EP1840466B1 - Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine - Google Patents

Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine Download PDF

Info

Publication number
EP1840466B1
EP1840466B1 EP07075224.1A EP07075224A EP1840466B1 EP 1840466 B1 EP1840466 B1 EP 1840466B1 EP 07075224 A EP07075224 A EP 07075224A EP 1840466 B1 EP1840466 B1 EP 1840466B1
Authority
EP
European Patent Office
Prior art keywords
chamber
combustion chamber
edge
opening
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07075224.1A
Other languages
German (de)
English (en)
Other versions
EP1840466A1 (fr
Inventor
Romain Biebel
Luc Daguenet
Denis Sandelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP1840466A1 publication Critical patent/EP1840466A1/fr
Application granted granted Critical
Publication of EP1840466B1 publication Critical patent/EP1840466B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube

Definitions

  • the invention relates to the field of turbine engine combustion chambers and more specifically to the configuration of the dilution air intake openings and the cooling air passage perforations arranged in the walls of the flame tube or in any element of combustion chamber wall.
  • the Figure 1B shows an axial sectional view of a turbomachine combustion chamber 1 according to the state of the art, as described in the patent document EP-A-0 743 490 in the name of the plaintiff.
  • the combustion chamber 1 is formed of two concentric tubular side walls 3 constituting a flame tube (extending in the longitudinal direction L-L of the chamber, parallel here to the axis X-X of the turbomachine).
  • the chamber is closed at one end, upstream side M, by an annular bottom wall 4 where there are fuel injectors 6 and combustion air inlet 7, the combustion of which generates a flow of combustion gas.
  • the chamber is terminated at the other end, downstream side V, by an annular orifice 5 for exhausting the stream G of burnt gases to the rotary gas turbine of the turbomachine.
  • openings 8 or dilution holes are arranged in the side walls 3 of the chamber 1, to mix a complementary fresh air flow A in the flow G of combustion gas which propagates downstream V of the chamber 1
  • This addition of fresh air A serves to dilute the hot gases G, to reduce their temperature, to cool the walls and to increase the proportion of air in the gas mixture.
  • This is to try to optimize the stoichiometry of the combustion air / fuel mixture, to burn the unburnt and to reduce the emissions of NOx-nitrogen oxides, with a view to improving the combustion of the gaseous mixture G (in particular by prolonging , over the whole extent of the chamber, the combustion of the initially too rich mixture, on ignition).
  • the dilution air inlet openings 8 pierced in the side walls 3 are arranged along the circumference of the tubular walls at a central axial position between the bottom M and the orifice 5 of the chamber 1.
  • the opening 8 ' is obtained by simple normal drilling (with a forest or by punch cutting) of a cylindrical bore with straight edges, perpendicular to the wall 3 of the chamber 1.
  • the opening 8' can also be performed by laser.
  • the walls 3 of the chamber 1 comprise perforations 9, of tiny dimensions. These micro-perforations are distributed over the extent of these metal walls 3, with a preferential concentration near the dilution openings 8 '.
  • These perforations (in English “impingement holes”) are used for the injection of micro-air flow whose primary role is to cool the metal mass of the side walls 3 to enable them to withstand very high temperatures (over 1000 °) C) Hot gases G in the combustion chamber 1. It is appropriate here to distinguish these micro-cooling air injection perforations, referred to herein as cooling perforations, with respect to relatively large intake openings.
  • dilution air here called dilution openings.
  • the object of the invention is to overcome the disadvantages of current solutions and to make a combustion chamber with dilution openings to optimize the admission of the air flow while avoiding, as far as possible, the turbulence and the formation of hot spots, detrimental to the thermo-mechanical behavior of the combustion chamber and its service life.
  • the invention relates to a turbomachine annular combustion chamber having a bottom wall, extending transversely to a longitudinal axis of extension of the chamber, and side walls extending longitudinally from the bottom wall, located upstream of the chamber, up to a combustion gas flow ejection orifice, located downstream of the chamber, the side walls having at least one row of dilution air intake openings of the flow of combustion gas, with the particularity that at least one dilution opening has an upstream edge projecting towards the inside of the chamber and an asymmetric downstream edge of the upstream edge with respect to a transverse plane to the wall, the light of the opening having an axis oriented in a direction oblique to the wall, facing inwards and downstream of the chamber.
  • the downstream edge protrudes towards the outside of the chamber.
  • the downstream edge is less salient than the upstream edge.
  • downstream edge is substantially rectilinear.
  • the upstream edge is folded in a direction oblique with respect to the side wall and facing inwards and downstream of the chamber.
  • downstream edge is folded in a direction oblique with respect to the side wall and oriented towards the outside and upstream of the chamber.
  • the bore of the opening may comprise substantially cylindrical walls.
  • the opening has an elliptical section at the surface of the side wall.
  • the elliptical section of the opening may have a major axis directed in a longitudinal direction of the chamber from upstream to downstream.
  • the major axis of the ellipse of the opening can be directed substantially transversely.
  • the projecting edge of the opening extends and is smoothed transversely and / or the protrusion of the upstream projecting edge decreases progressively from upstream to downstream.
  • At least one projecting edge has an arch form.
  • the upstream edge forms an arcade projecting inwards and downstream of the chamber and / or the downstream edge forms an arcade projecting outwards and upstream of the chamber.
  • the arc or openings of the opening are elongated transversely.
  • the side wall has a plurality of cooling air passage perforations.
  • These cooling perforations are arranged in an area around the edge of the dilution opening.
  • cooling perforations may be provided on the downstream periphery of the dilution opening.
  • the periphery of the opening has a higher density of cooling perforations than the rest of the side wall of the chamber.
  • the cooling perforations are directed obliquely with respect to the surface of the side wall, in particular the cooling perforations are oriented obliquely in the direction going from upstream to downstream, following the passage of the air from the outside to the inside of the room.
  • the invention applies to a turbomachine provided with such a combustion chamber.
  • FIGS. 2, 3 and 4 represent three embodiments of dilution air inlet openings 10, 20, 30 in a combustion chamber side wall element 3, these three embodiments showing that the dilution opening has asymmetrical edges 11/12, 21/22 and 31/32. More precisely, the upstream edge 11/21/31 and the downstream edge 12/22/32 of the opening are not symmetrical with respect to a plane TT transverse to the side wall 3.
  • the combustion chamber side walls are made of metal materials, especially refractory metal alloys capable of withstanding creep and oxidation and this, at very high temperatures (especially higher than 1000 ° C) prevailing inside a combustion chamber.
  • the wall elements presented here can be made from rolled and pressed nickel-base metal sheets, in particular an alloy of nickel, chromium and iron in which nickel predominates, such as Hastelloy X, or a cobalt-based alloy, especially combining cobalt, chromium, nickel, tungsten and where cobalt is the majority, such as HA 188.
  • the dilution openings 10, 20, 30 made in a chamber wall 3 according to the invention comprise an upstream edge 11, 21 or 31 projecting towards an inner side of the chamber 1, and a downstream edge 12, 22 or 32 not prominent towards the interior of the chamber 1.
  • the protrusion of the upstream edge 11, 21, 31 is preferably directed obliquely HH with respect to the wall 3, the upstream edge 11, 21, 31 being folded down according to a oblique direction HH oriented inwardly 1 and downstream V of the chamber, the direction HH being substantially inscribed in the longitudinal plane LL of the chamber 1.
  • the shape of the downstream edge 12, 22, 32 of the opening 10, 20, 30 may be the subject of several variant embodiments, as illustrated in the figures.
  • the downstream periphery 12 of the opening 10 has a straight edge, that is to say a sharp edge 12 not salient, inscribed in the extension of the side wall 3 (edge plane or rectilinear).
  • the opening 20 has a downstream edge 22 slightly projecting outwardly of the chamber 1, the downstream edge 22 (facing outwards) being less protruding than the upstream edge 21 (facing inwards).
  • the opening 30 has a downstream edge 32 projecting outwardly from the chamber 1, the downstream edge 32 being here substantially projecting outwards as the upstream edge 31 is projecting inwardly 1.
  • the edges 31 and 32 of the opening may be symmetrical with respect to a central point O of the opening 30, without however being symmetrical with respect to a plane TT transverse to the wall 3.
  • An advantage of an opening according to the invention having a downstream edge 22 or 32 protruding outwards is to be able to capture and divert the flow A of fresh air that runs along the outside of the walls 3 of the chamber 1 and therefore d to accentuate the flow D of intake of fresh air into the chamber 1. Depending on the prominence of the downstream edge 22 or 32 towards the outside, this accentuation will be more or less marked.
  • the downstream edge may, however, be slightly protruding towards the interior of the chamber, the downstream edge being less protruding towards the inside than the upstream edge. Because the downstream edge is less protruding than the upstream edge, it no longer forms a prominent ridge inside the chamber and is no longer exposed to the incidence of hot gas flow.
  • the opening of the wall thus has an upstream edge directed obliquely in the direction of the hot gas flow.
  • the upstream edge is folded down and has a reduced prominence inside the chamber relative to a 'flanged' hole of the prior art.
  • the gas flow arrives with an oblique incidence on the upstream edge of the dilution opening according to the invention.
  • the oblique orientation of the upstream edge protruding inside the chamber limits the turbulence of the hot gas flow in the wake downstream of the opening.
  • downstream edge does not protrude symmetrically to the upstream edge inside the chamber, which inhibits the formation of a vortex on the upstream and downstream edges of the opening.
  • the advantage of the opening 10, 20, 30 according to the invention is to reduce the possibility of turbulence formation on the downstream edge 12,22,32 and to inhibit the appearance of hot spots in the wake of the opening.
  • Another advantage of the invention is that it makes it possible to implant micro-perforations 19, 29, 39 for the injection of the flow R of cooling air into the zone immediately near the edge of the opening 10, 20, 30 .
  • such perforations 19 can be pierced in the downstream edge 10, as close as possible to the dilution opening 10. This effectively cools the zone or zones that were most exposed to the formation of hot spots, or even to Burns.
  • Increasing the cooling efficiency R of the walls can make it possible to improve the service life of the combustion chamber 1 and reduce its maintenance frequency.
  • FIG 5 illustrate, from different angles of view, the form of a dilution opening 10 arranged according to an embodiment not forming part of the invention, in which the dilution opening 10 comprises an upstream edge 11 projecting towards the inside of the chamber, while the downstream edge 12 does not protrude either inwardly or outwardly of the chamber.
  • the opening 10 From an internal point of view 5A of the chamber, the opening 10 has an upstream projecting edge and a straight downward or trailing edge, that is to say that the wall 12 downstream of the opening 10 is flat until 'at the edge of the latter.
  • the wall at the downstream edge 12 of the opening is preferably flat or more generally rectilinear.
  • the opening 10 From an outside point of view 5B, the opening 10 has an upstream rim 11 entering and a straight or smooth downstream edge 12.
  • downstream edge 12 is substantially non-prominent with respect to the adjacent areas of the wall 3 which immediately surround it and generally it is less prominent than the ridge of the upstream edge 11.
  • the upstream edge 11 of the opening 10 projects towards the inside of the chamber and forms a folded or curved wall portion on the inside of the chamber. wall 3.
  • the wall portion of the upstream edge 12 is folded in an oblique direction HH relative to the surface of the wall 3 of the chamber.
  • the folded wall portion of the upstream edge 12 preferably extends obliquely at an acute angle ( ⁇ less than 90 °) facing inwards and downstream of the chamber.
  • the dilution opening 10 has an upstream edge 11 in the form of an arcade 13 or skylight 13 of the type "curved skylight", that is to say in the form of a curved arcuate arch 13 whose side flanges Are gradually softened to melt in the plane of the wall 3.
  • the arcuate arch 13 formed by the upstream edge 11 is supported on generatrices HH oblique to the wall 3 and facing inwards and towards the wall. downstream of the room.
  • the light of the opening 10 is oriented obliquely inwards and downstream relative to the wall 3 of the chamber.
  • the downstream edge 12 of the opening 10, that is to say about the half-circumference of the downstream side of the opening 10, has no prominence, either inside or outside.
  • such a form of dilution opening 10 makes it possible to implant micro-perforations 19 for the passage of cooling air around the opening 10 and as close as possible to the edge 12 of the opening 10.
  • the bore of the hole of the dilution opening itself has an elliptical cross section, in particular with a major axis directed transversely.
  • the orifice of the opening may have a transverse dimension that is as wide as, or even wider than, its longitudinal dimension at the surface of the wall 3.
  • the views of the figure 6 illustrate from different angles of view the shape of a dilution opening 30 arranged according to the third embodiment of the invention.
  • the dilution opening 30 has an upstream edge 31 in the form of an arcade or skylight of the type "curved skylight”, folded obliquely inwardly 1 of the chamber, to which is added a downstream edge 32 in the form of arcade or “window with curved plays", but folded obliquely towards the outside of the chamber 1.
  • the downstream edge 32 like the upstream edge 31, has a curved arc shape whose lateral edges 34 are progressively softened until they melt in the plane of the wall 3.
  • the inwardly oriented arch 31 formed by the upstream edge and the outwardly oriented arch 32 formed by the downstream edge may abut generatrices parallel to the H-H axis as shown in views 6A and 6C.
  • the vaults may follow non-parallel generatrices (not shown).
  • an opening having an upstream edge 31 projecting internally 1 towards downstream V according to the pivot angle (angle ⁇ less than 90 ° preferably) and a downstream edge 32 protruding outwardly upstream M also follows the pivot angle ⁇ .
  • the opening 30 then has a center of symmetry O although the upstream 31 and downstream edges 32 are antisymmetric with respect to a transverse plane T-T perpendicular to the wall 3.
  • the angle ⁇ is an acute angle. It can be of the order of 20 ° to 60 °, preferably chosen between 30 ° and 50 °, typically about 40 ° -45 °.
  • such forms of openings are obtained by matrix stamping.
  • the orifice formed on the surface of the wall 3 has an elliptical cross section whose major axis is oriented longitudinally in the direction LL
  • the bore of the hole of the opening 30 has an elliptical cross section with a major axis E arranged in the transverse direction. This makes it possible to obtain an orifice 30 having, at the surface of the wall 3, a transverse dimension E that is as large as, or much wider than, its longitudinal dimension LL.
  • the arched arcade 32 formed by the downstream edge projecting outwards and upstream M with respect to the chamber 1, advantageously makes it possible to capture, in the manner of a scoop or a trough, the flow A fresh air circulates outside, along the wall 3.
  • the flow A of fresh air circulating around the chamber 1 from upstream to downstream can thus be deflected easily and almost without loss of pressure (no loss of load) to the interior of the chamber 1, which facilitates its admission.
  • the flow D of fresh air admitted can go along the wall 3 by forming a laminar flow which cools the wall 3 and advantageously isolates this wall. ci of the flow G of hot gases.
  • the flow D of fresh air admitted is advantageously folded by the roof of the upstream edge 31 and is further plated under the influence of the flow G of hot gases.
  • such a dilution opening 30 provided with an upstream edge 31 projecting internally and a downstream edge 32 protruding outwardly, makes it possible to drill micro-perforations 39 of cooling air injection (in English "impingement holes") at the most near the edge of the dilution opening 30.
  • Cooling perforations 35 and 36 can be drilled, in particular closer to the periphery of the downstream edge 32 or closer to the periphery of the upstream edge 31.
  • the perforations 35,36,39 of cooling air passage have millimetric or sub-millimetric dimensions (in particular of the order of a tenth of a millimeter to a few millimeters, typically 1/2 mm to 2 mm) .
  • the cooling perforations are preferably drilled in an oblique direction 1-1 towards the inside 1 and downstream V of the chamber 1.
  • the oblique angle ⁇ of the micro-perforations R may be different or of the same order of magnitude as the oblique angle ⁇ of the dilution openings D.
  • the angle ⁇ of the cooling perforations may be of the order of a few degrees to several tens of degrees, the angle ⁇ being generally less than 60 ° relative to the normal T-T at the wall.
  • the holes 19,29,35,36,39 of cooling are advantageously pierced by means of laser beam tooling, of wavelength, of energy and of adequate section, according to the usual techniques.
  • the primary role of these perforations is to make the wall permeable to the air so as to remove calories by convection.
  • the dilution apertures 10, 20, 30 having upstanding edges 11, 21, 31 in the form of a softened arch projecting internally and upstanding edges 12, 22, 32 protruding externally can thus be surrounded by multiple micro-cooling perforations 35. 36 disposed closer to the edge of the opening 10 / 20,30 in the area that was likely to present localized hot spots or burns.
  • the invention applies to a turbomachine comprising a combustion chamber 1 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

    1-Domaine technique et arrière-plan de l'invention
  • L'invention concerne le domaine des chambres de combustion de turbomoteurs et plus précisément la configuration des ouvertures d'admission d'air de dilution et des perforations de passage d'air de refroidissement aménagées dans les parois du tube à flamme ou dans tout élément de paroi de chambre de combustion.
  • La figure 1B montre une vue en coupe axiale d'une chambre de combustion 1 de turbomachine selon l'état de la technique, tel que décrit dans le document de brevet EP-A-0 743 490 au nom de la demanderesse.
  • La chambre de combustion 1 est formée de deux parois latérales 3 tubulaires concentriques, constituant un tube à flamme (s'étendant dans la direction longitudinale L-L de la chambre, parallèle ici à l'axe X-X de la turbomachine). La chambre est fermée à une extrémité, côté amont M, par une paroi de fond 4 annulaire où se situent des injecteurs de carburant 6 et des entrées 7 d'air comburant, dont la combustion engendre un flux de gaz de combustion. La chambre s'achève à l'autre extrémité, côté aval V, par un orifice annulaire 5 d'échappement du flux G de gaz brûlés à destination de la turbine à gaz rotative de la turbomachine.
  • Comme illustré sur la figure 1B, des ouvertures 8 ou trous de dilution sont aménagés dans les parois latérales 3 de la chambre 1, pour mélanger un flux A d'air frais complémentaire dans le flux G de gaz de combustion qui se propage vers l'aval V de la chambre 1. Cette adjonction d'air frais A sert à diluer les gaz brûlants G, à réduire leur température, à refroidir les parois et à augmenter la proportion d'air dans le mélange gazeux. Ceci afin d'essayer d'optimiser la stoechiométrie du mélange air comburant/carburant, de brûler les imbrûlés et de réduire les émissions de NOx -oxydes d'azote-, en vue d'améliorer la combustion du mélange gazeux G (notamment en prolongeant, sur toute l'étendue de la chambre, la combustion du mélange initialement trop riche, à l'allumage).
  • Les ouvertures 8 d'admission d'air de dilution percées dans les parois latérales 3 sont disposées suivant la circonférence des parois tubulaires à une position axiale médiane entre le fond M et l'orifice 5 de la chambre 1.
  • On connaît diverses techniques dans l'art antérieur pour aménager les ouvertures de dilution 8.
  • Comme illustré sur les vues 1A et 1C, il existe des ouvertures de dilution 8' appelées "trous à bord droit". L'ouverture 8' est obtenue par simple perçage normal (avec un forêt ou par découpe à l'emporte pièce) d'un alésage cylindrique à bords francs, perpendiculaires à la paroi 3 de la chambre 1. L'ouverture 8' peut aussi être réalisée par laser.
  • Ces ouvertures de dilution 8' à bords droits selon l'art antérieur ont pour inconvénients de ne pas permettre une bonne admission du flux d'air de dilution D et de ne pas offrir un bon rendement. Le flux A d'air frais comprimé qui circule dans le contournement 2 autour de la chambre 1 de combustion et qui longe les parois latérales 3 de la chambre, est dérouté brusquement à angle droit D pour passer dans l'axe T-T de l'ouverture 8'.
  • Il existe une autre technique connue pour réaliser des ouvertures de dilution 8 comme illustré sur les vues 1B et 1D dans laquelle les ouvertures 8 présentent des "bords tombés", c'est-à-dire des bords rabattus vers l'intérieur de la chambre 1 en respectant un certain degré de courbure (bords comportant des zones "rayonnées" ou arrondies), ce qui leur donne une forme de cratère.
  • Ces ouvertures de dilution 8 à "bords tombés" ont pour inconvénients d'être exposées à l'incidence du flux de gaz brûlants G ce qui provoque l'apparition de points chauds et parfois de zones de brûlure sur la crête du "cratère" formé par le bord de l'ouverture 8 et surtout dans la zone de sillage en aval de l'ouverture, à cause du tourbillon S provoqué par l'incidence du flux longitudinal de gaz brûlant G sur la crête du bord 8 qui fait saillie transversalement à l'intérieur de la chambre 1.
  • Par ailleurs, à côté des ouvertures de dilution 8' (en anglais "dilution holes/apertures"), qui sont de dimensions relativement grandes, les parois 3 de la chambre 1 comportent des perforations 9, de dimensions minuscules. Ces micro-perforations sont réparties sur l'étendue de ces parois métalliques 3, avec une concentration préférentielle aux abords des ouvertures de dilution 8'. Ces perforations (en anglais "impingement holes") servent à l'injection de micro-flux d'air dont le rôle premier est de refroidir la masse métallique des parois latérales 3 pour leur permettre de résister aux températures très élevées (plus de 1000°C) des gaz brûlants G dans la chambre de combustion 1. Il convient, dans la présente, de distinguer ces micro-perforations d'injection d'air de refroidissement, appelées ici perforations de refroidissement, par rapport aux relativement grandes ouvertures d'admission d'air de dilution, appelées ici ouvertures de dilution.
  • Un autre inconvénient des ouvertures de dilution 8 "à bords tombés" est que la courbure des bords rabattus ne permet pas de percer de perforations de refroidissement aux abords immédiats de l'ouverture 8 et précisément dans les zones exposées à la formation de points chauds ou de brûlures, qui nécessiteraient un refroidissement efficace. La déformation des bords de l'ouverture de dilution empêche d'approcher les perforations près des bords sans les affecter.
  • Les documents FR-A-1.052.475 et US-A-5.727.378 décrivent des chambres de combustion comportant des ouvertures de dilution selon l'art antérieur.
  • Le but de l'invention est de pallier aux inconvénients des solutions actuelles et de réaliser une chambre de combustion munie d'ouvertures de dilution permettant d'optimiser l'admission du flux d'air tout en évitant, dans la mesure du possible, les turbulences et la formation de points chauds, nuisibles à la tenue thermo-mécanique de la chambre de combustion et à sa durée de vie.
  • 2-Exposé sommaire de l'invention
  • Pour cela, l'invention concerne une chambre de combustion annulaire de turbomachine possédant une paroi de fond, s'étendant transversalement à un axe longitudinal d'extension de la chambre, et des parois latérales s'étendant longitudinalement depuis la paroi de fond, située en amont de la chambre, jusqu'à un orifice d'éjection de flux de gaz de combustion, situé en aval de la chambre, les parois latérales comportant au moins une rangée d'ouvertures d'admission d'air de dilution du flux de gaz de combustion, avec la particularité qu'au moins une ouverture de dilution présente un bord amont saillant vers l'intérieur de la chambre et un bord aval asymétrique du bord amont par rapport à un plan transversal à la paroi, la lumière de l'ouverture ayant un axe orienté selon une direction oblique par rapport à la paroi, orientée vers l'intérieur et vers l'aval de la chambre.
  • Selon un mode de réalisation, le bord aval est saillant vers l'extérieur de la chambre.
  • De préférence, le bord aval est moins saillant que le bord amont.
  • Selon un autre mode de réalisation, le bord aval est sensiblement rectiligne.
  • Selon une caractéristique avantageuse, le bord amont est rabattu suivant une direction oblique par rapport à la paroi latérale et orienté vers l'intérieur et vers l'aval de la chambre.
  • Selon une autre caractéristique avantageuse, le bord aval est rabattu suivant une direction oblique par rapport à la paroi latérale et orienté vers l'extérieur et vers l'amont de la chambre.
  • L'alésage de l'ouverture peut comporter des parois sensiblement cylindriques.
  • Généralement, l'ouverture présente une section elliptique à la surface de la paroi latérale.
  • En particulier, la section elliptique de l'ouverture peut avoir un grand axe dirigé suivant une direction longitudinale de la chambre allant de l'amont vers l'aval.
  • Alternativement, le grand axe de l'ellipse de l'ouverture peut être dirigé sensiblement transversalement.
  • Avantageusement, le bord saillant de l'ouverture s'étend et s'adoucit transversalement et/ou la proéminence du bord saillant amont diminue progressivement de l'amont vers l'aval.
  • De préférence, au moins un bord saillant a une forme d'arcade.
  • En particulier, le bord amont forme une arcade faisant saillie vers l'intérieur et vers l'aval de la chambre et/ou le bord aval forme une arcade faisant saillie vers l'extérieur et vers l'amont de la chambre.
  • Avantageusement, la ou les arcades de l'ouverture sont allongées transversalement.
  • En outre, il est prévu, selon l'invention, que la paroi latérale comporte une pluralité de perforations de passage d'air de refroidissement.
  • Ces perforations de refroidissement sont aménagées dans une zone autour du bord de l'ouverture de dilution.
  • En particulier, des perforations de refroidissement peuvent être aménagées sur le pourtour aval de l'ouverture de dilution.
  • Il est prévu, avantageusement, que le pourtour de l'ouverture comporte une densité de perforations de refroidissement supérieure au reste de la paroi latérale de la chambre.
  • De préférence, les perforations de refroidissement sont dirigées en oblique par rapport à la surface de la paroi latérale, en particulier les perforations de refroidissement sont orientées obliquement dans le sens allant de l'amont vers l'aval en suivant le passage de l'air de l'extérieur vers l'intérieur de la chambre.
  • L'invention s'applique à une turbomachine muni d'une telle chambre de combustion.
  • 3-Légende des figures
  • D'autres particularités ou avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple non limitatif et faite en regard des figures annexées qui représentent :
    • La figure 1B, précédemment décrite, montre une chambre de combustion de turbomachine, vue en coupe axiale selon l'axe de la turbomachine accompagnées de vues en coupes détaillées 1A, 1C et 1D montrant diverses configurations d'ouvertures d'admission d'air de dilution avec des bords symétriques selon l'art antérieur ;
    • La figure 2 est une vue en coupe longitudinale schématique d'un premier mode de réalisation d'ouverture de dilution munie de bords dissymétriques (bord amont saillant, bord aval droit) ne faisant pas partie de l'invention ;
    • La figure 3 est une vue en coupe schématique d'un deuxième mode de réalisation d'ouverture de dilution avec un bord amont fortement saillant vers l'intérieur et un bord aval faiblement saillant vers l'extérieur, selon l'invention;
    • La figure 4 est une vue en coupe schématique d'un troisième mode de réalisation d'ouverture de dilution avec un bord amont saillant vers l'intérieur et un bord aval également saillant, mais vers l'extérieur, selon l'invention;
    • La figure 5 montre, sous divers angles de vue, un exemple de forme d'ouverture de dilution ne faisant pas partie de l'invention (vues de l'intérieur 5A, de l'extérieur 5B, de profil 5C et vue rasante 5D);
    • La figure 6 montre, sous divers points de vue, une paroi de chambre de combustion munie d'ouvertures de dilution avec un bord amont saillant vers l'intérieur et un bord aval saillant vers l'extérieur, d'après le troisième mode de réalisation de l'invention ;
    • Les figures 7A et 7B montrent une vue intérieure et une vue extérieure rasante dans l'axe longitudinal d'une paroi de chambre de combustion munie d'ouvertures de dilution avec un bord amont saillant vers l'intérieur et un bord aval saillant vers l'extérieur selon le troisième mode de réalisation de l'invention, l'ouverture ayant une forme d'ellipse s'étendant transversalement ;
    • Les figures 8B et 8A montrent une vue d'ensemble et une vue de détail de l'extérieur d'une paroi de chambre de combustion munie de plusieurs ouvertures d'admission d'air de dilution et d'une multitude de perforations d'injection d'air de refroidissement disposées autour de l'ouverture selon l'invention ; et,
    • La figure 9 montre une turbomachine comportant une chambre de combustion selon l'invention.
    4-Description détaillée
  • Les schémas des figures 2, 3 et 4 représentent trois modes de réalisations d'ouvertures 10,20,30 d'admission d'air de dilution dans un élément de paroi latérale 3 de chambre de combustion 1, ces trois figures de réalisation montrant que l'ouverture de dilution comporte des bords dissymétriques 11/12, 21/22 et 31/32. Plus précisément, le bord amont 11/21/31 et le bord aval 12/22/32 de l'ouverture ne sont pas symétriques par rapport à un plan T-T transversal à la paroi latérale 3.
  • Les parois latérales de chambre de combustion sont formées de matériaux métalliques, notamment d'alliages de métaux réfractaires aptes à résister au fluage et à l'oxydation et ceci, aux températures très élevées (notamment supérieures à 1000°C) régnant à l'intérieur d'une chambre de combustion. A titre d'exemple, les éléments de paroi présentés ici, peuvent être réalisés à partir de tôles laminées et embouties en alliage à base de nickel, notamment un alliage de nickel, de chrome et de fer où le nickel est majoritaire, tel que l'Hastelloy X, ou en un alliage à base de cobalt, notamment alliant du cobalt, du chrome, du nickel, du tungstène et où le cobalt est majoritaire, tel que le HA 188.
  • De façon générale, les ouvertures de dilution 10,20,30 réalisées dans une paroi 3 de chambre selon l'invention, comportent un bord amont 11, 21 ou 31 saillant vers un côté intérieur de la chambre 1, et un bord aval 12, 22 ou 32 non proéminent vers l'intérieur de la chambre 1. Le saillant du bord amont 11, 21, 31 est de préférence dirigé en oblique H-H par rapport à la paroi 3, le bord amont 11,21,31 étant rabattu suivant une direction oblique H-H orientée vers l'intérieur 1 et vers l'aval V de la chambre, la direction H-H étant sensiblement inscrite dans le plan longitudinal L-L de la chambre 1.
  • La forme du bord aval 12,22,32 de l'ouverture 10,20,30 peut faire l'objet de plusieurs variantes de réalisation, comme illustré sur les figures.
  • Selon le mode de réalisation schématisé sur la figure 2, ne faisant pas partie de l'invention, le pourtour aval 12 de l'ouverture 10 présente un bord droit, c'est-à-dire un bord franc 12 non-saillant, inscrit dans le prolongement de la paroi latérale 3 (bord plan ou rectiligne).
  • Selon le deuxième mode de réalisation schématisé sur de la figure 3, l'ouverture 20 présente un bord aval 22 légèrement saillant vers l'extérieur de la chambre 1, le bord aval 22 (tourné vers l'extérieur) étant moins saillant que le bord amont 21 (tourné vers l'intérieur).
  • Selon le troisième mode de réalisation schématisé sur la figure 4, l'ouverture 30 présente un bord aval 32 saillant vers l'extérieur de la chambre 1, le bord aval 32 étant ici sensiblement aussi saillant vers l'extérieur que le bord amont 31 est saillant vers l'intérieur 1. Dans ce cas, les bords 31 et 32 de l'ouverture peuvent être symétriques par rapport à un point central O de l'ouverture 30, sans être cependant symétriques par rapport à un plan T-T transversal à la paroi 3.
  • Un avantage d'une ouverture selon l'invention présentant un bord aval 22 ou 32 saillant vers l'extérieur est de pouvoir capter et dévier le flux A d'air frais qui longe l'extérieur des parois 3 de la chambre 1 et donc d'accentuer le flux D d'admission d'air frais dans la chambre 1. Selon la proéminence du bord aval 22 ou 32 vers l'extérieur, cette accentuation sera plus ou moins marquée.
  • Selon une autre alternative de réalisation, non représentée, le bord aval peut toutefois être légèrement saillant vers l'intérieur de la chambre, le bord aval étant moins saillant vers l'intérieur que le bord amont. Du fait que le bord aval est moins saillant que le bord amont, il ne forme plus une crête proéminente à l'intérieur de la chambre et n'est plus exposé à l'incidence du flux de gaz brûlants.
  • En fonctionnement, l'ouverture de la paroi présente ainsi un bord amont dirigé obliquement dans la direction du flux de gaz brûlants. Le bord amont est rabattu et présente une proéminence réduite à l'intérieur de la chambre par rapport à un trou à 'bord tombé' de l'art antérieur. Au lieu de tomber sous incidence normale (comme dans l'art antérieur sur un "bord tombé"), le flux de gaz arrive avec une incidence oblique sur le bord amont de l'ouverture de dilution selon l'invention.
  • Ceci diminue l'exposition du bord de l'ouverture au flux de gaz brûlants et, par conséquent, réduit son élévation de température.
  • De plus, l'orientation en oblique du bord amont saillant à l'intérieur de la chambre limite les turbulences du flux de gaz brûlant dans le sillage en aval de l'ouverture.
  • Cet effet est renforcé par le fait que le bord aval ne fait pas saillie symétriquement au bord amont à l'intérieur de la chambre, ce qui inhibe la formation d'un tourbillon sur les bords amont et aval de l'ouverture.
  • De façon générale, du fait que le bord aval 12, 22 ou 32 est effacé par rapport au saillant du bord amont 11,21 ou 31, l'avantage de l'ouverture 10,20,30 selon l'invention est de réduire la possibilité de formation de turbulences sur le bord aval 12,22,32 et d'inhiber l'apparition de points chauds dans le sillage de l'ouverture.
  • La direction H-H de l'ouverture est avantageusement dirigée en oblique vers l'intérieur 1 et vers l'aval V de la chambre 1, ce qui permet d'obtenir un flux D d'admission d'air de dilution dirigé vers l'intérieur et vers l'aval. Ceci offre un double avantage :
    • le flux A d'air frais qui longe l'extérieur des parois 3 de la chambre 1 est relativement peu dévié (par rapport à une admission normale) et diverge faiblement d'un angle α pour former le flux d'admission D. L'air frais A s'engouffre aisément dans l'ouverture 10,20,30 pour entrer D dans la chambre 1 ;
    • il y a confluence du flux D d'air de dilution admis dans la chambre 1 avec le flux G de gaz de combustion qui se propage longitudinalement L-L dans la chambre 1, ce qui réduit l'apparition de turbulences et optimise le mélange du flux D d'air frais et du flux G de gaz brûlants.
  • Un autre avantage de l'invention est de permettre d'implanter des micro-perforations 19,29,39 d'injection de flux R d'air de refroidissement dans la zone immédiatement à proximité du bord de l'ouverture 10,20,30. En particulier, on peut percer de telles perforations 19 dans le bord aval 10, au plus près de l'ouverture de dilution 10. Ceci permet de refroidir efficacement la ou les zones qui étaient les plus exposées à la formation de points chauds, voire à des brûlures. L'augmentation de l'efficacité du refroidissement R des parois peut permettre d'améliorer la durée de vie de la chambre de combustion 1 et diminuer sa fréquence de maintenance.
  • Les vues de la figure 5 illustrent sous différents angles de vues la forme d'une ouverture de dilution 10 aménagée suivant un mode de réalisation ne faisant pas partie de l'invention, dans lequel l'ouverture de dilution 10 comporte un bord amont 11 saillant vers l'intérieur de la chambre, tandis que le bord aval 12 ne fait pas saillie, ni vers l'intérieur, ni vers l'extérieur de la chambre.
  • D'un point de vue intérieur 5A de la chambre, l'ouverture 10 présente un bord amont saillant et un bord aval droit ou fuyant, c'est-à-dire que la paroi 12 en aval de l'ouverture 10 est plate jusqu'au bord de cette dernière. La paroi au bord aval 12 de l'ouverture est de préférence plane ou plus généralement rectiligne. D'un point de vue extérieur 5B, l'ouverture 10 présente un bord amont 11 rentrant et un bord aval 12 droit ou lisse.
  • Ainsi, le bord aval 12 est sensiblement non-proéminent par rapport aux zones voisines de la paroi 3 qui l'entourent immédiatement et de façon générale il est moins proéminent que la crête du bord amont 11.
  • Le bord amont 11 de l'ouverture 10 fait saillie vers l'intérieur de la chambre et forme une portion de paroi rabattue ou recourbée du côté intérieur de la paroi 3. De préférence, la portion de paroi du bord amont 12 est rabattue selon une direction oblique H-H par rapport à la surface de la paroi 3 de la chambre. La portion de paroi rabattue du bord amont 12 s'étend de préférence en oblique selon un angle aigu (α inférieur à 90°) orienté vers l'intérieur et vers l'aval de la chambre.
  • L'ouverture de dilution 10 présente un bord amont 11 en forme d'arcade 13 ou de lucarne 13 du type "lucarne à jouées galbées", c'est-à-dire en forme de voûte d'arc courbe 13 dont les rebords latéraux 15 sont adoucis progressivement jusqu'à se fondre dans le plan de la paroi 3. La voûte arquée 13 formée par le bord amont 11 s'appuie sur des génératrices H-H obliques par rapport à la paroi 3 et orientées vers l'intérieur et vers l'aval de la chambre. La lumière de l'ouverture 10 est orientée en oblique vers l'intérieur et vers l'aval par rapport à la paroi 3 de la chambre. Le bord aval 12 de l'ouverture 10, c'est-à-dire environ la demi-circonférence du côté aval de l'ouverture 10, ne présente aucune proéminence, ni côté intérieur, ni côté extérieur.
  • De façon avantageuse, une telle forme d'ouverture de dilution 10 permet d'implanter des micro-perforations 19 de passage d'air de refroidissement autour de l'ouverture 10 et jusqu'au plus près du bord 12 de l'ouverture 10. En particulier, on peut percer les perforations de refroidissement 19 (en anglais "impingement holes") sur le pourtour immédiat du bord aval 12 qui est le plus exposé à la formation de zones chaudes ou de brûlures.
  • Il apparaît sur la vue 5B que, du fait de l'orientation en oblique de l'ouverture, celle-ci peut présenter un orifice de dimension transversale (largeur) plus petite que sa dimension longitudinale L-L et donc une forme elliptique à la surface de la paroi 3.
  • Alternativement, on peut prévoir que l'alésage du trou de l'ouverture de dilution a lui-même une section droite elliptique, notamment avec un grand axe dirigé transversalement. Par suite, l'orifice de l'ouverture, peut présenter une dimension transversale aussi large, voire plus large, que sa dimension longitudinale à la surface de la paroi 3.
  • Ceci permet d'étaler l'admission du flux d'air frais sur une grande largeur de la paroi et de former un sillage de refroidissement plus étendu.
  • Les vues de la figure 6 illustrent sous différents angles de vues la forme d'une ouverture de dilution 30 aménagée suivant le troisième mode de réalisation de l'invention.
  • L'ouverture de dilution 30 présente un bord amont 31 en forme d'arcade ou de lucarne du type "lucarne à jouées galbées", rabattue obliquement vers l'intérieur 1 de la chambre, auquel est adjoint un bord aval 32 en forme également d'arcade ou de "lucarne à jouées galbées", mais rabattu obliquement vers l'extérieur de la chambre 1.
  • Comme représenté sur la vue 6D, le bord aval 32, tout comme le bord amont 31, présente une forme d'arc courbe dont les rebords latéraux 34 sont adoucis progressivement jusqu'à se fondre dans le plan de la paroi 3.
  • La voûte 31 orientée vers l'intérieur formée par le bord amont et la voûte 32 orientée vers l'extérieur formée par le bord aval peuvent s'appuyer sur des génératrices parallèles à l'axe H-H comme illustré sur les vues 6A et 6C. Alternativement, les voûtes peuvent suivre des génératrices non parallèles (non représenté).
  • On obtient ainsi une ouverture présentant un bord amont 31 saillant intérieurement 1 vers l'aval V suivant l'angle de pivotement (angle β inférieur à 90° de préférence) et un bord aval 32 saillant extérieurement vers l'amont M suivant également l'angle de pivotement β. L'ouverture 30 présente alors un centre de symétrie O bien que les bords amont 31 et aval 32 sont antisymétriques par rapport à un plan transversal T-T perpendiculaire à la paroi 3.
  • L'angle β est un angle aigu. Il peut être de l'ordre de 20° à 60°, de préférence choisi entre 30° et 50°, typiquement d'environ 40°-45°.
  • De préférence, de telles formes d'ouvertures sont obtenues par emboutissage matriciel.
  • Comme illustré sur les vues 6C et 6D, lorsque l'ouverture 30 est basée sur un alésage cylindrique de section droite circulaire, l'orifice formé à la surface de la paroi 3 présente une section elliptique dont le grand axe est orienté longitudinalement dans la direction L-L
  • De préférence, comme illustré sur les vues des figures 7 et 8, l'alésage du trou de l'ouverture 30 présente une section droite elliptique avec un grand axe E disposé dans la direction transversale. Ceci permet d'obtenir un orifice 30 présentant, à la surface de la paroi 3, une dimension transversale E aussi large, voire beaucoup plus large que sa dimension longitudinale L-L.
  • L'arcade voûtée 32 formée par le bord aval qui fait saillie vers l'extérieur et vers l'amont M par rapport à la chambre 1, permet avantageusement de capter, à la manière d'une écope ou d'un auget, le flux A d'air frais qui circule à l'extérieur, le long de la paroi 3. Le flux A d'air frais qui circule autour de la chambre 1 d'amont vers l'aval peut ainsi être dévié facilement et quasiment sans perte de pression (pas de perte de charge) vers l'intérieur de la chambre 1, ce qui facilite son admission.
  • De l'autre côté, à la sortie de l'orifice, côté intérieur 1 de la paroi 3, le flux D d'air frais admis peut longer la paroi 3 en formant un écoulement laminaire qui refroidit la paroi 3 et isole avantageusement celle-ci du flux G de gaz brûlants. Le flux D d'air frais admis est avantageusement rabattu par la voûte du bord amont 31 et se trouve en outre plaqué sous l'incidence du flux G de gaz brûlants.
  • Avantageusement, comme illustré sur les vues de la figure 8, une telle ouverture de dilution 30 munie d'un bord amont 31 saillant intérieurement et un bord aval 32 saillant extérieurement, permet de percer des micro-perforations 39 d'injection d'air de refroidissement (en anglais "impingement holes") au plus près du bord de l'ouverture de dilution 30. Des perforations de refroidissement 35 et 36 peuvent être percées en particulier au plus près du pourtour du bord aval 32 ou au plus près du pourtour du bord amont 31.
  • Les perforations 35,36,39 de passage d'air de refroidissement présentent des dimensions d'ordre millimètrique ou sub-millimétrique (notamment de l'ordre d'un dixième de millimètre à quelques millimètres, typiquement 1/2 mm à 2 mm). Les perforations de refroidissement sont percées de préférence dans une direction 1-1 oblique orientée vers l'intérieur 1 et vers l'aval V de la chambre 1. Comme illustré sur les figures 2,3,4, l'angle oblique γ des micro-perforations R peut être différent ou du même ordre de grandeur que l'angle oblique β des ouvertures de dilution D.
  • L'angle γ des perforations de refroidissement peut être de l'ordre de quelques degrés à quelques dizaines de degrés, l'angle γ étant généralement inférieur à 60° par rapport à la normale T-T à la paroi.
  • Le perçage des perforations 19,29,35,36,39 de refroidissement s'effectue avantageusement au moyen d'un outillage à rayon Laser, de longueur d'onde, d'énergie et de section adéquate, selon les techniques usuelles. Le rôle premier de ces perforations est de rendre la paroi perméable à l'air de façon à retirer des calories par convection.
  • Les ouvertures de dilution 10,20,30 présentant des bords amonts 11,21,31 en forme d'arcade adoucie saillant intérieurement et des bords avals 12,22,32 saillant extérieurement peuvent ainsi être entourées de multiples micro-perforations de refroidissement 35,36 disposées au plus près du bord de l'ouverture 10/20,30 dans la zone qui était susceptible de présenter des points chauds ou des brûlures localisées.
  • L'invention s'applique à une turbomachine comportant une chambre de combustion 1 selon l'invention.

Claims (19)

  1. Chambre de combustion annulaire de turbomachine possédant une paroi de fond (4), s'étendant transversalement à un axe longitudinal (L-L) d'extension de la chambre (1), et des parois latérales (3) s'étendant longitudinalement depuis la paroi de fond, située en amont (M) de la chambre, jusqu'à un orifice (5) d'éjection de flux de gaz de combustion (G), situé en aval (V) de la chambre, les parois latérales (3) comportant au moins une rangée d'ouvertures (8) d'admission d'air de dilution du flux de gaz de combustion, au moins une ouverture de dilution (10, 20, 30) présentant un bord amont (11, 21, 31) saillant vers l'intérieur de la chambre (1) et un bord aval (12, 22, 32) saillant vers l'extérieur de la chambre (1) et asymétrique du bord amont par rapport à un plan (T-T) transversal à la paroi (3), la lumière de l'ouverture (10, 20, 30) ayant un axe (H-H) orienté selon une direction oblique d' angle (α) par rapport à la paroi, orientée vers l'intérieur et vers l'aval (V) de la chambre (1),
    caractérisée en ce que la paroi latérale (3) comporte en outre une pluralité de perforations (19, 29, 39, 36, 35) de passage d'air de refroidissement aménagées dans une zone autour du bord (12, 31, 32) de l'ouverture de dilution (10, 20, 30).
  2. Chambre de combustion selon la revendication 1, dans laquelle le bord aval (22) est moins saillant que le bord amont (21).
  3. Chambre de combustion selon la revendication 1 ou 2, dans laquelle le bord amont (11, 21, 31) est rabattu suivant une direction oblique (H-H) par rapport à la paroi latérale (3) et orienté vers l'intérieur (1) et vers l'aval (V) de la chambre.
  4. Chambre de combustion selon l'une des revendications 1 à 3, dans laquelle le bord aval (22, 32) est rabattu suivant une direction oblique par rapport à la paroi latérale (3) et orienté vers l'extérieur et vers l'amont (M) de la chambre (1).
  5. Chambre de combustion selon l'une des revendications 1 à 4, dans laquelle l'alésage de l'ouverture (30) comporte des parois (31, 32) sensiblement cylindriques.
  6. Chambre de combustion selon l'une des revendications 1 à 5, dans laquelle l'ouverture (30) présente une section elliptique à la surface de la paroi latérale.
  7. Chambre de combustion selon la revendication 6, dans laquelle la section elliptique de l'ouverture (30) a un grand axe dirigé suivant une direction longitudinale (L-L) de la chambre allant de l'amont (M) vers l'aval (V).
  8. Chambre de combustion selon la revendication 6, dans laquelle le grand axe (E) de l'ellipse de l'ouverture (30) est dirigé sensiblement transversalement (T-T).
  9. Chambre de combustion selon l'une des revendications 1 à 8, dans laquelle le bord saillant (11, 31, 32, 34) de l'ouverture (10, 30) s'étend et s'adoucit transversalement.
  10. Chambre de combustion selon l'une des revendications 1 à 9, dans laquelle la proéminence (13, 15) du bord saillant amont (11, 31) diminue progressivement de l'amont (M) vers l'aval (V).
  11. Chambre de combustion selon l'une des revendications 1 à 10, dans laquelle au moins un bord saillant (11, 31, 32) a une forme d'arcade (13).
  12. Chambre de combustion selon l'une des revendications 1 à 11, dans laquelle le bord amont (11, 31) forme une arcade (13) faisant saillie vers l'intérieur et vers l'aval de la chambre.
  13. Chambre de combustion selon l'une des revendications 1 à 12, dans laquelle le bord aval (32) forme une arcade (34) faisant saillie vers l'extérieur et vers l'amont (M) de la chambre.
  14. Chambre de combustion selon la revendications 12 ou 13, dans laquelle la ou les arcades (13, 34) de l'ouverture (10, 30) sont allongées transversalement(T-T, E).
  15. Chambre de combustion selon l'une des revendications 1 à 14, dans laquelle des perforations de refroidissement (19, 29, 39, 36) sont aménagées sur le pourtour aval (12, 22, 32) de l'ouverture de dilution (10, 20, 30).
  16. Chambre de combustion selon l'une des revendications 1 à 15, dans laquelle le pourtour de l'ouverture comporte une densité de perforations de refroidissement (35,36) supérieure au reste (39) de la paroi latérale (3) de la chambre.
  17. Chambre de combustion selon l'une des revendications 1 à 16, dans laquelle les perforations de refroidissement (19, 29, 39, 36, 35) sont dirigées en oblique (I-I) par rapport à la surface de la paroi latérale (3).
  18. Chambre de combustion selon la revendication 17, dans laquelle les perforations de refroidissement (19, 29, 39, 35, 36) sont orientées obliquement (I-I) dans le sens allant de l'amont (M) vers l'aval (V) en suivant le passage de l'air (R) de l'extérieur vers l'intérieur de la chambre (1).
  19. Turbomachine caractérisée en ce qu'elle comporte une chambre de combustion (1) selon l'une des revendications précédentes.
EP07075224.1A 2006-03-30 2007-03-23 Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine Active EP1840466B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0602744A FR2899315B1 (fr) 2006-03-30 2006-03-30 Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine

Publications (2)

Publication Number Publication Date
EP1840466A1 EP1840466A1 (fr) 2007-10-03
EP1840466B1 true EP1840466B1 (fr) 2018-10-24

Family

ID=37507675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07075224.1A Active EP1840466B1 (fr) 2006-03-30 2007-03-23 Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine

Country Status (7)

Country Link
US (1) US7891194B2 (fr)
EP (1) EP1840466B1 (fr)
JP (1) JP2007271256A (fr)
CN (1) CN101046299A (fr)
CA (1) CA2582634C (fr)
FR (1) FR2899315B1 (fr)
RU (1) RU2354889C2 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387397B2 (en) * 2009-01-27 2013-03-05 General Electric Company Flow conditioner for use in gas turbine component in which combustion occurs
US8438856B2 (en) * 2009-03-02 2013-05-14 General Electric Company Effusion cooled one-piece can combustor
EP2230455B1 (fr) * 2009-03-16 2012-04-18 Alstom Technology Ltd Brûleur pour une turbine à gaz et procédé de refroidissement local d'un flux de gaz chauds passant par un brûleur
US20100269513A1 (en) * 2009-04-23 2010-10-28 General Electric Company Thimble Fan for a Combustion System
US9897320B2 (en) * 2009-07-30 2018-02-20 Honeywell International Inc. Effusion cooled dual wall gas turbine combustors
FR2948988B1 (fr) 2009-08-04 2011-12-09 Snecma Chambre de combustion de turbomachine comprenant des orifices d'entree d'air ameliores
CH703657A1 (de) * 2010-08-27 2012-02-29 Alstom Technology Ltd Verfahren zum betrieb einer brenneranordnung sowie brenneranordnung zur durchführung des verfahrens.
US8590864B2 (en) * 2010-10-21 2013-11-26 Woodward Fst, Inc. Semi-tubular vane air swirler
FR2972027B1 (fr) * 2011-02-25 2013-03-29 Snecma Chambre annulaire de combustion de turbomachine comprenant des orifices de dilution ameliores
US9127551B2 (en) * 2011-03-29 2015-09-08 Siemens Energy, Inc. Turbine combustion system cooling scoop
FR2979416B1 (fr) * 2011-08-26 2013-09-20 Turbomeca Paroi de chambre de combustion
DE102011114928A1 (de) * 2011-10-06 2013-04-11 Lufthansa Technik Ag Brennkammer für eine Gasturbine
FR2991028B1 (fr) * 2012-05-25 2014-07-04 Snecma Virole de chambre de combustion de turbomachine
WO2014104901A1 (fr) * 2012-12-28 2014-07-03 General Electric Company Procédés de renforcement d'ouverture de chambre de combustion et chambre de combustion associée
US9127843B2 (en) 2013-03-12 2015-09-08 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9958161B2 (en) 2013-03-12 2018-05-01 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9228747B2 (en) * 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9366187B2 (en) 2013-03-12 2016-06-14 Pratt & Whitney Canada Corp. Slinger combustor
US9541292B2 (en) 2013-03-12 2017-01-10 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
FR3009747B1 (fr) * 2013-08-19 2018-06-15 Snecma Chambre de combustion de turbomachine pourvue d'un passage d'entree d'air ameliore en aval d'un orifice de passage de bougie
WO2015047509A2 (fr) * 2013-08-30 2015-04-02 United Technologies Corporation Passages de dilution à tourbillonnement à section contractée pour chambre de combustion de moteur à turbine à gaz
RU2581267C2 (ru) * 2013-11-12 2016-04-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Устройство камеры сгорания с регулируемым завихрителем для микро газотурбинного двигателя, где турбиной и компрессором является турбокомпрессор от двс
GB201417429D0 (en) 2014-10-02 2014-11-19 Rolls Royce Plc A cooled component
CA2933884A1 (fr) * 2015-06-30 2016-12-30 Rolls-Royce Corporation Tuile de combustor
US10815789B2 (en) * 2016-02-13 2020-10-27 General Electric Company Impingement holes for a turbine engine component
US11022313B2 (en) * 2016-06-22 2021-06-01 General Electric Company Combustor assembly for a turbine engine
US10337738B2 (en) 2016-06-22 2019-07-02 General Electric Company Combustor assembly for a turbine engine
FR3055950B1 (fr) * 2016-09-14 2019-09-27 Safran Helicopter Engines Chambre de combustion pour turbomachine comprenant des moyens pour ameliorer le refroidissement d'une paroi annulaire dans le sillage d'un obstacle
US20190024895A1 (en) * 2017-07-18 2019-01-24 General Electric Company Combustor dilution structure for gas turbine engine
KR101986729B1 (ko) * 2017-08-22 2019-06-07 두산중공업 주식회사 실 영역 집중냉각을 위한 냉각유로 구조 및 이를 포함하는 가스 터빈용 연소기
US11268438B2 (en) * 2017-09-15 2022-03-08 General Electric Company Combustor liner dilution opening
US10816202B2 (en) 2017-11-28 2020-10-27 General Electric Company Combustor liner for a gas turbine engine and an associated method thereof
US10816203B2 (en) * 2017-12-11 2020-10-27 General Electric Company Thimble assemblies for introducing a cross-flow into a secondary combustion zone
US11137144B2 (en) 2017-12-11 2021-10-05 General Electric Company Axial fuel staging system for gas turbine combustors
US11255543B2 (en) 2018-08-07 2022-02-22 General Electric Company Dilution structure for gas turbine engine combustor
US11181269B2 (en) 2018-11-15 2021-11-23 General Electric Company Involute trapped vortex combustor assembly
FR3095260B1 (fr) * 2019-04-18 2021-03-19 Safran Aircraft Engines Procede de definition de trous de passage d’air a travers une paroi de chambre de combustion
FR3098569B1 (fr) * 2019-07-10 2021-07-16 Safran Aircraft Engines Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
RU201848U1 (ru) * 2020-08-12 2021-01-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Камера сгорания газотурбинного двигателя с активной зоной охлаждения
US11719438B2 (en) * 2021-03-15 2023-08-08 General Electric Company Combustion liner
US11959643B2 (en) * 2021-06-07 2024-04-16 General Electric Company Combustor for a gas turbine engine
US11965653B2 (en) * 2021-06-23 2024-04-23 General Electric Company Dilution air inlets with notched tip and slotted tail for combustor
US11920790B2 (en) 2021-11-03 2024-03-05 General Electric Company Wavy annular dilution slots for lower emissions
US11774100B2 (en) * 2022-01-14 2023-10-03 General Electric Company Combustor fuel nozzle assembly

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE488448A (fr) *
US2638745A (en) * 1943-04-01 1953-05-19 Power Jets Res & Dev Ltd Gas turbine combustor having tangential air inlets for primary and secondary air
US2625792A (en) * 1947-09-10 1953-01-20 Rolls Royce Flame tube having telescoping walls with fluted ends to admit air
FR1052475A (fr) * 1952-03-15 1954-01-25 Snecma Chambres de combustion convenant en particulier aux turbines à gaz
DE1066385B (de) * 1956-11-21 1959-10-01 Rolls-Royce Limited, Derby (Großbritannien) Brennanlage von Gastufbmenaggregaten
US3134229A (en) * 1961-10-02 1964-05-26 Gen Electric Combustion chamber
FR2081220A1 (fr) * 1970-03-19 1971-12-03 Hertel Heinrich
US4244178A (en) * 1978-03-20 1981-01-13 General Motors Corporation Porous laminated combustor structure
US4301657A (en) * 1978-05-04 1981-11-24 Caterpillar Tractor Co. Gas turbine combustion chamber
US4527397A (en) * 1981-03-27 1985-07-09 Westinghouse Electric Corp. Turbine combustor having enhanced wall cooling for longer combustor life at high combustor outlet gas temperatures
US4887432A (en) * 1988-10-07 1989-12-19 Westinghouse Electric Corp. Gas turbine combustion chamber with air scoops
US4944152A (en) * 1988-10-11 1990-07-31 Sundstrand Corporation Augmented turbine combustor cooling
US5220794A (en) * 1988-12-12 1993-06-22 Sundstrand Corporation Improved fuel injector for a gas turbine engine
US5241818A (en) * 1989-07-13 1993-09-07 Sundstrand Corporation Fuel injector for a gas turbine engine
US5174108A (en) * 1989-12-11 1992-12-29 Sundstrand Corporation Turbine engine combustor without air film cooling
US5261224A (en) * 1989-12-21 1993-11-16 Sundstrand Corporation High altitude starting two-stage fuel injection apparatus
US5205117A (en) * 1989-12-21 1993-04-27 Sundstrand Corporation High altitude starting two-stage fuel injection
US5363644A (en) * 1989-12-21 1994-11-15 Sundstrand Corporation Annular combustor
US5263316A (en) * 1989-12-21 1993-11-23 Sundstrand Corporation Turbine engine with airblast injection
US5150570A (en) * 1989-12-21 1992-09-29 Sundstrand Corporation Unitized fuel manifold and injector for a turbine engine
US5277022A (en) * 1990-06-22 1994-01-11 Sundstrand Corporation Air blast fuel injecton system
US5172546A (en) * 1990-11-19 1992-12-22 Sundstrand Corporation Volume enhanced turbine engine combustion zone
US5167122A (en) * 1991-04-30 1992-12-01 Sundstrand Corporation Fuel system for a turbo machine
US5277021A (en) * 1991-05-13 1994-01-11 Sundstrand Corporation Very high altitude turbine combustor
DE9203776U1 (de) * 1992-03-20 1992-05-21 Schreckling, Kurt, 5090 Leverkusen Kleingasturbine, insbesondere zum Antrieb von Flugmodellen
US5317864A (en) * 1992-09-30 1994-06-07 Sundstrand Corporation Tangentially directed air assisted fuel injection and small annular combustors for turbines
US5488829A (en) * 1994-05-25 1996-02-06 Westinghouse Electric Corporation Method and apparatus for reducing noise generated by combustion
FR2733582B1 (fr) * 1995-04-26 1997-06-06 Snecma Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable
US5727378A (en) * 1995-08-25 1998-03-17 Great Lakes Helicopters Inc. Gas turbine engine
US6351949B1 (en) * 1999-09-03 2002-03-05 Allison Advanced Development Company Interchangeable combustor chute
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US6681578B1 (en) * 2002-11-22 2004-01-27 General Electric Company Combustor liner with ring turbulators and related method
US6931862B2 (en) * 2003-04-30 2005-08-23 Hamilton Sundstrand Corporation Combustor system for an expendable gas turbine engine
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20070227149A1 (en) 2007-10-04
CN101046299A (zh) 2007-10-03
CA2582634A1 (fr) 2007-09-30
FR2899315B1 (fr) 2012-09-28
RU2354889C2 (ru) 2009-05-10
RU2007111388A (ru) 2008-10-10
JP2007271256A (ja) 2007-10-18
FR2899315A1 (fr) 2007-10-05
EP1840466A1 (fr) 2007-10-03
US7891194B2 (en) 2011-02-22
CA2582634C (fr) 2015-12-01

Similar Documents

Publication Publication Date Title
EP1840466B1 (fr) Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
EP0334736B1 (fr) Brûleurs à gaz
EP1726783B1 (fr) Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz, équipée d'une baignoire
EP2870410B1 (fr) Bruleur a gaz a combustion de surface
EP1736636B1 (fr) Aube creuse de turbomachine
FR2929323A1 (fr) Procede de refroidissement d'une piece de turbine et piece de turbine correspondante
EP3569929B1 (fr) Ensemble pour une chambre de combustion de turbomachine
EP2040001B1 (fr) Chambre de combustion annulaire de moteur à turbine à gaz
CA2695626C (fr) Turbomoteur a emission de bruit reduite pour aeronef
WO2017013318A1 (fr) Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d'air de forme spécifique
CA2649397A1 (fr) Aube bi-pale avec lames
FR2935042A1 (fr) Injecteur de combustible avec trous d'injection de combustible et procede de fonctionnement.
EP3105506B1 (fr) Module de brûleur en veine
WO2018134501A2 (fr) Chambre de combustion de turbomachine a haute permeabilite
EP2017529B1 (fr) Brûleur
EP3903029B1 (fr) Brûleur a flamme ajustable
WO2014191696A1 (fr) Nacelle de turboréacteur comportant un dispositif d'inversion de poussé à portes, comprenant des flancs intérieurs sur les côtés de l'ouverture
FR2920221A1 (fr) Chambre de combustion avec deflecteurs
FR3102794A1 (fr) Composant de turbomachine comportant des orifices de refroidissement ameliores
EP2166285B1 (fr) Mélangeur pour chaudière
FR3116857A1 (fr) composant de turbomachine comprenant une paroi pourvue de moyens de refroidissement
EP1980788B1 (fr) Brûleur à combustible gazeux
FR3135313A1 (fr) Brûleur à gaz à combustion de surface antidéflagrant et antidétonant.
FR3135909A1 (fr) Procédé d’assemblage de pièces métalliques de massivités différentes et diffuseur centrifuge réalisé avec ce procédé
BE548236A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180515

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007056569

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007056569

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 18

Ref country code: GB

Payment date: 20240220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240220

Year of fee payment: 18

Ref country code: FR

Payment date: 20240220

Year of fee payment: 18