EP1834159A1 - Electronic level sensor - Google Patents

Electronic level sensor

Info

Publication number
EP1834159A1
EP1834159A1 EP05784780A EP05784780A EP1834159A1 EP 1834159 A1 EP1834159 A1 EP 1834159A1 EP 05784780 A EP05784780 A EP 05784780A EP 05784780 A EP05784780 A EP 05784780A EP 1834159 A1 EP1834159 A1 EP 1834159A1
Authority
EP
European Patent Office
Prior art keywords
measuring
capacitor
medium
electrode
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05784780A
Other languages
German (de)
French (fr)
Inventor
Franz Stuhlbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exess Engineering GmbH
Original Assignee
Exess Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exess Engineering GmbH filed Critical Exess Engineering GmbH
Publication of EP1834159A1 publication Critical patent/EP1834159A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Definitions

  • the invention relates to the technical fields of metrology and sensor technology, in particular to the level measurement of fluids (liquids or gases).
  • the subject of the invention is an electronic level gauge with capacitive level detection and microprocessor-based evaluation.
  • the object which is solved by the invention, is the economic, compact and largely independent of the nature of the filling medium and the temperature detection of a Greek ⁇ or the ratio of the fill contents of two fluids with different Dielektrizticians ⁇ constant, without moving parts such as float or like.
  • Capacitive level meters made of layered and glued together circuit board material are already known as described in patent DE 198.50.245 A1, with at least two capacitor pads wherein the printed circuit board material is at the same time a carrier of protective coverings and of the evaluation circuit.
  • spacers are preferably used insulating circuit board materials with recesses.
  • DE 196.44.777 C1 describes a capacitive measuring system with many discrete individual coatings along the measuring path, wherein each individual capacitor represents the state of full or empty.
  • the evaluation is performed by a multiplexer, which controls each electrode individually.
  • DE 199.16.979 A1 describes a method which evaluates the change of the signals with phase shift of 180 degrees, two adjacent capacitance elements as a function of the fill level.
  • EP 401.111 B1 describes a capacitive fill level sensor
  • DE 101 19 555 A1 describes a capacitive fill level sensor with a reference electrode pair which, relative to a height section, has a larger surface area than the pair of measuring electrodes.
  • ITUD20010139 describes a coaxial capacitive sensor with reference capacitance and determines the filling level via the ratio of the charging times.
  • the present invention determines the level height by ratiometric measurement of the displacement current of a measuring capacitor compared to a Referenzkondensa ⁇ gate.
  • the measuring capacitor is preferably a plate capacitor consisting of two elongate planar electrodes (insulating carrier material with metallic coverings). The plates have a distance in which the measuring medium and the supplementary medium can penetrate. The distance is large enough to neglect capillary action.
  • the reference capacitor is arranged at one end of the carrier material for the Messkonden ⁇ capacitor and also represents a Piattenkondensator of electrode surfaces whose distance is a fraction of the electrode spacing of the measuring capacitor, whereby on the one hand, the capacitance is higher and on the other hand, the capillary becomes so large that the Measuring medium is held completely, even with almost empty tank between the electrode surfaces.
  • An alternative arrangement provides a second reference capacitor at the other end of the carrier material for the measuring capacitor.
  • the inventive level is given by the special shape and arrangement of the electrode surfaces to achieve different capillary effects in the measuring capacitor over those in the reference capacitor. Furthermore, it is significant that at the same time the capacitance size of the reference capacitor is adapted to the value of the measuring capacitor filled with the measuring fluid at a much smaller overall length.
  • the ratiometric measurement of the displacement currents allows the use of different fluids or non-mixing fluid combinations.
  • the supplemental medium and measuring medium can be exchanged by "turning it upside down".
  • the possibilities of reducing the distance in the reference capacitor section of the level meter are manifold (for example, thicker coverings, gradation of the support material, attachments, deformations).
  • the distance is reduced by introducing additional pairs of electrodes in the distance between the measuring electrodes.
  • the effective capacitor area is additionally increased.
  • the measurement accuracy is improved by lower edge effects.
  • the main advantages of the invention are therefore given by the solution of the object of the invention.
  • the measuring method in combination of the preferably used Bau ⁇ elements allows low production costs based on the high reliability.
  • Other features include low drift over the lifetime, low temperature drift. No floats or other moving parts are necessary. Manufacturing in bulk is easy, as is calibration.
  • the line current I L is continued in the plate capacitor as a displacement current I v and is proportional to the Kondensator ⁇ area, the frequency and inversely proportional to the distance between the plates and the filling medium when excited by a sinusoidal AC voltage.
  • the equality of I L and I v is valid on the assumption that the dielectric between the capacitor plates has no conductivity. Otherwise, a proportionate line current is added to the displacement current.
  • the current densities j v in the capacitor and J L in the conductor are generally different, since the line cross-section is not equal to the cross section A of the capacitor.
  • the ratiometric measurement (ratio of the measuring capacity C meS s to the reference capacitance C r e f gives a clear continuous or piecewise continuous function of the level A m658 , or the filling level ratio A mess / A ref .
  • the reference medium medium has the typical relative permittivity for the following fluids: Oils: 1.8 - 4; Petroleum 2; Gasoline 2.3; Diesel 2-2.2, benzene 2.28; distilled water 80 at 20 0 C, 48 (100 0 C) ethanol 23; Methanol 32.6. As a result, dielectric ratios of 1.8 to over 40 are possible.
  • Fig. 1 the components of the subject invention.
  • Fig. 2 shows the side view of the subject invention according to Fig.1,
  • Fig. 3 shows an alternative variant in side view.
  • the level meter consists of at least two main carriers (6) preferably of electrically insulating printed circuit board material with metallic coverings, which constitute the capacitor pads (7,8), Schirmungsbeläge (18), and connecting lines for the evaluation electronics (17) and in pairs with their main surfaces at a distance from each other are arranged opposite. If more than two main carriers are used, the number of main carrier surface pairs increases and thus the active area of the capacitor plates increases.
  • the main carrier carries the exciter electrode (13) and the opposite carrier, the reference electrode (s) (14), and the measuring signal electrode (15).
  • Additional main carriers can be arranged between two main carriers, wherein these carriers have both types of electrodes whose main surfaces are oriented in the same direction per type and are connected in parallel by electrical connecting lines. This results in plate capacitors or layer capacitors with measuring (3) and supplemental medium (9) as a dielectric.
  • the measuring capacitor (4) consists of the length component I of the excitation electrode, the measuring electrode and is in the filling level I 1 (immersion depth) with the measuring medium (3) and in the filling reserve I- Ii with the supplemental medium (9). filled.
  • the reference capacitor (5) consists of the reference signal electrode (14) and a portion of the excitation electrode (13).
  • the linear expansion of the reference capacitor (5) is small compared to that of the measuring capacitor (4).
  • suitable measures will increase the capacity coverage. This encompassing: the reduction of the plate distance by
  • any second reference capacitor (26) which is used to determine a unknown dielectric constant of a supplemental medium (9) can be used.
  • one (5) of the two is completely submerged in the medium to be measured (or filled with medium by capillarity), the other one (26) is completely filled by the supplementary medium.
  • Special pot-shaped formations of the main beams or insulating barriers help to prevent the penetration of the other medium.
  • the ratio of measuring surface (8) to measuring capacitor pad spacing compared to the ratio reference signal electrode surface (7) to the reference capacitor pad spacing should be chosen as similar as possible, which can achieve optimal measurement results.
  • Favorable are capacity ratios of 2: 5 to 5: 2 measured with the same filler (dielectric).
  • Schirmungsbeläge are provided on the backs of the outer main carrier. Shielding pads with preferably constant reference potential around the edge regions of the measuring electrodes can also be present.
  • the evaluation electronics is provided on the backs of the outer main carrier, whereby the electronic level meter represents an overall system, which is preferably supplied by two lines, via which at the same time the data exchange of the actual level takes place.
  • Fig. 2 the typical vertical arrangement of the electrodes (13,14,15) in side view is clear.
  • the exciter electrode (13) at a distance from the measuring signal electrode (15) and to the separate reference signal electrode (14).
  • secondary supports (19) with further exciter and reference signal electrodes are recognizable, which are held by the conductor connections (20) in distance and electrically connected.
  • Fig. 3 shows the variant with two reference signal electrodes.
  • An oblique arrangement of the level gauge in the medium is possible.
  • To protect the circuit thin insulating coatings such as paints of synthetic resins, or plastics such as parylene or the like are provided.
  • C A / (2d L ack / ⁇ La c k + d F
  • guide tubes can be used the inside have attachments, guide tabs, warps and the like.
  • a joint or a kink can be attached, whereby an inclination in the tank is facilitated, and thereby the resolution of the Grestands- knife (1) becomes larger because of the longer possible way.
  • An alternative protection can be provided by a heat-shrinkable tube or by plastic casting. Processes are generated, these sheaths must have the necessary recesses for the flow through the fluid.
  • the block diagram in FIG. 4 shows the signal processing according to the invention by the electronics.
  • the electronic oscillator (21) supplies the drive signal for the excitation electrode (13).
  • the resulting alternating current corresponds to the displacement current through the measuring capacitance or the reference capacitance (s).
  • a standard component capacitor (25) is additionally connected to the excitation electrode (13).
  • alternating currents are all rectified by the same assemblies (semiconductor rectifying diodes (22), transimpedance amplifiers (23)), and converted into voltages. Their amount is proportional to the dielectric constant of the media or the media pairing as a function of the level (2) I 1 He is further proportional to the oscillator output voltage and its frequency and the transimpedance gain R.
  • the design of the individual capacitors determines the geometry factor.
  • the analog measurement voltages can be evaluated directly by an analog quotient measuring instrument or preferably by analog-to-digital converter (24) converted into digital values, which are further processed in a microprocessor (27) for calculating the level and output.
  • the reference voltage for the analog-to-digital converter is generated by the standard capacitor current after rectification and current-voltage conversion.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

The invention relates to a device (1) for measuring the level (2) of fluids (gases, liquids) in containers. The ratio of a measuring capacity in relation to a reference capacity is measured. Said device uses the different dielectric properties of two different fluids in order to electronically determine the level. As a result, no displaceable parts, such as a float and similar are necessary. A multi-layered, constructed reference capacitor (5) is completely filled with the measuring fluid (3) in the intermediate chamber of the electrode surfaces (13-16) which are arranged in pairs. The capacitor is used to detect the media specific and temperature-dependent dielectricity constants. The intermediate chamber of the measuring capacitor is filled with the measuring fluid but only in proportion to the filling level, the remainder with a freely selectable expanding agent (9) (preferably air) having a dielectric constant determined by known or via a second reference capacitor (26). The filling level over each volume part in the measuring capacitor is ratiometrically determined from the measuring signal and the reference signal by electronically processing with the aid of a microprocessor (31), said volume part being provided by the measuring fluid.

Description

Beschreibung description
Die Erfindung bezieht sich auf die technischen Gebiete Messtechnik und Sensorik, im speziellen auf die Füllstandsmessung von Fluiden (Flüssigkeiten oder Gase). Der Gegenstand der Erfindung ist ein elektronischer Füllstandsmesser mit kapazitiver Füllstandserfassung und durch Mikroprozessor unterstützter Auswerteelektronik.The invention relates to the technical fields of metrology and sensor technology, in particular to the level measurement of fluids (liquids or gases). The subject of the invention is an electronic level gauge with capacitive level detection and microprocessor-based evaluation.
Die Aufgabe, die durch die Erfindung gelöst wird, ist die ökonomische, kompakte und von der Art des Füllmedium und der Temperatur weitgehend unabhängige Erfassung eines Füllstan¬ des oder des Verhältnisses der Füllanteile zweier Fluide mit unterschiedlicher Dielektrizitäts¬ konstante, ohne beweglichen Teile wie Schwimmer oder dergleichen.The object, which is solved by the invention, is the economic, compact and largely independent of the nature of the filling medium and the temperature detection of a Füllstan¬ or the ratio of the fill contents of two fluids with different Dielektrizitäts¬ constant, without moving parts such as float or like.
Bekannt sind bereits kapazitive Füllstandsmesser aus geschichtetem und miteinander verklebtem Leiterplattenmaterial wie in Patent DE 198.50.245 A1 beschrieben, mit mindestens zwei Kondensatorbelägen wobei das Leiterplattenmaterial zugleich Träger von Schutzbelägen und der Auswerteschaltung ist. Als Abstandshalter dienen vorzugsweise isolierende Leiterplattenmaterialien mit Aussparungen.Capacitive level meters made of layered and glued together circuit board material are already known as described in patent DE 198.50.245 A1, with at least two capacitor pads wherein the printed circuit board material is at the same time a carrier of protective coverings and of the evaluation circuit. As spacers are preferably used insulating circuit board materials with recesses.
DE 196.44.777 C1 beschreibt ein kapazitives Mess-System mit vielen diskreten Einzelbelägen längs der Mess-Strecke, wobei jeder Einzelkondensator den Zustand voll oder leer repräsentiert. Die Auswertung erfolgt durch einen Multiplexer, der jede Elektrode einzeln ansteuert.DE 196.44.777 C1 describes a capacitive measuring system with many discrete individual coatings along the measuring path, wherein each individual capacitor represents the state of full or empty. The evaluation is performed by a multiplexer, which controls each electrode individually.
DE 199.16.979 A1 beschreibt ein Verfahren, welches die Änderung der Signale mit Phasenverschiebung von 180 Grad, zweier benachbarter Kapazitätselemente in Abhängigkeit vom Füllstand auswertet.DE 199.16.979 A1 describes a method which evaluates the change of the signals with phase shift of 180 degrees, two adjacent capacitance elements as a function of the fill level.
EP 401.111 B1 beschreibt einen kapazitiven Füllstandssensor mitEP 401.111 B1 describes a capacitive fill level sensor
Potentialreproduzierstufe zur Beseitigung von Störkapazitäten oder Randeffekten, wobei die Schirmelektroden auf das gleiche Potential wie die Mess-Elektroden geschaltet werden.Potentialreproduzierstufe to eliminate interference or edge effects, wherein the shielding electrodes are switched to the same potential as the measuring electrodes.
DE 101 19 555 A1 beschreibt einen kapazitiven Füllstandssensor mit Referenzelektro¬ denpaar das bezogen auf einen Höhenabschnitt eine größere Oberfläche auf als das Messelektrodenpaar aufweist.DE 101 19 555 A1 describes a capacitive fill level sensor with a reference electrode pair which, relative to a height section, has a larger surface area than the pair of measuring electrodes.
Schließlich sei noch ITUD20010139 erwähnt, welches einen koaxialen kapazitiven Sensor mit Referenzkapazität beschreibt und über das Verhältnis der Ladezeiten die Füllhöhe bestimmt.Finally, ITUD20010139 is mentioned, which describes a coaxial capacitive sensor with reference capacitance and determines the filling level via the ratio of the charging times.
Die vorliegende Erfindung ermittelt die Füllstandshöhe durch ratiometrische Messung des Verschiebungsstromes eines Messkondensators im Vergleich zu einem Referenzkondensa¬ tor. Der Messkondensator ist vorzugsweise ein Plattenkondensator bestehend aus zwei länglichen flächigen Elektroden (isolierendes Trägermaterial mit metallischen Belägen). Die Platten weisen einen Abstand auf in welchen das Messmedium und das Ergänzungsmedium eindringen können. Der Abstand ist groß genug um Kapillarwirkungen zu vernachlässigen. Der Referenzkondensator ist an einem Ende des Trägermateriales für den Messkonden¬ sator angeordnet und stellt ebenfalls einen Piattenkondensator aus Elektrodenflächen dar, deren Abstand jedoch ein Bruchteil des Elektrodenabstandes des Messkondensators ist, wodurch einerseits der Kapazitätsbelag höher ist und andrerseits die Kapillarwirkung so groß wird, dass das Messmedium vollständig, auch bei nahezu leerem Tank zwischen den Elektrodenflächen gehalten wird. Eine alternative Anordnung sieht einen 2. Referenzkondensator am anderen Ende des Trägermateriales für den Messkondensator vor.The present invention determines the level height by ratiometric measurement of the displacement current of a measuring capacitor compared to a Referenzkondensa¬ gate. The measuring capacitor is preferably a plate capacitor consisting of two elongate planar electrodes (insulating carrier material with metallic coverings). The plates have a distance in which the measuring medium and the supplementary medium can penetrate. The distance is large enough to neglect capillary action. The reference capacitor is arranged at one end of the carrier material for the Messkonden¬ capacitor and also represents a Piattenkondensator of electrode surfaces whose distance is a fraction of the electrode spacing of the measuring capacitor, whereby on the one hand, the capacitance is higher and on the other hand, the capillary becomes so large that the Measuring medium is held completely, even with almost empty tank between the electrode surfaces. An alternative arrangement provides a second reference capacitor at the other end of the carrier material for the measuring capacitor.
Über den Stand der Technik hinaus ist die Erfindungshöhe gegeben durch die spezielle Formgebung und Anordnung der Elektrodenflächen zum Erzielen unterschiedlicher kapillarer Effekte im Mess-Kondensator gegenüber jenen im Referenz-Kondensator. Weiters ist bedeut¬ sam, dass zugleich die Kapazitätsgröße des Referenzkondensators bei wesentlich kleinerer Baulänge an den Wert des mit dem Mess-Fluid gefüllten Messkondensators angepasst wird. Das ratiometrische Messen der Verschiebungsströme erlaubt den Einsatz unterschiedlicher Fluide oder sich nicht vermischender Fluidkombinationen. Grundsätzlich lässt sich durch „auf den Kopf stellen" der Anordnung Ergänzungsmedium und Messmedium austauschen.Beyond the state of the art, the inventive level is given by the special shape and arrangement of the electrode surfaces to achieve different capillary effects in the measuring capacitor over those in the reference capacitor. Furthermore, it is significant that at the same time the capacitance size of the reference capacitor is adapted to the value of the measuring capacitor filled with the measuring fluid at a much smaller overall length. The ratiometric measurement of the displacement currents allows the use of different fluids or non-mixing fluid combinations. In principle, the supplemental medium and measuring medium can be exchanged by "turning it upside down".
Die Möglichkeiten der Abstandsverkleinerung im Referenzkondensatorabschnitt des Füllstandsmessers sind vielfältig (z.B. dickere Beläge, Stufung des Trägermateriales, Anbrin¬ gungen, Verformungen). Vorzugsweise verkleinert man den Abstand durch Einbringungen zusätzlicher Elektrodenpaare in den Abstand zwischen den Mess-Elektroden. Dadurch wird die effektive Kondensatorfläche zusätzlich vergrößert. Die Mess-Genauigkeit wird durch geringere Randeffekte verbessert.The possibilities of reducing the distance in the reference capacitor section of the level meter are manifold (for example, thicker coverings, gradation of the support material, attachments, deformations). Preferably, the distance is reduced by introducing additional pairs of electrodes in the distance between the measuring electrodes. As a result, the effective capacitor area is additionally increased. The measurement accuracy is improved by lower edge effects.
Die wesentlichen Vorteile der Erfindung sind folglich durch die Lösung der Aufgabe der Erfindung gegeben. Das Mess-Verfahren in Kombination der vorzugsweise verwendeten Bau¬ elemente erlaubt geringe Herstellkosten bezogen auf die hohe Zuverlässigkeit. Weitere Eigenschaften sind geringe Messwert-Drift über die Lebensdauer, niedrige Temperaturdrift. Keine Schwimmer oder andere bewegliche Teile sind notwendig. Die Herstellung in großer Menge ist einfach, ebenso die Kalibrierung.The main advantages of the invention are therefore given by the solution of the object of the invention. The measuring method in combination of the preferably used Bau¬ elements allows low production costs based on the high reliability. Other features include low drift over the lifetime, low temperature drift. No floats or other moving parts are necessary. Manufacturing in bulk is easy, as is calibration.
Infolge seien die elektrotechnischen Grundlagen für das verwendete Mess-Verfahren zusammengefasst: Die Dielektrische Verschiebung D bei sinusförmiger Anregung istAs a result, the electro-technical principles for the measuring method used are summarized: The dielectric displacement D with sinusoidal excitation is
D = D0 sin ωt und daraus ergibt sich die Verschiebungsstromdichte zuD = D 0 sin ωt and from this the displacement current density is increased
D = D0ωcosωtD = D 0 ωcosωt
IL = Q = CÜ = C d E = εoεrAE IL = DA = IV jv = D Der Leitungsstrom IL setzt sich im Plattenkondensator als Verschiebungsstrom Iv fort und ist bei Anregung durch eine sinusförmige Wechselspannung proportional der Kondensator¬ fläche, der Frequenz und umgekehrt proportional zum Abstand zwischen den Platten und vom Füllmedium abhängig. Die Gleichheit von IL und Iv gilt unter der Voraussetzung, dass das Di¬ elektrikum zwischen den Kondensatorplatten keine Leitfähigkeit besitzt. Ansonsten kommt zum Verschiebungsstrom ein anteiliger Leitungsstrom hinzu. Die Stromdichten jv im Kondensator und JL im Leiter sind im Allgemeinen verschieden, da der Leitungsquerschnitt nicht gleich dem Quer¬ schnitt A des Kondensators ist.I L = Q = CÜ = C d E = ε or AE I L = DA = I V j v = D The line current I L is continued in the plate capacitor as a displacement current I v and is proportional to the Kondensator¬ area, the frequency and inversely proportional to the distance between the plates and the filling medium when excited by a sinusoidal AC voltage. The equality of I L and I v is valid on the assumption that the dielectric between the capacitor plates has no conductivity. Otherwise, a proportionate line current is added to the displacement current. The current densities j v in the capacitor and J L in the conductor are generally different, since the line cross-section is not equal to the cross section A of the capacitor.
Für die Kapazität C eines Plattenkondensators mit der Fläche A und dem Plattenabstand d gilt bei Vernachlässigung von Randeffekten:For the capacitance C of a plate capacitor with the area A and the plate spacing d, neglecting edge effects:
C= ε *A/d ε= εrε0 mit εo= 8.8542*1012 *%„, wobei ε die für das Medium spezifische Dielektrizitätskonstante (relative Dielektrizitätszahl εr multipliziert mit ε0 Dielektrizitätskonstante des Vakuums) darstellt.C = ε * A / d ε = εr ε 0 with ε o = 8.8542 * 10 12 *% ", where ε represents the specific dielectric constant for the medium (relative permittivity ε r multiplied by ε 0 dielectric constant of the vacuum).
Die ratiometrische Messung (Verhältnis von Messkapazität CmeSs zur Referenzkapazität Cref ergibt eine eindeutige stetige oder stückweise stetige Funktion des Füllstandes Am658, oder des Füll-Level-Verhältnisses Amess/Aref.The ratiometric measurement (ratio of the measuring capacity C meS s to the reference capacitance C r e f gives a clear continuous or piecewise continuous function of the level A m658 , or the filling level ratio A mess / A ref .
Cmess/Cref = εmeSSref * GF; GF = Amess/Aref * Dref/Dmess Cmess / Cref = ε m e SS / ε re f * GF; GF = Amess / Aref * D ref / D meas
Bei einem Geometriefaktor GF, der das Kondensator-Flächenverhältnis von Mess- zu Referenz¬ fläche (Amess/Aref) multipliziert mit dem Kondensator-Plattenabstands-Verhältnis (Dref/Dmess) von Referenz- zu Messfläche darstellt, ist die ratiometrische Messung direkt proportional zur Verän¬ derung von εmess. εmess stellt dabei eine fiktive Dielektrizitätskonstante dar. Für rechteckige Elek¬ trodenform gilt: A = l*b mit Länge I und Breite b. Mit I1 als vom Mess-Medium bedeckte Länge folgt: εmess = li/l * (εref -εerg) + εerg oderIn the case of a geometry factor GF, which represents the area-to-area ratio of the capacitors to the reference area (A m ess / A ref ) multiplied by the capacitor-to-plate ratio (D ref / D mess ) of the reference area to the measuring area, the ratiometric Measurement directly proportional to the change of ε mes s. In this case, ε mess represents a fictitious dielectric constant. For rectangular electrode shapes, A = l * b with length I and width b. With I 1 as the length covered by the measuring medium follows: ε m ess = li / l * (ε re f -ε erg ) + ε erg or
(εmess-εerg)/(εrerεerg) = Ml(εmess-εerg) / (ε re rεerg) = Ml
Durch Messen der Verschiebungsströme I mess , I ref und durch Kenntnis der Geometrien und der Dielektrizitätskonstante des Ergänzungsmediums (z.B. Kalibrierungsmessung, oder durch zweite Referenzelektrode und Messen von lerg) lässt sich I1/! und damit die Füllhöhe be¬ rechnen. Das Referenzmedium = Messmedium hat für folgende Fluide die typische relative Dielektrizitätszahl: öle: 1.8 - 4; Petroleum 2; Benzin 2.3; Diesel 2-2.2, Benzol 2.28; destilliertes Wasser 80 bei 200C, 48 (1000C) Ethanol 23; Methanol 32.6. Dadurch sind Dielektrizitäts-Verhältnisse von 1.8 bis über 40 möglich.By measuring the displacement currents I mess , I ref and by knowing the geometries and the dielectric constant of the supplemental medium (eg calibration measurement, or by second reference electrode and measuring l erg ), I 1 /! and thus calculate the filling level. The reference medium = medium has the typical relative permittivity for the following fluids: Oils: 1.8 - 4; Petroleum 2; Gasoline 2.3; Diesel 2-2.2, benzene 2.28; distilled water 80 at 20 0 C, 48 (100 0 C) ethanol 23; Methanol 32.6. As a result, dielectric ratios of 1.8 to over 40 are possible.
Beispiel Benzin-Luft: εreerg = 2.3-1=1 ,3Example gasoline air: ε reerg = 2.3-1 = 1, 3
Für εmΘSs= 1 folgt h= 0 (leerer Tank), für εmβSs= 1 ,65 folgt li= 0,5 I (halbeingetauchter Sensor) und für εss= 2,3 folgt h= I (voller Tank). Der Gegenstand der Erfindung wird anhand der folgenden Figuren erläutert. Es zeigenFor ε mΘS s = 1, h = 0 (empty tank), for ε mβS s = 1, 65 follows li = 0.5 I (half-immersed sensor) and for ε ss = 2.3 h = I (full tank ). The object of the invention will be explained with reference to the following figures. Show it
Fig. 1 die Bestandteile der gegenständlichen Erfindung.Fig. 1, the components of the subject invention.
Fig. 2 zeigt die Seitenansicht der gegenständlichen Erfindung laut Fig.1 ,Fig. 2 shows the side view of the subject invention according to Fig.1,
Fig. 3 zeigt eine alternative Variante in Seitenansicht.Fig. 3 shows an alternative variant in side view.
Fig. 4 zeigt ein Blockschaltbild der Signalverarbeitung durch die Elektronik. In Fig.1 ist der Aufbau des elektronischen Füllstandsmessers ersichtlich. Gezeigt sind hier im Wechsel die Vorderseite und die Rückseite der Einzelträger. Der Füllstandsmesser besteht aus zumindest zwei Hauptträgern (6) vorzugsweise aus elektrisch isolierendem Leiterplattenmaterial mit metallischen Belägen, welche die Kondensatorbeläge (7,8), Schirmungsbeläge (18), und Verbindungsleitungen für die Auswertelektronik (17) darstellen und paarweise mit ihren Hauptflächen im Abstand einander gegenüber angeordnet sind. Werden mehr als zwei Hauptträger eingesetzt erhöht sich die Zahl der Hauptträgerflächen-Paare und damit die aktive Fläche der Kondensatorbeläge. Je einer der Hauptträger trägt die Erreger-Elektrode (13) und der gegenüberliegende Träger die Referenzelektrode(n) (14), und die Mess-Signal-Elektrode (15). Zusätzliche Hauptträger können zwischen zwei Hauptträgern angeordnet sein wobei diese Träger beide Elektroden-Arten aufweisen, deren Hauptflächen je Art in die selbe Richtung orientiert sind und durch elektrische Verbindungsleitungen parallel geschaltet sind. Dadurch ergeben sich Plattenkondensatoren oder Schichtkondensatoren mit Mess- (3) und Ergänzungsmedium (9) als Dielektrikum.4 shows a block diagram of the signal processing by the electronics. In Figure 1, the structure of the electronic level gauge is visible. Shown here are alternately the front and the back of the single carrier. The level meter consists of at least two main carriers (6) preferably of electrically insulating printed circuit board material with metallic coverings, which constitute the capacitor pads (7,8), Schirmungsbeläge (18), and connecting lines for the evaluation electronics (17) and in pairs with their main surfaces at a distance from each other are arranged opposite. If more than two main carriers are used, the number of main carrier surface pairs increases and thus the active area of the capacitor plates increases. Depending on one of the main carrier carries the exciter electrode (13) and the opposite carrier, the reference electrode (s) (14), and the measuring signal electrode (15). Additional main carriers can be arranged between two main carriers, wherein these carriers have both types of electrodes whose main surfaces are oriented in the same direction per type and are connected in parallel by electrical connecting lines. This results in plate capacitors or layer capacitors with measuring (3) and supplemental medium (9) as a dielectric.
Der Messkondensator (4) besteht aus dem Längenanteil I der Erreger-Elektrode, der Mess-Elektrode und ist in der Füllhöhe I1 (Eintauchtiefe) mit dem Mess-Medium (3) und in der Füllreserve I- Ii mit dem Ergänzungsmedium (9) gefüllt.The measuring capacitor (4) consists of the length component I of the excitation electrode, the measuring electrode and is in the filling level I 1 (immersion depth) with the measuring medium (3) and in the filling reserve I- Ii with the supplemental medium (9). filled.
Der Referenzkondensator (5) besteht aus der Referenz-Signalelektrode (14) und einem Abschnitt der Erreger-Elektrode (13). Die Längenausdehnung des Referenzkondensators (5) ist klein gegenüber jener des Messkondensators (4). Zur Erhöhung der Kapillarität und Angleichung der Kapazitätswerte, wird durch geeignete Maßnahmen der Kapazitätsbelag erhöht. Diese Umfassen: die Reduktion des Platten-Abstandes durchThe reference capacitor (5) consists of the reference signal electrode (14) and a portion of the excitation electrode (13). The linear expansion of the reference capacitor (5) is small compared to that of the measuring capacitor (4). To increase the capillarity and equalization of the capacity values, suitable measures will increase the capacity coverage. This encompassing: the reduction of the plate distance by
• die Formgebung der Hauptträger (6) oder• the shape of the main beams (6) or
• die Formgebung der Referenz-Signalelektroden (14),The shape of the reference signal electrodes (14),
• Anbringungen zwischen den Hauptträgern oder vorzugsweise wie dargestellt• Attachments between the main beams or preferably as shown
• Einbringung weiterer Belagsschichten (10) mit Belägen (7) zwischen den Hauptträgern (6), vorzugsweise auf weiteren Trägern (19) aus nicht leitendem Material, die mit den Erreger-Elektroden (13) bzw. den Referenz-Signalelektroden (14) durch elektrische und mechanische Verbindungseinrichtungen (20) verbunden sind.• Introduction of further covering layers (10) with coverings (7) between the main supports (6), preferably on further supports (19) of non-conductive material, with the excitation electrodes (13) and the reference signal electrodes (14) electrical and mechanical connection means (20) are connected.
Dadurch vergrößern sich auch die elektrisch aktive Fläche und damit die Kapazität. Gleiches gilt für einen allfälligen zweiten Referenz-Kondensator (26), der für die Bestimmung einer unbekannten Dielektrizitätskonstante eines Ergänzungsmediums (9) eingesetzt werden kann. Je nach Einsatzfall befindet sich zwischen den Elektroden (13,14) oder (13,16) des Referenz- Kondensators (5), bzw. (26) entweder vollständig das Messmedium (3) oder vollständig das Ergänzungsmedium (9). Im Spezialfall mit zwei Referenzkondensatoren ist einer (5) der beiden vollständig in das Messmedium getaucht (bzw. durch Kapilarität vom Medium gefüllt), der andere (26) ist vollständig vom Ergänzungsmedium gefüllt. Spezielle topfförmige Ausformungen der Hauptträger oder isolierende Barrieren helfen dabei das Eindringen des jeweils anderen Mediums zu vermeiden.This also increases the electrically active area and thus the capacity. The same applies to any second reference capacitor (26) which is used to determine a unknown dielectric constant of a supplemental medium (9) can be used. Depending on the application, there is either completely the measuring medium (3) or completely the supplementary medium (9) between the electrodes (13, 14) or (13, 16) of the reference capacitor (5), or (26). In the special case with two reference capacitors, one (5) of the two is completely submerged in the medium to be measured (or filled with medium by capillarity), the other one (26) is completely filled by the supplementary medium. Special pot-shaped formations of the main beams or insulating barriers help to prevent the penetration of the other medium.
Das Verhältnis von Messfläche (8) zum Mess-Kondensator-Belagsabstand verglichen mit dem Verhältnis Referenz-Signalelektrodenfläche (7) zum Referenz-Kondensator-Belagsabstand ist sollte möglichst ähnlich gewählt sein, wodurch sich optimale Messergebnisse erzielen lassen. Günstig sind Kapazitätsverhältnisse von 2:5 bis 5:2 gemessen mit gleichem Füllmittel (Dielektrikum). Auch das Berücksichtigen des Verhältnisses zwischen den nach Einsatzgebiet erwarteten Dielektrizitätskonstanten von Messmedium zum Ergänzungsmedium in den Geometrischen Verhältnissen bringt messtechnische Vorteile.The ratio of measuring surface (8) to measuring capacitor pad spacing compared to the ratio reference signal electrode surface (7) to the reference capacitor pad spacing should be chosen as similar as possible, which can achieve optimal measurement results. Favorable are capacity ratios of 2: 5 to 5: 2 measured with the same filler (dielectric). The consideration of the ratio between the dielectric constant of the measuring medium to the supplementary medium in the geometrical conditions, which is expected according to the field of application, also brings metrological advantages.
Zur Schirmung gegenüber Fremdfeld-Einflüssen sind Schirmungsbeläge an den Rückseiten der äußeren Hauptträger vorgesehen. Auch können Schirmungsbeläge mit vorzugsweise konstantem Bezugspotential um die Randbereiche der Mess-Elektroden, vorhanden sein. Ebenso ist die Auswerte-Elektronik auf den Rückseiten der äußeren Hauptträger vorgesehen, wodurch der Elektronische Füllstandsmesser ein Gesamtsystem darstellt, welches vorzugsweise durch zwei Leitungen versorgt wird, über welche zugleich der Datenaustausch des Ist-Füllstandes erfolgt.For shielding against extraneous field influences Schirmungsbeläge are provided on the backs of the outer main carrier. Shielding pads with preferably constant reference potential around the edge regions of the measuring electrodes can also be present. Likewise, the evaluation electronics is provided on the backs of the outer main carrier, whereby the electronic level meter represents an overall system, which is preferably supplied by two lines, via which at the same time the data exchange of the actual level takes place.
In Fig. 2 ist die typische hier senkrechte Anordnung der Elektroden (13,14,15) in Seitenansicht deutlich. Die Erregerelektrode (13) mit Abstand zur Mess-Signalelektrode (15) und zur davon getrennten Referenzsignalelektrode (14). Hier sind Nebenträger (19) mit weiteren Erreger- und Referenzsignalelektroden erkenntlich, welche durch die Leiter-Verbindungen (20) in Distanz gehalten und elektrisch verbunden werden. Fig. 3 zeigt die Variante mit zwei Referenz- Signalelektroden. Auch eine schräge Anordnung des Füllstandsmessers im Medium ist möglich. Zum Schutz der Schaltung sind dünne isolierende Überzüge wie Lacke aus Kunstharzen, oder Kunststoffen wie Parylene oder dergleichen vorgesehen. Bei nicht leitendem Überzug ändert sich C zu C= A / (2dLack/εLack + dF|Uid/sFiuid)- Zum Schutz, zur Führung der Träger und zur Fixierung des Elektrodenabstandes können Führungsrohre eingesetzt werden, die an der Innenseite Anbringungen, Führungsnasen, Verwölbungen und dergleichen aufweisen. Zusätzlich kann am oberen Ende des Führungsrohres ein Gelenk oder eine Knickstelle angebracht sein, wodurch eine Schrägstellung im Tank erleichtert wird, und wodurch die Auflösung des Füllstands- Messers (1) aufgrund des dadurch längeren möglichen Weges größer wird. Eine alternative Schutzführung kann durch einen Schrumpfschlauch erfolgen oder durch Kunststoff-Guss- Verfahren erzeugt werden, wobei diese Ummantelungen die notwendigen Aussparungen zur Durchströmung des Fluides aufweisen müssen.In Fig. 2, the typical vertical arrangement of the electrodes (13,14,15) in side view is clear. The exciter electrode (13) at a distance from the measuring signal electrode (15) and to the separate reference signal electrode (14). Here, secondary supports (19) with further exciter and reference signal electrodes are recognizable, which are held by the conductor connections (20) in distance and electrically connected. Fig. 3 shows the variant with two reference signal electrodes. An oblique arrangement of the level gauge in the medium is possible. To protect the circuit thin insulating coatings such as paints of synthetic resins, or plastics such as parylene or the like are provided. If the coating does not conduct, C changes to C = A / (2d L ack / ε La c k + d F | U id / sFiuid) - For protection, to guide the carriers and to fix the distance between the electrodes, guide tubes can be used the inside have attachments, guide tabs, warps and the like. In addition, at the upper end of the guide tube, a joint or a kink can be attached, whereby an inclination in the tank is facilitated, and thereby the resolution of the Füllstands- knife (1) becomes larger because of the longer possible way. An alternative protection can be provided by a heat-shrinkable tube or by plastic casting. Processes are generated, these sheaths must have the necessary recesses for the flow through the fluid.
Das Blockschaltbild in Fig. 4 zeigt die erfindungsgemäße Signalverarbeitung durch die Elektronik. Der elektronische Oszillator (21) liefert das Ansteuersignal für die Erregerelektrode (13). Der resultierende Wechselstrom entspricht dem Verschiebungsstrom durch die Mess- Kapazität bzw. die Referenzkapazität(en). Für die Analog-Digital-Umsetzung ist zusätzlich ein Standardbauelement-Kondensator (25) mit der Erregerelektrode (13) verbunden. i (t) = C * du(t)/dt = C * d(U*sin (2πf t))/dt = C * U * 2πf * cos (2πf t)The block diagram in FIG. 4 shows the signal processing according to the invention by the electronics. The electronic oscillator (21) supplies the drive signal for the excitation electrode (13). The resulting alternating current corresponds to the displacement current through the measuring capacitance or the reference capacitance (s). For the analog-to-digital conversion, a standard component capacitor (25) is additionally connected to the excitation electrode (13). i (t) = C * du (t) / dt = C * d (U * sin (2πf t)) / dt = C * U * 2πf * cos (2πf t)
U= RC * Ü * 2πfU = RC * Ü * 2πf
Diese Wechselströme werden alle durch die gleichen Baugruppen (Halbleitergleichricht- Dioden (22), Transimpedanz-Verstärker (23) ) gleichgerichtet, und in Spannungen gewandelt. Deren Betrag ist proportional den Dielektrizitätskonstanten der Medien bzw. der Medienpaarung in Abhängigkeit des Füllstandes (2) I1 Er ist weiters proportional zur Oszillator- Ausgangsspannung und dessen Frequenz sowie dem Transimpedanz-Verstärkungsfaktor R. Die Bauform der einzelnen Kondensatoren bestimmt den Geometriefaktor. Die analogen Mess- Spannungen können direkt durch ein analoges Quotienten-Messinstrument ausgewertet werden oder vorzugsweise durch Analog-Digital-Umsetzer (24) in Digitalwerte der gewandelt werden, die in einem Mikroprozessor (27) zur Berechnung des Füllstandes und Ausgabe weiterverarbeitet werden. Die Bezugsspannung für den Analog-Digital-Umformer wird dabei durch den Standard- Kondensatorstrom nach Gleichrichtung und Strom-Spannungswandlung erzeugt.These alternating currents are all rectified by the same assemblies (semiconductor rectifying diodes (22), transimpedance amplifiers (23)), and converted into voltages. Their amount is proportional to the dielectric constant of the media or the media pairing as a function of the level (2) I 1 He is further proportional to the oscillator output voltage and its frequency and the transimpedance gain R. The design of the individual capacitors determines the geometry factor. The analog measurement voltages can be evaluated directly by an analog quotient measuring instrument or preferably by analog-to-digital converter (24) converted into digital values, which are further processed in a microprocessor (27) for calculating the level and output. The reference voltage for the analog-to-digital converter is generated by the standard capacitor current after rectification and current-voltage conversion.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Elektronischer Füllstandsmesser 15 Mess-Signalelektrode1 Electronic level gauge 15 Measuring signal electrode
2 Füllstand, Eintauchtiefe 16 Referenz-Signalelektrode für das2 level, immersion depth 16 Reference signal electrode for the
3 Mess-Medium Ergänzungsmedium3 measuring medium supplemental medium
4 Messkondensator 17 Elektronische Komponenten zur4 Measuring capacitor 17 Electronic components for
5 Referenzkondensator mit Messmedium als Signalverarbeitung5 reference capacitor with measuring medium as signal processing
Dielektrikum 18 SchirmungsbelageDielectric 18 Schirmungsbelage
6 Trager aus nicht leitendem Material 19 Nebenträger für Erreger- und Referenz-6 carriers made of non-conductive material 19 secondary carriers for exciter and reference
7 Referenzkondensator-Belage Signalelektroden7 reference capacitor pad Signal electrodes
8 Messkondensator-Beläge 20 Elektrisch leitende Verbindungen mit8 Measuring capacitor pads 20 Electrically conductive connections with
9 Ergänzungsmedium Distanzhaltefunktion9 supplementary medium distance holding function
10 Belags-Schichten mit kammartiger 21 Elektrischer Oszillator10 plaque layers with comb-like 21 electric oscillator
Anordnung 22 HalbleiterdiodenArrangement 22 semiconductor diodes
11 Hauptträger der Erregerelektrode 23 Transimpedanz-Verstarker11 main carrier of the excitation electrode 23 transimpedance amplifier
12 Hauptträger der Referenz- und Mess- 24 Analog-Digital-Umsetzer12 main carriers of reference and measuring 24 analog-to-digital converters
Signalelektroden 25 Standard-KondensatorSignal electrodes 25 Standard capacitor
13 Erregerelektrode 26 Optionaler Referenz-Kondensator mit13 Excitation electrode 26 Optional reference capacitor with
14 Referenz-Signalelektrode für das Ergänzungsmedium als Dielektrikum14 reference signal electrode for the supplemental medium as a dielectric
Messmedium 27 Mikroprozessor Measuring medium 27 microprocessor

Claims

Patentansprüche: claims:
1. Vorrichtung (1) zur ratiometrischen Bestimmung des Füllstandes (2) eines flüssigen oder gasförmigen Mediums (3) (Fluids) durch Vergleichsmessung der Verschiebungsströme mindestens zweier Kondensatoren (Messkondensator (4), Referenzkondensator (5), optionaler Referenzkondensator (26), welche aus einander gegenüberliegenden elektrisch leitenden vorzugsweise metallischen Belägen entlang der Messlänge auf isolierendem Trägermaterial (6) vorzugsweise Leiterplatten gebildet ist, dadurch gekennzeichnet, dass1. Device (1) for the ratiometric determination of the level (2) of a liquid or gaseous medium (3) (fluid) by comparison measurement of the displacement currents of at least two capacitors (measuring capacitor (4), reference capacitor (5), optional reference capacitor (26), which is formed from opposing electrically conductive preferably metallic coverings along the measuring length on insulating carrier material (6) preferably printed circuit boards, characterized in that
• Referenzkondensator-Beläge (7) vorhanden sind, die gegenüber den Mess- Kondensators-Belägen (8) geringere Länge und geringeren Abstand und durch letzteres wesentlich höhere Kapillarität aufweisen,Reference capacitor pads (7) are present, which have a smaller length and a smaller spacing than the measuring capacitor pads (8) and significantly higher capillarity as a result of the latter,
• sie mindestens einen Referenzkondensator-Belagszwischenraum aufweist, der vollständig mit Messmedium (3) mit Dielektrizitätskonstante εref oder vollständig mit Ergänzungsmedium mit Dielektrizitätskonstante εerg gefüllt ist,It has at least one reference capacitor pad gap, which is completely filled with measuring medium (3) with dielectric constant ε ref or completely with supplementary medium with dielectric constant ε erg ,
• und mindestens einen Messkondensator-Belagszwischenraum aufweist, in welchem sich längs der Eintauchtiefe (2) gleich Füllhöhe I1 das Messmedium (3) und längs der Füllreserve 1-I1 das Ergänzungsmedium (9) mit Dielektrizitätskonstante εerg befindet.• and at least one measuring capacitor pad spacing, in which along the immersion depth (2) equal filling level I 1, the measuring medium (3) and along the filling reserve 1-I 1 is the supplementary medium (9) with dielectric constant ε er g.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Referenzkondensator- Beläge (7) aus mehreren Schichten (10) aufgebaut sind, wobei nicht leitende Schichten, und elektrisch leitende Schichten und Messmedium aufnehmende Schichten vorgesehen sind und die elektrisch leitenden Schichten vorzugsweise mit einem dünnen Schutzüberzug aus elektrisch isolierender basischer Lack, aus Polyamid, Epoxid, aus Polymeren/Poly-b-Xylol, Parylene oder Kunstharze oder dergleichen mit oder ohne Glasfasergewebe versehen sind.2. Device according to claim 1, characterized in that the Referenzkondensator- deposits (7) of a plurality of layers (10) are constructed, wherein non-conductive layers, and electrically conductive layers and measuring medium receiving layers are provided and the electrically conductive layers preferably with a thin protective coating of electrically insulating basic paint, of polyamide, epoxy, of polymers / poly-b-xylene, parylene or synthetic resins or the like are provided with or without glass fiber fabric.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis der Messkondensator-Belagsfläche Amess zum Abstand des Messkondensator-Belages Dmess dem Verhältnis Referenzkondensator-Belagsfläche Aref zum Referenzkondensator-Belagsabstand Dref entspricht oder in der Größenordnung 0.4 bis 2.5 liegt.3. Apparatus according to claim 1 or 2, characterized in that the ratio of the measuring capacitor pad surface A mess to the distance of the measuring capacitor pad D mess corresponds to the ratio reference capacitor pad surface A ref to reference capacitor pad spacing D ref or in the order 0.4 to 2.5 lies.
4. Vorrichtung nach mindestens einem der Ansprüche 1 bis 3 gekennzeichnet dadurch, dass mindestens zwei Haupt-Träger (vorzugsweise Leiterplatten) (11,12) zur Bildung des Messkondensators (4) und von Teilen der Referenzkondensatoren (5,30) dienen, die auf einander zugewandten Flächen Kondensatorbeläge (7,8) aufweisen, wobei der Belag eines Trägers (11) die gemeinsame Erregerelektrode (13) darstellt und mindestens zwei Beläge eines weiteren Trägers (12) Referenz- (14,16) und Mess-Signalelektroden (15) repräsentieren.4. The device according to at least one of claims 1 to 3, characterized in that at least two main carrier (preferably printed circuit boards) (11,12) for forming the measuring capacitor (4) and parts of the reference capacitors (5,30) serve on surfaces facing each other have capacitor pads (7, 8), the pad of a carrier (11) representing the common excitation electrode (13) and at least two pads of another carrier (12) reference (14, 16) and measuring signal electrodes (15) represent.
5. Vorrichtung nach Anspruch 4 dadurch gekennzeichnet, dass die Haupt-Träger (11,12) auf den einander abgewandten Seiten die elektronischen Komponenten (17) zur Bildung der Auswerteschaltung tragen und Schirmungsbeläge (18) mit konstantem Bezugspotential tragen. 5. The device according to claim 4, characterized in that the main carrier (11,12) carry on the opposite sides of the electronic components (17) for forming the evaluation circuit and wear Schirmungsbeläge (18) with constant reference potential.
6. Vorrichtung nach Anspruch 4 dadurch gekennzeichnet, dass zwischen den Haupt- Trägern (11,12) im Bereich des damit gebildeten Referenzkondensators (5) aus einem Teil der Erregerelektrode (13) und Referenz-Signalelektroden (14,16) Nebenträger (19) im Abstand voneinander angeordnet sind, mit Belägen für Referenzsignal-Elektroden auf der einen Seite und Belägen für Erregerelektroden auf der anderen Seite wobei gleichartige Elektroden über elektrische Leiter (20) vorzugsweise Stifte, Silberdraht oder dergleichen miteinander verbunden sind, und je eine Erregerelektrode und eine Referenzelektrode einander gegenüber liegen.6. Apparatus according to claim 4, characterized in that between the main carriers (11,12) in the region of the reference capacitor (5) formed therefrom from a portion of the exciter electrode (13) and reference signal electrodes (14,16) side carrier (19) are spaced from each other, with pads for reference signal electrodes on one side and pads for excitation electrodes on the other side with similar electrodes via electrical conductors (20) preferably pins, silver wire or the like are interconnected, and each having an excitation electrode and a reference electrode lie opposite each other.
7. Vorrichtung nach mindestens einem der Ansprüche 1 bis 6, gekennzeichnet dadurch, dass ein elektrischer Oszillators (21) mit der Erregerelektrode (13) verbunden ist, die Mess- Signalelektrode (15) und die Referenzsignalelektroden (14,16) mit dem Eingang von Halbleiterdioden (22) verbunden sind und der Ausgang der Dioden mit dem Eingang von Transimpedanzverstärkern (23) verbunden ist.7. The device according to at least one of claims 1 to 6, characterized in that an electrical oscillator (21) is connected to the exciter electrode (13), the measuring signal electrode (15) and the reference signal electrodes (14,16) with the input of Semiconductor diodes (22) are connected and the output of the diodes connected to the input of transimpedance amplifiers (23).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Ausgang der Transimpedanzverstärker (23) mit Eingängen von Analog-Digital-Umsetzern (24) verbunden ist.8. The device according to claim 7, characterized in that the output of the transimpedance amplifier (23) is connected to inputs of analog-to-digital converters (24).
9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Ausgänge der Analog- Digital-Umsetzer (24) mit einer Mikrocontroller-Einrichtung verbunden sind.9. Apparatus according to claim 7, characterized in that the outputs of the analog-to-digital converter (24) are connected to a microcontroller device.
10. Vorrichtung nach mindestens einem der Ansprüche 1 bis 9, gekennzeichnet dadurch, dass ein Rohr (26) zur Führung und Abstandshaltung der Leiterplatten vorgesehen ist, welches vorzugsweise Führungsnasen an der Innenseite aufweist und/oder aus unter Wärme schrumpfendem Material besteht.10. The device according to at least one of claims 1 to 9, characterized in that a tube (26) is provided for guiding and spacing of the printed circuit boards, which preferably has guide tabs on the inside and / or consists of under heat shrinking material.
11. Vorrichtung nach mindestens einem der Ansprüche von 7 bis 15, gekennzeichnet dadurch, dass am Datenausgang ein Schaltelement wie ein Feldeffekttransistor, ein Relais oder dergleichen vorgesehen ist, womit der Füllstands-Wert durch Modulation der Stromaufnahme der Schaltung direkt über die Versorgungsleitung ausgegeben wird.11. The device according to at least one of claims 7 to 15, characterized in that at the data output, a switching element such as a field effect transistor, a relay or the like is provided, whereby the level value is output by modulating the current consumption of the circuit directly through the supply line.
Hierzu 4 Seiten Zeichnungen For this 4 pages drawings
EP05784780A 2004-09-15 2005-09-12 Electronic level sensor Withdrawn EP1834159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT15482004 2004-09-15
PCT/AT2005/000361 WO2006029427A1 (en) 2004-09-15 2005-09-12 Electronic level sensor

Publications (1)

Publication Number Publication Date
EP1834159A1 true EP1834159A1 (en) 2007-09-19

Family

ID=35709262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05784780A Withdrawn EP1834159A1 (en) 2004-09-15 2005-09-12 Electronic level sensor

Country Status (2)

Country Link
EP (1) EP1834159A1 (en)
WO (1) WO2006029427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782968C2 (en) * 2020-12-31 2022-11-08 Общество С Ограниченной Ответственностью "Омникомм Онлайн" Fuel tank of vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035043A1 (en) * 2014-12-18 2016-06-22 Airbus Defence and Space GmbH Sensor device and method for the production thereof, and measuring device
DE102017223855A1 (en) * 2017-12-28 2019-07-04 Kautex Textron Gmbh & Co. Kg Operating fluid tank with integrated system for the detection of the filling level
US10473502B2 (en) * 2018-03-01 2019-11-12 Joseph Baumoel Dielectric multiphase flow meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550337B1 (en) * 1983-08-03 1986-11-07 Renault LIQUID LEVEL MEASUREMENT PROBE IN A TANK OR PIPE
US4591946A (en) * 1985-04-30 1986-05-27 Southwest Pump Company Capacitance probe for use in a measuring system for location of a liquid level interface
FR2647899A1 (en) * 1989-05-31 1990-12-07 Jaeger Device for measuring the level and/or volume of fuel by a capacitive probe with detection of water
FR2700001B1 (en) * 1992-12-30 1995-02-03 Snecma Capacitive liquid gauge and gauging device using this gauge.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006029427A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782968C2 (en) * 2020-12-31 2022-11-08 Общество С Ограниченной Ответственностью "Омникомм Онлайн" Fuel tank of vehicle

Also Published As

Publication number Publication date
WO2006029427A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
EP0824671B1 (en) Capacitive level sensor
DE2515065C2 (en) Standing height measuring device for liquid containers
DE2824144C2 (en) Device for capacitive level measurement of liquids or solids
EP1573280B1 (en) Device and method for measuring capacitance and device for determining the level of a liquid using one such device
EP0338400B1 (en) Capacitive sensor for determining the liquid level in a container
EP0009252B1 (en) Level gauging device for a container filled at least partially with a liquid
EP1204848B1 (en) Method for measuring level and level sensor
EP0478958A2 (en) Capacitive sensor for measuring the film of fuel on a surface
DE2449097C3 (en) Transmitter for capacitive level measurement of liquid fillings
DE19713267A1 (en) Method for determining the dielectric constant and / or the conductivity of at least one medium and device for carrying out the method
DE4025400C1 (en)
EP1825232B1 (en) Device for determining the level of a fluid
EP0760467B1 (en) Method of determining the phase proportion of a medium in open and closed channels
DE102004026396B4 (en) Device for measuring the level height and / or the temperature in a container
DE2819731C2 (en) Arrangement for capacitive level measurement in a container
EP1834159A1 (en) Electronic level sensor
DE2430186A1 (en) ELECTRICAL MEASURING ARRANGEMENT FOR CAPACITIVE MEASURING SYSTEMS ON FUEL CONTAINERS
DE4329571A1 (en) Capacitive AC inclination sensor for determining level of lubricating dielectric liquid of vehicle transmission - divides capacitor into two pairs of electrodes spaced by gaps in which liq. is located, which gaps communicate by principle of communicating tubes
EP0679863B2 (en) Device for measuring the position of a conductor of a cable within a cable covering
DE10063557B4 (en) Method and device for measuring water levels
WO1999015906A1 (en) Combined current/voltage transformer for low level signals
DE7138801U (en) Capacitive level measuring device
DE3422394C2 (en)
DE3926218A1 (en) Level measurement arrangement esp. for multiple phase mixtures - has rod sensor with individual electrodes over rod length connected to evaluation device
EP0191899B1 (en) Sensor for measuring electrical properties in an electric field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071004

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080215