EP1832670A2 - Method for decorative anodic oxidation - Google Patents
Method for decorative anodic oxidation Download PDFInfo
- Publication number
- EP1832670A2 EP1832670A2 EP07003051A EP07003051A EP1832670A2 EP 1832670 A2 EP1832670 A2 EP 1832670A2 EP 07003051 A EP07003051 A EP 07003051A EP 07003051 A EP07003051 A EP 07003051A EP 1832670 A2 EP1832670 A2 EP 1832670A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum
- layer
- decorative
- aluminum material
- anodic oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/14—Producing integrally coloured layers
Definitions
- the invention relates to a method for the decorative anodic oxidation of surfaces of aluminum alloys and components of such alloys with a decorative anodic oxide layer.
- the invention relates to a process for the decorative anodic oxidation of wrought aluminum alloys and cast aluminum alloys.
- Aluminum and aluminum alloys have the property that an oxide layer forms on contact with the air through the oxygen, which is about 0.01 microns thick.
- Anodizing referred to as anodizing, allows the formation of oxide layers that are 100 to 1000 times thicker and can serve as a protective layer against mechanical, chemical, and electrochemical stresses on components made from the aluminum alloy.
- Anodic oxide layers have a honeycomb structure with closed bottom, but upwardly open microporous channels in which dyes can be incorporated.
- the pores in the surface caused by the channels can be closed by aftertreatment processes. This is done by forming in the pores Aluminiumoxihydroxid, which causes a closure of the pores because of its larger volume.
- Aluminiumoxihydroxid which causes a closure of the pores because of its larger volume.
- the formation of aluminum oxyhydroxide is achieved, for example, by treating the surface with boiling water, steam or special solutions.
- self-coloration of the anodic oxide layer can be achieved by using specially alloyed aluminum materials. Both possibilities are known as decorative anodic oxidation or color anodizing.
- the decorative anodic oxidation is well possible only with pure aluminum and some aluminum alloys, such as Al-Mg with magnesium contents up to 5%.
- the size Group of silicon-containing cast aluminum materials is considered not to be color-codeable. It is believed that the formation of a brilliantly colored oxide layer by the precipitation of silicon or silicon-containing intermetallic phases such as AISi,. Mg 2 Si, etc. is prevented. For the formation of AIFeSi phases, even the small amounts of iron, which are present as an impurity in the material, are sufficient, for example, already 0.08%.
- the silicon-containing aluminum materials used for casting according to DIN standard 1725 with the alloy designations AISi12, AISi12 (Cu), AISi10Mg, AISi10Mg (Cu), AISi9Cu3, AISi6Cu4, AlSi11, AISi9Mg, and AISi7Mg are not suitable for anodic oxidation.
- AISi9MgCo, AISi12CuMgNi and AIZn10Si8Mg but also materials with no or only small amounts of silicon such as AICu4Ti and AICu4TiMg are only badly suited.
- the anodic oxidation of cast alloys is made more difficult since they usually still have pores. Even with many Aluminiumknetmaschinestoffen anodic oxidation is not well possible.
- thermal spraying methods allow evenly applied coatings of high quality and quality.
- the spray materials can be supplied in the form of wires, rods or as a powder.
- a particularly advantageous method is the so-called cold gas spraying, in which the spray particles are accelerated to high speeds in a carrier gas, but are not melted.
- a "cold" or a comparatively colder gas is used, since it is heated at most to temperatures below the melting point de material of the spray particles.
- cold gas spraying does not lead to oxidation and / or phase transformation of the carrier material or to a noticeable melting of the carrier material and the formation of a mixture.
- the spray particles are supplied as powders with a particle size of 1 .mu.m to 200 .mu.m.
- the kinetic energy receives the spray particles by acceleration in the carrier gas at speeds above the speed of sound.
- the present invention has for its object to provide a method by which it is possible, even surfaces of aluminum alloys in which a decorative anodic oxidation is not possible to decorative anodic oxidation. It is also an object of the invention to provide anodically oxidized aluminum components of such alloys.
- the stated object is achieved by a method in which, in a first step, a layer of anodically oxidizable aluminum material is applied and in a second step, the layer of aluminum material is anodized
- the layer of anodic oxidizable aluminum material may consist of an alloy optimized for this purpose.
- the layer of aluminum material is applied by cold gas spraying.
- the coating with the anodic oxidizable aluminum material can be carried out by thermal spraying. If the cold gas spraying process is used, thorough mixing of the carrier material made of aluminum alloy or cast aluminum alloys and the coating of aluminum material by melting or solid-state diffusion is largely avoided. The surface of the component is optimally suited for anodic oxidation after coating.
- the method can be advantageously used.
- the layer of aluminum material consists of pure aluminum. Pure aluminum is made of 99.5 percent aluminum. Possible is an increase up to 99.99 percent. Pure aluminum can be optimally oxidized anodically.
- the object of the invention is also achieved by components of Aluminiumknet- or cast aluminum alloys whose surface has been coated at least in some areas with the inventive method.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur dekorativen anodischen Oxidation von Oberflächen aus Aluminiumlegierungen und Bauteile aus solchen Legierungen mit einer dekorativen anodischen Oxidschicht. Insbesondere betrifft die Erfindung ein Verfahren zur dekorativen anodischen Oxidation von Aluminiumknetlegierungen und Aluminiumgusslegierungen.The invention relates to a method for the decorative anodic oxidation of surfaces of aluminum alloys and components of such alloys with a decorative anodic oxide layer. In particular, the invention relates to a process for the decorative anodic oxidation of wrought aluminum alloys and cast aluminum alloys.
Aluminium und Aluminiumlegierungen haben die Eigenschaft, dass sich bei Kontakt mit der Luft durch den Sauerstoff eine Oxidschicht bildet, die ca. 0,01 µm dick wird. Anodisches Oxidieren, als Eloxieren bezeichnet, ermöglicht die Bildung von Oxidschichten, die 100 bis 1000-fach dicker sind und als Schutzschicht gegen mechanische, chemische und elektrochemische Beanspruchungen der aus der Aluminiumlegierung gefertigten Bauteile dienen kann.Aluminum and aluminum alloys have the property that an oxide layer forms on contact with the air through the oxygen, which is about 0.01 microns thick. Anodizing, referred to as anodizing, allows the formation of oxide layers that are 100 to 1000 times thicker and can serve as a protective layer against mechanical, chemical, and electrochemical stresses on components made from the aluminum alloy.
Anodische Oxidschichten weisen eine Wabenstruktur mit unten geschlossenen, nach oben hin aber offenen mikroporige Kanälen auf, in die Farbstoffe eingelagert werden können. Die durch die Kanäle verursachten Poren in der Oberfläche können durch Nachbehandlungsverfahren verschlossen werden. Dies geschieht, indem in den Poren Aluminiumoxihydroxid gebildet wird, das wegen seines größeren Volumens ein Verschließen der Poren bewirkt. Die Bildung von Aluminiumoxihydroxid wird beispielsweise durch Behandeln der Oberfläche mit kochendem Wasser, Wasserdampf oder speziellen Lösungen erreicht. Alternativ zur Einlagerung von Farbstoffen lassen sich Eigenfärbungen der anodischen Oxidschicht durch die Verwendung speziell legierter Aluminiumwerkstoffe erreichen. Beide Möglichkeiten sind als dekorative anodische Oxidation oder Farbeloxieren bekannt. Dadurch können lang haltbare, korrosionsbeständige und abriebfeste Farbbeschichtungen erreicht werden, die keine Wartung, insbesondere kein Erneuern der Farbbeschichtung während der Lebensdauer eines Bauteils erfordern, wie oftmals eine einfache Lackierung. Insbesondere ermöglicht die Farbeloxierung eine Vielzahl an möglichen Farben.Anodic oxide layers have a honeycomb structure with closed bottom, but upwardly open microporous channels in which dyes can be incorporated. The pores in the surface caused by the channels can be closed by aftertreatment processes. This is done by forming in the pores Aluminiumoxihydroxid, which causes a closure of the pores because of its larger volume. The formation of aluminum oxyhydroxide is achieved, for example, by treating the surface with boiling water, steam or special solutions. As an alternative to the incorporation of dyes, self-coloration of the anodic oxide layer can be achieved by using specially alloyed aluminum materials. Both possibilities are known as decorative anodic oxidation or color anodizing. As a result, long-lasting, corrosion-resistant and abrasion-resistant color coatings can be achieved, which require no maintenance, in particular no renewal of the color coating during the life of a component, as often a simple paint job. In particular, the color anodization allows a variety of possible colors.
Die dekorative anodische Oxidation ist nur bei reinem Aluminium und einigen Aluminiumlegierungen, wie Al-Mg mit Magnesiumgehalten bis zu 5 % gut möglich. Die große Gruppe der siliziumhaltigen Aluminiumgusswerkstoffe gilt dagegen als nicht farbeloxierbar. Man nimmt an, dass die Ausbildung einer farblich brillanten Oxidschicht durch die Ausscheidung von Silizium oder siliziumhaltigen intermetallischen Phasen wie AISi,. Mg2Si u.a. verhindert wird. Zur Bildung von AIFeSi-Phasen reichen schon die geringen Mengen an Eisen aus, die als Verunreinigung im Material vorhanden sind etwa z.B. bereits 0,08 %. So sind insbesondere die siliziumhaltigen, zum Gießen verwendeten Aluminiumwerkstoffe nach DIN-Norm 1725 mit den Legierungsbezeichnungen AISi12, AISi12(Cu), AISi10Mg, AISi10Mg(Cu), AISi9Cu3, AISi6Cu4, AlSi11, AISi9Mg, und AISi7Mg nicht für eine anodische Oxidation geeignet. Ebenfalls schlecht geeignet sind AISi9MgCo, AISi12CuMgNi und AIZn10Si8Mg. Aber auch Werkstoffe mit keinen oder nur geringen Siliziumanteilen wie AICu4Ti und AICu4TiMg eignen sich nur schlecht.
Zusätzlich wird die anodische Oxidation von Gusslegierungen erschwert, da diese in der Regel noch Poren aufweisen. Auch bei vielen Aluminiumknetwerkstoffen ist eine anodische Oxidation nicht gut möglich.The decorative anodic oxidation is well possible only with pure aluminum and some aluminum alloys, such as Al-Mg with magnesium contents up to 5%. The size Group of silicon-containing cast aluminum materials, however, is considered not to be color-codeable. It is believed that the formation of a brilliantly colored oxide layer by the precipitation of silicon or silicon-containing intermetallic phases such as AISi,. Mg 2 Si, etc. is prevented. For the formation of AIFeSi phases, even the small amounts of iron, which are present as an impurity in the material, are sufficient, for example, already 0.08%. In particular, the silicon-containing aluminum materials used for casting according to DIN standard 1725 with the alloy designations AISi12, AISi12 (Cu), AISi10Mg, AISi10Mg (Cu), AISi9Cu3, AISi6Cu4, AlSi11, AISi9Mg, and AISi7Mg are not suitable for anodic oxidation. Also poorly suited are AISi9MgCo, AISi12CuMgNi and AIZn10Si8Mg. But also materials with no or only small amounts of silicon such as AICu4Ti and AICu4TiMg are only badly suited.
In addition, the anodic oxidation of cast alloys is made more difficult since they usually still have pores. Even with many Aluminiumknetwerkstoffen anodic oxidation is not well possible.
Zum Aufbringen von Beschichtungen, unter anderem auch zu dekorativen Zwecken, sind thermische Spritzverfahren bekannt, die gleichmäßig aufgetragene Beschichtungen von hoher Qualität und Güte ermöglichen. Die Spritzmaterialien können dabei in Form von Drähten, Stäben oder als Pulver zugeführt werden. Ein besonders vorteilhaftes Verfahren ist das so genannte Kaltgasspritzen, bei dem die Spritzpartikel in einem Trägergas auf hohe Geschwindigkeiten beschleunigt werden, jedoch nicht geschmolzen werden. Im Vergleich zu den herkömmlichen Spritzverfahren wird ein "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet, da es höchstens auf Temperaturen unterhalb des Schmelzpunktes de Materials der Spritzpartikel erwärmt wird. Durch plastische Verformung aufgrund der kinetischen Energie beim Aufprall der Spritzpartikel und daraus resultierender lokaler Wärmefreigabe kommt es zur Kohäsion und Haftung der Partikel auf dem Werkstück und zur Bildung einer Beschichtung. Insbesondere kommt es beim Kaltgasspritzen nicht zur Oxidation und/oder Phasenumwandlung des Trägerwerkstoffs oder zu einem merklichen Aufschmelzens des Trägerwerkstoffs und der Bildung einer Mischung. Die Spritzpartikel werden als Pulver mit einer Partikelgröße von 1 µm bis 200 µm zugeführt. Die kinetische Energie erhalten die Spritzpartikel durch Beschleunigung im Trägergas auf Geschwindigkeiten oberhalb der Schallgeschwindigkeit.For the application of coatings, inter alia also for decorative purposes, thermal spraying methods are known, which allow evenly applied coatings of high quality and quality. The spray materials can be supplied in the form of wires, rods or as a powder. A particularly advantageous method is the so-called cold gas spraying, in which the spray particles are accelerated to high speeds in a carrier gas, but are not melted. In comparison to the conventional spraying method, a "cold" or a comparatively colder gas is used, since it is heated at most to temperatures below the melting point de material of the spray particles. By plastic deformation due to the kinetic energy in the impact of the spray particles and the resulting local heat release occurs to cohesion and adhesion of the particles on the workpiece and to form a coating. In particular, cold gas spraying does not lead to oxidation and / or phase transformation of the carrier material or to a noticeable melting of the carrier material and the formation of a mixture. The spray particles are supplied as powders with a particle size of 1 .mu.m to 200 .mu.m. The kinetic energy receives the spray particles by acceleration in the carrier gas at speeds above the speed of sound.
Mit diesem Verfahren lassen sich jedoch nur Beschichtungen mit den dekorativen Eigenschaften des Beschichtungsmaterials erreichen und nicht das metallische Aussehen bei gleichzeitiger Farbvielfalt und Robustheit der Farbeloxierung.With this method, however, only coatings with the decorative properties of the coating material can be achieved and not the metallic appearance with simultaneous color variety and robustness of the color anodization.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem es möglich ist, auch Oberflächen aus Aluminiumlegierungen, bei denen eine dekorative anodische Oxididation nicht möglich ist, dekorativ anodisch zu oxidieren. Ebenfalls ist es Aufgabe der Erfindung, anodisch oxidierte Aluminiumbauteile aus solchen Legierungen zur Verfügung zu stellen.The present invention has for its object to provide a method by which it is possible, even surfaces of aluminum alloys in which a decorative anodic oxidation is not possible to decorative anodic oxidation. It is also an object of the invention to provide anodically oxidized aluminum components of such alloys.
Die gestellte Aufgabe wird durch ein Verfahren gelöst, bei dem in einem ersten Schritt eine Schicht eines anodisch oxidierbaren Aluminiumwerkstoffs aufgebracht wird und in einem zweiten Schritt die Schicht aus Aluminiumwerkstoff anodisch oxidiert wirdThe stated object is achieved by a method in which, in a first step, a layer of anodically oxidizable aluminum material is applied and in a second step, the layer of aluminum material is anodized
Dadurch können auch Werkstoffe anodisch oxidiert und mit einer Farbeloxierung versehen werden, die selbst nicht oder nur schwer farbeloxierbar sind. Die Schicht des anodisch oxidierbaren Aluminiumwerkstoffs kann aus einer für diesen Zweck optimierten Legierung bestehen.As a result, materials can also be oxidized anodically and provided with a color anodization, which are difficult or impossible to color themselves. The layer of anodic oxidizable aluminum material may consist of an alloy optimized for this purpose.
In einer vorteilhaften Ausgestaltung wird die Schicht aus Aluminiumwerkstoff durch Kaltgasspritzen aufgebracht.In an advantageous embodiment, the layer of aluminum material is applied by cold gas spraying.
Die Beschichtung mit dem anodisch oxidierbaren Aluminiumwerkstoff kann durch thermisches Spritzen erfolgen. Wird dabei das Kaltgasspritzverfahren verwendet, so wird eine Durchmischung des Trägermaterials aus Aluminiumknet- oder Aluminiumgusslegierungen und der Beschichtung aus Aluminiumwerkstoff durch Aufschmelzen oder Festkörperdiffusion weitgehend vermieden. Die Oberfläche des Bauteils ist nach der Beschichtung optimal für die anodische Oxidation geeignet.The coating with the anodic oxidizable aluminum material can be carried out by thermal spraying. If the cold gas spraying process is used, thorough mixing of the carrier material made of aluminum alloy or cast aluminum alloys and the coating of aluminum material by melting or solid-state diffusion is largely avoided. The surface of the component is optimally suited for anodic oxidation after coating.
Insbesondere wenn die Aluminiumknet- oder Aluminiumgusslegierungen siliziumhaltige Aluminiumlegierungen sind, kann das Verfahren vorteilhaft angewendet werden.In particular, when the aluminum wrought or cast aluminum alloys are silicon-containing aluminum alloys, the method can be advantageously used.
Vor allem wenn Silizium in einer Aluminiumlegierung enthalten ist, ist eine anodische Oxidation nicht möglich. Durch das erfindungsgemäße Verfahren, insbesondere bei Durchführung mittels Kaltgasspritzen kann jedoch eine siliziumfreie Oberflächenschicht erreicht werden, die dekorativ anodisch oxidiert werden kann.Especially when silicon is contained in an aluminum alloy, anodic oxidation is not possible. By the method according to the invention, in particular in Execution by means of cold gas spraying, however, a silicon-free surface layer can be achieved, which can be decorative anodized oxidized.
In einer anderen vorteilhaften Ausgestaltung der Erfindung besteht die Schicht aus Aluminiumwerkstoff aus reinem Aluminium. Reines Aluminium besteht industriell aus 99,5 Prozent Aluminium. Möglich ist eine Steigerung bis auf 99,99 Prozent. Reines Aluminium lässt sich optimal anodisch oxidieren.In another advantageous embodiment of the invention, the layer of aluminum material consists of pure aluminum. Pure aluminum is made of 99.5 percent aluminum. Possible is an increase up to 99.99 percent. Pure aluminum can be optimally oxidized anodically.
Die Aufgabe der Erfindung wird auch durch Bauteile aus Aluminiumknet- oder Aluminiumgusslegierungen gelöst, deren Oberfläche zumindest in Teilbereichen mit dem erfindungsgemäßen Verfahren beschichtet wurde.The object of the invention is also achieved by components of Aluminiumknet- or cast aluminum alloys whose surface has been coated at least in some areas with the inventive method.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610010520 DE102006010520A1 (en) | 2006-03-07 | 2006-03-07 | Process for decorative anodic oxidation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1832670A2 true EP1832670A2 (en) | 2007-09-12 |
Family
ID=38051559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07003051A Withdrawn EP1832670A2 (en) | 2006-03-07 | 2007-02-13 | Method for decorative anodic oxidation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1832670A2 (en) |
DE (1) | DE102006010520A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204473A3 (en) * | 2008-12-23 | 2010-07-14 | United Technologies Corporation | Hard anodize of cold spray aluminum layer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012018286A1 (en) | 2012-09-14 | 2014-03-20 | Daimler Ag | Cold welding method and cold welding device |
-
2006
- 2006-03-07 DE DE200610010520 patent/DE102006010520A1/en not_active Withdrawn
-
2007
- 2007-02-13 EP EP07003051A patent/EP1832670A2/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204473A3 (en) * | 2008-12-23 | 2010-07-14 | United Technologies Corporation | Hard anodize of cold spray aluminum layer |
Also Published As
Publication number | Publication date |
---|---|
DE102006010520A1 (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69821920T2 (en) | POWDER MIXTURE FOR THERMAL DIFFUSION COATING | |
DE19733205B4 (en) | Coating for a cylinder surface of a reciprocating engine of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use | |
EP3325685B1 (en) | Method for coating a cylinder barrel of a cylinder crankcase, cylinder crankcase with a coated cylinder barrel and engine | |
WO2007132008A1 (en) | Process for producing a sheet steel product coated with an anticorrosion system | |
WO2017137304A1 (en) | Aluminium-based coating for steel sheets or steel strips and method for the production thereof | |
DE102012112109A1 (en) | Surface-finished steel sheet and process for its production | |
EP3022338A1 (en) | Method for producing a brake disk, and brake disk | |
EP2391742A1 (en) | Zinc diffusion coating method | |
EP2692524B1 (en) | Composite material with a protective layer against corrosion and method for its manufacture | |
WO2009049836A1 (en) | Anti-corrosion coating with improved adhesion | |
DE102007059771A1 (en) | Cylinder bush or cylinder liner made of gray iron- or aluminum alloy for casting in a light metal alloy on the basis of aluminum or aluminum/magnesium, comprises a conditioning coating for casting | |
DE19935164C2 (en) | Process for simultaneous cleaning and flux treatment of aluminum engine block cylinder bore surfaces for fastening thermally sprayed coatings | |
EP0341456A2 (en) | Process for electrolytically depositing a metal layer resisting corrosion by hot gases | |
DE10043108A1 (en) | Production of a metallurgical toughened bond between a coated insert and a casting material comprises applying a first thin layer to the insert, applying a second thin layer and casting the casting material against the surface of the insert | |
DE102009030426A1 (en) | Method for the production of a composite component for motor vehicle, comprises coating a first metallic part of the composite component and subsequently casting a second metallic part from other metal alloy on the first part | |
EP1832670A2 (en) | Method for decorative anodic oxidation | |
DE2166843C3 (en) | Process for the pretreatment of light metals for the electrodeposition of aluminum | |
DE10124250C2 (en) | Method of forming a high strength and wear resistant composite layer | |
DE19920567C2 (en) | Process for coating a component consisting essentially of titanium or a titanium alloy | |
EP2723916A2 (en) | Casting component, and method for the application of an anticorrosive layer | |
DE2162699A1 (en) | PROCESS FOR INCREASING THE ADHESIVE STRENGTH OF COATINGS APPLIED BY THERMAL SPRAYING | |
WO2009144105A1 (en) | Process for applying a bonding primer layer | |
DE102007021736A1 (en) | Process for the aftertreatment of welded joints | |
DE102012021061A1 (en) | Method for producing coating on metallic substrate surface used in e.g. aerospace industry, involves forming firmly bonded connection between substrate surfaces or metallic particles by energy input which is provided by laser beam | |
DE102006010521A1 (en) | Sputtering and anode process to coat lightweight automotive and/or aerospace magnesium components with pure aluminum or aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090829 |