EP1831428B1 - Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure - Google Patents

Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure Download PDF

Info

Publication number
EP1831428B1
EP1831428B1 EP05858676A EP05858676A EP1831428B1 EP 1831428 B1 EP1831428 B1 EP 1831428B1 EP 05858676 A EP05858676 A EP 05858676A EP 05858676 A EP05858676 A EP 05858676A EP 1831428 B1 EP1831428 B1 EP 1831428B1
Authority
EP
European Patent Office
Prior art keywords
silicon
turbine engine
chromium
fluid composition
containing fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05858676A
Other languages
German (de)
English (en)
Other versions
EP1831428A2 (fr
Inventor
David C. Fairbourn
Paul Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
MT COATINGS LLC
Original Assignee
Siemens Industrial Turbomachinery GmbH
MT COATINGS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2004/041896 external-priority patent/WO2006036171A1/fr
Application filed by Siemens Industrial Turbomachinery GmbH, MT COATINGS LLC filed Critical Siemens Industrial Turbomachinery GmbH
Priority to PL05858676T priority Critical patent/PL1831428T3/pl
Publication of EP1831428A2 publication Critical patent/EP1831428A2/fr
Application granted granted Critical
Publication of EP1831428B1 publication Critical patent/EP1831428B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Definitions

  • the present invention relates to coated metal components and, more particularly, turbine engine components with a non-aluminide protective coating containing silicon and chromium and methods of forming such protective coatings on turbine engine components.
  • Intermetallic layers and coatings are often formed on a surface of a metal component to protect the underlying metal substrate of the component and to extend its useful life during operation.
  • many superalloy components in gas turbine engines like turbine blades, vanes, shrouds, and nozzle guides, include an aluminide coating on airflow or gas washed surfaces that protect the underlying superalloy base metal from high temperature oxidation and corrosion.
  • gas turbine engines are used as aircraft or jet engines (e.g., turbofans), as industrial gas turbine engines for power generation, as part of mechanical drive units for items such as
  • gas turbine engines include a compressor for compressing air, a combustor for mixing the compressed air with fuel, such as, but not limited to, jet fuel, natural gas, diesel, biomass waste gases, naptha and gasified coal gases, the mixture is subsequently ignited.
  • fuel such as, but not limited to, jet fuel, natural gas, diesel, biomass waste gases, naptha and gasified coal gases
  • the engine also includes a turbine blade assembly for producing power.
  • gas turbine engines operate by drawing air into the front of the engine. The air is then compressed, mixed with fuel, and combusted. Hot exhaust gases from the combusted mixture pass through a turbine, which causes the turbine to spin and thereby powers the compressor.
  • Aircraft gas turbine engines referred to herein as jet engines, propel the attached aircraft forward in response to the thrust provided by the flow of the hot exhaust gases from the gas turbine engine. Rotation of the turbine in industrial gas turbine engines generates electrical power.
  • Air flow surfaces of certain turbine engine components are directly contacted by the hot exhaust gases.
  • the hot exhaust gases heat these components to high temperatures and expose them to impurity elements like sulfur originating from the combusted fuel.
  • Superalloys in particular, are susceptible to severe oxidation and corrosion in such harsh enviromnents, particularly when the superalloy components of the gas turbine engine are heated by the hot exhaust gas stream created in a jet engine.
  • Superalloy turbine engine components experience sulfidation when exposed at low temperatures to sulfur originating from the hot exhaust gases and other environmental sources. Generally, sulfidation increases the corrosion rate of superalloys and, in particular, the hot corrosion rate of nickel-based superalloys. Sulfidation is most often observed on portions of superalloy gas turbine components that are heated to temperatures below about 1500°F (815°C) during service. Often, superalloy gas turbine components are cooled by a stream of lower temperature air directed through a hollow interior region.
  • Sulfidation may occur on portions of superalloy gas turbine components that are shielded from direct exposure to the exhaust gas stream, but nevertheless operate at temperatures less than about 1500°F (815°C) and are exposed to sulfur from the hot exhaust gases that bypass sealing surfaces.
  • certain gas turbine blades include an airfoil segment that is heated to a temperature greater than 1500°F (815°C) when exposed to an exhaust gas stream, a root used to secure the gas turbine blade to a turbine disk of the gas turbine engine, and a platform that separates the airfoil segment from the root.
  • the root which is not directly exposed to the exhaust gas stream, is heated by conduction from the airfoil segment and also cooled to less than 1500°F by heat transfer to the more massive turbine disk.
  • the area of the gas turbine blade beneath the platform is particularly susceptible to sulfidation attack.
  • Aluminide coatings have been disfavored on certain surfaces of turbine engine components. Most aluminide coatings embrittle the surface of the superalloy material used to manufacture turbine engine components, which may cause a loss of surface ductility because the aluminide coating is not ductile.
  • Aluminide coatings may unwantedly alter the tight dimensional tolerances required on certain components. For example, areas below the platform, including the root of gas turbine blades, must maintain tight dimensional tolerances to properly couple the airfoil with the turbine disk. As a result, measures are routinely taken to avoid forming aluminide layers on machined pressure faces or root fixing surfaces below the platform when aluminiding the surfaces of the airfoil segment. Nevertheless, areas below the platform remain susceptible to corrosion enhanced by mechanisms like sulfidation.
  • Platinum aluminides have been proposed as a solution for averting sulfidation attack of regions of the superalloy turbine engine, components below the platform,
  • platinum aluminide coatings under certain operating conditions may be susceptible to cracking, which provides a path for the migration of sulfur and other corrosive elements to the unprotected superalloy surface.
  • the platinum aluminide coating may spall and delaminate, which is not acceptable during operation of the gas turbine engine.
  • EP1111192 discloses a turbine engine component for use with a gas turbine engine, comprising a substrate having a first section with an airflow surface and a second section used to secure the first section to the gas turbine engine and a protective coating on at least a portion of the second section.
  • US 2002/0179191 A1 discloses a process for applying a silicon-containing fluid composition on the airflow surface of a jet engine metal component.
  • the silicon-containing fluid composition e.g. silane, is cured and heated after deposition.
  • the present invention provides a component and process as claimed in Claims 1 and 3.
  • the present invention provides, in one aspect, a non-aluminide protective coating for a turbine engine component having a nickel-based superalloy substrate, in which a fluid composition layer containing silicon and other elements, such as chromium, is applied to the surface and heated to a temperature sufficient to form the protective coating which includes chromium that diffuses from the substrate.
  • the fluid composition layer may be a liquid composition layer or a slurry composition.
  • the protective coating may be effective for reducing the risk of corrosion and sulfidation of the underlying superalloy material.
  • the turbine engine component may be a turbine blade, such as a jet engine or industrial gas turbine blade, having an airfoil segment and a root fixing integral with the airfoil segment for coupling the airfoil segment with the gas turbine engine.
  • the turbine engine component may be a vane, a shroud, a nozzle guide, or any other part requiring protection from oxidation and corrosion when operating in a gas turbine engine.
  • the turbine engine component may be hollow to permit air cooling or hollow for weight reduction.
  • Protective coatings that are predominately ⁇ chromium are believed to not embrittle the superalloy material surface, as do most aluminide coatings.
  • the protective coating is believed to be effective at preventing, or at the least reducing or delaying, corrosion and sulfidation of the underlying superalloy material and, preferably, does not significantly alter the component dimensions.
  • Protective coatings that are predominately ⁇ chromium are believed to have a relatively low susceptibility to cracking, in contrast to conventional platinum aluminide coatings.
  • Fig. 1 is a perspective view of a turbine engine component with a fluid composition being applied to a portion of the turbine engine component in accordance with the principles of the present invention
  • Fig. 2 is a diagrammatic cross-sectional view of a portion of the turbine engine component of Fig. 1 that includes a silicon-containing layer formed by the application of the fluid composition;
  • Fig. 3 is a diagrammatic cross-sectional view similar to Fig. 2 after the silicon-containing layer is converted to a protective coating.
  • a silicon-containing layer 20 is applied to at least portion of an original surface 39 of a turbine engine component 10, such as a gas turbine blade.
  • the silicon-containing layer 20 may be applied as a fluid composition (e.g., liquid composition, solution, or slurry) and then dried to form a pre-coating resident on the turbine engine component 10 before heating to a temperature sufficient to form a non-aluminide protective coating 14 ( Fig. 3 ).
  • the turbine engine component 10 of the representative construction includes an airfoil segment 28 designed to be in the high-pressure, hot airflow path, as indicated by arrows 31.
  • the airfoil segment 28 of turbine engine component 10 includes a pair of airflow surfaces 34, 35 extending between a trailing edge 36 and a curved leading edge 41 and which constitute portions of the surface 39.
  • Cooling holes 37 intersect airflow surfaces 34, 35 so as to permit cooling air to pass through the interior of airfoil segment 28 while turbine engine component 10 is in service on the gas turbine engine.
  • Integral with airfoil segment 28 is a dovetail, root, or root fixing 32 used to secure turbine engine component 10 to an air-cooled turbine disk (not shown) of a gas turbine engine (not shown) and a platform 33 separating the airfoil segment 28 from the root 32.
  • Surface 39 extends across the root 32 below the platform 33.
  • the root 32 further includes pressure faces 42 that face toward the airfoil segment 28 and that are used to mechanically engage the turbine engine component 10 with the turbine disk.
  • a region 44 of surface 39 is directly beneath the platform 33 and has an intervening position between the pressure face 42 nearest to the platform 33 and the platform 33. Region 44, which may be referred to as a pocket as understood by a person having ordinary skill in the art, is also present on the opposite side of the root 32 that is not visible in Fig. 1 .
  • combustion gases in the airflow path 31 may have a temperature as high as 3000°F (1650°C). Although this promotes heating of the airfoil segment 28, gas cooling of the airfoil segment 28 limits operating temperatures to 1800°F (980°C) or less.
  • the temperature of the root 32 is elevated by heat transfer from airfoil segment 28 and other heat sources in the gas turbine engine but is not directly contacted by the combustion gases in airflow path 31.
  • the root 32 may be cooled by a flow of cooling air supplied to the root 32 at a temperature of about 1100°F (590°C).
  • the root 32 is significantly cooler than the airfoil segment 28 during operation and, frequently, is at a temperature of less than 1500°F (815°C) when the component 10 is in service, which makes the root 32 and, in particular, region 44 of surface 39 susceptible to sulfidation and corrosion.
  • the silicon-containing layer 20 may be applied to surface 39 in region 44, such as by hand application with a paint brush B ( Fig. 1 ) as if being painted, by spraying, of by dipping with any excess poured off as the fluid composition is applied.
  • the silicon-containing layer 20 may be optionally applied to other portions of surface 39 outside of region 44.
  • the silicon-containing layer 20 is applied in a liquid form as a fluid or liquid composition and, thereafter, air dried with optional heating to form a solid or semi-solid coating.
  • Other methods of applying the liquid composition are apparent to a person having ordinary skill in the art, such as dipping the root 32 of turbine engine component 10 into a bath (not shown) of the liquid composition to form silicon-containing layer 20 or spraying the liquid composition in a controlled manner onto only region 44.
  • the turbine engine component 10 coated with the layer 20 which may advantageously first be dried and heated at a temperature insufficient to form a protective layer, may be placed into a heated environment and heated to a temperature at which protective coating 14 will be formed on at least region 44 to an engineered thickness.
  • a particular fluid or liquid composition that may be selected for use in forming layer 20 is a silicon-containing substance or liquid such as a silane.
  • Silanes suitable for use in the present invention may have mono-, bis-, or tri-functional trialkoxy silane.
  • the silane may be a bifunctional trialkoxy silyl, preferably trimethoxy, or triethoxy silyl groups.
  • Amino silanes may also be used, although thio silanes may not be desired due to their sulfur content.
  • Bisfunctional silane compounds are well known to persons having ordinary skill in the art, and two preferred for use in the present invention are bis(triethoxysilyl) ethane and bis(trimethoxysilyl) methane.
  • silanes include, but are not limitd to, 1, 2- Bis(tetramethyldisoloxanyl) Ethane 1, 9- Bis(triethoxysilyl) Nonane Bis(triethoxysilyl) Octane Bis(trimethoxysilyl Ethane 1, 3- Bis(trimethylsiloxy)-1, 3- Dimethyl Disiloxane Bis(trimethylsiloxy) Ethylsilane Bis(trimethylsiloxy) Methylsilane Al-501 available from AG Chemetall (Frankfurt Germany)
  • the silane may be neat, in an aqueous solution, or diluted in an aqueous/alcohol solvent solution.
  • a solvent for the latter type of diluted solution may contain from about 1% to 2% by volume to about 30% by volume deionized water with the remainder being a monohydric alcohol such as methanol, ethanol, n- or iso-propanol, or the like. Ethanol and methanol are preferred monohydric alcohols.
  • the solvent is combined with the silane and glacial acetic acid to preferably establish a pH of about 4-6.
  • the silane concentration in the solution may be limited to a maximum concentration for which the silane remains in solution during application. Generally, the solution will consist of about 1% to about 20% silane, wherein the percentage may be measured either by volume or by weight.
  • a particularly useful silane for use in providing layer 20 may be an organofunctional silane such as BTSE 1,2 bis(triethoxysilyl) ethane or BTSM 1,2 bis(trimethoxysilyl) methane.
  • the silane may be dissolved in a mixture of water and acetic acid at a pH of five (5), then in denatured alcohol and glacial acetic acid to establish a silane solution.
  • the silane concentration in the solution is between about 1% and 10% by volume and, advantageously, about 5% by volume.
  • This silane solution readily forms the silicon-containing layer 20, which may have a more or less hard consistency, at temperatures readily achieved and at a temperature insufficient to form the protective coating 14.
  • the liquid composition is applied to all or a portion of surface 39 across region 44 to define the silicon-containing layer 20.
  • the liquid composition applied to region 44 is allowed to dry, with optional heating, such as with a heat gun (not shown) or even in a conventional oven (not shown), to about 250°F (121°C) for about 15 to 25 minutes, to form the silicon-containing layer 20.
  • the liquid composition may first be allowed to air dry, such as underneath a lamp (not shown) or with warm air, to release solvent.
  • the liquid composition forming the silicon-containing layer 20 is applied in an amount of about 0.01 g/cm 2 to about 2.0 g/cm 2 .
  • the silicon-containing layer 20 may refer to either the initially applied layer of liquid composition, or without limitation to the dried layer.
  • the silicon-containing layer 20 may have a thickness in the range of about 40 nm to about 200 nm, although the invention is not so limited.
  • Silicon-containing layer 20 which may be applied to all or a portion of region 44, is heated to a temperature and for a duration effective to transform layer 20 into protective coating 14 across the portion of region 44 to which layer 20 is applied.
  • the conversion temperature is hotter than a curing temperature for layer 20 and cooler than aluminizing temperatures (i.e., about 1850°F (1010°C)).
  • a heating temperature greater than about 400°F (205°C) may be sufficient to convert the silicon-containing layer 20 to protective coating 14.
  • the temperature to which silicon-containing layer 20 is heated to cause the transformation to protective coating 14 will depend, among other things, upon the composition and characteristics of the liquid composition used to form layer 20 and the composition of the substrate alloy.
  • the silicon-containing layer 20 may be heated in various different atmospheres and under various different conditions to form the protective coating 14.
  • layer 20 may be heated in an ambient environment suitable to form the non-aluminide protective coating 14 that contains silicon from layer 20 and a concentration of one or more elements from the constituent superalloy material of the turbine engine component 10.
  • the turbine engine component 10 and layer 20 may be heated to a temperature sufficient to cause diffusion of one or more elements from the component 10 into silicon-containing layer 20 for forming a protective layer 14 that contains these elements.
  • the protective layer 14 may contain chromium and silicon, such as a chromium silicide or a silicon-modified chromium oxide, wherein the chromium originates from the superalloy material of the turbine engine component 10 or a separately deposited beta ( ⁇ ) chromium coating onto the surface of the turbine blade.
  • the ambient environment may be oxygen-depleted, such as a non-oxidizing ambient gas environment created by evacuating a heating chamber and filling the evacuated chamber with an inert gas.
  • the silicon-containing layer 20 may be heated in an oxygen-containing atmosphere to supply oxygen for creating a protective coating 14 containing oxygen, silicon, and optional elements from the material constituting the turbine engine component 10.
  • the protective coating 20 may be a silicate, or may comprise a mixture of metal oxides formed from the superalloy matrix that is covered by a thin silicon-enriched outer layer.
  • the transformation from the silicon-containing layer 20 to the protective coating 14 may be accomplished by placing the turbine engine component 10 into a heated enclosure, like an oven or furnace.
  • the curing step to form the silicon-containing layer 20, and the subsequent step transforming the cured layer 20 into protective coating 14, may be conducted in the same heated enclosure or by placing the turbine engine component 10 into separate heated enclosures.
  • the silicon-containing layer 20 will cure at a lower temperature than the temperature required to transform layer 20 into protective coating 14.
  • the turbine engine component 10 with silicon-containing layer 20 may be placed into a heated deposition environment equipped to form, for example, an aluminide layer (not shown) on the airflow surfaces 34, 35 of airfoil segment 28.
  • aluminide layer not shown
  • the portion of the turbine engine component 10 below platform 33 to which the silicon-containing layer 20 is applied is substantially shielded or covered from the heated deposition environment such that aluminide is not formed thereupon.
  • the elevated temperature of the turbine engine component 10 during the aluminiding process causes the shielded layer 20 on at least region 44 of surface 39 to transform into protective coating 14.
  • the silicon-containing layer 20 may be applied to at least region 44 and protective coating 14 may be formed on region 44 of surface 39 from layer 20 after an aluminide layer (not shown) is formed in a heated deposition environment on the airflow surfaces 34, 35 of airfoil segment 28.
  • the silicon-containing layer 20 may be advantageously applied to surfaces that are not shielded from the combustion gases in the airflow path 31.
  • the silicon-containing layer 20 may be applied to the airflow surfaces 34, 35 of the airfoil segment 28 and/or a surface 38 of platform 33 facing the airfoil segment 28 and heated to extend the protective coating 14 to cover these surfaces 34, 35, 38, as well as region 44.
  • the protective coating 14 is believed to operate to reduce oxidation and corrosion of the superalloy material, when the component 10 is in service in a gas turbine engine, by passivating or shielding the covered portion of region 44 of surface 39 and, optionally, surfaces 34, 35, 38, and/or the remainder of surface 39.
  • the silicon-containing layer 20 may further include an additive that is incorporated as an optional dopant into protective coating 14.
  • Suitable additives generally include any compound of the dopant that is dissolvable in the particular silane solution, although additives containing sulfur ligands and/or oxygen ligands may be disfavored. If the dopant is, for example, yttrium, suitable yttrium compounds include, but are not limited to, yttrium halides, such as yttrium chloride, yttrium bromide, yttrium iodide, and yttrium fluoride.
  • yttrium compounds include, but are not limited to, yttrium acetate, yttrium acetate hydrate, yttrium 2-ethylhexanoate, yttrium perchlorate solution (e.g., 40 wt. % in water), yttrium nitrate hexahydrate, yttrium nitrate tetrahydrate, yttrium isopropoxide oxide, yttrium isopropoxide solution (e.g., 25 wt.
  • suitable hafnium compounds include, but are not limited to, hafnium halides, such as hafnium chloride, hafnium bromide, hafnium iodide, and hafnium fluoride.
  • hafnium compounds include, but are not limited to, any hafnium compound with an organic ligand, such as hafnium tert-butoxide, and hafnium nitrates. Permitted hafnium compounds generally exclude compounds with either sulfur ligands or oxide ligands. These, and other, yttrium and hafnium compounds are commercially available, for example, from Sigma-Aldrich (St. Louis, Missouri).
  • one or more of the candidate dopant compounds is dissolved in or combined with the silane or silane solution. Before combining, the added amount of the dopant compound is measured for accurately regulating the concentration of dopant in the silicon-containing layer 20 and, subsequently, in the protective coating 14. Typically, a single additive or dopant compound will be combined with the silane to form a fluid composition, which is applied to all or a portion of at least region 44 of the turbine engine component 10.
  • the present invention is generally applicable to turbine engine components 10 used in jet engine gas turbines and industrial gas turbines.
  • the present invention is applicable for protecting turbine blades in such turbines.
  • the protective coating 14 may be also applied to surfaces of a vane, a shroud, a nozzle guide, or any other part formed of a superalloy or another metal requiring protection from oxidation and corrosion while operating in a jet engine or while operating in an industrial gas turbine engine.
  • the protected surfaces on these components may be exposed to the combustion gases in the airflow path 31 or shielded from the airflow path 31 during service in the aircraft or industrial gas turbine engine.
  • the turbine engine component 10 includes a metallic substrate 12 and the protective coating 14 on the region 44 of the substrate 12.
  • the metallic substrate 12 may be made of any nickel-, cobalt-, or iron-based high temperature superalloy from which such turbine engine components 10 are commonly made.
  • the base element typically nickel or cobalt, is proportionally by weight the largest elemental constituent in the superalloy of substrate 12.
  • substrate 12 may be the nickel-based superalloy Inconel 795 Mod5A or CMSX-4.
  • the present invention is, however, not intended to be limited to any particular turbine engine component 10, which may be a turbine blade, a vane, a shroud, a nozzle guide, or any other part requiring protection from oxidation and corrosion while operating in a jet engine or while operating in an industrial gas turbine engine.
  • the protective coating 14, which protects the underlying metal of the component 10 against oxidation and corrosion, is typically applied to portions of the turbine engine component 10 that are not heated above about 1500°F (815°C) when the component 10 is in service.
  • the protective coating 14 may be an additive layer 15 or, more typically, may include a concentration of one or more elements from substrate 12 because of interdiffusion between the applied silicon-containing layer 20 and the superalloy material of the substrate 12.
  • the protective coating 14 will be generally characterized by a diffusion zone 13 in addition to the additive layer 15 that overlies the diffusion zone 13.
  • the interdiffusion advantageously introduces a concentration of one or more additional elements, such as chromium, from the substrate 12 into the protective coating 14 that ultimately endow the coating 14 with beneficial protective capabilities.
  • the protective coating 14 may be an alloy containing silicon and chromium, such as chromium silicide, that is effective to prevent or significantly reduce sulfidation, oxidation, and corrosion on the protected region 44 ( Fig. 1 ).
  • the chromium may originate from the superalloy material of the substrate 12 or from a pre-existing chromide or ⁇ chromium coating 16 on the region 44 that melts during heating to supply a source of chromium for the protective coating 14.
  • the protective coating 14 may be a compound containing silicon and oxygen.
  • the compound containing the silicon and oxygen may be a glass precursor of silicon, such as SiO 2 , a silicate, or a silicon-modified chrome oxide.
  • the protective coating 14 may further include a dopant, such as yttrium and/or hafnium that, if present, is believed to operate as a getter or trap for the impurity or tramp element sulfur in the protective coating 14.
  • a dopant such as yttrium and/or hafnium that, if present, is believed to operate as a getter or trap for the impurity or tramp element sulfur in the protective coating 14.
  • the presence of the dopant is believed to reduce the transport of sulfur across the thickness of the protective coating 14 to the substrate 12 and thereby shield the superalloy material of the substrate 12 from sulfur.
  • the protective coating 14 may, either alternatively or in addition to yttrium and/or hafnium, include other beneficial dopants that are believed to inhibit or prevent corrosion and, in particular, other beneficial dopants capable of inhibiting or preventing corrosion enhancement by the sulfidation mechanism.
  • the protective coating 14 has a thickness extending from the surface of the turbine engine component 10 to an exposed working surface 18.
  • the optional dopant may be present with a uniform concentration through the protective coating 14 or may be present with a concentration gradient between the working surface 18 and surface 39 in the region 44.
  • the peak concentration of the gradient of the dopant may be at, or near, the working surface 18. If the protective coating 14 is eroded, the dopant is preferably distributed in protective coating 14 so that the protective coating 14 will continuously have a dopant concentration effective for gettering or trapping sulfur.
  • the silicon-containing layer 20 may be applied, and the resulting protective coating 14 formed, directly as an additive layer on an existing coating, such as a platinum aluminide or a ⁇ chromium coating 16, on at least region 44 of surface 39 ( Fig. 1 ).
  • an existing coating such as a platinum aluminide or a ⁇ chromium coating 16
  • any existing coating may be stripped from region 44 and, optionally, from airflow surfaces 34, 35 of the airfoil segment 28 before the silicon-containing layer 20 is applied for forming the protective coating 14.
  • the protective coating 14 may be formed on region 44 before the turbine engine component 10 has been placed into service and either before machining or after machining with airflow surfaces 34, 35 masked. It may be desirable to mask the portion of surface 39 extending across the pressure faces 42 so that protective coating 14 is formed only across region 44 below platform 33 or any thickness of coating 14 formed on the pressure faces 42 is negligible.
  • the protective coating 14 may be also applied to surfaces of a vane, a shroud, a nozzle guide, or any other part requiring protection from oxidation and corrosion while operating in a gas turbine engine. These surfaces may be exposed to the combustion gases in the airflow path 31 or shielded from the airflow path 31 during use.
  • the silicon-containing layer 20 may comprise a fluid or slurry composition that contains amounts of a silicon-containing material or substance, a chromium-containing material or substance, an inert diluent, a halide activator, and an optional inorganic binder.
  • the chromium-containing substance, inert diluent, and activator of the slurry composition are preferably in a particulate or powder form.
  • the silicon-containing substance may be a silane
  • the chromium-containing substance may be chromium powder
  • the inert diluent may be alumina (Al 2 O 3 ) particles
  • the halide activator may be ammonium bifluoride (NH 4 HF 2 ).
  • the inert diluent prevents sintering of the chromium-containing substance in the silicon-containing layer 20 when the layer 20 is heated to form protective coating 14.
  • the turbine engine component 10 and silicon-containing layer 20 are heated in a non-oxidizing atmosphere or vacuum to a temperature that is maintained for a duration sufficient to form protective coating 14.
  • the heating conditions may be, for example, a temperature of about 1975°F (1080°C) for four hours in an inert (e.g., argon) atmosphere.
  • the slurry composition may be applied to at least region 44 of surface 39 to form silicon-containing layer 20 by methods such as brushing, spraying, and dipping.
  • silane in the slurry composition may be replaced by a different silicon-containing substance, such as colloidal silicon or elemental silicon powder.
  • the slurry composition may contain a dopant compound, such as yttrium acetate or hafnium chloride, as described herein.
  • the amount of slurry composition applied is controlled because the thickness of the resulting protective coating 14 is proportional to the amount of slurry composition applied in layer 20 to at least region 44 of surface 39.
  • the slurry composition is applied as layer 20 to region 44 with a substantially uniform thickness.
  • the slurry composition may comprise, by weight percent, about 1% to about 20% of the powdered chromium-containing substance, greater than 2% of the activator powder, about 60% to about 90% of the inert filler powder, and balance binder and neat silane.
  • the specific slurry composition may be tailored to provide a desired composition for the protective coating 14, as well as other processing variables such as time and temperature, and the coating thickness and composition desired for protective coating 14.
  • the chromium in protective coating 14 does not originate from the substrate 12 of the component 10, the superalloy material of substrate 12 does not have to operate as a chromium source and the chromium-containing protective coating 14 may be formed regardless of the chromium content of the substrate 12. However, minor amounts of substrate elements may diffuse into the protective coating 14.
  • the binder may comprise any suitable conventional binder known to a person having ordinary skill in the art. Suitable binders include NICOBRAZ ® cements commercially available from Wall Colmonoy Corporation (Madison Heights, MI). Alternatively, the binder may be omitted from the slurry composition forming layer 20 if another substance in the layer 20, such as the silane, can operate as a binder for adhering the slurry composition to the surface 39 of component 10.
  • the slurry composition is directly applied to all or a portion of region 44 of surface 39 of the root 32 of turbine engine component 10 to form silicon-containing layer 20.
  • the silicon-containing layer 20 is heated in an inert or evacuated atmosphere (i.e., non-oxidizing) to a temperature sufficient to vaporize the activator in the layer 20.
  • the vaporized activator reacts with the chromium-containing substance in the layer 20 to promote chemical reactions that liberate chromium from the substance to participate in forming protective coating 14.
  • the heating conditions may be, for example, a temperature in the range of 1875°F (1025°C) to 1900°F (1040°C) for four hours in an inert atmosphere.
  • unreacted slurry residues may be removed by, for example, brushing or blasting with glass beads such as BALLOTINI® impact glass beads commercially available from Potters Brothers, Inc. (Carlstadt, New Jersey).
  • the invention further contemplates that the fluid compositions described herein may be introduced into cooling holes 37 or other internal passages of the turbine engine component 10 for purposes of forming a protective coating 14 on the internal surfaces bordering the cooling holes 37.
  • the silicon-containing fluid composition is introduced into the cooling holes 37 to form silicon-containing layer 20 and heated to form the protective coating 14 on these internal surfaces.
  • the silicon-containing layer 20 may be applied in stages to form the protective coating 14.
  • the silane may be omitted from the slurry composition initially applied as a first portion of layer 20 to all or a portion of region 44 of surface 39.
  • Heating layer 20 results in the formation of a chromium-rich layer (e.g. ⁇ chromium layer) on region 44 to which the first portion of layer 20 is applied.
  • the turbine engine component 10 is grit blasted using, for example, impact glass beads or aluminum oxide 220 grit.
  • Silane is then applied, as described above, on region 44 with the chromium-rich layer as a second portion of the layer 20.
  • Protective coating 14 is formed by heating, for example, at 250°C for 30 minutes to react the silane with the chromium-rich layer to form the protective coating 14. Silicon from the silicon-containing layer 20 diffuses into the ⁇ chromium layer. Chromium from the ⁇ chromium coating also diffuses into the non-aluminide protective coating 14.
  • any of the different liquid or slurry compositions forming silicon-containing layers 20 may be used in combination with chromium that originates from the superalloy material of the substrate 12 or from a pre-existing P chromium coating 16 on the region 44.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)

Abstract

La présente invention concerne un composant de moteur à turbine (10) avec un revêtement protecteur sans aluminure (14) contenant du silicium et du chrome, ainsi qu’un procédé de fabrication de tels revêtements protecteurs sans aluminure (14). Le revêtement protecteur sans aluminure (14) est obtenu en appliquant une composition fluide contenant du silicium sur le composant de moteur à turbine (10) en tant que couche contenant du silicium (20) puis en chauffant la couche contenant du silicium (20) à une température efficace en vue de former le revêtement protecteur sans aluminure (14).

Claims (17)

  1. Composant de moteur à turbine (10) destiné à être utilisé avec une turbine à gaz, comprenant :
    un substrat en superalliage à base de nickel (12) comportant une première section (28) à surface aérodynamique (34) et une seconde section (32) utilisée pour fixer la première section (28) à la turbine à gaz ; et
    un revêtement protecteur sans aluminure (14) sur au moins une partie de la seconde section (32), le revêtement protecteur sans aluminure (14) comportant du chrome qui se diffuse depuis le substrat en superalliage à base de nickel (12) et du silicium de telle sorte que le revêtement protecteur sans aluminure (14) contienne un siliciure de chrome, un oxyde de chrome modifié au silicium, ou un silicate contenant du chrome.
  2. Composant de moteur à turbine (10) selon la revendication 1, dans lequel le revêtement protecteur (14) comporte en outre un dopant sélectionné dans le groupe consistant en yttrium, hafnium, et des combinaisons de ceux-ci.
  3. Processus de revêtement pour protéger un composant de moteur à turbine (10) comportant une première section (28) à surface aérodynamique (34) et une seconde section (32) utilisée pour fixer la première section (28) à la turbine à gaz ; le processus de revêtement comprenant :
    l'application d'une couche (20) d'une composition fluide contenant du silicium comprenant un liquide de silane sur au moins une partie de la seconde section (32) du composant de moteur à turbine (10) ;
    le durcissement de la composition fluide contenant du silicium après l'application de la couche (20) sur la seconde section (32) du composant de moteur à turbine (10) ; et
    le chauffage de la composition fluide contenant du silicium à une température efficace pour former un revêtement protecteur sans aluminure (14) sur la seconde section (32) du composant de moteur à turbine (10) qui comporte du silicium provenant de la composition fluide contenant du silicium durcie et qui comporte en outre du chrome diffusé depuis le composant de moteur à turbine (10).
  4. Processus de revêtement selon la revendication 3, dans lequel le composant de moteur à turbine (10) comprend un matériau de superalliage à base de nickel.
  5. Processus de revêtement selon la revendication 3 ou 4, comprenant en outre l'application d'une substance contenant du chrome sur au moins une partie de la seconde section (32) du composant de moteur à turbine (10).
  6. Processus de revêtement selon la revendication 5, dans lequel l'application de la substance contenant du chrome comprend en outre l'application de la substance contenant du chrome sur au moins la partie de la seconde section (32) comme constituant de la composition fluide contenant du silicium dans la couche (20).
  7. Processus de revêtement selon la revendication 6, dans lequel l'application de la substance contenant du chrome comprend en outre l'application d'un activateur d'halogénure, d'une poudre diluante inerte, et d'un liant inorganique optionnel sur au moins la partie de la seconde section (32) comme constituants de la composition fluide contenant du silicium dans la couche (20).
  8. Processus de revêtement selon la revendication 6 ou 7, dans lequel le chauffage de la composition fluide contenant du silicium durcie comprend en outre le chauffage de la composition fluide contenant du silicium jusqu'à une température et pendant une durée suffisantes pour combiner la substance contenant du chrome au silicium provenant de la composition fluide contenant du silicium durcie de telle sorte que la substance contenant du chrome et le silicium participent à la formation du revêtement protecteur sans aluminure (14).
  9. Processus de revêtement selon l'une quelconque des revendications 5 à 8, dans lequel la substance contenant du chrome comprend un revêtement de chrome β, et l'application de la substance contenant du chrome comprend en outre l'application du revêtement de chrome β sur au moins la partie du composant de moteur à turbine (10) avant l'application de la couche (20).
  10. Processus de revêtement selon la revendication 9, dans lequel le chauffage de la composition fluide contenant du silicium durcie comprend en outre le chauffage de la composition fluide contenant du silicium durcie et du revêtement de chrome β jusqu'à une température et pendant une durée suffisantes pour faire fondre le revêtement de chrome β et combiner le silicium provenant de la composition fluide contenant du silicium durcie au revêtement de chrome β fondu pour participer à la formation du revêtement protecteur sans aluminure (14).
  11. Processus de revêtement selon la revendication 3, dans lequel la partie de composant de moteur à turbine (10) est recouverte par un revêtement existant, et l'application de la couche (20) de la composition fluide contenant du silicium comprend en outre l'application de la composition fluide contenant du silicium comme couche additive (20) sur le revêtement existant de telle sorte que le revêtement protecteur sans aluminure (14) soit formé sur le revêtement existant.
  12. Processus de revêtement selon l'une quelconque des revendications précédentes, dans lequel la seconde section (32) du composant de moteur à turbine (10) comporte un passage interne, et l'application de la couche (20) de la composition fluide contenant du silicium comprend en outre l'introduction de la composition fluide contenant du silicium dans le passage interne.
  13. Processus de revêtement selon l'une quelconque des revendications précédentes, comprenant en outre le placement de la composition fluide contenant du silicium dans une atmosphère oxydante avant de chauffer la composition fluide contenant du silicium durcie.
  14. Processus de revêtement selon l'une quelconque des revendications 3 à 13, comprenant en outre le placement de la composition fluide contenant du silicium dans une atmosphère non oxydante avant de chauffer la composition fluide contenant du silicium durcie.
  15. Processus de revêtement selon l'une quelconque des revendications 3 à 14, dans lequel le chauffage de la composition fluide contenant du silicium durcie comprend en outre l'élévation de la température de la composition fluide contenant du silicium durcie au-delà d'une température de durcissement.
  16. Processus de revêtement selon l'une quelconque des revendications 3 à 14, dans lequel le chauffage de la composition fluide contenant du silicium durcie comprend en outre l'élévation de la température de la composition fluide contenant du silicium durcie au-delà d'environ 205°C (400°F).
  17. Processus de revêtement selon l'une quelconque des revendications 3 à 16, comprenant en outre l'ajout d'un dopant sélectionné dans le groupe consistant en yttrium, hafnium et des combinaisons de ceux-ci au liquide de silane.
EP05858676A 2004-12-13 2005-12-12 Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure Active EP1831428B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05858676T PL1831428T3 (pl) 2004-12-13 2005-12-12 Elementy silnika turbinowego z nie-aluminidowymi powłokami ochronnymi zawierającymi krzem oraz chrom i sposoby wytwarzania takich nie-aluminidowych powłok ochronnych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2004/041896 WO2006036171A1 (fr) 2004-09-16 2004-12-13 Composants de reacteur en superalliage a revetements de protection et procede de formation de ces revetements de protection sur des composants de reacteur en superalliage
PCT/US2005/044843 WO2007067185A2 (fr) 2004-12-13 2005-12-12 Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure

Publications (2)

Publication Number Publication Date
EP1831428A2 EP1831428A2 (fr) 2007-09-12
EP1831428B1 true EP1831428B1 (fr) 2011-06-22

Family

ID=36405882

Family Applications (3)

Application Number Title Priority Date Filing Date
EP05858676A Active EP1831428B1 (fr) 2004-12-13 2005-12-12 Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure
EP16171410.0A Active EP3095895B1 (fr) 2004-12-13 2005-12-12 Procédé de formation des revêtements protecteurs au silicium sur composants métalliques
EP05853894.3A Active EP1834009B1 (fr) 2004-12-13 2005-12-12 Composants metalliques avec revetements protecteurs au silicium et procedes de formation de ces revetements protecteurs

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP16171410.0A Active EP3095895B1 (fr) 2004-12-13 2005-12-12 Procédé de formation des revêtements protecteurs au silicium sur composants métalliques
EP05853894.3A Active EP1834009B1 (fr) 2004-12-13 2005-12-12 Composants metalliques avec revetements protecteurs au silicium et procedes de formation de ces revetements protecteurs

Country Status (4)

Country Link
EP (3) EP1831428B1 (fr)
ES (1) ES2368436T3 (fr)
PL (2) PL3095895T3 (fr)
WO (2) WO2006065819A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103713A1 (fr) * 2008-03-20 2009-09-23 Münch Chemie International GmbH Couche de protection contre la corrosion

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB893397A (en) * 1959-07-29 1962-04-11 Dow Corning Improvements in or relating to coating metals
CA1004964A (en) * 1972-05-30 1977-02-08 Union Carbide Corporation Corrosion resistant coatings and process for making the same
CH597364A5 (fr) * 1974-04-11 1978-03-31 Bbc Sulzer Turbomaschinen
GB1529441A (en) * 1976-01-05 1978-10-18 Bp Chem Int Ltd Protective surface films of oxide or silicide
JPS5754282A (ja) * 1980-09-17 1982-03-31 Mitsubishi Heavy Ind Ltd Tainetsugokinnohyomenshorihoho
US4500364A (en) * 1982-04-23 1985-02-19 Exxon Research & Engineering Co. Method of forming a protective aluminum-silicon coating composition for metal substrates
US4774149A (en) * 1987-03-17 1988-09-27 General Electric Company Oxidation-and hot corrosion-resistant nickel-base alloy coatings and claddings for industrial and marine gas turbine hot section components and resulting composite articles
EP0327311B1 (fr) * 1988-02-02 1994-09-14 Hitachi Chemical Co., Ltd. Fluide de revêtement pour la formation d'une couche d'oxyde
US6503347B1 (en) * 1996-04-30 2003-01-07 Surface Engineered Products Corporation Surface alloyed high temperature alloys
US5721061A (en) * 1996-11-15 1998-02-24 General Electric Company Oxidation-resistant coating for niobium-base alloys
US5750197A (en) * 1997-01-09 1998-05-12 The University Of Cincinnati Method of preventing corrosion of metals using silanes
GB9821748D0 (en) * 1998-10-07 1998-12-02 Rolls Royce Plc A titanium article having a protective coating and a method of applying a protective coating to a titanium article
ATE303503T1 (de) 1999-12-20 2005-09-15 United Technologies Corp Gegenstände mit korrosionsbeständigen beschichtungen
WO2002024344A2 (fr) * 2000-09-25 2002-03-28 Chemetall Gmbh Procede de pretraitement et d'enduction de surfaces metalliques, avant leur façonnage, au moyen d'un revetement ressemblant a de la peinture, et utilisation de substrats ainsi enduits
US6521356B2 (en) * 2001-02-02 2003-02-18 General Electric Company Oxidation resistant coatings for niobium-based silicide composites
US6605161B2 (en) * 2001-06-05 2003-08-12 Aeromet Technologies, Inc. Inoculants for intermetallic layer
WO2003035942A2 (fr) * 2001-08-03 2003-05-01 Elisha Holding Llc Procede electrolytique et autocatalytique de traitement de surfaces metalliques et produits traites selon ce procede
US20060057418A1 (en) * 2004-09-16 2006-03-16 Aeromet Technologies, Inc. Alluminide coatings containing silicon and yttrium for superalloys and method of forming such coatings

Also Published As

Publication number Publication date
EP3095895B1 (fr) 2019-05-01
PL3095895T3 (pl) 2019-10-31
WO2007067185A3 (fr) 2007-08-02
ES2368436T3 (es) 2011-11-17
EP1834009A2 (fr) 2007-09-19
EP1831428A2 (fr) 2007-09-12
PL1831428T3 (pl) 2012-03-30
WO2006065819A2 (fr) 2006-06-22
EP1834009B1 (fr) 2016-07-20
EP3095895A1 (fr) 2016-11-23
WO2006065819A3 (fr) 2006-11-30
WO2007067185A2 (fr) 2007-06-14

Similar Documents

Publication Publication Date Title
US9133718B2 (en) Turbine engine components with non-aluminide silicon-containing and chromium-containing protective coatings and methods of forming such non-aluminide protective coatings
US7901739B2 (en) Gas turbine engine components with aluminide coatings and method of forming such aluminide coatings on gas turbine engine components
US6616969B2 (en) Apparatus and method for selectively coating internal and external surfaces of an airfoil
EP1989399B1 (fr) Revêtement rugosifié pour composants de moteur de turbine à gaz
JP5698896B2 (ja) スラリー状拡散アルミナイド被覆方法
US6273678B1 (en) Modified diffusion aluminide coating for internal surfaces of gas turbine components
EP1199377B1 (fr) Protection de la surface d'un article à base de nickel par une couche en alliage d'aluminium résistante à la corrosion
US7056555B2 (en) Method for coating an internal surface of an article with an aluminum-containing coating
EP3055445B1 (fr) Revêtement en alliage d'aluminium dotés d'inhibiteurs de corrosion de type terres rares et métaux de transition
US7163718B2 (en) Method of selective region vapor phase aluminizing
US8039116B2 (en) Nb-Si based alloys having an Al-containing coating, articles, and processes
US20100136240A1 (en) Process for Forming an Outward Grown Aluminide Coating
EP1831428B1 (fr) Composants de moteur a turbine avec revetements protecteurs contenant du silicium et du chrome sans aluminure et procedes de fabrication de tels revetements protecteurs sans aluminure
JP4907072B2 (ja) 選択的領域気相アルミナイズ方法
EP3293281A1 (fr) Procédé de formation d'un revêtement de diffusion sur un substrat
US6896488B2 (en) Bond coat process for thermal barrier coating
EP1802784B1 (fr) Composants de moteur de turbine a gaz a revetements en aluminiure et procede de realisation de ces revetements sur les composants en question
US6893737B2 (en) Low cost aluminide process for moderate temperature applications
CA2483232C (fr) Methode d'aluminiage selectif en phase vapeur d'une region

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070620

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20071019

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS INDUSTRIAL TURBOMACHINERY GMBH

Owner name: MT COATINGS, LLC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005028693

Country of ref document: DE

Effective date: 20110811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS INDUSTRIAL TURBOMACHINERY GMBH#WOLFGANG-REUTER-PLATZ#47053 DUISBURG (DE) $ MT COATINGS, LLC#3064 COLERAIN AVENUE#CINCINNATI, OH 45225 (US) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) $ MT COATINGS, LLC#3064 COLERAIN AVENUE#CINCINNATI, OH 45225 (US)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110622

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: MT COATINGS, LLC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2368436

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110923

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005028693

Country of ref document: DE

Representative=s name: MEISSNER & MEISSNER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012091

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: MT COATINGS, LLC, CINCINNATI, US

Free format text: FORMER OWNER: AEROMET TECHNOLOGIES, INC., SIEMENS INDUSTRIAL TURBOMACHINE, , US

Effective date: 20110622

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: AEROMET TECHNOLOGIES, INC., SIEMENS INDUSTRIAL TURBOMACHINE, , US

Effective date: 20110622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005028693

Country of ref document: DE

Representative=s name: MEISSNER & MEISSNER, DE

Effective date: 20111209

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: MT COATINGS, LLC, CINCINNATI, US

Free format text: FORMER OWNER: MT COATINGS, LLC, SIEMENS INDUSTRIAL TURBOMACHINE, , US

Effective date: 20111209

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: MT COATINGS, LLC, SIEMENS INDUSTRIAL TURBOMACHINE, , US

Effective date: 20111209

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNERS: MT COATINGS, LLC, CINCINNATI, OHIO, US; SIEMENS INDUSTRIAL TURBOMACHINERY GMBH, 47053 DUISBURG, DE

Effective date: 20111209

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: MT COATINGS, LLC, CINCINNATI, US

Free format text: FORMER OWNERS: MT COATINGS, LLC, CINCINNATI, OHIO, US; SIEMENS INDUSTRIAL TURBOMACHINERY GMBH, 47053 DUISBURG, DE

Effective date: 20111209

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005028693

Country of ref document: DE

Representative=s name: ANWALTSKANZLEI MEISSNER & MEISSNER, DE

Effective date: 20111209

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNERS: AEROMET TECHNOLOGIES, INC., SANDY, UTAH, US; SIEMENS INDUSTRIAL TURBOMACHINERY GMBH, 47053 DUISBURG, DE

Effective date: 20110622

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: MT COATINGS, LLC, CINCINNATI, US

Free format text: FORMER OWNERS: AEROMET TECHNOLOGIES, INC., SANDY, UTAH, US; SIEMENS INDUSTRIAL TURBOMACHINERY GMBH, 47053 DUISBURG, DE

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005028693

Country of ref document: DE

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120830 AND 20120905

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151212

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: 3064 COLERAIN AVENUE, CINCINNATI, OH 45225 (US) $ SIEMENS AKTIENGESELLSCHAFT, WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20171127

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20171121

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PUEA

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: MT COATINGS, LLC, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180102

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNERS: MT COATINGS, LLC, CINCINNATI, OHIO, US; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005028693

Country of ref document: DE

Owner name: MT COATINGS, LLC, CINCINNATI, US

Free format text: FORMER OWNERS: MT COATINGS, LLC, CINCINNATI, OHIO, US; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005028693

Country of ref document: DE

Representative=s name: ROTH, THOMAS, DIPL.-PHYS. DR., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 19

Ref country code: FR

Payment date: 20231226

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 19