EP1842265B1 - Antenne a haut rendement et procédé de fabrication associé - Google Patents
Antenne a haut rendement et procédé de fabrication associé Download PDFInfo
- Publication number
- EP1842265B1 EP1842265B1 EP05823808.0A EP05823808A EP1842265B1 EP 1842265 B1 EP1842265 B1 EP 1842265B1 EP 05823808 A EP05823808 A EP 05823808A EP 1842265 B1 EP1842265 B1 EP 1842265B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- array antenna
- apertures
- antenna according
- array
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/22—Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
Definitions
- the present invention concerns a planar antenna, in particular employable in fixed and mobile terminals adapted for reception of satellite TV and for multimedia satellite links, that is reliable, simple and efficient, having a wide operation bandwidth, a very limited volumetric dimensions, and being extremely inexpensive with reference to the manufacturing, installation, and maintenance costs.
- the present invention further concerns the process of manufacturing such planar antenna.
- reflector antennas suffer from some drawbacks, such as an insufficient aperture efficiency, significant volumetric dimensions, the need of an accurate electric adjustment, and high manufacturing, installation, and maintenance costs.
- a planar antenna benefits in terms of antenna gain from the coherent sum of the contributions due to the individual elements constituting the planar antenna. Such contributions must be coherently added through a Radio Frequency or RF combiner.
- planar antenna The implementing technology of a planar antenna is nowadays essentially based on the microstrips.
- microstrip approach entails advantages in terms of dimensions, ensuring very small thicknesses, microstrip planar antennas have significant losses due to ohmic dissipation of the same microstrip lines.
- Some recently developed solutions in planar technology may mitigate this problem but certainly they cannot solve it, especially at high frequencies, particularly starting from 10 GHz, usuallly used in satellite applications.
- the ohmic loss associated with the BFN that grows with the increase of the antenna dimensions, limits the attainment of the antenna gain, at the same time making the same antenna inefficient. This means that the antenna does not fully exploit its size.
- active antennas suffer from the drawback of being particularly complex and, consequently, expensive.
- use of active elements requires an accurate tracking in amplitude and phase (tuning) of the same, that is hard to achieve and it depends on environmental parameters (for instance temperature), especially with the increase of the operating frequency.
- a further antenna type is the slotted array antenna one.
- These antennas essentially consist in a wave guide provided with suitably designed slots which interrupt the current lines present onto the same guide and which consequently become small radiating elements.
- the wave guide structure may terminate with either a resistive termination, and in this case there is a so-called travelling wave antenna, or a simple short circuit termination, and this case there is a resonant antenna.
- this antenna architecture substantially achieves a linear, not planar, antenna.
- a planar antenna it is necessary to have a set of linear slot antennas provided with a series of combiners which allow the coherent sum of the inputs/outputs of the individual linear antennas. Consequently, the resulting planar antennas are complex, they have significant ohmic losses, and their dimensions are increased by the thickness required by the various components.
- the aim of the radiation pattern peak moves with frequency.
- the operating bandwidth is limited to few percents, of the order of 3-5%, around the central frequency, and a very high accuracy in manufacturing the slots is also necessary.
- Document US 5909191 discloses a multiple beam or phased array antenna and beamforming network integrated into a single package, wherein the antenna element and beamforming network comprises a plurality of radiators and a number of microwave components.
- the preferred embodiment of the array antenna 1 comprises a set of shaped apertures 2 tapered as a truncated square based pyramid, each one of which constitutes an array radiating element.
- the square shape of the shaped apertures 2 of the antenna of Figures 1-4 is shown by way of example and not by way of limitation, other embodiments being able to adopt different shapes of the base of the truncated pyramid of the apertures 2, such as for instance rectangular, circular, hexagonal, octagonal shapes, depending on the electromagnetic characteristics which are desired to obtain for the specific applications of the antenna.
- the truncated pyramid shape of the apertures 2 is shown by way of example and not by way of limitation.
- the apertures 2 are fed by means of a BFN network of parallel type for a fine control of the characteristics of the antenna 1 in terms of operative bandwidth, gain, minimum movement of the beam within the band, purity of polarization.
- the BFN network is based on the use of wave guides 3 directly obtained from the bulk of the antenna 1, underneath the radiating elements 2 of the antenna 1.
- outputs 4 of the square wave guides of the BFN network are arranged with the cross section tilted by 45 degrees in respect to the bases of the truncated pyramid of the apertures 2.
- the antenna also comprises a wave guide input (or an output) (not shown), having square section, that is preferably arranged either sideways to the antenna 1 or backwards, onto the surface opposite to that of the radiating apertures 2.
- the size and the shape of the wave guides 3, as well as the BFN network configuration depends on the electromagnetic characteristics which are desired to obtain for the specific applications of the antenna, such as for instance on the frequency band wherein the antenna is used.
- the antenna 1 comprises a lower layer 5, an intermediate layer 6, and an upper layer 7 (that corresponds to the radiating elements 2), each one of which is obtained from the machining of the material(s) used for manufacturing the antenna 1.
- Such machining of the three layers 5, 6, and 7 makes a portion of the wave guides 3 of the BFN network.
- the three layers 5, 6, and 7 are integrally coupled to each other so as to make the respective portions of the BFN network wave guides 3 and the apertures 2 correspond to each other (by way of example and not by way of limitation, through the aid of shaped pins of a layer which insert into corresponding notches of the adjacent layer).
- the material may be either metallic or low-cost material, such as for instance plastic that is subsequently metallised.
- the machining of each one of the three layers is a micromachining, for instance a mechanical and/or electrical one, and the integral coupling of the three layers 5, 6, and 7 may be obtained through standard techniques (by way of example and not by way of limitation, through laser welding).
- the machining of each one of the three layers may be simply a moulding, and the integral coupling of the three layers 5, 6, and 7 may be obtained through standard techniques (by way of example and not by way of limitation, through welding).
- the surfaces of the wave guides 3 and horns constituting the shaped apertures 2 are metallised.
- the antenna 1 of Figures 1-4 comprises apertures 2 and two BFN networks capable to operate with two orthogonal polarizations, linear and/or circular ones.
- the antenna of Figure 1 thus allows to obtain 2 largely insulated simultaneous polarizations.
- inventions may comprise radiating apertures and one single BFN network capable to provide a single polarization.
- the characteristics of the two operating polarizations, corresponding to two separated inputs (or outputs) of the antenna 1, are very similar over the whole operating band.
- the antenna according to the invention may be used both in passive configuration, (such as that shown in Figures 1-4 ) since it is characterised by extremely reduced ohmic losses of the BFN network, and in "active antenna" configuration, i.e. provided (always within the antenna body) with a LNA amplifier and/or a SSPA amplifier and/or a Tx/Rx module and/or a phase shifter.
- the different embodiments of the antenna according to the invention may comprise a number of machined layers different from three, depending on the complexity of the BFN network that is to be made, and on the possible active components of an "active antenna" configuration.
- the antenna according to the invention may operate with any type of polarization, for instance single linear, dual linear, single circular, dual circular, with a separation of the orthogonal components better than 30 dB.
- the circular polarization may be obtained either at BFN network level, or through the insertion of suitable dielectric "slabs" into the radiating apertures, or through the use of an external polariser.
- the antenna according to the invention has an aperture efficiency substantially equal to the theoretical value, with a whole antenna efficiency better than 85%.
- the technology of the antenna causes it to be preferably used at high frequencies, up to the order of 100 GHz.
- the antenna according to the invention may be used in great many applications, as for instance: TV satellite reception in Ku band; multimedia satellite link in Ku band; multimedia satellite link in Ka band; high definition TV satellite reception in Ka band; connection between radio links from Ku band upwards; use as mobile terminal on transport means, such as trains, cars, airplanes, and shifts, in C, Ka, Ku, Q/V, and W bands; use as fixed terminal; and use for terrestrial remote sensing applications (repeater/calibrator) in C band and in X band.
- TV satellite reception in Ku band multimedia satellite link in Ku band
- multimedia satellite link in Ka band high definition TV satellite reception in Ka band
- connection between radio links from Ku band upwards use as mobile terminal on transport means, such as trains, cars, airplanes, and shifts, in C, Ka, Ku, Q/V, and W bands
- use as fixed terminal and use for terrestrial remote sensing applications (repeater/calibrator) in C band and in X band.
- the antenna according to the invention may need a spatial discrimination among contiguous satellites.
- this is easily obtainable by positioning the antenna 1 at 45 degrees (in case of square antenna as that of Figures 1-4 ) and exploiting the natural taper of amplitude illumination (amplitude taper) towards the edge of the same antenna 1 in the horizontal plane, resulting in very low side lobes of the radiation pattern.
- this shape of amplitude distribution corresponds to an antenna far field radiation pattern characterised by extremely low side lobes, capable of discriminating the reception of the desired signal from that of interfering signals coming from other satellites located close to that of interest.
- the antenna 1 of Figures 1-4 provides for linear polarizations which are parallel (horizontal) and perpendicular (vertical) in respect to the aforesaid horizontal plane (that is the reason because the output square wave guide horns 4 of the BFN network are placed with the cross section tilted by 45 degrees in respect to the bases of the truncated pyramid of the apertures 2).
- an antenna 1' according to the invention comprises a set of square radiating apertures 2 arranged in an array having a substantially rhombus-like configuration, wherein the number of radiating apertures 2 in the vertical columns decreases from the centre of the antenna towards the sides of it.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Claims (19)
- Antenne planaire réseau (1, 1'), comprenant un ensemble d'au moins deux éléments rayonnants de réception et/ou d'émission et des guides d'onde (3) agencés à l'intérieur du substrat de l'antenne (1, 1'), chacun desdits éléments rayonnants comprenant une ouverture (2), caractérisée en ce que lesdits au moins deux éléments rayonnants de réception et/ou d'émission sont alimentés au moyen d'au moins un réseau conformateur de faisceau ou BFN de type parallèle, ledit au moins un réseau BFN étant réalisé par le biais desdits guides d'onde (3) agencés à l'intérieur du substrat de l'antenne (1, 1'), selon laquelle chacune des ouvertures (2) est un cornet d'entrée et/ou de sortie (4) d'un guide d'onde (3) du réseau BFN.
- Antenne réseau selon la revendication 1, caractérisée en ce qu'elle comprend un réseau BFN pour chaque polarisation d'onde que l'antenne est capable de recevoir et/ou d'émettre.
- Antenne réseau selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend au moins une connexion de guide d'onde d'entrée et/ou de sortie, agencée soit sur les côtés et/ou sur la surface opposée à celle des ouvertures (2).
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une ouverture (2) a une forme carrée ou rectangulaire ou circulaire ou hexagonale ou octogonale.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une ouverture (2) est effilée.
- Antenne réseau selon la revendication 5, caractérisée en ce que ladite au moins une ouverture (2) a une forme de pyramide tronquée ou une forme de cône tronqué.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle reçoit et/ou émet simultanément des ondes de polarisation duale.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce que les ouvertures (2) sont agencées dans une matrice carrée, chacune des ouvertures (2) ayant une forme de pyramide tronquée basée sur un carré et étant alimentée par une sortie (4) d'un guide d'onde carré correspondant (3) dudit au moins un réseau BFN dont la section transversale est inclinée de 45 degrés par rapport à la base carrée de la pyramide tronquée de l'ouverture (2).
- Antenne réseau selon l'une quelconque des revendications 1 à 7, caractérisée en ce que chacune des ouvertures (2) a une forme de pyramide tronquée de base carrée et est alimentée par une sortie (4) d'un guide d'onde carré correspondant (3) dudit au moins un réseau BFN dont la section transversale correspond à une base carrée de la pyramide tronquée de l'ouverture (2), l'ensemble des ouvertures (2) étant agencées dans une matrice ayant une configuration semblable à un losange, dans laquelle le nombre d'ouvertures (2) dans les colonnes verticales de la matrice diminuent du centre de l'antenne vers les côtés de celle-ci.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre des composants réagissant aux microondes.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est capable de fonctionner dans la bande C et/ou dans la bande Ku et/ou dans la bande Ka et/ou dans la bande Q/V et/ou dans la bande W.
- Antenne réseau selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est faite en un matériau métallique.
- Antenne réseau selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle est faite en un matériau plastique, les surfaces des guides d'onde (3) et des ouvertures (2) étant métallisées.
- Procédé de fabrication d'une antenne planaire réseau (1, 1') selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend les étapes suivantes :- fabrication d'au moins deux couches (5, 6, 7) de sorte à faire dans chacune desdites au moins deux couches (5, 6, 7) au moins une partie respective des guides d'onde (3) du réseau BFN et/ou des ouvertures (2) ;- couplage intégral desdites au moins deux couches (5, 6, 7) de sorte à faire en sorte que les parties respectives de couches adjacentes correspondent les unes aux autres.
- Procédé selon la revendication 14, caractérisé en ce que l'antenne réseau à fabriquer est une antenne réseau selon la revendication 12, et en ce que l'étape de fabrication desdites au moins deux couches (5, 6, 7) est une étape de microusinage mécanique et/ou électrique.
- Procédé selon la revendication 15, caractérisé en ce que l'étape de couplage intégral desdites au moins deux couches (5, 6, 7) est une étape de soudage.
- Procédé selon la revendication 14, caractérisé en ce que l'antenne réseau à fabriquer est une antenne réseau selon la revendication 13, et en ce qu'il comprend en outre l'étape suivante :- métallisation des surfaces des guides d'onde (3) et des ouvertures (2).
- Procédé selon la revendication 17, caractérisé en ce que l'étape de fabrication desdites au moins deux couches (5, 6, 7) est une étape de moulage.
- Procédé selon la revendication 17 ou 18, caractérisé en ce que l'étape de couplage intégral desdites au moins deux couches (5, 6, 7) est une étape de soudage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000605A ITRM20040605A1 (it) | 2004-12-10 | 2004-12-10 | Antenna piatta ad alta efficienza e relativo procedimento di fabbricazione. |
PCT/IT2005/000703 WO2006061865A1 (fr) | 2004-12-10 | 2005-11-29 | Antenne a haut rendement et procede de fabrication associe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1842265A1 EP1842265A1 (fr) | 2007-10-10 |
EP1842265B1 true EP1842265B1 (fr) | 2017-11-01 |
Family
ID=35964303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05823808.0A Not-in-force EP1842265B1 (fr) | 2004-12-10 | 2005-11-29 | Antenne a haut rendement et procédé de fabrication associé |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1842265B1 (fr) |
ES (1) | ES2657869T3 (fr) |
IT (1) | ITRM20040605A1 (fr) |
WO (1) | WO2006061865A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10931003B2 (en) | 2018-05-08 | 2021-02-23 | Systems And Software Enterprises, Llc | Antenna with modular radiating elements |
EP3961816B1 (fr) * | 2016-06-10 | 2024-02-28 | INTEL Corporation | Agencement d'antenne réseau |
Families Citing this family (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110279329A1 (en) * | 2007-09-27 | 2011-11-17 | Tobias Kleinert | Roof antenna designed for mounting on a vehicle roof of a vehicle |
CN102414922B (zh) | 2009-04-30 | 2014-10-01 | Qest量子电子系统有限公司 | 用于卫星通信的宽带天线系统 |
US8988300B2 (en) | 2011-12-06 | 2015-03-24 | Viasat, Inc. | Dual-circular polarized antenna system |
DE102011121138B4 (de) | 2011-12-15 | 2021-02-04 | Lisa Dräxlmaier GmbH | Breitband-Antennensystem zur Satellitenkommunikation |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
DE102014112487A1 (de) * | 2014-08-29 | 2016-03-03 | Lisa Dräxlmaier GmbH | Gruppenantenne aus hornstrahlern mit dielektrischer abdeckung |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
EP3211717B1 (fr) * | 2014-10-21 | 2018-12-05 | Nec Corporation | Antenne plane |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9640847B2 (en) | 2015-05-27 | 2017-05-02 | Viasat, Inc. | Partial dielectric loaded septum polarizer |
US9859597B2 (en) | 2015-05-27 | 2018-01-02 | Viasat, Inc. | Partial dielectric loaded septum polarizer |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10128570B2 (en) * | 2016-10-13 | 2018-11-13 | The Boeing Company | System and method for wireless communications using an adaptable diamond phased array antenna system |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN114725696B (zh) * | 2022-04-25 | 2023-08-15 | 中国电子科技集团公司第二十九研究所 | 一种具有过渡阵面结构的二维天线阵面及设计方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009501A1 (fr) * | 1988-03-30 | 1989-10-05 | British Satellite Broadcasting Limited | Systeme d'antennes plates a plateaux |
GB2260649B (en) * | 1990-06-14 | 1994-11-30 | John Louis Frederick C Collins | Microwave antennas |
GB2247990A (en) * | 1990-08-09 | 1992-03-18 | British Satellite Broadcasting | Antennas and method of manufacturing thereof |
CA2063914C (fr) | 1991-06-12 | 2002-07-16 | George S. Cohen | Antenne a faisceaux multiples et reseau d'antennes pour l'ajustement du faisceau |
GB9703748D0 (en) | 1997-02-22 | 1997-04-09 | Fortel International Limited | Microwave antennas |
DE19844936C2 (de) | 1998-09-30 | 2001-02-01 | Siemens Ag | Schaltung zur Erzeugung eines Ausgangssignals in Abhängigkeit von zwei Eingangssignalen |
US6246364B1 (en) * | 1999-06-18 | 2001-06-12 | Hughes Electronics Corporation | Light-weight modular low-level reconfigurable beamformer for array antennas |
-
2004
- 2004-12-10 IT IT000605A patent/ITRM20040605A1/it unknown
-
2005
- 2005-11-29 ES ES05823808.0T patent/ES2657869T3/es active Active
- 2005-11-29 WO PCT/IT2005/000703 patent/WO2006061865A1/fr active Application Filing
- 2005-11-29 EP EP05823808.0A patent/EP1842265B1/fr not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3961816B1 (fr) * | 2016-06-10 | 2024-02-28 | INTEL Corporation | Agencement d'antenne réseau |
US10931003B2 (en) | 2018-05-08 | 2021-02-23 | Systems And Software Enterprises, Llc | Antenna with modular radiating elements |
Also Published As
Publication number | Publication date |
---|---|
WO2006061865A1 (fr) | 2006-06-15 |
ES2657869T3 (es) | 2018-03-07 |
EP1842265A1 (fr) | 2007-10-10 |
ITRM20040605A1 (it) | 2005-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1842265B1 (fr) | Antenne a haut rendement et procédé de fabrication associé | |
EP3618182B1 (fr) | Architecture d'alimentation d'antenne fractale bipolarisée utilisant des modes à plaques parallèles orthogonales | |
US7728772B2 (en) | Phased array systems and phased array front-end devices | |
CN111247695B (zh) | 宽带堆叠贴片辐射元件及相关的相控阵列天线 | |
US6650291B1 (en) | Multiband phased array antenna utilizing a unit cell | |
Hirokawa et al. | Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays | |
EP3382800B1 (fr) | Dispositif antenne à lentille de lüneburg | |
EP1597793B1 (fr) | Reseau balaye electroniquement bidimensionnel a bande large avec une alimentation cts compacte et des dephaseurs mems | |
US7898480B2 (en) | Antenna | |
EP2460230B1 (fr) | Procédé et appareil pour élément compact de réseau modulaire à commande de phase | |
US6104343A (en) | Array antenna having multiple independently steered beams | |
EP1597797B1 (fr) | Mosaique bidimensionnelle a balayage electronique presentant un reseau d'alimentation cts compact et des compensateurs de phase mems | |
EP2248222B1 (fr) | Antenne réseau polarisée circulairement | |
US6064350A (en) | Laminated aperture-faced antenna and multi-layered wiring board comprising the same | |
US20060256024A1 (en) | Passive self-switching dual band array antenna | |
US20110181479A1 (en) | Method and apparatus for tri-band feed with pseudo-monopulse tracking | |
US20210336347A1 (en) | Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication | |
EP1064696A1 (fr) | Systeme d'antenne reseau portative a commande de phase a faible cout et a performances elevees, destine aux satellites | |
US10236589B2 (en) | Active antenna architecture with reconfigurable hybrid beamforming | |
Liu et al. | A 4 by 10 series 60 GHz microstrip array antenna fed by butler matrix for 5G applications | |
AU2014296755B2 (en) | Stacked bowtie radiator with integrated balun | |
EP1886383A2 (fr) | Antenne | |
EP1417733B1 (fr) | Antennes reseau a commande de phase comprenant des dephaseurs accordables en tension | |
Tanaka et al. | Beam-steerable planar array antennas using varactor diodes for 60-GHz-band applications | |
EP0751582A2 (fr) | Agencement d'antenne multifonctionnelle avec des cornets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070530 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20091015 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170612 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SPACE ENGINEERING S.P.A. |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CATALANI, ALFREDO Inventor name: D'IPPOLITO, ANNAMARIA Inventor name: RUSSO, PASQUALE Inventor name: ROSA, ALESSANDRO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 942908 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005052997 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2657869 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180307 Ref country code: NL Ref legal event code: MP Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 942908 Country of ref document: AT Kind code of ref document: T Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180206 Year of fee payment: 13 Ref country code: CH Payment date: 20180130 Year of fee payment: 13 Ref country code: DE Payment date: 20180123 Year of fee payment: 13 Ref country code: GB Payment date: 20180130 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180201 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180202 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180208 Year of fee payment: 13 Ref country code: FR Payment date: 20180126 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005052997 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171129 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005052997 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051129 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171101 |