger superimposed DC current, equal to IDC = 10 μA (microamperes), a third curve for this voltage V indicates an inductance of the same device tested even lower than the first and second curves.

La figure 11 représente une mesure de l'inductance du dispositif de test sur une plage de fréquence entre 100 Hz et 10 kHz, pour des valeurs de courant continu IDC superposé prenant les valeurs de 0,5µA, +10µA, et -10µA (micro-ampères). Sur l'ensemble de cette plage de fréquence, on constate que la valeur de l'inductance diminue lorsque le courant continu IDC augmente en intensité, et ce dans les deux sens de ce courant IDC. Plus particulièrement sur la plage de fréquences où l'inductance est sensiblement constante c'est à dire entre 1 et 10kHz, cette inductance se présente comme une fonction décroissante de l'intensité de ce courant continu superposé IDC.The figure 11 represents a measurement of the inductance of the test device over a frequency range between 100 Hz and 10 kHz, for superimposed continuous DCI values taking the values of 0.5μA, + 10μA, and -10μA (microamperes) . Over all of this frequency range, it is found that the value of the inductance decreases when the DC current IDC increases in intensity, and in both directions of this current IDC. More particularly in the frequency range where the inductance is substantially constant, ie between 1 and 10 kHz, this inductance is a decreasing function of the intensity of this superimposed continuous current IDC.

L'invention réalise ainsi un composant inductif à inductance variable en fonction du courant le traverse.The invention thus provides an inductive component with variable inductance as a function of current flows through it.

En faisant traverser un tel composant supraconducteur inductif par un courant continu IDC commandé, on peut commander la valeur de l'inductance avec laquelle ce composant réagit à un signal alternatif correspondant.By passing such an inductive superconductive component through a controlled direct current IDC, the value of the inductance with which this component reacts to a corresponding alternating signal can be controlled.

L'invention réalise ainsi un composant inductif réglable ou accordable, par commande d'un courant le traversant.The invention thus provides an adjustable or tunable inductive component by controlling a current flowing through it.

De plus, lorsque que le composant est traversé par un courant alternatif, l'intensité instantanée le parcourant varie au cours de chaque période. Ainsi que l'indique la figure 9, l'inductance du composant varie également au cours de chaque période.In addition, when the component is crossed by an alternating current, the instantaneous intensity flowing through it varies during each period. As indicated by the figure 9 the inductance of the component also varies during each period.

En particulier lorsque ce courant alternatif correspond à une onde portant ou incluant un ou plusieurs signaux, cette variation d'inductance au sein même d'une période produit alors aux bornes du composant une tension alternative qui représente une version modifiée du signal porté par ce courant alternatif. Pour un comportement inductif classique, cette tension produite serait la dérivée par rapport au temps du courant qui traverse le composant. Dans le cas présent, la tension produite est une image modifiée de cette dérivée, et représente donc une version modifiée du signal d'entrée. Ainsi, l'invention réalise également un composant inductif de modification ou de traitement de signal.In particular, when this alternating current corresponds to a wave carrying or including one or more signals, this variation of inductance within a period then produces an alternating voltage across the component which represents a modified version of the signal carried by this current. alternative. For conventional inductive behavior, this voltage produced would be the time derivative of the current flowing through the component. In this case, the voltage produced is a modified image of this derivative, and therefore represents a modified version of the input signal. Thus, the invention also provides an inductive modification or signal processing component.

Les composants inductifs supraconducteurs obtenus par le procédé selon l'invention peuvent trouver des applications dans les domaines de l'électrotechnique ou de l'électronique, de la téléphonie, des antennes et des composants passifs à haute fréquence, en particulier pour l'imagerie médicale ainsi que les radars et l'électronique de défense.The superconducting inductive components obtained by the method according to the invention can find applications in the fields of electrical engineering or electronics, telephony, antennas and passive high frequency components, in particular for medical imaging. as well as radar and defense electronics.

Dans un premier exemple d'application, des composants inductifs supraconducteurs sont implémentés dans des systèmes d'antennes. Ainsi, dans un certain nombre de cas, par exemple en imagerie médicale par résonance magnétique (IRM) de surface, on utilise des antennes accordées. Il est alors possible de réaliser un accord d'une antenne par réglage de l'inductance d'un ou plusieurs des composants inductifs qu'elle comprend. Un paramètre important intervenant dans l'efficacité de l'antenne est le coefficient de surtension qui est proportionnel à son inductance. Une antenne supraconductrice permet de faire croître ce coefficient car sa résistance ohmique est très faible. On peut penser obtenir un nouvel accroissement du coefficient de surtension en incluant dans le circuit d'antenne un dispositif du type de ceux décrits ici.In a first example of application, superconductive inductive components are implemented in antenna systems. Thus, in a number of cases, for example in medical magnetic resonance imaging (MRI) surface, using tuned antennas. It is then possible to make an agreement of an antenna by adjusting the inductance of one or more of the inductive components that it comprises. An important parameter in the efficiency of the antenna is the overvoltage coefficient which is proportional to its inductance. A superconducting antenna makes it possible to increase this coefficient because its ohmic resistance is very weak. It is conceivable to obtain a new increase in the overvoltage coefficient by including in the antenna circuit a device of the type of those described here.

Un cas particulièrement favorable sera celui ou l'antenne elle-même est réalisée à partir d'un film mince supraconducteur.A particularly favorable case will be that where the antenna itself is made from a thin superconducting film.

Dans un autre exemple d'application, des composants inductifs supraconducteurs sont mis en oeuvre dans des lignes à retard. Les lignes à retard sont d'usage courant dans tous les domaines de l'électronique. La forme la plus simple que peut prendre une ligne à retard est représentée sur la figure 7.In another exemplary application, superconductive inductive components are implemented in delay lines. Delay lines are in common use in all areas of electronics. The simplest form that a delay line can take is represented on the figure 7 .

La présence dans le circuit de l'inductance L et du condensateur C provoque une différence de phase entre la tension V et le courant I. Un exemple d'utilisation est celui des radars à décalage de phase qui permettent d'explorer l'espace environnant avec un système d'antennes fixes. Un schéma de principe pour un tel système est reporté sur la figure 8. Dans ce dispositif la ligne principale portant le courant 1 est couplé aux différentes antennes. Chacune de celles-ci comporte dans son circuit une ligne à retard. Il en résulte que chaque antenne émet ou reçoit un signal dont la phase est décalée par rapport à celle des antennes voisines. En faisant varier ce décalage de phase on change la direction du rayonnement émis. En électronique de défense, on étudie depuis longtemps l'introduction de composants supraconducteurs dans les circuits électroniques, en particulier pour les radars et plus généralement les contre-mesures. La présence de composants à forte inductance, de petites dimensions et dont la fabrication utilise des processus similaires à ceux employés pour le reste du circuit serait une innovation importante dans ce domaine.The presence in the circuit of the inductance L and the capacitor C causes a phase difference between the voltage V and the current I. An example of use is that of the phase shift radars which make it possible to explore the surrounding space with a fixed antenna system. A schematic diagram for such a system is reported on the figure 8 . In this device the main line carrying the current 1 is coupled to the different antennas. Each of these includes in its circuit a delay line. As a result, each antenna transmits or receives a signal whose phase is offset from that of the neighboring antennas. By varying this phase shift the direction of the emitted radiation is changed. In defense electronics, we have long studied the introduction of superconducting components in electronic circuits, particularly for radar and more generally countermeasures. The presence of high inductance components, small in size and whose manufacturing uses processes similar to those used for the rest of the circuit would be an important innovation in this area.

Dans de telles applications, le composant selon l'invention, du fait qu'il est accordable en cours d'utilisation, peut être avantageusement utilisé pour modifier les caractéristiques ou le comportement d'un dispositif dans lequel il est inclus. Cela permet par exemple de modifier ou d'étalonner les caractéristiques d'une antenne composite et/ou active, par réglage global ou différentié de l'inductance au sein des lignes à retard des antennes individuelles qui la composent.In such applications, the component according to the invention, because it is tunable in use, can be advantageously used to modify the characteristics or the behavior of a device in which it is included. This makes it possible, for example, to modify or calibrate the characteristics of a composite and / or active antenna, by global adjustment or differentiated inductance within the delay lines of the individual antennas that compose it.

Les possibilités de réglages de telles antennes individuelles ou composites incluant le composant supraconducteur inductif accordable selon l'invention peuvent également permettre des avancées importantes, dans le domaine de l'imagerie médicale. Par exemple pour l'imagerie par IRM, l'utilisation de telles antennes pourrait permettre de réaliser des images avec différentes valeurs du champ magnétique appliqué. Ceci offrirait un degré de liberté supplémentaire pour optimiser la qualité des images obtenues.The setting possibilities of such individual or composite antennas including tunable inductive superconducting component according to the invention can also allow significant advances in the field of medical imaging. For example for MRI imaging, the use of such antennas could make it possible to produce images with different values of the applied magnetic field. This would provide an additional degree of freedom to optimize the quality of the images obtained.

De tels composants inductifs performants et facilement intégrables peuvent également être utilisés de façon générique dans la plupart des applications générales de l'électronique, en particulier pour réaliser des fonctions de filtrage de tous types, par exemple passe-haut, passe-bas ou passe-bande. Il est alors possible de réaliser des filtres très intégrés et/ou miniaturisés.Such powerful and easily integrable inductive components can also be used generically in most general electronics applications, in particular to perform filtering functions of all types, for example high-pass, low-pass or pass-through. bandaged. It is then possible to produce highly integrated and / or miniaturized filters.

L'utilisation d'un composant selon l'invention permet en effet d'intégrer une inductance de valeur importante dans un circuit de faible encombrementThe use of a component according to the invention makes it possible to integrate an inductance of significant value in a circuit of small size.

Ainsi qu'illustré en figures 12 et 13 pour des filtres passe-haut et passe-bas, il est alors possible de filtrer de façon réglable une tension d'entrée Vin pour obtenir une tension de sortie Vout, en utilisant une inductance variable Lv selon l'invention. Ainsi qu'illustré dans cet'exemple, l'utilisation de composants inductifs selon l'invention permet de réaliser dans des circuits intégrés des filtres ne comportant que des condensateurs et des inductances, qui sont peu dissipatifs par rapport à des filtres construits avec des condensateurs et des résistances.As illustrated in figures 12 and 13 for high-pass and low-pass filters, it is then possible to adjustably filter an input voltage V in to obtain an output voltage V out , using a variable inductance L v according to the invention. As illustrated in this example, the use of inductive components according to the invention makes it possible to realize in integrated circuits filters having only capacitors and inductances, which are not very dissipative compared to filters constructed with capacitors. and resistances.

En utilisant les variations d'inductance au sein d'une période ondulatoire, le composant selon l'invention est également utilisable de façon avantageuse pour réaliser un type de dispositif électronique appelé mélangeur, et utilisé en particulier dans la détection hétérodyne.By using the inductance variations within an undulatory period, the component according to the invention can also be used advantageously to produce a type of electronic device called a mixer, and used in particular in heterodyne detection.

Les mélangeurs sont très utilisés pour traiter une onde à une certaine fréquence f1, par exemple 12 GHz, en utilisant un oscillateur produisant une onde de fréquence f0, par exemple 10 GHz, de façon à obtenir une onde à une fréquence f2=f1-f0 portant un signal à détecter. De façon typique, un tel mélangeur est utilisé à proximité d'une antenne de réception pour décoder des signaux 12 GHz reçus depuis un satellite de télévision directe, et en tirer un signal à une fréquence voisine de 2 GHz qui sera envoyé par câble coaxial vers un démodulateur.Mixers are widely used to process a wave at a certain frequency f1, for example 12 GHz, using an oscillator producing a frequency wave f0, for example 10 GHz, so as to obtain a wave at a frequency f2 = f1-f0 carrying a signal to be detected. Typically, such a mixer is used in the vicinity of a receiving antenna to decode 12 GHz signals received from a direct television satellite, and draw a signal at a frequency of 2 GHz which will be sent by coaxial cable to a demodulator.

Dans l'état de la technique, les mélangeurs sont typiquement réalisés à l'aide de composants discrets qui sont causes d'encombrement de coût et de fragilité, ou à l'aide de composants non linéaires, par exemple des diodes, qui présentent certains inconvénients, comme par exemple une dissipation importante d'énergie ou le fait de nécessiter un niveau de signal élevé.In the state of the art, the mixers are typically made using discrete components which are causes of cost and fragility encumbrance, or using non-linear components, for example diodes, which have certain disadvantages, such as a significant dissipation of energy or the fact of requiring a high signal level.

La figure 14 illustre ainsi un schéma de principe d'un tel mélangeur à diode.The figure 14 thus illustrates a schematic diagram of such a diode mixer.

A titre d'exemple, la figure 15 représente un schéma de principe d'un composant inductif variable selon l'invention, utilisé pour réaliser une fonction de mélangeur de façon simple. Le courant à détecter il de fréquence f1, avec le courant i0 issu d'un oscillateur local à la fréquence f0, est envoyé sur un composant à inductance variable Lv1. selon l'invention. La valeur de l'inductance du composant selon l'invention Lv1 dépend alors du courant reçu, selon une fonction de la grandeur i1+i0. Plus particulièrement dans certaines conditions, par exemple sur certaines plages de fréquences, cette fonction peut s'écrire sous la forme d'une relation comprenant un coefficient a pouvant être déterminé par différents types de mesures, par exemple similaires à celles Illustrées en figures 9 et 10. Une telle relation peut s'écrire alors sous la forme suivante : L v = L 0 - α . i 1 + i 0

Figure imgb0001
For example, the figure 15 represents a block diagram of a variable inductive component according to the invention, used to perform a mixer function in a simple way. The current to be detected 11 of frequency f1, with the current i0 coming from a local oscillator at the frequency f0, is sent on a variable inductance component Lv1. according to the invention. The value of the inductance of the component according to the invention Lv1 then depends on the current received, according to a function of the magnitude i1 + i0. More particularly under certain conditions, for example over certain frequency ranges, this function can be written in the form of a relation comprising a coefficient a that can be determined by different types of measurements, for example similar to those illustrated in FIG. Figures 9 and 10 . Such a relation can then be written in the following form: The v = The 0 - α . i 1 + i 0
Figure imgb0001

Dans laquelle L0 est la valeur d'inductance du composant lorsque le courant continu superposé IDC est nul.In which L0 is the inductance value of the component when the DC superimposed current I DC is zero.

En particulier lorsque l'amplitude du courant local i0 issu de l'oscillateur est beaucoup plus importante, cette relation correspond à une relation de forme suivante : L v = L 0 - α . i 0

Figure imgb0002
In particular, when the amplitude of the local current i0 coming from the oscillator is much greater, this relation corresponds to a following relation of form: The v = The 0 - α . i 0
Figure imgb0002

Dans ces conditions, si le signal d'entrée est sinusoïdal la tension de sortie V contient une composante Vf2 ondulant à la fréquence f2=f1-f0 et dépendant du signal d'entrée. Cette composante de fréquence f1-f0 présente alors la forme suivante : Vf 2 = π . α . i 0 . i 1 . sin 2 π ( f 0 - f 1 ) t + φ

Figure imgb0003

où φ est la phase du signal du signal d'entrée par rapport à celui de l'oscillateur. Cette relation indique que le composant inductif variable selon l'invention se comporte bien comme un mélangeur.Under these conditions, if the input signal is sinusoidal, the output voltage V contains a component Vf2 waving at the frequency f2 = f1-f0 and depending on the input signal. This frequency component f1-f0 then has the following form: vf 2 = π . α . i 0 . i 1 . sin 2 π ( f 0 - f 1 ) t + φ
Figure imgb0003

where φ is the phase of the signal of the input signal relative to that of the oscillator. This relationship indicates that the variable inductive component according to the invention behaves well as a mixer.

La figure 16 est un schéma de principe d'un mélangeur utilisant une inductance variable selon l'invention pour extraire un signal à une fréquence f2, à partir d'un signal S1 à une fréquence f1 et en utilisant une onde à la fréquence f0 issue d'un oscillateur Osc et proche de f1, avec f2=f1-f0. Cette opération est utilisable par exemple pour obtenir un signal S2 en l'extrayant du signal S1 provenant par exemple d'une antenne de réception. Par rapport au schéma de la figure 15, le schéma de la figure 16 comporte en outre un condensateur C et une inductance LA, constituant un filtre passe-bas, en sortie d'inductance variable. La présence de ce filtre permet d'isoler en sortie le signal S2 à la fréquence f2=f1-f0, et peut être utile voire nécessaire pour intégrer ce type de mélangeur au sein d'un dispositif de traitement de signal.The figure 16 is a block diagram of a mixer using a variable inductor according to the invention for extracting a signal at a frequency f2, from a signal S1 at a frequency f1 and using a wave at the frequency f0 resulting from a osc oscillator and close to f1, with f2 = f1-f0. This operation can be used, for example, to obtain a signal S2 by extracting it from the signal S1 coming, for example, from a reception antenna. Compared to the diagram of the figure 15 , the schema of the figure 16 further comprises a capacitor C and an inductance LA, constituting a low-pass filter, at the output of variable inductance. The presence of this filter makes it possible to isolate the signal S2 at the frequency f2 = f1-f0, and may be useful or even necessary to integrate this type of mixer into a signal processing device.

Le composant inductif accordable selon l'invention peut également être avantageusement utilisé pour réaliser un dispositif incluant un modulateur. Un modulateur est typiquement utilisé pour obtenir un signal à une fréquence f1 élevée à partir d'une composante signal S2 à une fréquence f2 relativement basse, en lui ajoutant une onde à une fréquence f0 proche de f1.The tunable inductive component according to the invention can also be advantageously used to produce a device including a modulator. A modulator is typically used to obtain a signal at a high frequency f1 from a signal component S2 at a relatively low frequency f2 by adding a wave at a frequency f0 close to f1.

L'état de la technique connaît des modulateurs typiquement réalisés en utilisant des composants discrets qui sont causes d'encombrement de coût et de fragilité, ou à l'aide de composants intégrés non linéaires, qui présentent certains inconvénients, comme par exemple une certaine dissipation d'énergie. Les figures 17 et 18 représentent ainsi des schémas de principe de modulateurs réalisés respectivement à l'aide de diodes (fig.17) et à l'aide de transistors (fig.18).The state of the art knows modulators typically made using discrete components that are causes of cost and fragility clutter, or using integrated non-linear components, which have certain drawbacks, such as for example some dissipation. energy. The Figures 17 and 18 thus represent diagrams of the principle of modulators respectively made using diodes ( fig.17 ) and using transistors ( fig.18 ).

La figure 19 illustre un schéma de principe d'un mélangeur utilisant une inductance variable selon l'invention pour mélanger un signal à une fréquence f2 avec une onde à la fréquence f0 issue d'un oscillateur Osc, utilisable par exemple pour coder un signal S2 avant émission. Plus particulièrement dans le cas où la fréquence f0 est nettement plus importante que la fréquence f2, l'inductance variable Lv2 effectue le mélange en un signal qui est ensuite filtré par le montage passe-haut constitué par l'inductance LA et le condensateur C. Ce filtrage ne laisse alors passer que la composante ondulatoire Vf1 de fréquence f1, avec f1=f2+f0.The figure 19 illustrates a block diagram of a mixer using a variable inductor according to the invention for mixing a signal at a frequency f2 with a wave at the frequency f0 from an oscillator Osc, usable for example to encode a signal S2 before transmission. More particularly in the case where the frequency f 0 is significantly greater than the frequency f 2, the variable inductance L v 2 mixes into a signal which is then filtered by the high-pass circuit constituted by the inductance L A and the capacitor C This filtering then lets pass only the wave component Vf1 of frequency f1, with f1 = f2 + f0.

Au sein des exemples décrits, les inductances qui ne sont pas précisées comme étant variables ou commandées peuvent bien sûr également être réalisées sous la forme d'un composant inductif supraconducteur, de façon à homogénéiser le dispositif obtenu et conserver ou améliorer les gains de l'invention, par exemple en termes de coût, fiabilité, performances ou encombrement.In the examples described, the inductances that are not specified as variable or controlled can of course also be made in the form of a superconductive inductive component, so as to homogenize the device obtained and maintain or improve the gains of the invention, for example in terms of cost, reliability, performance or bulk.

Dans tous ces exemples, comme dans d'autres modes de réalisation non décrits ici, la commande par courant selon l'invention permet en particulier de piloter de façon entièrement électronique une plus grande part de fonctions et réglages. Un tel pilotage permet alors une plus grande souplesse dans la conception des appareils concernés, mais également d'apporter des fonctionnalités et des performances nouvelles par rapport à l'état de la technique.In all these examples, as in other embodiments not described here, the current control according to the invention in particular makes it possible to drive a greater part of functions and adjustments in a fully electronic manner. Such control then allows greater flexibility in the design of the devices concerned, but also to provide new features and performance compared to the state of the art.

De même, la réalisation de ces composants sous forme de couches minces supraconductrices permet une plus grande miniaturisation ainsi qu'une intégration sur une bien plus grande échelle. Cela rend possible de concevoir des systèmes moins dissipatifs, d'en multiplier les composants, et d'en améliorer la puissance et/ou d'en diminuer l'encombrement. L'intégration permet également d'améliorer la fiabilité et la reproductibilité de tels dispositifs, et d'en diminuer les coûts de fabrication.Similarly, the production of these components in the form of thin superconducting layers allows for greater miniaturization as well as integration on a much larger scale. This makes it possible to design less dissipative systems, multiply the components, and improve the power and / or reduce the size. Integration also improves the reliability and reproducibility of such devices, and reduces manufacturing costs.

Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Ainsi, le nombre de films respectivement isolants et supraconducteurs n'est pas limité aux exemples décrits. Par ailleurs, les dimensions des composants inductifs supraconducteurs ainsi que leurs surfaces peuvent évoluer en fonction des applications spécifiques de ces composants. De plus, les films respectivement supraconducteurs et isolants peuvent être réalisés à partir d'autres composés que ceux proposés dans l'exemple décrit, pourvu que ces composés satisfassent aux conditions physiques requises pour les applications.Of course, the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention. Thus, the number of respectively insulating and superconductive films is not limited to the examples described. Moreover, the dimensions of the superconductive inductive components as well as their surfaces can evolve according to the specific applications of these components. In addition, the respectively superconductive and insulating films can be made from other compounds than those proposed in the example described, provided that these compounds satisfy the physical conditions required for the applications.

Claims (21)

  1. Use, as a component with variable inductance which is a function of the current passing through it, of an inductive superconductive component having at least two terminals and comprising at least one line segment working with said terminals and integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack (E) of films alternately superconductive (C1) and insulating (C2).
  2. Use according to claim 1, wherein the value of the inductance of the superconductive inductive component is modified or controlled by current control means acting on a direct current which passes through said component.
  3. Use according to claim 1, wherein the superconductive inductive component is subjected to an undulating voltage or current constituting at least one wave, to which it reacts with an inductive behaviour varying within a single period of this wave, this variation producing a modification of at least one characteristic of this wave.
  4. Use according to one of claims 1 or 3 to produce a frequency mixer, in which the superconductive inductive component (Lv1 Fig. 15, 16) is subjected on the one hand to an input wave comprising at least one first component constituting a signal, termed input signal (S1), at a first frequency, termed high frequency (f1), and on the other hand to a regular wave at an oscillation frequency (f0) close to the high frequency (f1), the inductive behaviour of said superconductive inductive component (Lv1) producing an output wave comprising at least one second wave component at a second frequency, termed low frequency (f2), approximately equalling the high frequency reduced by the oscillation frequency, said second component constituting an output signal (S2) dependent on the input signal (S1).
  5. Use according to one of claims 1 or 3 to produce a frequency modulator, wherein the superconductive inductive component (Lv2 Fig. 19) is subjected on the one hand to an input wave comprising at least one first component constituting an input signal (S2), at a first frequency, termed low frequency (f2), and on the other hand to a regular wave at an oscillation frequency (f0), the inductive behaviour of said superconductive inductive component (Lv2) producing an output wave comprising at least one second wave component at a second frequency, termed high frequency (f1), approximately equalling the sum of the low frequency and the oscillation frequency, said second component constituting an output signal (S1) dependent on the input signal (S2).
  6. Electronic device comprising at least one superconductive inductive component with variable inductance which is a function of the current passing through it, said superconductive inductive component having at least two terminals and comprising at least one fine segment working with said terminals and integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack (E) of alternately superconductive (C1) and insulating (C2) films.
  7. Device according to claim 6, wherein an alternating current passes through the superconductive inductive component and wherein the device also comprises means for controlling or modifying the value of the inductance of said superconductive inductive component, these means acting on the intensity of a direct current passing through said superconductive inductive component and being superimposed on the alternating current.
  8. Device according to either of claims 6 and 7, wherein the superconductive inductive component is used in an electronic circuit producing a frequency filtering, at least one characteristic of which is modified by modification of the inductance of said superconductive inductive component.
  9. Device according to either of claims 6 and 7, wherein the superconductive inductive component is used in an electronic circuit producing a delay line, at least one characteristic of which is modified by modification of the inductance of said superconductive inductive component.
  10. Device according to one of claims 6 to 9, wherein the superconductive inductive component is used in an electronic circuit producing an antenna made from a superconductive thin film, at least one characteristic of this antenna being controlled or modified by modification of the inductance of said superconductive inductive component.
  11. Device according to claim 10, used in a phase shift radar comprising a plurality of antennae, each comprising an electronic circuit including at least one delay line, this delay line being arranged such that each of said antennae transmits or receives a signal the phase of which is shifted relative to that of the neighbouring antennae, this configuration being controlled by modification of the inductance of said superconductive inductive component.
  12. Device according to claim 6, wherein a current constituting at least one wave passes through this superconductive inductive component, to which said component reacts with an inductive behaviour varying within a single period of this wave, this variation producing a modification of at least one characteristic of this wave.
  13. Device according to one of claims 6 or 12, wherein this superconductive inductive component (Lv1 Fig. 15, 16) is subjected on the one hand to an input wave comprising at least one first component constituting a signal, termed input signal (S1), at a first frequency, termed high frequency (f1), and on the other hand to a regular wave at an oscillation frequency (f0) close to the high frequency (f1), the inductive behaviour of said superconductive inductive component (Lv1) producing an output wave comprising at least one second wave component at a second frequency, termed low frequency (f2), approximately equalling the high frequency reduced by the oscillation frequency, said second component constituting an output signal (S2) dependent on the input signal (S1).
  14. Device according to claim 13, characterized in that it produces a mixer and comprises at least one superconductive inductive component (Lv1, Fig. 15) mounted in parallel with an oscillator component (Osc).
  15. Device according to one of claims 13 or 14, characterized in that it produces a mixer and comprises at least one oscillator component (Osc) in parallel, as well as a superconductive inductive component (Lv1, Fig. 16) in series mounted downstream and to the output of which is connected at least one capacitive and inductive assembly producing a low pass filter.
  16. Device according to one of claims 6 or 12 to 15, used in a system for receiving a Hertzian transmission of an electromagnetic signal.
  17. Device according to one of claims 6 or 12, wherein the superconductive inductive component (Lv2 Fig. 19) is subjected on the one hand to an input wave comprising at least one first component constituting an input signal (S2), at a first frequency, termed low frequency (f2), and on the other hand to a regular wave at an oscillation frequency (f0), the inductive behaviour of said superconductive inductive component (Lv2) producing an output wave comprising at least one second wave component at a second frequency, termed high frequency (f1), approximately equalling the sum of the low frequency and the oscillation frequency, said second component constituting an output signal (S1) dependent on the input signal (S2).
  18. Device according to claim 17, characterized in that it produces a modulator and comprises at least one oscillator component (Osc) in parallel, as well as a superconductive inductive component (Lv2, Fig. 19) in series mounted downstream and to the output of which is connected at least one capacitive and inductive assembly producing a high pass filter.
  19. Device according to one of claims 6, 12, 17 or 18, characterized in that it is used in a system for transmitting a Hertzian transmission of an electromagnetic signal.
  20. Device according to one of claims 6 to 19, used in an audiovisual broadcasting system, or a communication system, or a satellite system.
  21. Method for controlling the inductance of a superconductive inductive component, this superconductive inductive component having at least two terminals and comprising at least one line segment working with said terminals and integrating at least one of these terminals, this line segment constituting a conductive or superconductive layer within a stack (E) of alternately superconductive (C1) and insulating (C2) films, this component being subjected to an alternating voltage or current, this method comprising an injection of an approximately continuous control current, with superposition of the alternating current passing through said superconductive inductive component.
EP06709079A 2005-01-17 2006-01-13 Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method Not-in-force EP1844499B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500454A FR2880991B1 (en) 2005-01-17 2005-01-17 USE OF THIN-FILM SUPERCONDUCTING COMPONENTS AS VARIABLE INDUCTANCE, DEVICES INCLUDING SUCH COMPONENTS, AND METHOD OF CONTROLLING THE SAME
PCT/FR2006/000072 WO2006075098A1 (en) 2005-01-17 2006-01-13 Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method

Publications (2)

Publication Number Publication Date
EP1844499A1 EP1844499A1 (en) 2007-10-17
EP1844499B1 true EP1844499B1 (en) 2008-10-15

Family

ID=34953986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709079A Not-in-force EP1844499B1 (en) 2005-01-17 2006-01-13 Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method

Country Status (7)

Country Link
US (1) US8126523B2 (en)
EP (1) EP1844499B1 (en)
JP (1) JP2008527732A (en)
AT (1) ATE411621T1 (en)
DE (1) DE602006003188D1 (en)
FR (1) FR2880991B1 (en)
WO (1) WO2006075098A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858463B1 (en) * 2003-07-28 2007-08-24 Centre Nat Rech Scient METHOD AND SYSTEM FOR MAKING THIN-FILM SUPERCONDUCTING INDUCTIVE COMPONENTS, AND DEVICES INCLUDING SUCH COMPONENTS
US9509274B2 (en) 2014-09-18 2016-11-29 Northrop Grumman Systems Corporation Superconducting phase-shift system
JP6271384B2 (en) * 2014-09-19 2018-01-31 株式会社東芝 Inspection device
US10069662B2 (en) 2015-11-10 2018-09-04 Infineon Technologies Ag Mixed analog-digital pulse-width modulator
US9800236B2 (en) 2015-11-10 2017-10-24 Infineon Technologies Ag Integrated analog delay line of a pulse-width modulator
CN113013887B (en) * 2021-03-07 2022-11-25 天津大学 Superconducting active filter with energy storage function for superconducting energy pipeline

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE548321A (en) * 1955-07-01
US3717773A (en) * 1971-05-10 1973-02-20 Wisconsin Alumni Res Found Neuristor transmission line for actively propagating pulses
US4558295A (en) * 1982-11-05 1985-12-10 Spang & Company Tunable-inductance magnetically-soft ferrite core structures
JPS6367890A (en) * 1986-09-09 1988-03-26 Nippon Tv Housoumou Kk Color television broadcasting equipment
JPH01179601A (en) * 1988-01-09 1989-07-17 Kubota Ltd Driving mechanism for lifting or lowering working device of agricultural tractor
JPH0812962B2 (en) * 1988-01-22 1996-02-07 松下電器産業株式会社 Stripline resonator
JPH0529154A (en) * 1991-07-18 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> Superconducting variable inductor
US5329225A (en) * 1992-11-02 1994-07-12 General Electric Co. Thin film superconductor inductor with shield for high frequency resonant circuit
JPH08509103A (en) * 1992-12-01 1996-09-24 スーパーコンダクティング・コア・テクノロジーズ・インコーポレーテッド Tunable microwave device containing high temperature superconducting and ferroelectric films
CN1122327C (en) * 1993-08-27 2003-09-24 株式会社村田制作所 Thin-film multilayer electrode of high frequency electromagnetic field coupling
US5426409A (en) * 1994-05-24 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy Current controlled variable inductor
JP3125618B2 (en) * 1995-03-27 2001-01-22 株式会社村田製作所 Superconducting multilayer electrode, high-frequency transmission line using superconducting multilayer electrode, high-frequency resonator, high-frequency filter, high-frequency device, and method for designing superconducting multilayer electrode
JP3214664B2 (en) * 1995-05-25 2001-10-02 松下電器産業株式会社 High frequency device with superconducting element and temperature controller
US6462361B1 (en) * 1995-12-27 2002-10-08 Showa Denko K.K. GaInP epitaxial stacking structure and fabrication method thereof, and a FET transistor using this structure
JPH10239418A (en) * 1997-02-21 1998-09-11 Toshiba Corp Electronically scanned rador
US5872489A (en) * 1997-04-28 1999-02-16 Rockwell Science Center, Llc Integrated tunable inductance network and method
CA2265425A1 (en) * 1999-03-12 2000-09-12 Telecommunications Research Laboratories Active tunable inductor
US6556415B1 (en) * 2002-06-28 2003-04-29 Industrial Technologies Research Institute Tunable/variable passive microelectronic components
FR2866979A1 (en) * 2004-02-27 2005-09-02 Centre Nat Rech Scient Inductive superconductor component for e.g. telephone, has tuning substance providing resistive connection between superconductor materials, where resistivity of connection varies according to visible radiation received from display unit

Also Published As

Publication number Publication date
JP2008527732A (en) 2008-07-24
EP1844499A1 (en) 2007-10-17
FR2880991A1 (en) 2006-07-21
DE602006003188D1 (en) 2008-11-27
FR2880991B1 (en) 2007-04-06
ATE411621T1 (en) 2008-10-15
WO2006075098A1 (en) 2006-07-20
US8126523B2 (en) 2012-02-28
US20080119363A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
FR2858463A1 (en) Production of inductive superconductor component comprises deposition and engraving of stack of alternate superconductor and insulating layers, for use in telecommunications and electric energy applications
EP1726021A1 (en) Tunable-inductance thin-layered superconductor components, method for the production thereof and devices including said components
EP1844499B1 (en) Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method
EP2602598B1 (en) Bolometric detector for electromagnetic radiation in the terahertz spectral band and detector matrix comprising such detectors
FR2924501A1 (en) METHOD FOR ADJUSTING AN EXCITATION AND DETECTION CIRCUIT FOR NUCLEAR MAGNETIC RESONANCE AND CIRCUIT FOR EXCITATION AND DETECTION ADAPTED TO THE IMPLEMENTATION OF SUCH A METHOD
Demirhan et al. Metal mesh filters based on Ti, ITO and Cu thin films for terahertz waves
EP0005403A1 (en) Single mode hyperfrequency oscillator tunable by varying a magnetic field
EP3928428A1 (en) Progressive wave, low characteristic impedance parametric amplifier and manufacturing method thereof
EP0015168A1 (en) Magnetometer using magnetostatic waves
EP3752843B1 (en) Device and method for frequency analysis of a signal
EP3692415B1 (en) Radiofrequency oscillator and associated source and apparatus
FR3054044B1 (en) FREQUENCY SELECTIVE SURFACE COMMANDABLE AND MULTIFUNCTIONAL
FR2935071A1 (en) X-RAY DETECTOR FOR USE WITH MICROWAVE FREQUENCIES
EP3149506B1 (en) Antenna adapter
FR3014205A1 (en) ANALOG SPECTRUM ANALYZER
WO2019076437A1 (en) Detection sensor with capturing cell having a high-electron-mobility transistor (hemt) and ring resonators
EP3384601B1 (en) Radiofrequency wave filter and filtering device including such a filter
FR2628571A1 (en) MICRO-BAND TECHNOLOGY HYPERFREQUENCY CUTTER FILTER
WO2020120266A1 (en) Method for manufacturing a superconducting lc-type resonator and superconducting resonator thus obtained
FR3129037A1 (en) Reconfigurable filtering device and radio frequency signal acquisition system incorporating such a filtering device
WO2018069255A1 (en) Frequency filtering method
Chen et al. Terahertz metamaterials
FR2605461A1 (en) FERROMAGNETIC RESONATOR FOR MICROWAVE CIRCUITS
FR2841687A1 (en) Temperature compensated radar/telecommunications high frequency phase shifters having energy/phase shift insensitive zone chosen, and two phase shifter series combined providing temperature compensation energy above/below region
EP0743749A1 (en) Method and device for reducing the sensibility to phase errors of a band-pass filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 21/00 20060101ALI20080312BHEP

Ipc: H01Q 21/00 20060101ALN20080312BHEP

Ipc: H01Q 1/36 20060101ALN20080312BHEP

Ipc: H03H 7/32 20060101ALN20080312BHEP

Ipc: H01L 39/12 20060101AFI20080312BHEP

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006003188

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090115

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

26N No opposition filed

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090116

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20111220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130305

Year of fee payment: 8

Ref country code: DE

Payment date: 20121226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121220

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006003188

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006003188

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140113

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140113