EP1831377A1 - Method for producing polyunsaturated fatty acids in transgenic organisms - Google Patents

Method for producing polyunsaturated fatty acids in transgenic organisms

Info

Publication number
EP1831377A1
EP1831377A1 EP05819684A EP05819684A EP1831377A1 EP 1831377 A1 EP1831377 A1 EP 1831377A1 EP 05819684 A EP05819684 A EP 05819684A EP 05819684 A EP05819684 A EP 05819684A EP 1831377 A1 EP1831377 A1 EP 1831377A1
Authority
EP
European Patent Office
Prior art keywords
seq
desaturase
nucleic acid
acid
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05819684A
Other languages
German (de)
French (fr)
Inventor
Petra Cirpus
Jörg BAUER
Ernst Heinz
Frederic Domergue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science GmbH
Original Assignee
BASF Plant Science GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science GmbH filed Critical BASF Plant Science GmbH
Publication of EP1831377A1 publication Critical patent/EP1831377A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • the present invention relates to a process for the production of polyunsaturated fatty acids in an organism by introducing into the organism nucleic acids which are polypeptides having ⁇ 5 -enongase, ⁇ 6-desaturase, a ⁇ 5-desaturase Encode ⁇ -4-desaturase, ⁇ -12-desaturase and / or ⁇ -6 elongase activity.
  • nucleic acids which are polypeptides having ⁇ 5 -enongase, ⁇ 6-desaturase, a ⁇ 5-desaturase Encode ⁇ -4-desaturase, ⁇ -12-desaturase and / or ⁇ -6 elongase activity.
  • desaturases and elongases are advantageously derived from Ostreococcus.
  • the invention relates to a process for the preparation of oils and / or triacylglycerides having an increased content of long-chain polyunsaturated fatty acids.
  • the invention further relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences of the invention, vectors comprising the nucleic acid sequences and / or the nucleic acid constructs and transgenic organisms contain the aforementioned nucleic acid sequences, nucleic acid constructs and / or vectors.
  • Another part of the invention relates to oils, lipids and / or fatty acids prepared by the process according to the invention and their use.
  • the invention relates to unsaturated fatty acids and triglycerides having an increased content of unsaturated fatty acids and their use.
  • Fatty acids and triacylglycerides have a variety of uses in the food, animal nutrition, cosmetics and pharmaceutical industries. Depending on whether they are free saturated and unsaturated fatty acids or triacylglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications.
  • Polyunsaturated fatty acids such as oleic and linolenic acids are essential for mammals as they can not be produced by them. Therefore multiple polyunsaturated ⁇ -3 fatty acids and ⁇ -6 fatty acids an important part of human and animal food are unsaturated long-chain ⁇ -3 fatty acids such as eicosapentaenoic acid.
  • polyunsaturated long-chain fatty acids Due to the customary composition of human food today, addition of polyunsaturated ⁇ -3 fatty acids, which are preferred in fish oils, is particularly important for food.
  • the unsaturated fatty acid DHA is thereby attributed a positive effect on the development and maintenance of brain functions.
  • polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (poly unsaturated fatty acids, PUFA, polyunsaturated fatty acids, long chain poly unsaturated fatty acids, LCPUFA, long-chain polyunsaturated fatty acids).
  • the free fatty acids are advantageously prepared by saponification.
  • Common natural sources of these fatty acids are fish such as herring, salmon, sardine, perch, eel, carp, trout, halibut, mackerel, zander or tuna or algae.
  • oils with saturated or unsaturated fatty acids are preferred.
  • lipids with unsaturated fatty acids especially polyunsaturated fatty acids
  • the polyunsaturated ⁇ -3 fatty acids thereby a positive effect on the cholesterol level in the blood and thus the possibility of preventing heart disease is attributed.
  • ⁇ -3 fatty acids By adding these ⁇ -3 fatty acids to the diet, the risk of heart disease, stroke or hypertension can be significantly reduced.
  • inflammatory especially chronic inflammatory processes in the context of immunological diseases such as rheumatoid arthritis can be positively influenced by ⁇ -3 fatty acids. They are therefore added to foods especially dietary foods or found in medicines application.
  • ⁇ -6 fatty acids such as arachidonic acid tend to have a negative effect on these diseases in these rheumatic diseases due to our usual food composition.
  • ⁇ -3- and ⁇ -6 fatty acids are precursors of tissue hormones, the so-called eicosanoids such as the prostaglandins derived from dihomo- ⁇ -linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and leukotrienes derived from arachidonic acid and Derive the eicosapentaenoic acid.
  • Eicosanoids which are formed from ⁇ -6 fatty acids usually promote inflammatory reactions, while eicosanoids (so-called PG 3 series) of ⁇ -3 fatty acids have little or no pro-inflammatory effect.
  • ⁇ 6-desaturases are described in WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO00 / 21557 and WO 99/27111 and also the application for production in transgenic organisms as described in WO98 / 46763 WO98 / 46764, WO9846765.
  • the expression of various desaturases as described in WO99 / 64616 or WO98 / 46776 and formation of polyunsaturated fatty acids is also described and claimed. Concerning.
  • microorganisms for the production of PUFAs are microorganisms such as microalgae such as Phaeodactylum tricomutum, Porphiridium species, Thraustochytrien species, Schizochytria species or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor and / or mosses such as Physcomitrella, Ceratodon and Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; Akimoto, M.
  • microalgae such as Phaeodactylum tricomutum, Porphiridium species, Thraustochytrien species, Schizochytria species or Crypthecodinium species
  • ciliates such as Stylonychia or Colpid
  • the starting material for the ⁇ -6 pathway is the fatty acid linoleic acid (18: 2 ⁇ 9 12 ), while the ⁇ -3 pathway is via linolenic acid (18: 3 ⁇ 9 ' 12 ' 15 ).
  • Linolenic acid is formed by the activity of an ⁇ -3-desaturase (Tocher et al., 1998, Prog. Lipid Res., 37, 73-117, Domergue et al., 2002, Eur. J. Biochem., 269, 4105-4113).
  • the elongation of fatty acids by elongases of 2 and 4 C atoms, respectively, is of crucial importance for the production of C 20 and C 22 PUFAs, respectively.
  • This process runs over 4 stages.
  • the first step is the condensation of malonyl-CoA the fatty acid-acyl-CoA by ketoacyl-CoA synthase (KCS, hereinafter referred to as elongase).
  • KCS ketoacyl-CoA synthase
  • KCR ketoacyl-CoA reductase
  • dehydratase dehydratase
  • enoyl-CoA reductase enoyl-CoA reductase
  • LCPUFAs in higher plants, preferably in oilseeds such as oilseed rape, linseed, sunflower and soybean, since in this way large quantities of high-quality LCPUFAs can be obtained inexpensively for the food industry, animal nutrition and for pharmaceutical purposes.
  • gene coding for enzymes of the biosynthesis of LCPUFAs in oilseeds must be advantageously introduced and expressed via genetic engineering methods. These are genes which encode, for example, ⁇ 6-desaturases, ⁇ 6-elongases, ⁇ 5-desaturases or ⁇ 4-desaturases. These genes can be advantageously isolated from microorganisms and lower plants that produce LCPUFAs and incorporate them into the membranes or triacylglycerides. For example, ⁇ 6-desaturase genes from the moss Physcomitrella patens and ⁇ 6 elongase genes from P. patens and the nematode C. elegans have been isolated.
  • transgenic organisms with a content of at least 1 wt .-% of these compounds based on the total lipid content of the transgenic organism, characterized in that it comprises the following steps: a) introducing at least one nucleic acid sequence into the organism, which for a ⁇ -6-desaturase And b) introduction of at least one nucleic acid sequence into the organism which codes for a ⁇ 6-elongase activity, and c) introduction of at least one nucleic acid sequence into the organism which codes for a ⁇ 5-desaturase activity, and d) introducing into the organism at least one nucleic acid sequence encoding ⁇ 5-elongase activity, and e) introducing into the organism at least one nucleic acid sequence encoding a ⁇ 4-desaturase activity, and wherein the variables and substituents in the formula I have the following meaning:
  • R 2 hydrogen, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lysophosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol or saturated or unsaturated C 2 -C 24 -alkylcarbonyl-,
  • R 3 J _ hydrogen, saturated or unsaturated C 2 -C 24 -alkylcarbonyl-, or R 2 or R 3 independently of one another a radical of general formula Ia:
  • R 1 in general formula I denotes hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol, sphingobase, or a radical of the general formula II
  • R 1 are always bonded in the form of their thioesters to the compounds of general formula I.
  • R 2 in the general formula II denotes hydrogen, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol or saturated or unsaturated C 2 -C 24 - alkylcarbonyl,
  • alkyl radicals are substituted or unsubstituted, saturated or unsaturated C 2 -C 24 -alkylcarbonyl chains such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentyl carbo ⁇ yl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n- Pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta-decylcarbonyl, n-octadecylcarbonyl, n-nonadecyl
  • C 10 -C 22 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta decylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl.
  • C 10 -C 22 -alkylcarbonyl radicals such as C 10 -alkylcarbonyl, C 1-4 -alkylcarbonyl, C 12 -alkylcarbonyl, C 1-3 -alkylcarbonyl, C 14 -alkylcarbonyl, C 16 -alkylcarbonyl, , C 18 - alkylcarbonyl, C 20 alkylcarbonyl or C 22 alkylcarbonyl radicals which contain one or more double bonds.
  • C 16 -C 22 -alkylcarbonyl radicals such as C 6 alkylcarbonyl, C 18 alkylcarbonyl, C 20 are especially preferred - alkylcarbonyl or C 22 -alkylcarbonyl radicals which contain one or more double bonds.
  • These advantageous radicals may contain two, three, four, five or six double bonds.
  • the particularly advantageous radicals having 20 or 22 carbon atoms in the fatty acid chain contain up to six double bonds, advantageously three, four, five or six double bonds, more preferably five or six double bonds. All these radicals are derived from the corresponding fatty acids.
  • R 3 in the general formula II is hydrogen, saturated or unsaturated C 2 -C 24 -alkylcarbonyl.
  • Alkyl radicals which may be substituted or unsubstituted, saturated or unsaturated C 2 -C 24 -alkylcarbonyl chains, such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta-
  • C 1 -C 22 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta decylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl containing one or more double bonds are preferred.
  • saturated and / or unsaturated C 10 -C 22 -alkylcarbonyl radicals such as C 10 -alkylcarbonyl, C 1-4 -alkylcarbonyl, C 12 -alkylcarbonyl, C 13 -alkylcarbonyl, C 14 -alkylcarbonyl, C 16 -alkylcarbonyl, , C 18 - alkylcarbonyl, C 20 alkylcarbonyl or C 22 alkylcarbonyl radicals which contain one or more double bonds.
  • C 16 -C 22 -alkylcarbonyl radicals such as C 16 -alkylcarbonyl, C 18 -alkylcarbonyl, C 20 -alkylcarbonyl or C 22 -alkylcarbonyl radicals, having one or more double bonds contain.
  • These advantageous radicals may contain two, three, four, five or six double bonds.
  • the particularly advantageous radicals having 20 or 22 carbon atoms in the fatty acid chain contain up to six double bonds, advantageously three, four, five or six double bonds, more preferably five or six double bonds. All these radicals are derived from the corresponding fatty acids.
  • R 1 , R 2 and R 3 may be substituted by hydroxyl and / or epoxy groups and / or may contain triple bonds.
  • the polyunsaturated fatty acids prepared in the process according to the invention advantageously contain at least two, preferably three, four, five or six double bonds. Particularly advantageously, the fatty acids contain four five or six double bonds.
  • Fatty acids produced in the process advantageously have 18, 20 or 22 C atoms in the fatty acid chain, preferably the fatty acids contain 20 or 22 carbon atoms in the fatty acid chain.
  • saturated fatty acids are little or not reacted with the nucleic acids used in the process. Little is understood to mean that compared to polyunsaturated fatty acids, the saturated fatty acids have less than 5% of the activity, advantageously less than 3%, more preferably less than 2%, most preferably less than 1; 0.5; 0.25 or 0.125% are implemented.
  • nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which are suitable for polypeptides having ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase and / or ⁇ - 4-encoding desaturase activity.
  • Nucleic acid sequences which code for polypeptides having ⁇ -6-desaturase, ⁇ -6-elongase, ⁇ -5-desaturase, ⁇ -5-elongase or ⁇ -4-desaturase activity are advantageously used in the process according to the invention
  • SEQ ID NO: 9 SEQ ID NO: 11 or SEQ ID NO: 13 shown for polypeptides having at least 40% identity at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID N0: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or SEQ ID NO: 14 and have a ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ -4-desaturase activity.
  • the substituents R 2 or R 3 in the general formulas I and II independently of one another are saturated or unsaturated C 18 -C 22 -alkylcarbo ⁇ yls, particularly advantageously they independently of one another denote unsaturated C 8 -, C 20 - or C 22 -alkylcarbonyl with at least two double bonds.
  • the method is characterized in that a nucleic acid sequence is additionally introduced into the organism which codes for polypeptides having ⁇ 12-desaturase activity, selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, or b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 16, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which polypeptides have at least 50 % Identity at the amino acid level with SEQ ID NO: 16 and have ⁇ -12 desaturase activity.
  • a nucleic acid sequence is additionally introduced into the organism which codes for polypeptides having ⁇ 12-desaturase activity, selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, or b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the
  • ⁇ -12-desaturase sequences can be used alone or in combination with the ⁇ 3-desaturase sequences with the nucleic acid sequences used in the method which are useful for ⁇ -6-desaturases, ⁇ -6-elongases, ⁇ -5-desaturases, ⁇ -5-elongases and or ⁇ 4-desaturases are used.
  • Table 1 represents the nucleic acid sequences, the organism of origin and the sequence ID number.
  • the polyunsaturated fatty acids produced in the process are advantageously bound in membrane lipids and / or triacylglycerides, but may also be present as free fatty acids or bound in the form of other fatty acid esters in the organisms. They may be present as "pure products" or advantageously in the form of mixtures of different fatty acids or mixtures of different glycerides.
  • the different fatty acids bound in the triacylglycerides can thereby be derived from short-chain fatty acids having 4 to 6 C atoms, medium-chain fatty acids having 8 to 12 C atoms or long-chain fatty acids having 14 to 24 C atoms, preferably the long-chain fatty acids are particularly preferred the long-chain fatty acids LCPUFAs of C 18 , C 2 o and / or C 22 fatty acids.
  • 9 12 15) 'Dihomo- ⁇ -linolenic acid ( DGLA, 20: 3 ⁇ 8
  • 11 M ), ⁇ -3-eicosatetraenoic acid ( ETA, C20: 4 ⁇ W114 ), arachidonic acid (ARA, C20: 4 ⁇ 5 8 11 ' 14 ), Eicosapent
  • the fatty acid esters with polyunsaturated C 18 , C 20 and / or C 22 fatty acid molecules can be prepared from the organisms used for the preparation of the fatty acid esters in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides , Lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the acetyl-coenzymeA esters which contain at least two polyunsaturated fatty acids, preferably, they are isolated in the form of their diacylglycerides, triacylglycerides and / or
  • the polyunsaturated fatty acids are also included as free fatty acids or bound in other compounds in the organisms beneficial to the plants.
  • the various compounds mentioned above are present in the organisms in an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5 wt .-% of free fatty acids, 2 to 8 wt .-% phospholipids ago, wherein the sum of the various compounds to 100 wt .-% complements.
  • the LCPUFAs produced are present in a content of at least 3% by weight, advantageously of at least 5% by weight, preferably of at least 8% by weight, more preferably of at least 10% by weight, very particularly preferably at least 15 wt .-% based on the total fatty acids in the transgenic organisms advantageously produced in a transgenic plant.
  • C 18 and / or C 20 fatty acids present in the host organisms become at least 10%, advantageously at least 20%, particularly advantageously at least 30%, very particularly advantageously at least 40% in the corresponding products such as DPA or DHA, to name just two.
  • the fatty acids are prepared in bound form.
  • these unsaturated fatty acids can be brought to the sn1, sn2 and / or sn3 position of the advantageously prepared triglycerides. Since in the process of the invention from the starting compounds linoleic acid (C18: 2) or linolenic acid (C18: 3) are passed through several reaction steps, the end products of the process such as
  • ARA Arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA DHA
  • the precursors should advantageously not more than 20 wt .-%, preferably not more than 15 wt .-%, more preferably not more than 10 wt .-%, most preferably not more than 5 wt .-% based on the amount of the respective Final product amount.
  • ARA, EPA or only DHA are bound in the process according to the invention or produced as free acids in a transgenic plant as end products. If the compounds ARA, EPA and DHA are prepared simultaneously, they are advantageously used in a ratio of at least 1: 1: 2 (EPA: ARA: DHA), preferably of at least 1: 1: 3, preferably of 1: 1: 4 preferably prepared from 1: 1: 5.
  • Fatty acid esters or fatty acid mixtures which have been prepared by the process according to the invention advantageously contain 6 to 15% palmitic acid, 1 to 6% stearic acid; 7 - 85% oleic acid; 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids in each case based on 100% and on the total fatty acid content of the organisms.
  • polyunsaturated fatty acid in the fatty acid esters or fatty acid mixtures are preferably at least 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 or 1% based on the total fatty acid content of arachidonic acid.
  • the fatty acid esters or fatty acid mixtures prepared by the process according to the invention advantageously contain fatty acids selected from the group of the fatty acids erucic acid (13-docosaic acid), sterculic acid (9,10-methylene octadec-9-enoic acid), malvalic acid (8,9 Methylene heptadec-8-enoic acid), chaulmo-gruoic acid (cyclopentenodecanoic acid), furan fatty acid (9,12-epoxy-octadeca-9,11-dienoic acid), vernon acid (9,10-epoxyoctadec-12-enoic acid), Taric acid (6-octadecynoic acid), 6-nonadecynoic acid, santalbinic acid (t11-octadecen-9-ynoic acid), 6,9- Octadecenynoic acid, pyrulic acid (t10-heptadecen-8-y
  • the nucleic acid sequences according to the invention or the nucleic acid sequences used in the method according to the invention can increase the yield of polyunsaturated fatty acids by at least 50%, advantageously by at least 80%, particularly advantageously by at least 100%, very particularly advantageously by at least 150% compared to the non-transgenic starting organism
  • a yeast, an alga, a fungus, or a plant such as Arabidopsis or flax can be obtained by comparison in GC analysis, see Examples.
  • chemically pure polyunsaturated fatty acids or fatty acid compositions can be prepared by the methods described above.
  • the fatty acids or fatty acid compositions from the organism such as the microorganisms or plants or the culture medium in which or on which the organisms were grown, or from the organism and the culture medium in a known manner, for example, extraction, distillation, crystallization, chromatography or combinations isolated from these methods.
  • These chemically pure fatty acids or fatty acid compositions are advantageous for applications in the food industry, the cosmetics industry and especially the pharmaceutical industry.
  • Advantageous plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicadown, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae , Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminose, Linaceae, Prasinophyceae or vegetables or ornamental plants such as Tagetes.
  • the following plants may be selected from the group Adelotheciaceae, such as the genera Physcomitrella, e.g. the genus and species Physcomitrella patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium e.g. the genus and species Pistacia vera [pistachio], Mangifer indica [Mango] or Anacardium occidentale [cashew], Asteraceae such as the genera Calendula, Carthage, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana e.g.
  • Brassicaceae such as the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabopsopsis e.g. the genera and species Brassica napus, Brassica rapa ssp. [Canola], Sinapis arvensis Brassica juncea, Brassica juncea var. Juncea, Brassica juncea var. Crispifolia, Brassica juncea var.
  • Bromeliaceae such as the genera Anana, Bromelia (pineapple) eg the genera and species Anana comosus, pineapple pineapple or Bromelia comosa
  • Convolvulus panduratus [sweet potato], Chenopodiaceae such as the genus Beta such as the genera and species Beta Vulgaris, Beta vulgaris var. Altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. Perennis, Beta vulgaris var. Conditiva or Beta vulgaris var.
  • esculenta [sugar beet]
  • Crypthecodiniaceae such as the genus Crypthecodinium eg the genus and species Cryptecodinium cohnii
  • Cucurbitaceae such as the genus Cucubita eg the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin]
  • Cymbellaceae such as the genera Amphora , Cymbella, Okedenia, Phaeodactylum, Reimeria eg the genus and species Phaeodactylum tricornutum
  • Ditrichaceae such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon
  • Physcomitrella Physcomitrium eg the genera and species Aphanorrhegma serrateum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolia, Entosthodon tucsoni, Funaria americana Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var.
  • Steffensia elongata. (Cayenne pepper], Poaceae such as the genera Hordeum, Seeale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum eg the genera and species Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregular, Hordeum sativum, Hordeum secalinum [Barley], Sea ale cereale [Rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var.
  • Sativa Avena hybrida [Oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgaris, Andropogon drummondii, Holcus bicolor, Holcus Sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum bathna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgaris, Holcus halepensis, Sorghum Miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize] Triticum aestivum, Triticum durum,
  • Verbascum blattaria Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phenicum, Verbascum pulverulentum or Verbascum thapsus [Mullein], Solanaceae such as the genera Capsicum, Nicotiana , Solanum, Lycopersicon eg the genera and species Capsicum annuum, Capsicum annuum var.
  • Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana slowdorifii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon py ⁇ forme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae such as the genus Theobroma eg the genus and species Theobroma cacao [cocoa] or Theaceae such as the genus Camellia e.
  • Advantageous microorganisms are, for example, fungi selected from the group of the families Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycesaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae or Tubercularaceae.
  • Examples include the following microorganisms selected from the group: Choanephoraceae as the genera Blakeslea, Choanephora eg the genera and species Blakeslea trispora, Choanephora cueurbitarum, Choanephora infundibulifera var.
  • Mortierellaceae as the genus Mortierella eg the genera and species Mortierella isabellina, Mortierella polycephala , Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae such as the genera Phytium, Phytophthora eg the genera and species Pythium debaryanum, Pythium intermedium, Pythium irregular, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora
  • Minuta Pichia minuta var.
  • Saccharomyces ellipsoideus Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretorien
  • Thraustochytriaceae such as the Genera Althomia, Aplanochytrium, Japono- chytrium, Schizochytrium, Thraustochytrium eg the species Schizochytrium aggregatum, Schizochytrium limacinum, minutum Schizochytrium mangrovei, Schizochytrium, Schizochytrium octosporum, aggregatum Thraustochytrium, Thraustochytrium amoe- boideum, antacticum Thraustochytrium, Thraustochytrium arudimentale, aureum Thraustochytrium, benthicola Thraustochytrium, globosum Thraustochytrium, Thrausto- chytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytriacea
  • Bacillaceae such as the genus Bacillus eg the genera and species Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp.
  • Bacillaceae such as the genus Bacillus eg the genera and species Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus spha
  • Bacillus subtilis subsp. marinus Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp.
  • Enterobacteriacae such as the genera Citrobacter, Edwardsieila, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella or Serratia eg the genera and species Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomicpecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsieila ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwiniaananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia carcinogena, Erwinia carnegieana, Erwinia caroto
  • Salmonella daressalaam Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp.
  • Rhizobiaceae such as the genera Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium eg the genera and species Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatino- vorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum , Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heint
  • microorganisms for the method according to the invention are, for example, protists or diatoms selected from the group of the families Dinophyceae, Turaniellidae or Oxytrichidae such as the genera and species: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulara, Stylonychia putrina, Stylonychia notophora , Stylonychia sp., Colpidium campylum or Colpidium sp.
  • protists or diatoms selected from the group of the families Dinophyceae, Turaniellidae or Oxytrichidae such as the genera and species: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulara, Stylonychia putrina, Stylonychi
  • transgenic organisms such as fungi such as Mortierella or Traustochytrium, yeasts such as Saccharomyces or Schizosaccharomyces, mosses such as Physcomitrella or Ceratodon, nonhuman animals such as Caenorhabditis, algae such as Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus , Crypthecodinium or Phaeodactylum or plants such as dicotyledonous or monocotyledonous plants.
  • fungi such as Mortierella or Traustochytrium
  • yeasts such as Saccharomyces or Schizosaccharomyces
  • mosses such as Physcomitrella or Ceratodon
  • nonhuman animals such as Caenorhabditis
  • algae such as Nephroselmis, Pseudoscourfield
  • Organisms which belong to the oil-producing organisms ie those used for the production of oils, such as fungi such as Mortierella or Thraustochytrium, algae such as Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, are particularly advantageously used in the process according to the invention.
  • oilseed crops containing high levels of lipid compounds such as peanut, rapeseed, canola, sunflower, safflower (Carthamus tinctoria), poppy, mustard, hemp, castor, olive, sesame, calendula , Punica, evening primrose, mullein, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay leaf, pumpkin, flax, soya, pistachios, borage, trees (oil palm, coconut or walnut) or crops such as corn, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or Bush plants (coffee, cocoa, tea), Salix species and perennial grasses and forage crops
  • oilseed crops containing high levels of lipid compounds such as peanut, rapeseed, canola, sunflower, safflower
  • Particularly preferred are C 18: 2 and / or C18: 3 fatty acid rich plants such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower.
  • C 18: 2 and / or C18: 3 fatty acid rich plants such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower.
  • Plants such as safflower, sunflower, poppy, evening primrose, walnut, flax or hemp.
  • genes selected from the group of ⁇ -4-desaturases, ⁇ -5-desaturases, ⁇ -6-desaturases, ⁇ -9-desaturases, ⁇ -12-desaturases, ⁇ -6-elongases or ⁇ -5 are used, wherein individual Genes or multiple genes can be used in combination.
  • the ⁇ -5 elongases according to the invention have the advantageous property that they do not elongate C 22 -fatty acids to the corresponding C 24 -fatty acids compared to the human elongases.
  • Particularly advantageous ⁇ -5-elongases preferably convert only unsaturated C 2 o-fatty acids.
  • only C 2 o-fatty acids are reacted with a double bond in ⁇ 5-position, with ⁇ -3-C 20 fatty acids being preferred (EPA).
  • EPA ⁇ -3-C 20 fatty acids
  • they have the property that they have no or only a relatively low ⁇ 6-elongase activity in addition to the ⁇ -5 elongase activity.
  • a yeast feeding text in which EPA has been added to the yeasts as substrate, at least 15% by weight of the EPA added to docosapentaenoic acid (DPA, c22: 5 ⁇ 7
  • DPA docosapentaenoic acid
  • C18: 3 ⁇ 5t9 12 is also not elongated.
  • GLA is not reacted.
  • ⁇ -4-desaturases according to the invention have the advantage over the known ⁇ -4-desaturases, ⁇ -5-desaturases and ⁇ -6-desaturases that they bind to fatty acids or phospholipids CoA fatty acid esters, advantageous to implement CoA fatty acid esters.
  • the processes according to the invention used ⁇ -12-desaturases oleic acid (C18: 1 ⁇ 9 ) to give linoleic acid (C18: 2 ⁇ 9 12 ) or C18: 2 ⁇ 6
  • 9 to C18: 3 ⁇ 6 9 '12 ( GLA).
  • the ⁇ -12-desaturases used bind fatty acids bound to phospholipids or CoA fatty acid esters, advantageously bound to CoA fatty acid esters.
  • the desaturases used in the process according to the invention convert their respective substrates in the form of the CoA fatty acid esters. This leads, if previously a Elongations Marin has taken place, advantageously to an increased product yield.
  • the respective desaturation products are thereby synthesized in higher amounts, since the elongation step usually takes place on the CoA fatty acid esters, while the desaturation step takes place predominantly on the phospholipids or on the triglycerides.
  • An exchange reaction which would make a further possibly limiting enzyme reaction erfoderlich, between the CoA fatty acid esters and the phospholipids or triglycerides is therefore not required.
  • nucleic acids used in the method according to the invention for polypeptides with ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -4-desaturase, ⁇ -12-desaturase, ⁇ -5-elongase and or ⁇ 6-elongase activity, advantageously in combination with nucleic acid sequences which are suitable for polypeptides of the fatty acid or lipid metabolism, such as further polypeptides having ⁇ -4-, ⁇ -5, ⁇ -6, ⁇ -12-desaturase or ⁇ -5 or ⁇ -6 elongase activity, it is possible to prepare a wide variety of polyunsaturated fatty acids in the process according to the invention.
  • fatty acids derived from C18: 2 fatty acids such as GLA, DGLA or ARA, or those derived from C18: 3 fatty acids derive, such as SDA, ETA or EPA.
  • GLA 1 DGLA and ARA can be produced as products of the process, which may be present as free fatty acids or bound.
  • ⁇ -5-desaturase By modifying the activity of the enzymes involved in the synthesis ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -4-desaturase, ⁇ -12-desaturase, ⁇ -5 elongase and / or ⁇ -6 elongase can be targeted in the aforementioned organisms advantageously produce only individual products in the aforementioned plants.
  • Due to the activity of ⁇ -6-desaturase and ⁇ -6 elongase for example, GLA and DGLA or SDA and ETA are formed, depending on the starting plant and unsaturated fatty acid. Preference is given to DGLA or ETA or mixtures thereof.
  • ARA, EPA and / or DHA are additionally produced.
  • ARA, EPA or DHA or their mixtures are synthesized, depending on the fatty acid present in the organism or in the plant, which serves as the starting substance for the synthesis. Since these are biosynthetic chains, the respective end products are not present as pure substances in the organisms. There are always small amounts of precursor compounds in the final product.
  • small amounts are less than 20 wt .-%, advantageously less than 15 wt .-%, more preferably less than 10 wt .-%, most preferably less than 5, 4, 3, 2 or 1 wt .-% based to the end product DGLA, ETA or mixtures thereof or ARA, EPA, DHA or mixtures thereof advantageously EPA or DHA or mixtures thereof.
  • the fatty acids can also be fed from the outside. For cost reasons, production in the organism is preferred.
  • Preferred substrates are the linoleic acid (C18: 2 ⁇ 9 '12 ), the ⁇ -linolenic acid (C18: 3 ⁇ 6 9 12 ), the eicosadienoic acid (C20: 2 ⁇ 11 14 ), the dihomo- ⁇ -linolenic acid (C20: 3 ⁇ 8 ' 11 '14), arachidonic acid (C20: 4 ⁇ 5811'. 14) docosatetraenoic acid (C22 4 ⁇ 7, i o, i3, i6) and DJE Docosapen taenLitere (C22: 5 ⁇ 4 ⁇ 10 '13 15).
  • Nucleic acids used in the method according to the invention are advantageously derived from plants such as algae, for example algae of the family Prasinophyceae as from the genera Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia or Tetraselmis such as the genera and Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp.
  • algae for example algae of the family Prasinophyceae as from the genera Heteromastix,
  • algae such as Isochrysis or Crypthecodinium
  • algae / diatoms such as Thalassiosira, Phaeodactylum or Thraustochytrium
  • mosses such as Physcomitrella or Ceratodon or higher plants such as Primulaceae such as
  • the isolated nucleic acid sequences according to the invention are derived from an animal from the
  • the nucleic acid sequences are of the vertebrate class; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae or Oncorhynchus.
  • the nucleic acids originate particularly advantageously from fungi, animals or from plants such as algae or mosses, preferably from the order of the Salmoniformes such as the family Salmonidae such as the genus Salmo, for example from the genera and species Oncorhynchus mykiss, Trutta trutta or Salmo trutta fario, from algae such as the genera Mantonielle or Ostreococcus or from the diatoms such as the genera Thalassiosira or Crypthecodinium.
  • Salmoniformes such as the family Salmonidae such as the genus Salmo
  • Oncorhynchus mykiss Trutta trutta or Salmo trutta fario
  • algae such as the genera Mantonielle or Ostreococcus
  • diatoms such as the genera Thalassiosira or Crypthecodinium.
  • nucleic acid sequences or their derivative or homologs which code for polypeptides which still possess the enzymatic activity of the proteins encoded by nucleic acid sequences.
  • These sequences are used singly or in combination with the nucleic acid sequences encoding ⁇ 12-desaturase, ⁇ 4-desaturase, ⁇ 5-desaturase, ⁇ 6-desaturase, ⁇ 5-elongase and / or ⁇ 6-elongase cloned into expression constructs and used for introduction and expression in organisms.
  • This expression By their construction, constructs enable a favorable optimum synthesis of the polyunsaturated fatty acids produced in the process according to the invention.
  • the method further comprises the step of obtaining a cell or a whole organism containing the nucleic acid sequences used in the method, wherein the cell and / or the organism with a nucleic acid sequence according to the invention, for the ⁇ -12-desaturase , ⁇ -4-desaturase, ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -5 elongase and / or ⁇ -6 elongase, a gene construct or a vector as described below, alone or in combination with other nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism is transformed.
  • this method further comprises the step of recovering the oils, lipids or free fatty acids from the organism or from the culture.
  • the culture may be, for example, a fermentation culture, for example, in the case of culturing microorganisms such as e.g. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces or Thraustochytrium or to act as a greenhouse or field crop of a plant.
  • the cell or organism thus produced is advantageously a cell of an oil-producing organism such as an oil crop such as peanut, canola, canola, flax, hemp, peanut, soybean, safflower, hemp, sunflower or borage.
  • Cultivation is, for example, culturing in the case of plant cells, tissue or organs on or in a nutrient medium or the whole plant on or in a substrate, for example in hydroponics, potting soil or on arable land.
  • Natural genetic environment means the natural genomic or chromosomal locus in the source organism or presence in a genomic library.
  • the natural, genetic environment of the nucleic acid sequence preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, more preferably at least 1000 bp, most preferably at least 5000 bp.
  • non-natural, synthetic such as mutagenization.
  • transgenic organism or transgenic plant As mentioned above is to be understood that the nucleic acids used in the method are not in their natural place in the genome of an organism, while the nucleic acids can be expressed homologously or heterologously.
  • transgene also means, as mentioned, that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or the regulatory sequences of the natural sequences have been changed.
  • Transgenic is preferably understood to mean the expression of the nucleic acids according to the invention at a non-natural site in the genome, that is to say a homologous or preferably heterologous expression of the nucleic acids is present.
  • Preferred transgenic organisms are fungi such as Mortierella or Phytophthora, mosses such as Physcomitrella, algae such as Mantoniella or Ostreococcus, diatoms such as Thalassiosira or Crypthecodinium or plants such as the oil crop plants.
  • all organisms which are capable of synthesizing fatty acids, especially unsaturated fatty acids, or which are suitable for the expression of recombinant genes are suitable in principle as organisms or host organisms for the nucleic acids, the expression cassette or the vector used in the method according to the invention.
  • Examples include plants such as Arabidopsis, Asteraceae such as calendula or crops such as soybean, peanut, castor, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, dyer safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example, the genus Mortierella, Thrausto- chytrium, saprolegnia, phytophthora or pythium, bacteria such as the genus Escherichia or Shewanella, yeasts such as the genus Saccharomyces, cyanobacteria,
  • Ciliates algae such as Mantoniella or Ostreococcus or protozoans such as dinoflagellates such as Thalassiosira or Crypthecodinium called.
  • organisms which are naturally capable of synthesizing oils in large quantities, such as fungi such as Mortierella alpina, Pythium insidiosum, Phytophtora infestans or plants such as soybean, oilseed rape, coconut, oil palm, dyer's safflower, flax, hemp, castor, calendula, peanut,
  • Cocoa bean or sunflower or yeasts such as Saccharomyces cerevisiae, with particular preference being given to soybean, flax, rapeseed, dyer's safflower, sunflower, calendula, mortierella or Saccharomyces cerevisiae.
  • Transgenic animals are advantageously also suitable for non-human animals, for example C. elegans, for the abovementioned transgenic organisms.
  • Useful host cells are also mentioned in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • Useful expression strains e.g. those which have lower protease activity are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
  • transgenic plants include plant cells and certain tissues, organs and parts of plants in all their manifestations, such as anthers, fibers, root hairs, stems, embryos, cilia, kotelydons, petioles, crops, plant tissue, reproductive tissue and cell cultures, that of the actual transgenic plant is derived and / or can be used to produce the transgenic plant.
  • Transgenic plants which contain the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without the synthesized oils, lipids or fatty acids having to be isolated.
  • Plants in the process according to the invention include whole plants and all plant parts, plant organs or plant parts such as leaves, stems, seeds, roots, tubers, anthers, fibers, root hairs, stems, embryos, callosis, kotelydons, petioles, crop material, plant tissue, reproductive tissue, Cell cultures that can be derived from the transgenic plant and / or used to produce the transgenic plant.
  • the seed includes all seed parts such as the seed shells, epidermis and sperm cells, endosperm or embryonic tissue.
  • the compounds prepared in the process according to the invention can also be isolated from the organisms advantageously plants in the form of their oils, fat, lipids and / or free fatty acids.
  • Polyunsaturated fatty acids produced by this process can be harvested by harvesting the organisms either from the culture in which they grow or from the field. This can be done by pressing or extraction of the plant parts, preferably the plant seeds.
  • the oils, fats, lipids and / or free fatty acids by so-called cold beat or cold pressing can be obtained without supplying heat by pressing.
  • the plant parts, especially the seeds, to be easier to digest they are first crushed, steamed or roasted. The thus pretreated seeds can then be pressed or extracted with solvents such as warm hexane.
  • the solvent is removed again.
  • these are harvested after harvesting, for example, directly without further working steps, or else extracted after digestion by various methods known to the person skilled in the art. In this way, more than 96% of the compounds prepared in the process can be isolated.
  • the products thus obtained are further processed, that is refined.
  • the mucilages and turbid matter are removed. So-called degumming can be enzymatic or ⁇
  • the PUFAs or LCPUFAs C 1 8, C 2 O or C 22 fatty acid molecules produced by this process are preferably C 20 - or C 22 -fatty acid molecules having at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds ,
  • These C 18 , C 20 or C 22 fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.
  • One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been prepared by the method described above, more preferably oil, lipid or fatty acid composition comprising PUFAs derived from transgenic plants.
  • oils, lipids or fatty acids advantageously contain 6 to 15% palmitic acid, 1 to 6% stearic acid as described above; 7 - 85% oleic acid; 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids in each case based on 100% and on the total fatty acid content of the organisms.
  • polyunsaturated fatty acid in the fatty acid esters or fatty acid mixtures are preferably at least 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 or 1% based on the total fatty acid content of arachidonic acid.
  • the fatty acid esters or fatty acid mixtures prepared by the process according to the invention advantageously contain fatty acids selected from the group of the fatty acids erucic acid (13-docosaoic acid), sterculic acid (9,10-methylene octadec-9-enoic acid), malvalic acid (8,9 -Methylene heptadec-8-enoic acid), chaulmoogric acid (cyclopentenodecanoic acid), furan fatty acid (9,12-epoxy-octadeca-9,11-dienoic acid), vernonic acid (9,10-epoxyoctadec-12-enoic acid), tartric acid ( 6- octadecynoic acid), 6-nonadecynoic acid, santalbic acid (t11-octadecen-9-ynoic acid), 6,9-octadecenynoic acid, pyrulic acid (t10-heptadec
  • fatty acids are generally advantageously present only in traces in the fatty acid esters or fatty acid mixtures prepared by the process according to the invention, that is to say they are less than 30%, preferably less than 25%, 24%, 23%, based on the total fatty acids.
  • the oils, lipids or fatty acids according to the invention advantageously contain at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, 7%, 8%, 9% or 10%, particularly advantageously at least 11%, 12%, 13%, 14% or 15% ARA or at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, or 7%, especially advantageous at least 8%, 9% or 10% EPA and / or DHA based on the total fatty acid content of the production organism advantageously a plant, particularly advantageous an oil crop such as soybean, rapeseed, coconut, oil palm, safflower, flax, hemp, castor, calendula, peanut , Cocoa bean, sunflower or the above-mentioned other monocotyledonous or dicotyledonous oil crops.
  • an oil crop such as soybean, rapeseed, coconut, oil palm, safflower, flax, hemp, castor, calendul
  • oils, lipid, fatty acids and / or fatty acid composition in feed, food, cosmetics or pharmaceuticals.
  • the oils, lipids, fatty acids or fatty acid mixtures according to the invention can be used in the manner known to those skilled in the art for blending with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as fish oils.
  • oils, lipids, fatty acids or fatty acid mixtures which consist of vegetable and animal components, can be used for the production of feed, food, cosmetics or pharmaceuticals.
  • the term “oil”, “lipid” or “fat” is understood as meaning a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s).
  • the oil, lipid or fat contains a high proportion of polyunsaturated free or advantageously esterified fatty acid (s), in particular linoleic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, ⁇ -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, Docosapentaenoic acid or docosahexaenoic acid has.
  • the proportion of unsaturated esterified fatty acids is about 30%, more preferred is a proportion of 50%, even more preferred is a proportion of 60%, 70%, 80% or more.
  • the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by transesterification by gas chromatography.
  • the oil, lipid or fat can be various other saturated or unsaturated fatty acids, eg calendulic acid, palmitic, palmitoleic, stearic, oleic acid etc., contain.
  • the proportion of the various fatty acids in the oil or fat may vary depending on the starting organism.
  • the polyunsaturated fatty acids having advantageously at least two double bonds which are produced in the process are, as described above, for example sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
  • the polyunsaturated fatty acids containing, for example, via an alkali treatment, for example aqueous KOH or NaOH or acid hydrolysis in the presence of an alcohol such as methanol or ethanol or over a release enzymatic cleavage and isolate via, for example, phase separation and subsequent acidification over, for example, H 2 SO 4 .
  • an alkali treatment for example aqueous KOH or NaOH or acid hydrolysis in the presence of an alcohol such as methanol or ethanol or over a release enzymatic cleavage and isolate via, for example, phase separation and subsequent acidification over, for example, H 2 SO 4 .
  • the release of the fatty acids can also be carried out directly without the workup described above.
  • the nucleic acids used in the process can after introduction into a
  • Organism advantageously a plant cell or plant are either on a separate plasmid or advantageously integrated into the genome of the host cell.
  • integration may be at random or by such recombination as to replace the native gene with the incorporated copy, thereby modulating the production of the desired compound by the cell, or by using a gene in trans such that Gene having a functional expression unit, which contains at least one expression of a gene ensuring sequence and at least one polyadenylation of a functionally transcribed gene ensuring sequence is operably linked.
  • the nucleic acids are brought into the plants via multi-expression cassettes or constructs for multiparallel expression in the organisms, advantageously for multiparallel seed-specific expression of genes.
  • Moose and algae are the only known plant systems that produce significant amounts of polyunsaturated fatty acids, such as arachidonic acid (ARA) and / or eicosapentaenoic acid (EPA) and / or docosahexaenoic acid (DHA).
  • ARA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Moose contain PUFAs in membrane lipids, while algae, algae-related organisms and some fungi also accumulate significant levels of PUFAs in the triacylglycerol fraction.
  • nucleic acid molecules isolated from strains which also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the process of the invention and thus for modification of the lipid and PUFA production system in a host, in particular plants such as oilseed crops, for example oilseed rape. Canola, flax, hemp, soy, sunflower, borage. They are therefore advantageous for use in the process according to the invention.
  • substrates of the nucleic acids used in the method according to the invention which are useful for polypeptides having ⁇ -12-desaturase, ⁇ -5-desaturase, ⁇ -4-desaturase, ⁇ -6
  • Encode desaturase, ⁇ -5 elongase and / or ⁇ -6 elongase activity, and / or the other used nucleic acids such as the nucleic acids selected for polypeptides of fatty acid or lipid metabolism from the group acyl-CoA dehydrogenase (s), acyl-ACP [ acyl carrier protein] desaturase (s), acyl-ACP thioesterase (n ), Fatty acid acyltransferase (s), acyl-CoAlysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl
  • Coenzyme A carboxylase s
  • acyl coenzyme A oxidase s
  • fatty acid desaturase s
  • fatty acid acetylenase s
  • lipoxygenase s
  • triacylglycerol lipase s
  • allene oxide synthase s
  • Hydroperoxide lyase s
  • fatty acid elongase encode advantageously Ci 6 -, C 18 - or C 2 o fatty acids.
  • the fatty acids reacted as substrates in the process are preferably reacted in the form of their acyl-CoA esters and / or their phospholipid esters.
  • the polyunsaturated C 18 -fatty acids must first be desaturated by the enzymatic activity of a desaturase and then be extended by at least two carbon atoms via an elongase. After one round of elongation, this enzyme activity leads to C 20 -fatty acids, and after two rounds of elongation to C 22 -fatty acids.
  • the activity of the method of the desaturases and elongases used in the invention preferably leads to C 8 -, C 20 - and / or C 22 fatty acids advantageously having at least two double bonds in the fatty acid molecule, preferably with three, four, five or six double bonds, especially preferably to C 20 - and / or C 22 fatty acids having at least two double bonds in the fatty acid molecule, preferably having three, four, five or six double bonds, most preferably having five or six double bonds in the molecule.
  • further desaturation and elongation steps such as desaturation at ⁇ -5 and ⁇ -4 positions, may occur.
  • Particularly preferred products of the process according to the invention are dihomo- ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid and / or docosaheic acid.
  • the C 20 fatty acids having at least two double bonds in the fatty acid can be extended by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
  • the preferred biosynthesis site of fatty acids, oils, lipids or fats in the advantageously used plants is, for example, generally the seed or cell layers of the seed, so that a seed-specific expression of the nucleic acids used in the process makes sense.
  • biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but may also be tissue-specific in all other parts of the plant - for example in epidermal cells or in the tubers.
  • organisms microorganism such as yeasts such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor or Thraustochytrium algae such as Isochrysis, Mantonielia, Ostreococcus, Phaeodactylum or Crypthecodinium used, these organisms are advantageously attracted to fermentation.
  • the polyunsaturated fatty acids prepared in the process can be at least 5%, preferably at least 10%, more preferably at least 20%, very particularly preferably at least 50%. be increased compared to the wild type of organisms that do not contain the nucleic acids recombinantly.
  • the polyunsaturated fatty acids produced in the organisms used in the process can in principle be increased in two ways.
  • the pool of free polyunsaturated fatty acids and / or the proportion of esterified polyunsaturated fatty acids produced by the process can be increased.
  • the process according to the invention increases the pool of esterified polyunsaturated fatty acids in the transgenic organisms.
  • microorganisms are used as organisms in the process according to the invention, they are grown or grown, depending on the host organism, in a manner known to the person skilled in the art.
  • Microorganisms are usually in a liquid medium containing a carbon source usually in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and optionally vitamins, at temperatures between 0 0 C and 100 0 C, preferably between 10 0 C to 60 0 C attracted under oxygen fumigation.
  • the pH of the nutrient fluid can be kept at a fixed value, that is regulated during the cultivation or not.
  • the cultivation can be batchwise, semi-batch wise or continuous. Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously.
  • the polyunsaturated fatty acids prepared can be isolated from the organisms by methods known to those skilled in the art as described above. For example, extraction, distillation, crystallization, optionally salt precipitation and / or chromatography. The organisms can be opened up for this purpose yet advantageous.
  • the method according to the invention when the host organisms are microorganisms, is particularly advantageous at a temperature between 0 ° C to 95 °, preferably between 10 ° C to 85 ° C, more preferably between 15 ° C to 75 ° C preferably carried out between 15 ° C to 45 ° C.
  • the pH is advantageously maintained between pH 4 and 12, preferably between pH 6 and 9, more preferably between pH 7 and 8.
  • the process according to the invention can be operated batchwise, semi-batchwise or continuously.
  • a summary of known cultivation methods can be found in the textbook by Chmiel (Bioreatechnik 1. Introduction to Bioprocessing Methods). technique (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994)).
  • the culture medium to be used must suitably satisfy the requirements of the respective strains. Descriptions of culture media of various microorganisms are included in the Manual of Methods for General Bacteriology of the American Society of Bacteriology (Washington D.C. 1 USA, 1981).
  • these media which can be used according to the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and / or trace elements.
  • Preferred carbon sources are sugars, such as mono-, di- or polysaccharides.
  • sugars such as mono-, di- or polysaccharides.
  • very good carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose.
  • Sugar can also be added to the media via complex compounds, such as molasses, or other by-products of sugar refining. It may also be advantageous to add mixtures of different carbon sources.
  • Other possible sources of carbon are oils and fats, e.g. Soybean oil, sunflower oil, peanut oil and / or coconut fat, fatty acids such as e.g.
  • Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds.
  • Exemplary nitrogen sources include ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soybean meal, soy protein, yeast extract, meat extract and others.
  • the nitrogen sources can be used singly or as a mixture.
  • Inorganic salt compounds which may be included in the media include the chloride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
  • sulfur-containing fine chemicals in particular methionine
  • inorganic sulfur-containing compounds such as sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides but also organic sulfur compounds, such as mercaptans and thiols can be used.
  • Phosphoric acid potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the phosphorus source.
  • Chelating agents can be added to the medium to keep the metal ions in solution.
  • Particularly suitable chelating agents include dihydroxyphenols, such as catechol or protocatechuate, or organic acids, such as citric acid.
  • the fermentation media used according to the invention for the cultivation of microorganisms usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthogenate and pyridoxine.
  • Growth factors and salts are often derived from complex media components, such as yeast extract, molasses, corn steep liquor, and the like.
  • suitable precursors can be added to the culture medium.
  • the exact composition of the media compounds will depend heavily on the particular experiment and will be decided on a case by case basis. Information about the media optimization is available from the textbook "Applied Microbiol Physiology, A Practical Approach" (ed. P. M. Rhodes, P. F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3).
  • Growth media may also be obtained from commercial suppliers, such as standard 1 (Merck) or BHI (Brain Heart Infusion, DIFCO) and the like.
  • All media components are sterilized either by heat (20 min at 1, 5 bar and 121 0 C) or by sterile filtration.
  • the components can either be sterilized together or, if necessary, sterilized separately. All media components may be present at the beginning of the culture or added randomly or batchwise, as desired.
  • the temperature of the culture is usually between 15 ° C and 45 ° C, preferably at 25 ° C to 40 0 C and can be kept constant or changed during the experiment.
  • the pH of the medium should be in the range of 5 to 8.5, preferably 7.0.
  • the pH for cultivation can be controlled during cultivation by addition of basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid. To control the foaming anti-foaming agents such. As fatty acid polyglycol, are used.
  • the medium can be suitably selected substances such. As antibiotics, are added.
  • oxygen or oxygen-containing gas mixtures such as ambient air, are introduced into the culture.
  • the temperature of the culture is normally from 20 0 C to 45 0 C and preferably at 25 ° C to 40 0 C. The culture is continued until a maximum of the desired product has formed. This goal is usually reached within 10 hours to 160 hours.
  • the fermentation broths thus obtained in particular containing polyunsaturated fatty acids, usually have a dry matter content of 7.5 to 25% by weight.
  • the fermentation broth can then be further processed.
  • the biomass can be wholly or partly by separation methods, such. As centrifugation, filtration, decantation or a combination of these methods removed from the fermentation broth or left completely in it.
  • the biomass is worked up after separation.
  • the fermentation broth can also without cell separation with known methods such. B. with the aid of a rotary evaporator, thin film evaporator, falling film evaporator, by reverse osmosis, or by nanofiltration, thickened or concentrated. This concentrated fermentation broth may eventually be worked up to recover the fatty acids contained therein.
  • the fatty acids obtained in the process are also suitable as starting material for the chemical synthesis of further products of value. They may be used, for example, in combination with each other or solely for the manufacture of pharmaceuticals, foods, animal feed or cosmetics.
  • a further subject of the invention are isolated nucleic acid sequences which code for polypeptides with ⁇ -6-desaturase activity selected from the group: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 13, b) nucleic acid sequences resulting from the degenerate genetic code or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 13 which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 14 and a ⁇ - derivative of the amino acid sequence shown in SEQ ID NO: 14. Having 6-desaturase activity.
  • a further subject of the invention are isolated nucleic acid sequences which code for polypeptides with ⁇ 5-desaturase activity, selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 9 or SEQ ID NO: 11, b) nucleic acid sequences which can be derived as the result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 10 or in SEQ ID NO: 12, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 or in SEQ ID NO: 11, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 10 or in SEQ ID NO: 12 and have a ⁇ -5-desaturase activity.
  • a further subject of the invention are isolated nucleic acid sequences which code for polypeptides with ⁇ -4-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 7, b) nucleic acid sequences resulting from the degenerate genetic code or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 7, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 8 and a ⁇ -4- Have desaturase activity.
  • a further subject of the invention are isolated nucleic acid sequences which code for polypeptides with ⁇ -12-desaturase activity, selected from the group: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, b) nucleic acid sequences resulting from the degenerate genetic code derive from the amino acid sequence shown in SEQ ID NO: 16, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15 which encode polypeptides having at least 50% homology at the amino acid level with SEQ ID NO: 16 and a ⁇ - Have 12-desaturase activity.
  • a further subject of the invention are gene constructs which contain the nucleic acid sequences according to the invention SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, wherein the nucleic acid is functional with one or more regulatory signals connected is.
  • biosynthesis genes of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase (s), acyl-ACP [acyl carrier protein] desaturase (s), acyl-ACP-thioesteraseCn), fatty acid acyl transferase (n), acyl-CoA: lysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl coenzyme A carboxylase (s), acyl coenzyme A oxidase (s) , Fatty acid desaturase (s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase (s) may be present in the gene construct.
  • acyl-CoA dehydrogenase s
  • acyl-ACP
  • biosynthesis genes of the fatty acid or lipid metabolism selected from the group of ⁇ 4-desaturase, ⁇ 5-desaturase, ⁇ 6-desaturase, ⁇ 9-desaturase, ⁇ 12-desaturase or ⁇ 6-elongase are advantageously also contained ,
  • nucleic acid sequences used in the method according to the invention are derived from a eukaryotic organism such as a plant, a microorganism or an animal.
  • the nucleic acid sequences are from the order Salmoniformes, algae such as Mantoniella or Ostreococcus, fungi such as the genus Phytophtora or diatoms such as the genera Thalassiosira or Crypthecodinium.
  • an expression cassette nucleic acid construct
  • There may be more than one nucleic acid sequence of an enzymatic activity e.g. a ⁇ -12-desaturase, ⁇ -4-desaturase, ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -5 elongase and / or ⁇ -6 elongase.
  • the nucleic acids used in the method are advantageously subjected to amplification and ligation in a known manner.
  • the procedure is based on the protocol of Pfu DNA polymerase or a Pfu / Taq DNA. Polymerasegemisches ago.
  • the primers are selected on the basis of the sequence to be amplified. Conveniently, the primers should be chosen so that the amplificate comprises the entire codogenic sequence from the start to the stop codon.
  • the amplificate is conveniently analyzed. For example, the analysis can be carried out after gel electrophoretic separation in terms of quality and quantity. Subsequently, the amplificate can after a
  • Suitable cloning vectors are generally known to the person skilled in the art. These include, in particular, vectors which can be replicated in microbial systems, ie in particular vectors which ensure efficient cloning in yeasts or fungi, and which enable stable transformation of plants. In particular, various suitable for T-DNA-mediated transformation, binary and co-integrated vector systems. Such vector systems are usually characterized in that they contain at least the vir genes required for the Agrobacterium-mediated transformation as well as the T-DNA limiting sequences (T-DNA border).
  • these vector systems also include other cis-regulatory regions, such as promoters and terminators and / or selection markers, with which appropriately transformed organisms can be identified.
  • vir genes and T-DNA sequences are located on the same vector
  • binary systems are based on at least two vectors, one of them vir genes, but no T-DNA and a second T-DNA, but no carries vir gene.
  • the latter vectors are relatively small, easy to manipulate and replicate in both E.coli and Agrobacterium.
  • These binary vectors include vectors of the series pBIB-HYG, pPZP, pBecks, pGreen.
  • Bin19, pBI101, pBinAR, pGPTV and pCAMBIA are preferably used according to the invention.
  • the vectors can first be linearized with restriction endonuclease (s) and then enzymatically modified in a suitable manner become. The vector is then purified and an aliquot used for cloning. In cloning, the enzymatically cut and if necessary purified amplicon is cloned with similarly prepared vector fragments using ligase.
  • a particular nucleic acid construct or vector or plasmid construct can have one or more codogenic gene segments.
  • the codogenic gene segments in these constructs are functionally linked to regulatory sequences.
  • the regulatory sequences include, in particular, plant sequences such as the promoters and terminators described above.
  • the constructs can advantageously be stably propagated in microorganisms, in particular Escherichia coli and Agrobacterium tumefaciens, under selective conditions and enable a transfer of heterologous DNA into plants or microorganisms.
  • nucleic acids used in the method can be introduced into organisms such as microorganisms or advantageously plants and thus used in plant transformation, such as those published in and cited therein Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Chapter 6/7, pp. 71-119 (1993); F. F. White, Vectors for Gene Transfer to Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds .: Kung and R. Wu, Academic Press, 1993, 15-38; Genes Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. Kung and R.
  • nucleic acids used in the method, the inventive nucleic acids and nucleic acid constructs and / or vectors can thus be used advantageously for the genetic modification of a broad spectrum of organisms to plants, so that they become better and / or more efficient producers of PUFAs.
  • the number or activity of ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase proteins or genes can be increased so that larger amounts of the gene products and thus ultimately larger amounts of the compounds of general formula I are produced. Also, a de novo synthesis in an organism lacking the activity and ability to biosynthesize the compounds before introducing the gene (s) of interest is possible. The same applies to the combination with other desaturases or elongases or other enzymes from the fatty acid and lipid metabolism.
  • the use different divergent, ie different sequences on DNA sequence level may be advantageous or the use of promoters for gene expression, which allows a different time gene expression, for example, depending on the degree of ripeness of a seed or oil-speichemden tissue.
  • a ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase and / or ⁇ 4-desaturase gene into one Organism alone or in combination with other genes in a cell can not only increase the biosynthetic flux to the final product, but also increase the corresponding TYi acylglycerin composition or created de novo.
  • the number or activity of other genes necessary for the import of nutrients necessary for the biosynthesis of one or more fatty acids, oils, polar and / or neutral lipids may be increased, such that the concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment, thereby further increasing the ability of the cells to produce PUFAs, as described below.
  • the isolated nucleic acid molecules used in the method of the invention encode proteins or parts thereof, wherein the proteins or the single protein or parts thereof contain an amino acid sequence sufficiently homologous to an amino acid sequence represented in the sequences SEQ ID NO: 2, SEQ ID NO 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16, so that the proteins or parts thereof still one ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase activity.
  • the proteins or portions thereof encoded by the nucleic acid molecule still have their essential enzymatic activity and the ability to metabolically metabolize compounds or to transport molecules necessary to build cell membranes or lipid bodies in organisms in organisms to participate through these membranes.
  • the proteins encoded by the nucleic acid molecules are at least about 40%, preferably at least about 50% or 60%, and more preferably at least about 70%, 80% or 90%, and most preferably at least about 85%, 86%, 87 %, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to those shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16 shown amino acid sequences.
  • the homology was calculated over the entire amino acid or nucleic acid sequence range.
  • a number of programs that are based on different algorithms are available to the person skilled in the art.
  • the algorithms of Needleman and Wunsch or Smith and Waterman provide particularly reliable results.
  • the program PiIeUp was used (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48: 443-453 (1970) and Smith and Waterman (Adv. Appl. Math.
  • ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -6 elongase, ⁇ -5-desaturase, ⁇ -5 elongase or ⁇ -4-desaturase used in the method according to the invention is understood to mean that they are opposite to those represented by the sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 and their derivatives encoded proteins / enzymes by comparison still have at least one enzymatic activity of at least 10%, preferably 20%, more preferably 30% and very particularly 40% and thus the metabolism of the structure of fatty acids, fatty acid esters such as diacylglycerides and / or triacylglycerides in an organism can advantageously participate in a plant or plant cell necessary compounds or in the transport of molecules via membranes, wherein C 18 , C 20 or C 22 carbon chains in the fatty
  • Nucleic acids useful in the method are derived from bacteria, fungi, diatoms, animals such as Caenorhabditis or Oncorhynchus or plants such as algae or mosses such as the genera Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella , Borago, Phaeodactylum, Crypthecodinium, especially of the genera and species Oncorhynchus mykiss, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophthora infestans, Fusarium graminaeum, Cryptocodinium cohn
  • nucleotide sequences may be used in the method according to the invention which are suitable for a ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase and which are linked to a nucleotide sequence as in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 are shown to hybridize advantageously under stringent conditions.
  • the nucleic acid sequences used in the method are advantageously introduced into an expression cassette which enables expression of the nucleic acids in organisms such as microorganisms or plants.
  • nucleic acid sequences encoding ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -6 elongase, ⁇ -5-desaturase, ⁇ -5 elongase or ⁇ -4-desaturase are thereby amplified with one or more regulatory signals advantageously for
  • regulatory sequences are intended to allow the targeted expression of genes and protein expression. Depending on the host organism, this may mean, for example, that the gene is expressed and / or overexpressed only after induction, or that it is expressed and / or overexpressed immediately.
  • these regulatory sequences are sequences that bind to the inducers or repressors and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically altered so that natural regulation is eliminated and expression of genes increased.
  • the gene construct may advantageously also contain one or more so-called enhancer sequences functionally linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences can also be inserted at the 3 'end of the DNA sequences, such as further regulatory elements or terminators.
  • gene construct gene construct
  • only one copy of the genes is present in the expression cassette.
  • This gene construct or gene constructs can be expressed together in the host organism. In this case, the gene construct or the gene constructs can be inserted in one or more vectors and be present freely in the cell or else in the
  • the regulatory sequences or factors can, as described above, preferably positively influence the gene expression of the introduced genes and thereby increase them.
  • enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
  • an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
  • a further embodiment of the invention is one or more gene constructs which contain one or more sequences represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or its derivatives are defined and for polypeptides according to SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16.
  • ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase proteins advantageously lead to desaturation or Elong réelle of fatty acids, wherein the substrate advantageously one, two, three, four, five or six double bonds and advantageously has 18, 20 or 22 carbon atoms in the fatty acid molecule.
  • the substrate advantageously one, two, three, four, five or six double bonds and advantageously has 18, 20 or 22 carbon atoms in the fatty acid molecule.
  • Advantageous regulatory sequences for the novel process are, for example, in promoters, such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5 , T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5 , T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • promoters amy and SP02 in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [ Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter.
  • inducible promoters such as those described in EP-A-0 388 186
  • Plant J. 2, 1992: 397-404 (Gatz et al., Tetracycline inducible), EP-AO 335 528 (abzisinic inducible) or WO 93/21334 (ethanol or cyclohexenol inducible) described promoters.
  • Further suitable plant promoters are the promoter of cytosolic FBPase or the potato ST LSI promoter (Stockhaus et al., EMBO J. 8, 1989, 2445), the glycine max phosphoribosyl pyrophosphatamidotransferase promoter (Genbank Accession No.
  • promoters which allow expression in tissues involved in fatty acid biosynthesis.
  • seed-specific promoters such as the USP
  • promoters such as the LeB4, DC3, phaseolin or napin promoter.
  • Further particularly advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and in US Pat. No. 5,608,152 (rapeseed napin promoter), WO 98/45461 (oleosin promoter from Arobidopsis), US Pat. No. 5,504,200 (Phaseolin promoter from Phaseolus vulgaris), WO 91/13980 (Bce4 promoter from Brassica), von Baeumlein et al , Plant J., 2, 2, 1992: 233-239 (LeB4 promoter from a legume), these promoters being suitable for dicotyledons.
  • promoters are suitable, for example, for barley monocotylone lpt-2 or lpt-1 promoter (WO 95/15389 and WO 95/23230), barley hordein promoter and other suitable promoters described in WO 99/16890.
  • the PUFA biosynthesis genes should advantageously be seed-specifically expressed in oilseeds.
  • seed-specific promoters can be used, or such promoters that are active in the embryo and / or in the endosperm.
  • seed-specific promoters can be isolated from both dicotolydone and monocotolydonous plants.
  • acyl Carrier protein [US 5,315,001 and WO 92/18634], oleosin (Arabidopsis thaliana) [WO 98/45461 and WO 93/20216], phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980] , Legumes B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 and lpt1 (barley) [WO 95/15389 u. WO95 / 23230], seed-specific promoters from rice, maize and the like.
  • Promoter facilitate (see a review in Gatz 1997, Annu Rev. Plant Physiol Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly useful when it is desired that gene expression be in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • each of the nucleic acids used in the method which is responsible for ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ -5 elongase and / or ⁇ -4-desaturase are expressed under the control of its own preferred a different promoter, as Repetitive sequence motifs can lead to instability of the T-DNA or to recombination events.
  • the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable interface for insertion of the nucleic acid to be expressed, advantageously followed by a terminator behind the polylinker in a polylinker.
  • each nucleic acid sequence has its own promoter and optionally its own terminator.
  • advantageous constructs are disclosed for example in DE 10102337 or DE 10102338. However, it is also possible to insert several nucleic acid sequences behind a promoter and possibly in front of a terminator.
  • the insertion site or the sequence of the inserted nucleic acids in the expression cassette is not of decisive importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette, without this significantly influencing the expression.
  • transcription of the introduced genes should be advantageously aborted by suitable terminators at the 3 'end of the introduced biosynthetic genes (beyond the stop codon). It can be used here e.g. the OCS1 terminator. As for the promoters, different terminator sequences should be used for each gene.
  • the gene construct may, as described above, also include other genes to be introduced into the organisms. It is possible and beneficial to regulate genes in the host organisms, such as genes for inducers, repressors or
  • Enzyme which engage by their enzyme activity in the regulation of one or more genes of a biosynthetic pathway, introduce and express therein. These genes may be of heterologous or homologous origin. Furthermore, further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct, or else these genes can be located on a further or several further nucleic acid constructs.
  • nucleic acid sequences are biosynthesis genes of the fatty acid or lipid metabolism selected from the group of acyl-CoA: lysophospholipid acyltransferase, ⁇ -4-desaturase, ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -9-desaturase, ⁇ -12 Desaturase, ⁇ -5 elongase and / or ⁇ -6 elongase.
  • nucleic acids or genes can be cloned in combination with other elongases and desaturases in expression cassettes, such as those mentioned above, and used to transform plants using Agrobacterium.
  • the regulatory sequences or factors can, as described above, preferably positively influence the gene expression of the introduced genes and thereby increase them.
  • enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
  • an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
  • the expression cassettes can in principle be used directly for introduction into the plant or else introduced into a vector.
  • These advantageous vectors contain the nucleic acids used in the method which are useful for ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturases, ⁇ 5-elongase or ⁇ -4 Or a nucleic acid construct containing the nucleic acid used alone or in combination with other fatty acid or lipid metabolism biosynthesis genes such as the acyl-CoAl-lysophospholipid acyltransferases, ⁇ -4-desaturases, ⁇ -5-desaturases, ⁇ -6-desaturases, ⁇ -9-desaturases, ⁇ -12-desaturases, ⁇ 3-desaturases, ⁇ -5-elongases and / or ⁇ -6-elongases.
  • acyl-CoAl-lysophospholipid acyltransferases such as the acyl-CoAl-lysophospholipid acyltransferases, ⁇ -4-desaturases, ⁇ -5-desaturases,
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • plasmid which is a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector is a viral vector, where additional DNA segments can be ligated into the viral genome.
  • Certain vectors may autonomously replicate in a host cell into which they have been introduced (eg bacterial vectors of bacterial origin of replication). Other vectors are advantageously integrated into the genome of a host cell upon introduction into the host cell and thereby replicated together with the host genome.
  • certain vectors may direct the expression of genes to which they are operably linked.
  • expression vectors suitable for recombinant DNA techniques are in the form of plasmids.
  • plasmid and “vector” can be used interchangeably because the plasmid is the most commonly used vector form.
  • the invention is intended to encompass these other forms of expression vectors, such as viral vectors that perform similar functions.
  • vector is also intended to mean other vectors which are known to the person skilled in the art, such as phages, viruses, such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • the recombinant expression vectors advantageously used in the method comprise the below-described nucleic acids or the above-described gene construct in a form suitable for expression of the nucleic acids used in a host cell, which means that the recombinant expression vectors comprise one or more regulatory sequences selected on the basis of For expression to be used host cells, which is operably linked to the nucleic acid sequence to be expressed comprises.
  • operably linked means that the nucleotide sequence of interest is bound to the regulatory sequence (s) such that expression of the nucleotide sequence is possible and they are linked to each other such that both sequences fulfill the predicted function ascribed to the sequence (eg in an in vitro transcription / translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to mean promoters
  • Enhancers and other expression control elements e.g., polyadenylation signals.
  • These regulatory sequences are e.g. in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Eds .: Glick and Thompson, chapters 7, 89-108, including references therein.
  • Regulatory sequences include those that direct the constitutive expression of a nucleotide sequence in many types of host cells and those that direct the direct expression of the nucleotide sequence only in certain host cells under certain conditions.
  • the design of the expression vector may depend on factors such as the selection of the host cell to be transformed, the level of expression of the desired protein, etc.
  • the recombinant expression vectors used can be used to express ⁇ -12-desaturases, ⁇ -6-desaturases, ⁇ -6 elongases, ⁇ -5-desaturases, ⁇ -5 elongases and / or ⁇ -4-desaturases in prokaryotic or eukaryotic cells be designed. This is advantageous because often intermediate steps of the vector construction are carried out for simplicity in microorganisms.
  • the ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase and / or ⁇ -4-desaturase genes can be expressed in bacterial cells Insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA, et al., 1992, Foreign gene expression in yeast: a review, Yeast 8: 423-488, van den Hondel, CAMJJ, et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, eds., Pp.
  • Suitable host cells are further discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • the recombinant expression vector may alternatively be transcribed and translated in vitro using, for example, T7 promoter regulatory sequences and T7 polymerase.
  • Typical fusion expression vectors include i.a. pGEX (Pharmacia Biotech Inc., Smith, DB, and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), in which glutathione-S Transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S Transferase
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69: 301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60 -89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter.
  • Target gene expression from the pET 11d vector is based on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1).
  • This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident ⁇ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
  • Other suitable vectors in prokaryotic organisms are known to the person skilled in the art, these vectors are, for example, in E.
  • the expression vector is a yeast expression vector.
  • vectors for expression in the yeast S. cerevisiae include pYeDesaturased (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods for constructing vectors suitable for use in other fungi, such as filamentous fungi include those described in detail in: van den Hondel, CAMJJ, & Punt, PJ.
  • yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23.
  • ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -6 elongase, ⁇ -5-desaturase, ⁇ -5 elongase and / or ⁇ -4-desaturase can be expressed in insect cells using baculovirus expression vectors .
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al (1983) Mol. Cell Bio! 3: 2156-2165) and the pVL Series (Lucklow and Summers (1989) Virology 170: 31-39). The above vectors provide only a brief overview of possible suitable vectors.
  • ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -6 elongase, ⁇ -5-desaturase, ⁇ -5 elongase and / or ⁇ -4-desaturase can be produced in unicellular plant cells (such as Algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 and references cited therein, and plant cells from higher plants (eg, spermatophytes, such as crops) are expressed.
  • plant expression vectors include those described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R.
  • a plant expression cassette preferably contains regulatory sequences that can control gene expression in plant cells and are functional so that each sequence can fulfill its function, such as termination of transcription, for example, polyadenylation signals.
  • Preferred polyadenylation signals are those derived from Agrobacterium tumefaciens T-DNA, such as the gene 3 of the Ti plasmid pTiACH ⁇ known as octopine synthase (Gielen et al., EMBO J. 3 (1984) 835ff.) Or functional equivalents thereof, but also all other terminators functionally active in plants are suitable.
  • a plant expression cassette preferably contains other operably linked sequences, such as translation enhancers, e.g., the overdrive sequence containing the 5'-untranslated tobacco mosaic virus leader sequence, which is the protein / RNA ratio increases (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • translation enhancers e.g., the overdrive sequence containing the 5'-untranslated tobacco mosaic virus leader sequence, which is the protein / RNA ratio increases (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • Plant gene expression must be operably linked to a suitable promoter that performs gene expression in a timely, cell or tissue-specific manner.
  • useful promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those derived from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913) or plant promoters, such as the Rubisco small subunit described in US 4,962,028.
  • telomeres are preferred sequences necessary to direct the gene product into its corresponding cell compartment (see review in Kermode, Crit., Plant, 15, 4 (1996) 285) -423 and references cited therein), for example, in the vacuole, the nucleus, all kinds of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the
  • Mitochondria the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
  • Plant gene expression can also be facilitated by a chemically inducible promoter as described above (see review in Gatz 1997, Annu Rev. Plant Physiol Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly useful when it is desired that gene expression be in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • Promoters which react to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant Mol. Biol. 22 (1993) 361-366), the heat-inducible hsp80 promoter Tomato (US 5,187,267), the potato inducible alpha-amylase promoter (WO 96/12814) or the wound inducible pinll promoter (EP-A-0 375 091).
  • those promoters which induce gene expression in tissues and organs in which the fatty acid, lipid and oil biosynthesis take place are preferred in sperm cells such as the cells of the endosperm and the developing embryo.
  • Suitable promoters are the rapeseed napin promoter (US Pat. No. 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet.
  • promoters which induce seed specific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice, etc.
  • Suitable noteworthy promoters are the lpt2 or Ipt1 gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene , the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the rye secalin gene).
  • multiparallel expression of ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -6 elongase, ⁇ -5-desaturase, ⁇ -5 elongase and / or ⁇ -4-desaturase used in the method may be desired.
  • the introduction of such expression cassettes can be carried out via a simultaneous transformation of a plurality of individual expression constructs or preferably by combining a plurality of expression cassettes on a construct. It is also possible to transform a plurality of vectors each having a plurality of expression cassettes and to transfer them to the host cell.
  • promoters which induce plastid-specific expression since plastids are the compartment in which the precursors as well as some end products of lipid biosynthesis are synthesized.
  • Suitable promoters such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the Arabidopsis clpP promoter described in WO 99/46394.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and “transfection”, conjugation and transduction are intended to encompass a variety of methods known in the art for introducing foreign nucleic acid (eg DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE- Dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment.
  • Suitable methods for transforming or transfecting host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd ed., CoId Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, ColD Spring Harbor, NY, 1989) and other laboratory manuals, such as Methods in Molecular Biology, 1995, Vol.
  • Host cells which are suitable in principle for receiving the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms.
  • the host organisms which are advantageously used are microorganisms, such as fungi or yeasts or plant cells, preferably plants or parts thereof.
  • Fungi, yeasts or plants are preferably used, more preferably plants, most preferably plants such as oilseed crops containing high levels of lipid compounds such as rapeseed, evening primrose, hemp, Diestel, peanut, canola, flax, soy, safflower, sunflower, borage , or plants such as corn, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, tagetes, solanaceae plants, such as
  • Particularly preferred plants according to the invention are oil crop plants, such as soybean, peanut, rapeseed, canola, flax, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).
  • nucleic acid sequences enumerated below which code for ⁇ -6-desaturases, ⁇ -5-desaturases, ⁇ -4-desaturases or ⁇ -12-desaturases.
  • Isolated nucleic acid sequences encoding polypeptides having ⁇ -6 desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 13, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 13, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 14 and have a ⁇ 6-desaturase activity.
  • Isolated nucleic acid sequences encoding polypeptides having ⁇ 5-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 9 or SEQ ID NO: 11, b) nucleic acid sequences resulting as the result of degenerate genetic code derived from the amino acid sequence shown in SEQ ID NO: 10 or in SEQ ID NO: 12, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 or in SEQ ID NO: 11, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 10 or SEQ ID NO: 12 and a ⁇ - 5- have desaturase activity.
  • Isolated nucleic acid sequences encoding polypeptides having ⁇ -4-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 7, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 7, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 8 and have a ⁇ 6-desaturase activity.
  • Isolated nucleic acid sequences encoding polypeptides having ⁇ 12-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which code for polypeptides having at least 50% homology at the amino acid level with SEQ ID NO: 16 and have a ⁇ -12 desaturase activity.
  • nucleic acids of the present invention are derived from organisms such as non-human animals, ciliates, fungi, plants such as algae or dinoflagellates which can synthesize PUFAs.
  • the isolated above-mentioned nucleic acid sequences advantageously originate from the order Salmoniformes, the diatom genus Thalassiosira or Crythecodinium or from the family Prasinophyceae such as the genus Ostreococcus or Pythiaceae such as the genus Phytophtora.
  • the articles of the invention also include, as described above, isolated nucleic acid sequence encoding polypeptides having ⁇ -12-desaturases, ⁇ -4-desaturases, ⁇ -5-desaturases and ⁇ -6-desaturases, the ⁇ .
  • Coding sequences encoded by these nucleic acid sequences -12-desaturases, ⁇ -4-desaturases, ⁇ -5-desaturases or ⁇ -6-desaturases C 18 , C 2 o and C 22 fatty acids having one, two, three, four or five double bonds and advantageously polyunsaturated Ci 8 -fatty acids with one, two or three double bonds such as C18: 1 ⁇ 9 , C18: 2 ⁇ 9 12 or C18: 3 ⁇ 9 12 / l5 , polyunsaturated C 20 -fatty acids having three or four double bonds such as C 2 0: 3 ⁇ 8, ii, i4 or C 2 0: 4 ⁇ 8, ii, i4, i 7 or menf acn unsaturated C 22 fatty acids having four or five double bonds as C22: 4 ⁇ 7 ' 10 ' 13 '16 or C22: 5 ⁇ 7 ' 10 '13 16 ' 19 implement.
  • nucleic acid (molecule) also comprises, in an advantageous embodiment, the untranslated sequence located at the 3 'and 5' end of the coding gene region: at least 500, preferably 200, more preferably 100 nucleotides of the sequence upstream of the 5 'end of the coding region and at least 100, preferably 50, more preferably 20 nucleotides of the sequence downstream of the 3' end of the coding gene region.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules present in the natural source of the nucleic acid.
  • An "isolated" nucleic acid preferably does not have sequences that naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid is derived (e.g., sequences located at the 5 'and 3' ends of the nucleic acid).
  • the isolated ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ -4-desaturase molecule may be less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid is derived.
  • nucleic acid molecules used in the method for example a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or a part thereof can be isolated using standard molecular biology techniques and the sequence information provided herein. Also, by comparison algorithms, for example, a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level can be identified.
  • a nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO 13 or SEQ ID NO: 15 or a part thereof, by polymerase chain reaction, using oligonucleotide primers based on this sequence or parts thereof (eg, a nucleic acid molecule comprising the complete sequence or a part thereof, by polymerase chain reaction isolated using oligonucleotide primers prepared on the basis of this same sequence).
  • mRNA can be isolated from cells (eg by the guanidinium thiocyanate extraction method of Chirgwin et al.
  • Reverse transcriptase available from Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Louis, FL).
  • Synthetic oligonucleotide primers for polymerase chain reaction amplification can be prepared on the basis of one of the sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or using the sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO : 12, SEQ ID NO: 14 or SEQ ID NO: 16 create amino acid sequences shown.
  • a nucleic acid of the invention may be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques.
  • the thus amplified nucleic acid can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • Oligonucleotides corresponding to a desaturase nucleotide sequence can be prepared by standard synthetic methods, for example, with an automated DNA synthesizer.
  • Homologs of the ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase nucleic acid sequences of the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 means for example allelic variants with at least about 40 or 50%, preferably at least about 60 or 70%, more preferably at least about 70 or 80%, 90% or 95% ⁇ , and even more preferably at least about 85%, 86%, 87%, 88%, 89% , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity to each other in SEQ ID NO: 1, SEQ ID NO: 3 , SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, S
  • isolated nucleic acid molecules of a nucleotide sequence which correspond to one of the amino acid sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 hybridize or a part thereof hybridized, for example, under stringent conditions.
  • allelic variants include functional variants which are obtained by deletion, insertion or substitution of nucleotides from / in which is shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, but the intention is that the enzyme activity of the resulting synthesized proteins is advantageously retained for the insertion of one or more genes , Proteins which still possess the enzymatic activity of ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase or ⁇ 4-desaturase, ie their Activity is substantially not reduced, means proteins with at least 10%, preferably 20%, more preferably 30%, most preferably 40% of the original enzyme activity compared to that represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, S
  • Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 for example, also bacterial, fungal and plant homologs, truncated sequences, single-stranded DNA or RNA of the coding and non-coding DNA sequence.
  • Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 also derivatives, such as, for example, promoter variants.
  • the promoters upstream of the indicated nucleotide sequences may be modified by one or more nucleotide exchanges, insertions, and / or deletions, without, however, interfering with the functionality or activity of the promoters. It is also possible that the activity of the promoters is increased by modification of their sequence or that they are completely replaced by more active promoters, even from heterologous organisms.
  • nucleic acids and protein molecules having ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 6-elongase, ⁇ 5-desaturase, ⁇ 5-elongase and / or ⁇ -4-desaturase activity which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds via membranes, are advantageously used in the method according to the invention for modulating the production of PUFAs in transgenic organisms in plants such as corn, wheat, rye, oats, Triticale, rice, barley, soybean, peanut, cotton, linum species such as oil or fiber kidney, Brassica species such as oilseed rape, canola and turnip rape, pepper, sunflower, borage, evening primrose and Tagetes, Solanacaen plants such as
  • Efficiency of the production of the PUFAs or a decrease of undesired compounds leads (eg if the modulation of the metabolism of lipids and fatty acids, cofactors and enzymes leads to changes in the yield, production and / or efficiency of the production or the composition of the desired compounds within the cells in turn, may affect the production of one or more fatty acids).
  • PUFAs polyunsaturated fatty acids
  • PUFAs 1 for example stearidonic acid, eicosapentaenoic acid and docosahexaenoic acid
  • Brasicaceae for example stearidonic acid, eicosapentaenoic acid and docosahexaenoic acid
  • Brasicaceae boraginaceous plants, primulas or linaceae.
  • Lein Leinum usitatissimum
  • the lipid synthesis can be divided into two sections: the synthesis of fatty acids and their attachment to sn-glycerol-3-phosphate and the addition or modification of a polar head group.
  • Common lipids used in membranes include phospholipids, glycolipids, sphingolipids and phosphoglycerides.
  • Fatty acid synthesis begins with the conversion of acetyl-CoA into malonyl-CoA by the acetyl-CoA carboxylase or into acetyl-ACP by the acetyl transacylase.
  • Precursors for the PUFA biosynthesis are, for example, oleic acid, linoleic acid and linolenic acid. These C 18 -carbon fatty acids must be extended to C 2 o and C 22 in order to obtain fatty acids of the eicosa- and docosa-chain type.
  • Arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid can be used with the aid of the desaturases used in the process, such as ⁇ -12, ⁇ -4-, ⁇ -5- and ⁇ -6-desaturases and / or ⁇ -5-, ⁇ -6-elongases advantageously eicosapentaenoic acid and / or docosahexaenoic acid are prepared and then used for various purposes in food, feed, cosmetic or pharmaceutical applications.
  • C 2 - and / or C 22 -fatty acids having at least two, preferably at least three, four, five or six double bonds in the fatty acid molecule, preferably C 20 - or C 22 -fatty acids with advantageously four, five or six double bonds in the Fatty acid molecule can be produced.
  • the desaturation can take place before or after elongation of the corresponding fatty acid.
  • the products of desaturase activities and possible further desaturation and elongation result in preferred PUFAs having a higher degree of desaturation, including a further elongation of C 2 O to C 22 fatty acids, to fatty acids such as ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid , Stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • fatty acids such as ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid , Stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • Elongases in the process according to the invention are C 16 , C 18 or C 20 fatty acids, for example linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, eicosatetraenoic acid or stearidonic acid.
  • Preferred substrates are linoleic acid, ⁇ -linolenic acid and / or ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • glycolide is understood to mean a glycerol esterified with one, two or three carboxylic acid residues (mono-, di- or triglyceride).
  • glycolide is also meant a mixture of different glycerides.
  • the glyceride or glyceride mixture may contain other additives, e.g. contain free fatty acids, antioxidants, proteins, carbohydrates, vitamins and / or other substances.
  • a "glyceride” in the sense of the method according to the invention is also understood to mean derivatives derived from glycerol.
  • these also include glycerophospholipids and glyceroglycolipids.
  • the glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids, may be mentioned by way of example here.
  • fatty acids must then be transported to various modification sites and incorporated into the triacylglycerol storage lipid.
  • Another important Step in the lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol-fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100 (4-5): 161-166).
  • the PUFAs produced in the process comprise a group of molecules that are no longer able to synthesize, and therefore need to take up, higher animals, or that can no longer sufficiently produce higher animals themselves, and thus have to additionally take up, even though they are readily synthesized by other organisms, such as bacteria For example, cats can no longer synthesize arachidonic acid.
  • phospholipids are to be understood as meaning phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and / or phosphatidylinositol, advantageously phosphatidylcholine.
  • production or productivity are known in the art and include the concentration of the fermentation product (compounds of formula I) formed in a given period of time and fermentation volume (eg, kg of product per hour per liter). It also includes productivity within a plant cell or plant, that is, the content of the desired fatty acids produced in the process based on the content of all fatty acids in that cell or plant.
  • the term efficiency of production includes the time required to reach a certain amount of production (eg, how long the cell needs to set up a specific throughput rate of a fine chemical).
  • yield or product / carbon yield is known in the art and includes the efficiency of converting the carbon source into the product (ie, the fine chemical). This is usually expressed, for example, as kg of product per kg of carbon source.
  • biosynthesis or biosynthetic pathway are known in the art and include the synthesis of a compound, preferably an organic compound. bond, through a cell of interconnects, for example in a multi-step and highly regulated process.
  • degradation or degradation pathway are well known in the art and involve the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), for example in a multi-step and highly regulated process.
  • metabolism is known in the art and includes the entirety of the biochemical reactions that take place in an organism.
  • the metabolism of a particular compound eg the metabolism of a fatty acid
  • the percent sequence homology values given above were determined using the BestFit program over the entire sequence range with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000 and Average Mismatch: 0.000, which were always used for sequence comparisons unless otherwise stated
  • the invention also includes nucleic acid molecules which differ from any of the amino acid molecules shown in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 shown nucleotide sequences (and parts thereof) due to the degenerate differing genetic codes and thus encode the same ⁇ -12-desaturase, ⁇ -6-desaturase, ⁇ -5-desaturase or ⁇ -4-desaturase as that derived from those shown in SEQ ID NO: 7, SEQ ID NO: 9 , SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 is encoded.
  • Desaturase, ⁇ -5-desaturase and / or ⁇ -4-desaturase can exist within a population. These genetic polymorphisms in ⁇ 12-desaturase, ⁇ -6 Desaturase, ⁇ -5-desaturase and / or ⁇ -4-desaturase genes may exist between individuals within a population due to natural variation. These natural variants usually cause a variance of 1 to 5% in the nucleotide sequence of the ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase and / or ⁇ 4-desaturase gene.
  • Nucleic acid molecules which are advantageous for the process according to the invention can be prepared on the basis of their homology to the ⁇ -12-desaturase, ⁇ -5-elongase, ⁇ -6-desaturase, ⁇ -5-desaturase, ⁇ -4-desaturase and / or ⁇ -6 elongase nucleic acids using the sequences or a portion thereof as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • isolated nucleic acid molecules which are at least 15 nucleotides long and can be used under stringent conditions with the nucleic acid molecules which have a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 comprise hybridizing.
  • Nucleic acids of at least 25, 50, 100, 250 or more nucleotides may also be used.
  • hybridized under stringent conditions as used herein is intended to describe hybridization and washing conditions under which nucleotide sequences that are at least 60% homologous to one another usually remain hybridized to one another.
  • the conditions are preferably such that sequences that are at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous, are usually hybridized to each other.
  • stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6.
  • a preferred, non-limiting example of stringent hybridization conditions are hybridizations in 6x sodium chloride / sodium citrate (SSC) at about 45 ° C, followed by one or more washes in 0.2x SSC, 0.1%. SDS at 50 to 65 ° C.
  • hybridization conditions differ depending on the type of nucleic acid and, for example, if organic solvents are present, with regard to the temperature and the concentration of the buffer.
  • the temperature differs, for example under "standard hybridization conditions” depending on the type of nucleic acid between 42 ° C and 58 ° C in aqueous buffer with a concentration of 0.1 to 5 x SSC (pH 7.2). If organic solvent is present in the above buffer, for example 50% formamide, the temperature is about 42 ° C under standard conditions.
  • the hybridization conditions for DNA are, for example, 0.1 x SSC and 20 0 C to 45 ° C, preferably between 30 0 C and 45 ° C.
  • the hybridization conditions for DNA: RNA hybrids are, for example, 0.1 x SSC and 30 0 C to 55 ° C, preferably between 45 ° C and 55 ° C.
  • sequences are written one below the other for the purpose of optimal comparison (eg, gaps may be inserted into the sequence of a protein or nucleic acid for optimal alignment) the other protein or nucleic acid).
  • amino acid residues or nucleotides at the corresponding amino acid positions or nucleotide positions are then compared. If a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding site in the other sequence, then the molecules are homologous at that position (ie, amino acid or nucleic acid "homology" as used herein corresponds to amino acid
  • the programs or algorithms used are described above.
  • An isolated nucleic acid molecule which encodes a ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase, ⁇ 4-desaturase, ⁇ 5-elongase and / or ⁇ 6-elongase resulting in a protein sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16 is homologous can be prepared by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
  • Mutations may be included in any of the sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 by standard techniques such as site-specific mutagenesis and PCR-mediated mutagenesis.
  • conservative amino acid substitutions are made on one or more of the predicted nonessential amino acid residues.
  • the amino acid residue is challenged exchanged an amino acid residue with a similar side chain.
  • families of amino acid residues have been defined with similar side chains.
  • amino acids with basic side chains eg, lysine, arginine, histidine
  • acidic side chains eg, aspartic acid, glutamic acid
  • uncharged polar side chains eg, glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine non-polar side chains, (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (eg threonine, valine, isoleucine) and aromatic side chains (eg tyrosine, phenylalanine, tryptophan, histidine)
  • a predicted nonessential amino acid residue in a ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase, ⁇ 4-desaturase, ⁇ 5-elongase or ⁇ 6-elongase is thus preferably replaced by a different amino acid residue exchanged from the same side chain family.
  • the mutations may be randomized over all or part of the ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase, ⁇ 4-desaturase, ⁇ 5-elongase or ⁇ -6.
  • Elongase coding sequence can be introduced, eg by saturation mutagenesis, and the resulting mutants can be prepared according to the herein described ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase, ⁇ 4-desaturase, ⁇ 5-elongase or ⁇ 6 elongase activity to identify mutants carrying the ⁇ 12-desaturase, ⁇ 6-desaturase, ⁇ 5-desaturase, ⁇ 4-desaturase, ⁇ 5-elongase or ⁇ 6-elongase activity.
  • After mutagenesis one of
  • sequences SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 may be the coded protein can be recombinantly expressed, and the activity of the protein can be eg be determined using the tests described herein.
  • Further subjects of the invention are transgenic non-human organisms which contain the inventive nucleic acids SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or a gene construct or a vector, containing these nucleic acid sequences according to the invention.
  • the non-human organism is a microorganism, a non-human animal or a plant, more preferably a plant.
  • the cloning methods such as restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli cells, culture of bacteria and sequence analysis of recombinant DNA were as in Sambrook et al. (1989) (CoId Spring Harbor Laboratory Press: ISBN 0-87969-309-6).
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. See, USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
  • Example 3 Lipid Extraction from Yeasts and Seeds: The effect of genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by subjecting the modified microorganisms or modified plant under suitable conditions ( as described above) and the medium and / or cellular components are assayed for increased production of the desired product (ie, lipids or a fatty acid).
  • a desired product ie, lipids or a fatty acid.
  • These analytical techniques are well known to those skilled in the art and include spectroscopy, thin layer chromatography, staining methods of various types, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al.
  • the analytical methods include measurements of nutrient levels in the medium (eg, sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of biomass composition and growth, analysis of production of common biosynthetic pathway metabolites, and measurements of gases generated during fermentation. Standard methods for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, Eds., IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and references cited therein.
  • FAME fatty acid methyl ester
  • GC-MS gas-liquid chromatography-mass spectrometry
  • TAG triacylglycerol
  • TLC thin-layer chromatography
  • the unambiguous evidence for the presence of fatty acid products can be obtained by analysis of recombinant organisms by standard analytical methods: GC, GC-MS or TLC as variously described by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition. Christie, Oliver Press, Dundee, 119-169, 1998, Gas Chromatography Mass Spectrometry Method, Lipids 33: 343-353).
  • the material to be analyzed can be prepared by ultrasonic treatment, grinding in the
  • fatty acid methyl ester are extracted in petroleum ether and finally subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0.32 mm) at a temperature gradient between 170 0 C and 240 ° C for 20 min and 5 min at 240 ° C subjected.
  • Chropack Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0.32 mm
  • the identity of the resulting fatty acid methyl esters must be defined using standards available from commercial sources (ie Sigma).
  • Plant material is first mechanically homogenized by mortars to make it more accessible to extraction. The mixture is then heated for 10 min at 100 0 C and sedimented again after cooling on ice. The cell pellet is hydrolyzed with 1 M methanolic sulfuric acid and 2% dimethoxypropane for 1 h at 90 ° C and transmethylated the lipids. The resulting fatty acid methyl esters (FAME) are extracted into petroleum ether.
  • FAME fatty acid methyl esters
  • the extracted FAME are purified by gas chromatography using a capillary column (Chrompack, WCOT Fused silica, CP-Wax-52CB, 25 m, 0.32 mm) and a temperature gradient from 170 ° C to 240 ° C in 20 min and 5 min at 240 ° C analyzed.
  • the identity of Fatty acid methyl ester is confirmed by comparison with corresponding FAME standards (Sigma).
  • the identity and the position of the double bond can be further analyzed by GC-MS by suitable chemical derivatization of the FAME mixtures, for example to give 4,4-dimethoxoxazoline derivatives (Christie, 1998).
  • Example 4 Cloning of genes from Ostreococcus tauri
  • OteloI has the highest similarity to an elongase from Danio rerio (GenBank AAN77156, about 26% identity), while OtElo2 bears the greatest similarity to the Physcomitella EIo (PSE) [ca. 36% identity] (alignments were performed with the tBLASTn algorithm (Altschul et al., J. Mol. Biol. 1990, 215: 403-410).
  • the cloning was carried out as follows: 40 ml of a Ostreococcus tauri culture in the stationary phase were collected by centrifugation and resuspended in 100 .mu.l double-distilled Aqua and stored at -20 0 C. Based on the PCR method, the associated genomic DNAs were amplified. The appropriate primer pairs were selected to carry the yeast consensus sequence for high efficiency translation (Kozak, Cell 1986, 44: 283-292) adjacent to the start codon. The amplification of the OtEIo DNAs was carried out in each case with 1 ⁇ l of thawed cells, 200 ⁇ M dNTPs, 2.5 U day polymerase and 100 pmol of each primer in a total volume of 50 ⁇ l.
  • the conditions for the PCR were as follows: first denaturation at 95 ° C for 5 minutes, followed by 30 cycles at 94 ° C for 30 seconds, 55 ° C for 1 minute and 72 ° C for 2 minutes and a final extension step at 72 ° C for 10 minutes.
  • Saccharomyces cerev / s / ae strain 334 was transformed by electroporation (1500 V) with the vector pOTE1 and pOTE2, respectively.
  • a yeast was used, which was transformed with the empty vector pYES2.
  • the selection of the transfor- Yeasts were made on complete minimal medium (CMdum) agar plates with 2% glucose but without uracil. After selection, three transformants each were selected for further functional expression.
  • CMdum liquid medium For the expression of the Ot elongases, first precultures each of 5 ml of CMdum liquid medium with 2% (w / v) raffinose but without uracil with the selected transformants were inoculated and incubated for 2 days at 30 ° C., 200 rpm. 5 ml of CMdum liquid medium (without uracil) containing 2% raffinose and 300 ⁇ M of various fatty acids were then inoculated with the precultures to an OD 600 of 0.05. Expression was induced by the addition of 2% (w / v) galactose. The cultures were incubated for a further 96 h at 20 ° C.
  • the PCR products were incubated for 16 h at 37 0 C with the restriction enzyme Notl.
  • the plant expression vector pSUN300-USP was incubated in the same way. Subsequently, the PCR products and the vector were separated by agarose gel electrophoresis and the corresponding DNA fragments were excised. The purification of the DNA was carried out using Qiagen Gel Purification Kit according to the manufacturer. Subsequently, vector and PCR products were ligated. The Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids pSUN-OtELO1 and pSUN-OtELO2 were verified by sequencing.
  • pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994).
  • pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment.
  • the polyadenylation signal is that of the Ostreococcus gene from the A.
  • tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu M. and Schell J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol.
  • the USP promoter corresponds nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter
  • the 684 base pair promoter fragment was transfected via commercially available T7 standard primer (Stratagene) and with the aid of a synthesized primer PCR reaction amplified by standard methods (primer sequence: ⁇ '-GTCGACCCGCGGACTAGTGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-S ')
  • the PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator to give the plasmid designated pSUN-USP .
  • the K Onstrukt was used to transform Arabidopsis thaliana, rapeseed, tobacco and flaxseed.
  • Example 7 Expression of OtELOI and OtELO2 in Yeasts Yeasts transformed with the plasmids pYES3, pYES3-0tEL01 and pYES3-OtELO2 as in example 5 were analyzed as follows:
  • the yeast cells from the main cultures were (100 ⁇ g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed.
  • fatty acid methyl esters FAMEs
  • the cell sediments were incubated with 2 ml of 1N methanolic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° C.
  • the extraction of the FAMES was carried out by extraction twice with petroleum ether (PE).
  • the organic phases were washed once each with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed. Subsequently, the PE phases were dried with Na 2 SO 4 , evaporated under argon and taken up in 100 ⁇ l of PE.
  • the samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis were as follows: The oven temperature was programmed from 50 ° C to 250 ° C at a rate of 5 ° C / min and finally 10 min at 250 ° C (hold).
  • the substrate specificity of OtEIoI was determined after expression and feeding of various fatty acids (Table 2).
  • the lined substrates can be detected in large quantities in all transgenic yeasts.
  • the transgenic yeasts showed the synthesis of new fatty acids, the products of the OtEIoI reaction. This means that the gene OteloI could be functionally expressed.
  • Table 2 shows that OteloI has a narrow substrate specificity.
  • the OteloI was able to elongate only the C20 fatty acids eicosapentaenoic acid (Figure 2) and arachidonic acid (Figure 3), but preferred the ⁇ -3-desaturated eicosapentaenoic acid.
  • Figure 2 The OteloI was able to elongate only the C20 fatty acids eicosapentaenoic acid (Figure 2) and arachidonic acid (Figure 3), but preferred the ⁇ -3-desaturated eicosapentaenoic acid.
  • Table 2 shows the substrate specificity of the elongase OteloI for C20 polyunsaturated fatty acids with a double bond in ⁇ 5 position towards different fatty acids.
  • the yeasts transformed with the vector pOTE1 were cultured in minimal medium in the presence of the indicated fatty acids.
  • the substrate specificity of OtElo2 (SEQ ID NO: 1) could be determined after expression and feeding of various fatty acids (Table 3).
  • the lined substrates can be detected in large quantities in all transgenic yeasts.
  • the transgenic yeasts showed the synthesis of new fatty acids, the products of the OtElo2 reaction. This means that the gene OtElo2 could be expressed functionally.
  • Table 3 shows the substrate specificity of the elongase OtElo2 towards different fatty acids.
  • the yeasts transformed with the vector pOTE2 were cultured in minimal medium in the presence of the indicated fatty acids.
  • the reconstitution of the biosynthesis of DHA (22: 6 ⁇ 3) can be carried out starting from EPA (20: 5 ⁇ 3) or stearidonic acid (18: 4 ⁇ 3) by the coexpression of OtEIoI with the ⁇ -4-desaturase from Euglena gracilis or the ⁇ -5-desaturase from Phaeodactylum tricornutum and the ⁇ -4-desaturase from Euglena gracilis performed.
  • the expression vectors pYes2-EgD4 and pESCLeu-PtD5 were further constructed. The o.g.
  • Yeast strain already transformed with the pYes3-OtElo1 can then be further transformed with the pYes2-EgD4 or simultaneously with pYes2-EgD4 and pESCLeu-PtD5.
  • the selection of the transformed yeasts can be performed on complete minimal medium agar plates with 2% glucose but without tryptophan and uracil in the case of the pYes3-OtElo / pYes2-EgD4 strain and without tryptophan, uracil and leucine in the case of the pYes3-OtElo / pYes2- EgD4 + pESCLeu-PtD5 strain.
  • Expression is then induced by the addition of 2% (w / v) galactose.
  • the cultures are then incubated for a further 120 h at 15 ° C.
  • Example 10 Generation of Transgenic Plants a) Generation of Transgenic Rape Plants (Modified by Moloney et al., 1992, Plant Cell Reports, 8: 238-242) The transgenic rape plants are grown using the binary vectors in Agrobacterium tumefaciens C58C1: pGV2260 or Escherichia coli (Deblaere et al., 1984, Nucl. Acids. Res. 13, 4777-4788).
  • Regenerated shoots are obtained on 2MS medium with kanamycin and claforan, transferred into soil after rooting and grown in a climatic chamber or greenhouse after cultivation for two weeks, flowered, harvested mature seeds and for elongase expression such as ⁇ -5 elongase or ⁇ 6-elongase activity by lipid analysis. Lines with elevated levels of C20 and C22 polyunsaturated fatty acids can thus be identified. b) Production of transgenic flax plants
  • transgenic flax plants can be carried out, for example, according to the method of Bell et al., 1999, In Vitro Cell. Dev. Biol. Plant. 35 (6): 456-465 by means of particle bombartment.
  • Agrobacteria-mediated transformations can be carried out, for example, according to Mlynarova et al. (1994), Plant Cell Report 13: 282-285.
  • Example 11 Cloning of desaturase genes from Ostreococcus tauri
  • the conditions for the PCR were as follows: first denaturation at 95 ° C for 5 minutes, followed by 30 cycles at 94 0 C for 30 seconds, 55 ° C for 1 minute and 72 ° C for 2 minutes, and a final extension step at 72 0 C for 10 minutes.
  • Table 4 List of fatty acid desaturases with the highest sequence homologies to the ⁇ 6-desaturase of Osterococcus.
  • the Saccharomyces cerews / ' ae strain 334 was transformed by electroporation (1500 V) with the vector pYES2.1-OtD6.1.
  • a yeast was used, which was transformed with the empty vector pYES2.
  • the selection of the transformed yeasts was carried out on complete minimal medium (CMdum) agar plates with 2% glucose, but without uracil. After selection, three transformants each were selected for further functional expression.
  • CMdum liquid medium containing 2% (w / v) raffinose but no uracil were first inoculated with the selected transformants and incubated for 2 days at 30 ° C., 200 rpm.
  • Expression was induced by the addition of 2% (w / v) galactose. The cultures were incubated for a further 96 h at 20 ° C.
  • Annealing temperature 1 min 55 0 C denaturation temperature: 1 min 94 0 C elongation temperature: 2 min 72 0 C number of cycles: 35
  • the PCR products are incubated for 16 h at 37 0 C with the restriction enzyme Notl.
  • the plant expression vector pSUN300-USP is incubated in the same way.
  • the PCR products and the vector are subsequently separated by agarose gel electrophoresis and the corresponding DNA fragments are excised.
  • the DNA is purified using the Qiagen Gel Purification Kit according to the manufacturer's instructions. Subsequently, vector and PCR products are ligated.
  • the Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids are verified by sequencing.
  • pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z 1 Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation, Plant Mol Biol 25: 989-994).
  • pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment.
  • the polyadenylation signal is that of the Ostreococcus gene from the A.
  • tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck J., Lemmers, M., Van Montagu M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol.
  • the USP promoter corresponds nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter
  • the 684 base pair promoter fragment was transfected via commercially available T7 standard primer (Stratagene) and with the aid of a synthesized primer PCR reaction amplified by standard methods (primer sequence: 5'-
  • the PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator.
  • the resulting plasmid was named pSUN-USP.
  • the construct was used to transform Arabidopsis thaliana, rapeseed, tobacco and linseed.
  • Yeasts transformed with the plasmids pYES2 and pYES2-OtDes6.1 as in Example 11 were analyzed as follows: The yeast cells from the main cultures were (100 ⁇ g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed. The yeast cell pellets were extracted with chloroform / methanol (1: 1) for 4 hours. The resulting organic phase was extracted with 0.45% NaCl, dried with Na 2 SO 4 and evaporated in vacuo. The lipid extract was purified by thin layer chromatography (horizontal tank,
  • Chloroform: methanol: acetic acid 65: 35: 8) are further separated into the lipid classes phosphatidylcholine (PC), phosphatidiylinositol (PI), phosphatidyserine (PS), phosphatidylethanolamine (PE) and neutral lipids (NL).
  • PC phosphatidylcholine
  • PI phosphatidiylinositol
  • PS phosphatidyserine
  • PE phosphatidylethanolamine
  • NL neutral lipids
  • FAMEs Fatty acid methyl ester
  • the cell sediments were incubated with 2 ml of 1 N methanolic sulfuric acid and 2% (v / v) dimethoxypropane at 80 ° C. for 1 h.
  • the extraction of the FAMES was carried out by extraction twice with petroleum ether (PE).
  • PE petroleum ether
  • the organic phases were washed once each with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed.
  • the PE phases were dried with Na 2 SO 4 , evaporated under argon and taken up in 100 ⁇ l of PE.
  • the samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis were as follows: The oven temperature was finally programmed from 50 ° C to 250 0 C at a rate of 5 ° C / min and 10 min at 250 ° C (hold).
  • the signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma).
  • the methodology is described, for example, in Napier and Michaelson, 2001, Lipids. 36 (8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52 (360): 1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388 (2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439 (3): 215-218.
  • the substrate specificity of desaturases can be determined after expression in yeast (see examples cloning of desaturase genes, yeast expression) by feeding using various yeasts. Descriptions for the determination of the individual activities can be found in WO 93/11245 for ⁇ 15 desaturases, WO 94/11516 for ⁇ 12 desaturases, WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO0021557 and WO 99/27111 for ⁇ 6-desaturases, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 for ⁇ 4-desaturases, Ho ⁇ g et al. 2002, Lipids 37,863-868 for ⁇ 5-desaturase.
  • Table 4 shows the substrate specificity of the desaturase OtDes6.1 versus various fatty acids.
  • the substrate specificity of OtDes6.1 could be determined after expression and feeding of different fatty acids.
  • the lined substrates can be detected in large quantities in all transgenic yeasts.
  • the transgenic yeasts showed the synthesis of new fatty acids, the products of the OtDes6.2 reaction ( Figure 4). This means that the gene OtDes6.1 could be expressed functionally.
  • Yeasts transformed with the vector pYES2-OtDes6.1 were cultured in minimal medium in the presence of the indicated fatty acids.
  • the activity corresponds to the conversion rate calculated according to [substrate / (substrate + product) * 100].
  • Table 4 shows that the OtDes6.1 has a substrate specificity for linoleic and linolenic acid (18: 2 and 18: 3), since these fatty acids achieve the highest activities.
  • the preferred reaction of linoleic and linolenic acid shows the suitability of this desaturase for the production of polyunsaturated fatty acids.
  • FIG. 4 shows the conversion of linoleic acid by OtDes6.2.
  • the analysis of the FAMEs was done by gas chromatography.
  • the lined substrate (C18: 2) is converted to ⁇ -C18: 3. Both starting material and the resulting product are marked by arrows.
  • a culture of the yeast strain INVSd transformed with pYES-Ot6.1 (see Example 12) was incubated for 24 h at 30 0 C in the presence of galactose. Subsequently 250 ⁇ M linoleic acid (18: 2 ⁇ 9,12) was added and yeast cells were removed at various times and analyzed (0 min, 5 min, 1 h, 4 h). The total fatty acid spectrum was analyzed by GC (FIG. 6, left) or the acyl-CoA esters by HPLC (FIG. 6, right).
  • isoARA (20: 4 ⁇ 8, 11, 14, 17) was also investigated in the CoA ester pool in a similar experiment as described above.
  • a yeast culture transformed with pYES-Ot6.1 and pLEU-PSE1 (described in Domergue et al., 2002, Eur. J. Biochem., 269, 4105-4113) was added and linolenic acid (18: 3 ⁇ 9, 12, 15) added.
  • yeast cells were removed and the total lipids were analyzed by GC (FIG. 7, left) or the acyl-CoA esters by HPLC (FIG. 7, right ).
  • Annealing temperature 1 min 55 0 C denaturation temperature: 1 min 94 0 C elongation temperature: 2 min 72 0 C number of cycles: 35
  • the PCR products are incubated for 16 h at 37 0 C with the restriction enzyme Notl.
  • the plant expression vector pSUN300-USP is incubated in the same way. Subsequently, the PCR products and the vector are replaced by agarose
  • the DNA is purified using the Qiagen Gel Purification Kit according to the manufacturer's instructions. Subsequently, vector and PCR products are ligated. The Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids are verified by sequencing.
  • pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation, Plant Mol Biol 25: 989-994).
  • pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment.
  • the polyadenylation signal is the OCS gene from the A. tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck J., Lemmers.
  • the USP promoter corresponds to the Nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter
  • the 684 base pair promoter fragment was obtained by commercially available T7 standard primer (Stratagene) and by means of a synthesized primer via PCR Reaction amplified by standard methods (primer sequence: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-S 1 ).
  • the PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator.
  • the resulting plasmid was named pSUN-USP.
  • the construct was used to transform Arabidopsis thaliana, rapeseed, tobacco and linseed.
  • Yeasts which are transformed as described in Example 11 with the plasmids pYES2 and pYES2-Ostreococcus desaturases are analyzed as follows:
  • the yeast cells from the main cultures are (100 ⁇ g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed.
  • fatty acid methyl esters (FAMEs) are produced by acid methanolysis.
  • the cell sediments are incubated with 2 ml of 1N methanolic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° C.
  • the extraction of the FAMES was carried out by extraction twice with petroleum ether (PE).
  • the organic phases are each determined once with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed. Subsequently, the PE phases are dried with Na 2 SO 4 , evaporated under argon and taken up in 100 ⁇ l of PE.
  • the samples are separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis are as follows: The oven temperature is eventually programmed from 50 0 C to 25O 0 C at a rate of 5 ° C / min and 10 min at 250 ° C (hold).
  • the signals are identified by comparison of the retention times with corresponding fatty acid standards (Sigma).
  • the methodology is described, for example, in Napier and Michaelson, 2001, Lipids. 36 (8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52 (360): 1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388 (2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439 (3): 215-218.
  • the substrate specificity of desaturases can be determined after expression in yeast (see examples cloning of desaturase genes, yeast expression) by feeding using various yeasts. Descriptions for the determination of the individual activities can be found in WO 93/11245 for ⁇ 15 desaturases, WO 94/11516 for ⁇ 12 desaturases, WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO0021557 and WO 99/27111 for ⁇ 6-desaturases, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 for ⁇ 4-desaturases, Hong et al. 2002, Lipids 37,863-868 for ⁇ 5-desaturases.
  • the activity of the individual desaturases is calculated from the conversion rate according to the formula [substrate / (substrate + product) * 100].

Abstract

The invention relates to a method for producing polyunsaturated fatty acids in an organism by introducing into the organism nucleic acids which encode polypeptides having ?-5-elongase, ?-6-desaturase, ?-5-desaturase, ?-4-desaturase, ?-12-desaturase and/or ?-6-elongase activity. Preferably, these desaturases and elongases are derived from Ostreococcus. The invention also relates to a method for producing oils and/or triacylglycerides having an increased content in long-chain polyunsaturated fatty acids. The invention further relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms comprising the inventive nucleic acid sequences, to vectors comprising the nucleic acid sequences and/or to the nucleic acid constructs and to transgenic organisms comprising the aforementioned nucleic acid sequences, nucleic acid constructs and/or vectors. Another part of the invention relates to oils, lipids and/or fatty acids produced according to the inventive method and to the use thereof. The invention finally relates to fatty acids and triglycerides having an increased content in unsaturated fatty acids and to the use thereof.<SUP/>

Description

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen OrganismenProcess for producing polyunsaturated fatty acids in transgenic organisms
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach unge- sättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongase-, Δ-6-Desaturase-, eine Δ-5- Desaturase-, Δ-4-Desaturase-, Δ-12-Desaturase- und/oder Δ-6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.The present invention relates to a process for the production of polyunsaturated fatty acids in an organism by introducing into the organism nucleic acids which are polypeptides having Δ 5 -enongase, Δ 6-desaturase, a Δ5-desaturase Encode Δ-4-desaturase, Δ-12-desaturase and / or Δ-6 elongase activity. These desaturases and elongases are advantageously derived from Ostreococcus. Furthermore, the invention relates to a process for the preparation of oils and / or triacylglycerides having an increased content of long-chain polyunsaturated fatty acids.
Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nuklein- säurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.The invention further relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences of the invention, vectors comprising the nucleic acid sequences and / or the nucleic acid constructs and transgenic organisms contain the aforementioned nucleic acid sequences, nucleic acid constructs and / or vectors.
Ein weiterer Teil der Erfindung betrifft öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.Another part of the invention relates to oils, lipids and / or fatty acids prepared by the process according to the invention and their use. In addition, the invention relates to unsaturated fatty acids and triglycerides having an increased content of unsaturated fatty acids and their use.
Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fett- säuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie ünol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω-3-Fettsäuren und ω-6-Fettsäuren einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Mehrfach ungesättigte langkettige ω-3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5Δ5iβ>11-14-17) oder Docosahexaensäure (= DHA, C22:6Δ47'10 13 16'19) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeu- gung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, AFatty acids and triacylglycerides have a variety of uses in the food, animal nutrition, cosmetics and pharmaceutical industries. Depending on whether they are free saturated and unsaturated fatty acids or triacylglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications. Polyunsaturated fatty acids such as oleic and linolenic acids are essential for mammals as they can not be produced by them. Therefore multiple polyunsaturated ω-3 fatty acids and ω-6 fatty acids an important part of human and animal food are unsaturated long-chain ω-3 fatty acids such as eicosapentaenoic acid. (= EPA, C20: 5 Δ5iβ> 11 - 14 - 17) or docosahexaenoic acid (= DHA, C22: 6 Δ47 '10 13 16 ' 19 ) are important components of the human diet because of their different roles in health, such as the development of the child's brain, the functionality of the eye, the synthesis of hormones and other signaling substances, as well as the prevention of cardiovascular complaints, cancer and diabetes include (Poulos, A
Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren. Aufgrund der Heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA1 c22:6Ml7l1°l13116119) oder Eisosapentaensäure (= EPA, C20:5Δ5'8'11'14 17) Babynahrung zur Erhöhung desLipids 30: 1-14, 1995; Horrocks, LA and Yeo YK Pharmacol Res 40: 211-225, 1999). There is therefore a need for the production of polyunsaturated long-chain fatty acids. Due to the customary composition of human food today, addition of polyunsaturated ω-3 fatty acids, which are preferred in fish oils, is particularly important for food. For example, polyunsaturated fatty acids such as docosahexaenoic acid (= DHA 1 c22: 6 Ml711 ° l13116119 ) or icosapentaenoic acid (= EPA, C20: 5 Δ5 ' 8 ' 11 '14 17 ) are used to increase infant formula
Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben.Nutritional value added. The unsaturated fatty acid DHA is thereby attributed a positive effect on the development and maintenance of brain functions.
Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (fioly unsaturated fatty acids, PUFA, mehrfach ungesättigte Fettsäuren ;_long chain ßoly unsaturated fatty acids, LCPUFA, langkettige mehrfach ungesättigte Fettsäuren).In the following, polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (poly unsaturated fatty acids, PUFA, polyunsaturated fatty acids, long chain poly unsaturated fatty acids, LCPUFA, long-chain polyunsaturated fatty acids).
Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren ge- wonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Tri- glycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4Δ5Λ11 14), Dihomo-γ-linolensäure (C20:3Δ8 11 14) oder Docosapentaensäure (DPA, c22:5A7i1°'13'16'19) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färber- saflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.Mainly the various fatty acids and triglycerides are obtained from microorganisms such as Mortierella or Schizochytrium or from oil-producing plants such as soybean, oilseed rape, algae such as Crypthecodinium or Phaeodactylum and others, where they are usually in the form of their triacylglycerides (= triglycerides = tri-glycerides). glycerols). But they can also be obtained from animals such as fish. The free fatty acids are advantageously prepared by saponification. Very long chain polyunsaturated fatty acids like DHA, EPA, arachidonic acid (= ARA, C20: 4 Δ5Λ11 14 ), dihomo-γ-linolenic acid (C20: 3 Δ8 11 14 ) or docosapentaenoic acid (DPA, c22: 5 A7i1 ° ' 13 ' 16 ' 19 ) are not synthesized in oil crop plants such as oilseed rape, soya, sunflower, dyer's safflower. Common natural sources of these fatty acids are fish such as herring, salmon, sardine, perch, eel, carp, trout, halibut, mackerel, zander or tuna or algae.
Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω-3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω-3- Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten. ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG2-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG3-Serie) aus ω-3- Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.Depending on the application, oils with saturated or unsaturated fatty acids are preferred. For example, lipids with unsaturated fatty acids, especially polyunsaturated fatty acids, are preferred in the human diet. The polyunsaturated ω-3 fatty acids thereby a positive effect on the cholesterol level in the blood and thus the possibility of preventing heart disease is attributed. By adding these ω-3 fatty acids to the diet, the risk of heart disease, stroke or hypertension can be significantly reduced. Also, inflammatory, especially chronic inflammatory processes in the context of immunological diseases such as rheumatoid arthritis can be positively influenced by ω-3 fatty acids. They are therefore added to foods especially dietary foods or found in medicines application. ω-6 fatty acids such as arachidonic acid tend to have a negative effect on these diseases in these rheumatic diseases due to our usual food composition. ω-3- and ω-6 fatty acids are precursors of tissue hormones, the so-called eicosanoids such as the prostaglandins derived from dihomo-γ-linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and leukotrienes derived from arachidonic acid and Derive the eicosapentaenoic acid. Eicosanoids (so-called PG 2 series), which are formed from ω-6 fatty acids usually promote inflammatory reactions, while eicosanoids (so-called PG 3 series) of ω-3 fatty acids have little or no pro-inflammatory effect.
Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15- Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-O 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-O 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71 , 1981 : 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse unter- sucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-ünolensäure und Stearidon- säure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω-3- und ω-6- Fettsäuren erhalten.Due to their positive properties, there have been no shortage of attempts in the past to make genes involved in the synthesis of fatty acids or triglycerides available for the production of oils in various organisms with modified levels of unsaturated fatty acids. Thus, WO 91/13972 and its US equivalent describe a Δ-9-desaturase. In WO 93/11245 a Δ-15-desaturase is claimed in WO 94/11516 a Δ-12-desaturase. Further desaturases are described, for example, in EP-AO 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265 , 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649-659. However, the biochemical characterization of the various desaturases has hitherto been inadequate, since the enzymes are very difficult to isolate and characterize as membrane-bound proteins (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al. , Plant Physiol. Biochem., 26, 1988: 777-792). As a rule, the characterization of membrane-bound desaturases takes place by introduction into a suitable organism, which is subsequently examined for enzyme activity by means of reactant and product analysis. Δ6-desaturases are described in WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO00 / 21557 and WO 99/27111 and also the application for production in transgenic organisms as described in WO98 / 46763 WO98 / 46764, WO9846765. The expression of various desaturases as described in WO99 / 64616 or WO98 / 46776 and formation of polyunsaturated fatty acids is also described and claimed. Concerning. It should be noted that the expression of desaturases and their influence on the formation of polyunsaturated fatty acids has an effect on expression of a single desaturase, as described so far, only low levels of unsaturated fatty acids / lipids such as e.g. γ-ünolenic acid and stearidonic acid were achieved. Furthermore, a mixture of ω-3 and ω-6 fatty acids was obtained as a rule.
Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricomutum, Porphiridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41 : 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060- 1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wann immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen. Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahe- xaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanel- Ia sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731 , 1997). Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31 :255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über Δ6- Desaturase, Δ6-Elongase, Δ5-Desaturase, Δ5-Elongase, Δ4-Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der Δ4-Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C24, eine weitere Δ6-Desaturierung und abschliessend eine ß-Oxidation auf die C22- Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind. Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω-6- oder ω-3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).Particularly suitable microorganisms for the production of PUFAs are microorganisms such as microalgae such as Phaeodactylum tricomutum, Porphiridium species, Thraustochytrien species, Schizochytria species or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor and / or mosses such as Physcomitrella, Ceratodon and Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; Akimoto, M. et al Appl. Biochemistry and Biotechnology 73: 269-278). Through strain selection, a number of mutant strains of the corresponding microorganisms have been developed which produce a number of desirable compounds, including PUFAs. However, mutation and selection of strains with improved production of a particular molecule, such as polyunsaturated fatty acids, is a time-consuming and difficult procedure. Therefore, whenever possible, genetic engineering techniques are preferred as described above. With the aid of the aforementioned microorganisms, however, only limited amounts of the desired polyunsaturated fatty acids such as DPA, EPA or ARA can be produced. These are usually obtained depending on the microorganism used as fatty acid mixtures of, for example, EPA, DPA and ARA. For the synthesis of arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) various synthetic routes are discussed (Figure 1). Thus, the production of EPA or DHA in marine bacteria such as Vibrio sp. or Shewanel-Ia sp. according to the polyketide pathway (Yu, R. et al., Lipids 35: 1061-1064, 2000; Takeyama, H. et al., Microbiology 143: 2725-2731, 1997). An alternative strategy involves the changing activity of desaturases and elongases (Zank, TK et al., Plant Journal 31: 255-268, 2002, Sakuradani, E. et al., Gene 238: 445-453, 1999). A modification of the described pathway via Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase, Δ4-desaturase is the speaker-synthetic pathway (Sprecher 2000, Biochim Biophys Acta 1486: 219-231) in mammals. Chain length - instead of the Δ4-desaturation, a further elongation step at 24 C, a further Δ6-desaturation and finally beta-oxidation to the C 22 is carried out here. For the production in plants and microorganisms, however, the so-called spokesman synthesis path (see FIG. 1) is not suitable since the regulatory mechanisms are not known. The polyunsaturated fatty acids can be classified according to their desaturation pattern into two large classes, ω-6 or ω-3 fatty acids, which have metabolically and functionally different activities (Figure 1).
Als Ausgangsprodukt für den ω-6-Stoffwechselweg fungiert die Fettsäure Linolsäure (18:2Δ9 12), während der ω-3-Weg über Linolensäure (18:3Δ9'12'15) abläuft. Linolensäure wird dabei durch Aktivität einer ω-3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117 ; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).The starting material for the ω-6 pathway is the fatty acid linoleic acid (18: 2 Δ9 12 ), while the ω-3 pathway is via linolenic acid (18: 3 Δ9 ' 12 ' 15 ). Linolenic acid is formed by the activity of an ω-3-desaturase (Tocher et al., 1998, Prog. Lipid Res., 37, 73-117, Domergue et al., 2002, Eur. J. Biochem., 269, 4105-4113).
Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desatura- seaktivität (Δ-12- und ω-3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, 20:4Δ5 8 11'14), eine ω-6-Fettsäure und die beiden ω-3-Fettsäuren Eicosapentaen- (= EPA, 20:5Λ5'8 11'14'17) und Docosahe- xaensäure (DHA, 22:6MJ'10-13'17'19) synthetisiert. Die Applikation von ω-3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001 , World Rev. Nutr. Diet. 88, 100-108),Mammals, and therefore also humans, have no corresponding desaturase activity (Δ-12 and ω-3-desaturase) and must ingest these fatty acids (essential fatty acids) through the diet. From the sequence of desaturase and elongase reactions, the physiologically important polyunsaturated fatty acids arachidonic acid (= ARA, 20: 4 Δ5 8 11 '14 ), an ω-6 fatty acid and the two ω-3 fatty acids eicosapentaen then become from these precursors - (= EPA, 20: 5 Λ5 ' 8 11 ' 14 '17 ) and docosahexanoic acid (DHA, 22: 6 MJ ' 10 - 13 ' 17 ' 19 ). The application of ω-3 fatty acids shows the therapeutic effect as described above in the treatment of cardiovascular diseases (Shimikawa 2001, World Rev. Nutr., Diet., 88, 100-108),
Entzündungen (Calder 2002, Proc. Nutr. Soc. 61 , 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).Inflammations (Calder 2002, Proc Nutr Soc 61, 345-358) and Arthridis (Cleland and James 2000, J. Rheumatol 27, 2305-2307).
Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4 C-Atome ist für die Produktion von C20- bzw. C22-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Miliar and Kunst, 1997 Plant Journal 12:121-131).The elongation of fatty acids by elongases of 2 and 4 C atoms, respectively, is of crucial importance for the production of C 20 and C 22 PUFAs, respectively. This process runs over 4 stages. The first step is the condensation of malonyl-CoA the fatty acid-acyl-CoA by ketoacyl-CoA synthase (KCS, hereinafter referred to as elongase). This is followed by a reduction step (ketoacyl-CoA reductase, KCR), a dehydration step (dehydratase) and a final reduction step (enoyl-CoA reductase). It has been postulated that the activity of elongase affects the specificity and speed of the entire process (Miliar and Kunst, 1997 Plant Journal 12: 121-131).
In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase Gene zu erhalten. Miliar and Kunst, 1997 (Plant Journal 12:121-131) und Miliar et al. 1999, (Plant Cell 11 :825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfachungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C28-C32). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO0159128, WO0012720, WO02077213 und WO0208401. Die Synthese von mehrfachungesättigter C24 Fettsäuren ist beispielsweise in Tvrdik et al 2000, JCB 149:707-717 oder WO0244320 beschrieben.In the past, numerous attempts have been made to obtain elongase genes. Miliar and Art, 1997 (Plant Journal 12: 121-131) and Miliar et al. 1999 (Plant Cell 11: 825-838) describe the characterization of plant elongases for the synthesis of mono-unsaturated long chain fatty acids (C22: 1) or for the synthesis of very long-chain fatty acids for the formation of waxes in plants (C 28 -C 32). Descriptions of the synthesis of arachidonic acid and EPA can be found, for example, in WO0159128, WO0012720, WO02077213 and WO0208401. The synthesis of polyunsaturated C24 fatty acids is described, for example, in Tvrdik et al 2000, JCB 149: 707-717 or WO0244320.
Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C20- bzw. C24-Fettsäuren bereitstellen. Eine Δ- 5-Elongase-Aktivität wurde bisher noch nicht beschrieben. Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Vege- tales. Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). Es wäre jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnen- blume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu müssen vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene, die bei- spielsweise für Δ-6-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen oder Δ-4- Desaturasen codieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ-6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ-6-Elongase-Gene aus P. patens und dem Nemato- den C. elegans isoliert.To produce DHA (C22: 6n-3) in organisms that do not naturally produce this fatty acid, no specific elongase has yet been described. To date, only elongases have been described which provide C 20 or C 24 fatty acids. Δ5-elongase activity has not been described previously. Higher plants contain polyunsaturated fatty acids such as linoleic acid (C18: 2) and linolenic acid (C18: 3). ARA, EPA and DHA are absent or only found in the seed oil of higher plants (E. Ucciani: Nouveau Dictionnaire des Huiles Vegeches, Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). However, it would be advantageous to produce LCPUFAs in higher plants, preferably in oilseeds such as oilseed rape, linseed, sunflower and soybean, since in this way large quantities of high-quality LCPUFAs can be obtained inexpensively for the food industry, animal nutrition and for pharmaceutical purposes. For this purpose, gene coding for enzymes of the biosynthesis of LCPUFAs in oilseeds must be advantageously introduced and expressed via genetic engineering methods. These are genes which encode, for example, Δ6-desaturases, Δ6-elongases, Δ5-desaturases or Δ4-desaturases. These genes can be advantageously isolated from microorganisms and lower plants that produce LCPUFAs and incorporate them into the membranes or triacylglycerides. For example, Δ6-desaturase genes from the moss Physcomitrella patens and Δ6 elongase genes from P. patens and the nematode C. elegans have been isolated.
Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen. Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.First transgenic plants which contain and express genes encoding enzymes of LCPUFA biosynthesis and produce LCPUFAs have been described for the first time in, for example, DE 102 19 203 (Process for the Production of Polyunsaturated Fatty Acids in Plants). However, these plants produce LCPUFAs in quantities that need to be further optimized for processing the oils contained in the plants. Therefore, in order to facilitate fortification of food and feed with these polyunsaturated fatty acids, there is a great need for a simple, inexpensive process for producing these polyunsaturated fatty acids, especially in eukaryotic systems.
Es bestand daher die Aufgabe weitere Gene bzw. Enzyme, die für die Synthese von LCPUFAs geeignet sind, speziell Gene, die eine Δ-5-Desaturase-, Δ-4-Desaturase-, Δ- 12-Desaturase- oder Δ-6-Desaturaseaktivität aufweisen, für die Herstellung von mehrfach ungesättigten Fettsäuren zur Verfügung zu stellen. Eine weitere Aufgabe dieser Erfindung war die Bereitstellung von Genen bzw. Enzymen, die eine Verschiebung von den ω-6-Fettsäuren zu den ω-3-Fettsäuren hin ermöglichen. Weiterhin bestand die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze oder einem Mikroorganismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel IIt was therefore the task of further genes or enzymes which are suitable for the synthesis of LCPUFAs, in particular genes which have a Δ-5-desaturase, Δ-4-desaturase, Δ-12-desaturase or Δ-6. Desaturase activity for the production of polyunsaturated fatty acids. Another object of this invention has been to provide genes or enzymes that allow for a shift from the ω-6 fatty acids to the ω-3 fatty acids. Another object was to develop a process for producing polyunsaturated fatty acids in an organism, preferably in a eukaryotic organism, preferably in a plant or a microorganism. This object has been achieved by the process according to the invention for the preparation of compounds of the general formula I
in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-6-Desaturase-Aktivität codiert, und b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-6-Elongase-Aktivität codiert, und c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:in transgenic organisms with a content of at least 1 wt .-% of these compounds based on the total lipid content of the transgenic organism, characterized in that it comprises the following steps: a) introducing at least one nucleic acid sequence into the organism, which for a Δ-6-desaturase And b) introduction of at least one nucleic acid sequence into the organism which codes for a Δ6-elongase activity, and c) introduction of at least one nucleic acid sequence into the organism which codes for a Δ5-desaturase activity, and d) introducing into the organism at least one nucleic acid sequence encoding Δ5-elongase activity, and e) introducing into the organism at least one nucleic acid sequence encoding a Δ4-desaturase activity, and wherein the variables and substituents in the formula I have the following meaning:
R 11 _ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso- Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel IlR 1 1 = = hydroxyl, coenzyme A (thioester), lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso Phosphatidylinositol, Sphingobase, or a radical of the general formula II
R2 = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso- Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C2-C24- Alkylcarbonyl-,R 2 = hydrogen, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lysophosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol or saturated or unsaturated C 2 -C 24 -alkylcarbonyl-,
R 3J _ = Wasserstoff-, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, oder R2 oder R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia:R 3 J _ = hydrogen, saturated or unsaturated C 2 -C 24 -alkylcarbonyl-, or R 2 or R 3 independently of one another a radical of general formula Ia:
n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst.n = 2, 3, 4, 5, 6, 7 or 9, m = 2, 3, 4, 5 or 6 and p = 0 or 3, dissolved.
R1 bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso- Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel IlR 1 in general formula I denotes hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol, sphingobase, or a radical of the general formula II
Die oben genannten Reste von R1 sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden. R2 bedeutet in der allgemeinen Formel Il Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso- Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-,The abovementioned radicals of R 1 are always bonded in the form of their thioesters to the compounds of general formula I. R 2 in the general formula II denotes hydrogen, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol or saturated or unsaturated C 2 -C 24 - alkylcarbonyl,
Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24- Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentyl- carboπyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta- decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta- decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-., die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte Cio-C22-Alkylcarbonylreste wie C10-Alkylcarbonyl-, C^-Alkylcarbonyl-, C12-Alkylcarbonyl-, Ci3-Alkylcarbonyl-, C14-Alkylcarbonyl-, C16-Alkylcarbonyl-, C18- Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C16-C22-Alkylcarbonylreste wie Ci6-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20- Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoff- atomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.As alkyl radicals are substituted or unsubstituted, saturated or unsaturated C 2 -C 24 -alkylcarbonyl chains such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentyl carboπyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n- Pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta-decylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl- containing one or more double bonds. Saturated or unsaturated C 10 -C 22 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta decylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl. containing one or more double bonds are preferred. Particular preference is given to saturated and / or unsaturated C 10 -C 22 -alkylcarbonyl radicals, such as C 10 -alkylcarbonyl, C 1-4 -alkylcarbonyl, C 12 -alkylcarbonyl, C 1-3 -alkylcarbonyl, C 14 -alkylcarbonyl, C 16 -alkylcarbonyl, , C 18 - alkylcarbonyl, C 20 alkylcarbonyl or C 22 alkylcarbonyl radicals which contain one or more double bonds. Saturated or unsaturated C 16 -C 22 -alkylcarbonyl radicals such as C 6 alkylcarbonyl, C 18 alkylcarbonyl, C 20 are especially preferred - alkylcarbonyl or C 22 -alkylcarbonyl radicals which contain one or more double bonds. These advantageous radicals may contain two, three, four, five or six double bonds. The particularly advantageous radicals having 20 or 22 carbon atoms in the fatty acid chain contain up to six double bonds, advantageously three, four, five or six double bonds, more preferably five or six double bonds. All these radicals are derived from the corresponding fatty acids.
R3 bedeutet in der allgemeinen Formel Il Wasserstoff-, gesättigtes oder ungesättigtes C2-C24-Al kylcarbonyl. Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24- Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentyl- carbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta- decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte Ci0-C22-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta- decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte Cio-C22-Alkylcarbonylreste wie C10-Alkylcarbonyl-, C^-Alkylcarbonyl-, C12-Alkylcarbonyl-, C13-Alkylcarbonyl-, C14-Alkylcarbonyl-, C16-Alkylcarbonyl-, C18- Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C16-C22-Alkylcarbonylreste wie C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20- Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäure kette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppel- bindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.R 3 in the general formula II is hydrogen, saturated or unsaturated C 2 -C 24 -alkylcarbonyl. Alkyl radicals which may be substituted or unsubstituted, saturated or unsaturated C 2 -C 24 -alkylcarbonyl chains, such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta-decylcarbonyl , n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl called, which contain one or more double bonds. Saturated or unsaturated C 1 -C 22 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-hepta decylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl containing one or more double bonds are preferred. Particular preference is given to saturated and / or unsaturated C 10 -C 22 -alkylcarbonyl radicals, such as C 10 -alkylcarbonyl, C 1-4 -alkylcarbonyl, C 12 -alkylcarbonyl, C 13 -alkylcarbonyl, C 14 -alkylcarbonyl, C 16 -alkylcarbonyl, , C 18 - alkylcarbonyl, C 20 alkylcarbonyl or C 22 alkylcarbonyl radicals which contain one or more double bonds. Very particular preference is given to saturated or unsaturated C 16 -C 22 -alkylcarbonyl radicals, such as C 16 -alkylcarbonyl, C 18 -alkylcarbonyl, C 20 -alkylcarbonyl or C 22 -alkylcarbonyl radicals, having one or more double bonds contain. These advantageous radicals may contain two, three, four, five or six double bonds. The particularly advantageous radicals having 20 or 22 carbon atoms in the fatty acid chain contain up to six double bonds, advantageously three, four, five or six double bonds, more preferably five or six double bonds. All these radicals are derived from the corresponding fatty acids.
Die oben genannten Reste von R1, R2 and R3 können mit Hydroxyl- und/oder Epoxy- gruppen substituierte sein und/oder können Dreifachbindungen enthalten.The abovementioned radicals of R 1 , R 2 and R 3 may be substituted by hydroxyl and / or epoxy groups and / or may contain triple bonds.
Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppel- bindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C- Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1 ; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen. Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6- Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-4- Desaturaseaktivität codieren.The polyunsaturated fatty acids prepared in the process according to the invention advantageously contain at least two, preferably three, four, five or six double bonds. Particularly advantageously, the fatty acids contain four five or six double bonds. Fatty acids produced in the process advantageously have 18, 20 or 22 C atoms in the fatty acid chain, preferably the fatty acids contain 20 or 22 carbon atoms in the fatty acid chain. Advantageously, saturated fatty acids are little or not reacted with the nucleic acids used in the process. Little is understood to mean that compared to polyunsaturated fatty acids, the saturated fatty acids have less than 5% of the activity, advantageously less than 3%, more preferably less than 2%, most preferably less than 1; 0.5; 0.25 or 0.125% are implemented. These produced fatty acids can be produced as the only product in the process or present in a fatty acid mixture. The nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which are suitable for polypeptides having Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase and / or Δ- 4-encoding desaturase activity.
Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 oder SEQ ID NO: 13 dargestellten Sequenz, oder b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 oder SEQ ID NO: 14 dargestellten Aminosäuresequenzen ableiten lassen, oder c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7,Nucleic acid sequences which code for polypeptides having Δ-6-desaturase, Δ-6-elongase, Δ-5-desaturase, Δ-5-elongase or Δ-4-desaturase activity, which are selected from among the following, are advantageously used in the process according to the invention A group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO 13 or b) nucleic acid sequences which, as a result of the degenerate genetic code, have the sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 , SEQ ID NO: 12 or SEQ ID NO: 14 can be deduced amino acid sequences, or c) derivatives of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7,
SEQ ID NO: 9, SEQ ID NO: 11 oder SEQ ID NO: 13 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID N0:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 oder SEQ ID NO: 14 codieren und eine Δ-6-Desaturase-, Δ-6-Elongase- , Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität aufweisen.SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 shown for polypeptides having at least 40% identity at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID N0: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or SEQ ID NO: 14 and have a Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ-4-desaturase activity.
Vorteilhaft bedeuten die Substituenten R2 oder R3 in den allgemeinen Formeln I und Il unabhängig voneinander gesättigtes oder ungesättigtes C18-C22-Alkylcarboπyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes Ci8-, C20- oder C22-Alkylcarbonyl- mit mindestens zwei Doppelbindungen.Advantageously, the substituents R 2 or R 3 in the general formulas I and II independently of one another are saturated or unsaturated C 18 -C 22 -alkylcarboπyls, particularly advantageously they independently of one another denote unsaturated C 8 -, C 20 - or C 22 -alkylcarbonyl with at least two double bonds.
In einer weiteren bevorzugten Ausführungsform ist das Verfahrens dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit Δ-12-Desaturaseaktivität codiert, ausgewählt aus der Gruppe bestehend aus: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 15 dargestellten Sequenz, oder b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 16 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 15 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mit SEQ ID NO: 16 codieren und eine Δ-12-Desaturaseaktivität aufweisen.In a further preferred embodiment, the method is characterized in that a nucleic acid sequence is additionally introduced into the organism which codes for polypeptides having Δ12-desaturase activity, selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, or b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 16, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which polypeptides have at least 50 % Identity at the amino acid level with SEQ ID NO: 16 and have Δ-12 desaturase activity.
Diese vorgenannten Δ-12-Desaturasesequenzen können allein oder in Kombination mit den ω3-Desaturasesequenzen mit den im Verfahren verwendeten Nukleinsäuresequenzen, die für Δ-6-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen codieren verwendet werden.These aforementioned Δ-12-desaturase sequences can be used alone or in combination with the ω3-desaturase sequences with the nucleic acid sequences used in the method which are useful for Δ-6-desaturases, Δ-6-elongases, Δ-5-desaturases, Δ-5-elongases and or Δ4-desaturases are used.
Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.Table 1 represents the nucleic acid sequences, the organism of origin and the sequence ID number.
Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C18-, C2o- und/oder C22-Fettsäuren. The polyunsaturated fatty acids produced in the process are advantageously bound in membrane lipids and / or triacylglycerides, but may also be present as free fatty acids or bound in the form of other fatty acid esters in the organisms. They may be present as "pure products" or advantageously in the form of mixtures of different fatty acids or mixtures of different glycerides. The different fatty acids bound in the triacylglycerides can thereby be derived from short-chain fatty acids having 4 to 6 C atoms, medium-chain fatty acids having 8 to 12 C atoms or long-chain fatty acids having 14 to 24 C atoms, preferably the long-chain fatty acids are particularly preferred the long-chain fatty acids LCPUFAs of C 18 , C 2 o and / or C 22 fatty acids.
Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C18-, C2o- und/oder C22-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt und führen vorteilhaft zur Synthese von Linolsäure (=LA, C18:2Δ9 12), γ-Linolensäure (= GLA, C18:3Δ69 12), Stearidonsäure (= SDA, C18:4Δ6|9 12 15)' Dihomo-γ-Linolensäure (= DGLA, 20:3Δ8|11 M), ω-3-Eicosatetraensäure (= ETA, C20:4ΔW 1 14), Arachidonsäure (ARA, C20:4Δ5 8 11'14), Eicosapentaensäure (EPA, C20:5Δ58111'14 17), ω-6-Docosapentaensäure (C22:5Δ4'7'10'13'16), ω-6-Docosatetraensäure (C22:4Δ'7'10'13 16), ω-3-Docosapentaensäure (= DPA, C22:5Δ7'10'13'16'19), Docosahexaensäure (= DHA, C22:6ΔV'10'13'16 19) oder deren Mischungen, bevorzugt ARA, EPA und/oder DHA. Ganz besonders bevorzugt werden, ω-3-Fettsäuren wie EPA und/oder DHA hergestellt.In the inventive process fatty acid ester with polyunsaturated C 18 are advantageously -, C 2 O and / or C 22 -fatty acid molecules having at least two double bonds in the fatty acid ester, advantageously at least three, four, five or six double bonds in the fatty acid ester, particularly advantageously by at least five or six double bonds in the fatty acid ester and lead advantageously to the synthesis of linoleic acid (= LA, C18: 2 Δ9 12 ), γ-linolenic acid (= GLA, C18: 3 Δ69 12 ), stearidonic acid (= SDA, C18: 4 Δ6 | 9 12 15) 'Dihomo-γ-linolenic acid (= DGLA, 20: 3 Δ8 | 11 M ), ω-3-eicosatetraenoic acid (= ETA, C20: 4 ΔW114 ), arachidonic acid (ARA, C20: 4 Δ5 8 11 ' 14 ), Eicosapentaenoic acid (EPA, C20: 5 Δ58111 '14 17 ), ω-6-docosapentaenoic acid (C22: 5 Δ4 ' 7 ' 10 ' 13 '16 ), ω-6-docosatetraenoic acid (C22: 4 Δ ' 7 ' 10 ' 13 16 ), ω-3-docosapentaenoic acid (= DPA, C22: 5 Δ7 ' 10 ' 13 ' 16 ' 19 ), docosahexaenoic acid (= DHA, C 22: 6 ΔV ' 10 ' 13 '16 19 ) or the mixtures, preferably ARA, EPA and / or DHA. Very particular preference is given to producing ω-3 fatty acids such as EPA and / or DHA.
Die Fettsäureester mit mehrfach ungesättigten C18-, C20- und/oder C22-Fettsäure- molekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingo- lipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidyl- serin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Mono- acylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt. Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fett- säuren in den transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Dabei werden vorteilhaft C18- und/oder C20-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, besonders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie DPA oder DHA, um nur zwei beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweiseThe fatty acid esters with polyunsaturated C 18 , C 20 and / or C 22 fatty acid molecules can be prepared from the organisms used for the preparation of the fatty acid esters in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides , Lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the acetyl-coenzymeA esters which contain at least two polyunsaturated fatty acids, preferably, they are isolated in the form of their diacylglycerides, triacylglycerides and / or in the form of the phosphatidylcholine, more preferably in the form of the triacylglycerides. In addition to these esters, the polyunsaturated fatty acids are also included as free fatty acids or bound in other compounds in the organisms beneficial to the plants. In general, the various compounds mentioned above (fatty acid esters and free fatty acids) are present in the organisms in an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5 wt .-% of free fatty acids, 2 to 8 wt .-% phospholipids ago, wherein the sum of the various compounds to 100 wt .-% complements. In the process according to the invention, the LCPUFAs produced are present in a content of at least 3% by weight, advantageously of at least 5% by weight, preferably of at least 8% by weight, more preferably of at least 10% by weight, very particularly preferably at least 15 wt .-% based on the total fatty acids in the transgenic organisms advantageously produced in a transgenic plant. Advantageously, C 18 and / or C 20 fatty acids present in the host organisms become at least 10%, advantageously at least 20%, particularly advantageously at least 30%, very particularly advantageously at least 40% in the corresponding products such as DPA or DHA, to name just two. Advantageously, the fatty acids are prepared in bound form. With the aid of the nucleic acids used in the method according to the invention, these unsaturated fatty acids can be brought to the sn1, sn2 and / or sn3 position of the advantageously prepared triglycerides. Since in the process of the invention from the starting compounds linoleic acid (C18: 2) or linolenic acid (C18: 3) are passed through several reaction steps, the end products of the process such as
Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endproduktes betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1 :1 :2 (EPA:ARA:DHA), vorteilhaft von mindestens 1 :1 :3, bevorzugt von 1 :1 :4, besonders bevorzugt von 1 :1 :5 hergestellt.Arachidonic acid (ARA), eicosapentaenoic acid (EPA), ω-6-docosapentaenoic acid or DHA not as absolute pure products, there are always small traces of precursors in the final product included. If both linoleic acid and linolenic acid are present in the starting organism or in the starting plant, for example, the end products such as ARA, EPA or DHA are present as mixtures. The precursors should advantageously not more than 20 wt .-%, preferably not more than 15 wt .-%, more preferably not more than 10 wt .-%, most preferably not more than 5 wt .-% based on the amount of the respective Final product amount. Advantageously, only ARA, EPA or only DHA are bound in the process according to the invention or produced as free acids in a transgenic plant as end products. If the compounds ARA, EPA and DHA are prepared simultaneously, they are advantageously used in a ratio of at least 1: 1: 2 (EPA: ARA: DHA), preferably of at least 1: 1: 3, preferably of 1: 1: 4 preferably prepared from 1: 1: 5.
Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 - 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1 ; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13- Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten- dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäu- re (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6- Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9- Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11- diynoπsäure, Petroselensäure (cis-θ-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (δtiOt^c-Octadecatriensäure), Catalpinsäure (9t11t13c- Octadecatriensäure), Eleosterinsäure (θci itiSt-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parina- rinsäure (θcHtiStiδc-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octa- decatriensäure), Labaliensäure (5,6-Octadecadienallensäure), Ricinolsäure (12- Hydroxyölsäure) und/oder Coriolinsäure (IS-Hydroxy-θci it-Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5ΔW2'15'21) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6Δ3'8'12'15 18 21). Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beispielsweise einer Hefe, einer Alge, einem Pilz oder einer Pflanze wie Arabidopsis oder Lein beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.Fatty acid esters or fatty acid mixtures which have been prepared by the process according to the invention advantageously contain 6 to 15% palmitic acid, 1 to 6% stearic acid; 7 - 85% oleic acid; 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids in each case based on 100% and on the total fatty acid content of the organisms. As advantageous polyunsaturated fatty acid in the fatty acid esters or fatty acid mixtures are preferably at least 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 or 1% based on the total fatty acid content of arachidonic acid. Furthermore, the fatty acid esters or fatty acid mixtures prepared by the process according to the invention advantageously contain fatty acids selected from the group of the fatty acids erucic acid (13-docosaic acid), sterculic acid (9,10-methylene octadec-9-enoic acid), malvalic acid (8,9 Methylene heptadec-8-enoic acid), chaulmo-gruoic acid (cyclopentenodecanoic acid), furan fatty acid (9,12-epoxy-octadeca-9,11-dienoic acid), vernon acid (9,10-epoxyoctadec-12-enoic acid), Taric acid (6-octadecynoic acid), 6-nonadecynoic acid, santalbinic acid (t11-octadecen-9-ynoic acid), 6,9- Octadecenynoic acid, pyrulic acid (t10-heptadecen-8-ynonic acid), crepenynic acid (9-octadecen-12-ynonic acid), 13,14-dihydrooropheic acid, octadecene-13-ene-9,11-diynoic acid, petroselenoic acid (cis-θ-octadecenoic acid) , 9c, 12t-octadecadienoic acid, calendic acid (δtiOt ^ c-octadecatrienoic acid), catalpinic acid (9t11t13c-octadecatrienoic acid), eelosteric acid (θci itiSt octadecatrienoic acid), jacric acid (8c10t12c octadecatrienoic acid), punicic acid (9c11t13c octadecatrienoic acid), parinaric acid (θcHtiStiδc Octadecatetraenoic acid), pinolenic acid (all-cis-5,9,12-octadecatrienoic acid), labialic acid (5,6-octadecadienelene acid), ricinoleic acid (12-hydroxyoleic acid) and / or coriolinic acid (IS-hydroxy-θci it-octadecadienoic acid) , The abovementioned fatty acids are generally advantageously present only in traces in the fatty acid esters or fatty acid mixtures prepared by the process according to the invention, that is to say they are less than 30%, preferably less than 25%, 24%, 23%, based on the total fatty acids. , 22% or 21%, more preferably less than 20%, 15%, 10%, 9%, 8%, 7%, 6% or 5%, most preferably less than 4%, 3%, 2% or 1% ago. Advantageously, the fatty acid esters or fatty acid mixtures prepared by the process according to the invention contain less than 0.1% based on the total fatty acids or no butyric acid, no cholesterol, no clupanodonic acid (= docosapentaenoic acid, C22: 5 ΔW2 ' 15 ' 21 ) and no nisic acid (tetracosahexaenoic acid, C23: 6 Δ3 ' 8 ' 12 '15 18 21 ). The nucleic acid sequences according to the invention or the nucleic acid sequences used in the method according to the invention can increase the yield of polyunsaturated fatty acids by at least 50%, advantageously by at least 80%, particularly advantageously by at least 100%, very particularly advantageously by at least 150% compared to the non-transgenic starting organism For example, a yeast, an alga, a fungus, or a plant such as Arabidopsis or flax can be obtained by comparison in GC analysis, see Examples.
Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannterWeise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.Also, chemically pure polyunsaturated fatty acids or fatty acid compositions can be prepared by the methods described above. For this purpose, the fatty acids or fatty acid compositions from the organism such as the microorganisms or plants or the culture medium in which or on which the organisms were grown, or from the organism and the culture medium in a known manner, for example, extraction, distillation, crystallization, chromatography or combinations isolated from these methods. These chemically pure fatty acids or fatty acid compositions are advantageous for applications in the food industry, the cosmetics industry and especially the pharmaceutical industry.
Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage. Als Pflanzen kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheci- aceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassica- ceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphor- biaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Legumino- sae, Linaceae, Prasinophyceae oder Gemüsepflanzen oder Zierpflanzen wie Tagetes in Betracht.In principle, all organisms such as microorganisms, non-human animals or plants come into question as organism for the preparation in the process according to the invention. As plants, in principle, all plants are in question, which are able to synthesize fatty acids as all dicotyledonous or monocotyledonous plants, algae or mosses. Advantageous plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceea, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae , Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminose, Linaceae, Prasinophyceae or vegetables or ornamental plants such as Tagetes.
Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: Adelotheciaceae wie die Gattungen Physcomitrella z.B. die Gattung und Arten Physcomitrella patens, Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacar- dium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Calendula, Cartha- mus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Calendula officinalis [Garten-Ringelblume], Carthamus tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [Salat], Tagetes lucida, Tagetes erecta oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Borago z.B. die Gattung und Art Borago officinalis [Borretsch], Brassicaceae wie die Gattungen Brassica, Camelina, Melanosinapis, Sinapis, Araba- dopsis z.B. die Gattungen und Arten Brassica napus, Brassica rapa ssp. [Raps], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [Senf], Brassica oleracea [Futterrübe] oder Arabi- dopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosaBy way of example, the following plants may be selected from the group Adelotheciaceae, such as the genera Physcomitrella, e.g. the genus and species Physcomitrella patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium e.g. the genus and species Pistacia vera [pistachio], Mangifer indica [Mango] or Anacardium occidentale [cashew], Asteraceae such as the genera Calendula, Carthage, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana e.g. the genus and species Calendula officinalis [garden calendula], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [chicory], Cynara scolymus [Artichoke], Helianthus annus [sunflower], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [lettuce], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [marigold], Apiaceae such as the genus Daucus e.g. the genus and species Daucus carota [carrot], Betulaceae such as the genus Corylus e.g. the genera and species Corylus avellana or Corylus colurna [hazelnut], Boraginaceae such as the genus Borago e.g. the genus and species Borago officinalis [borage], Brassicaceae such as the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabopsopsis e.g. the genera and species Brassica napus, Brassica rapa ssp. [Canola], Sinapis arvensis Brassica juncea, Brassica juncea var. Juncea, Brassica juncea var. Crispifolia, Brassica juncea var. Foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [mustard], Brassica oleracea [fodder beet] or Arabica dopsis thaliana, Bromeliaceae such as the genera Anana, Bromelia (pineapple) eg the genera and species Anana comosus, pineapple pineapple or Bromelia comosa
[Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis sative [Hanf], Convolvulaceae wie die Gattungen Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder[Pineapple], Caricaceae such as the genus Carica such as the genus and Art Carica papaya [Papaya], Cannabaceae such as the genus Cannabis such as the genus and Art Cannabis sative [hemp], Convolvulaceae such as the genera Ipomea, Convolvulus e.g. the genera and species Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba or
Convolvulus panduratus [Süßkartoffel, Batate], Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zuckerrübe], Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Cymbellaceae wie die Gattungen Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria z.B. die Gattung und Art Phaeodactylum tricornutum, Ditrichaceae wie die Gattungen Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia z.B. die Gattungen und Arten Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon puφurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus oder Trichodon cylindricus var. oblongus, Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euphorbiaceae wie die Gattungen Manihot, Janipha, Jatropha, Ricinus z.B. die Gattungen und Arten Manihot utilissima, Janipha manihot,, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanoba- sis, Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophyl- Ia, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Soja- bohne], Funariaceae wie die Gattungen Aphanorrhegma, Entosthodon, Funaria,Convolvulus panduratus [sweet potato], Chenopodiaceae such as the genus Beta such as the genera and species Beta Vulgaris, Beta vulgaris var. Altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. Perennis, Beta vulgaris var. Conditiva or Beta vulgaris var. esculenta [sugar beet], Crypthecodiniaceae such as the genus Crypthecodinium eg the genus and species Cryptecodinium cohnii, Cucurbitaceae such as the genus Cucubita eg the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin], Cymbellaceae such as the genera Amphora , Cymbella, Okedenia, Phaeodactylum, Reimeria eg the genus and species Phaeodactylum tricornutum, Ditrichaceae such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia eg the genera and species Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon puφurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum linear, Ditrichum linear, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. Tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum , Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus or Trichodon cylindricus var. Oblongus, Elaeagnaceae as the genus Elaeagnus eg the genus and Art Olea europaea [Olive], Ericaceae as the genus Kalmia eg the genera and species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [Berglorbeer], Euphorbiaceae such as the genera Manihot, Janipha, Jatropha Ricinus eg the genera and species Manihot utilissima, Janipha manihot ,, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [Manihot] or Ricinus communis [Castor], Fabaceae as the genera Pisum, Albizia , Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soy eg the genera and species Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana , Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophyl Ia, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soya, Glycine gracilis, Glycine hispida, Phaseolus max, Soy hispida or Soy max [Soy bean], Funariaceae such as the genera Aphanorrhegma, Entosthodon, Funaria,
Physcomitrella, Physcomitrium z.B. die Gattungen und Arten Aphanorrhegma serra- tum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathuli- folius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygro- metrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria piano- convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Fυnaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physco- mitrella patens, Physcomitrella readeri, Physcomitrium austräte, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physco- mitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer], Persea ameήcana, Persea gratissi- ma oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum, Adenolinum z.B. die Gattungen und Arten Linum usitatissimum, Linum humile, Linum austήacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypium z.B. die Gattungen und Arten Gossypi- um hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Ölpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver Orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffen- sia z.B. die Gattungen und Arten Piper adυncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofrac- tum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum,Physcomitrella, Physcomitrium eg the genera and species Aphanorrhegma serrateum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolia, Entosthodon tucsoni, Funaria americana Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. Arctica, Funaria hygrometrica var. Calvescens, Funaria hygrometrica var. Convoluta, Funaria hygrometrica var. Muralis , Funaria hygrometrica var. Utahensis, Funaria microstoma, Funaria microstoma var. Obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria piano- convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Fúnaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium spp., Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrum cupuliferum Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. Serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. Serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae such as the genera Pelargonium, Cocos, Oleum eg the genera and species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut], Gramineae such as the genus Saccharum eg the genus and species Saccharum officinarum, Juglandaceae as well the genera of Juglans, Wallia eg the genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [Walnut], Lauraceae Like the genera Persea, Laurus eg the genera and species Laurus nobilis [Laurel], Persea ameήcana, Persea gratissima or Persea persea [Avocado], Leguminosae such as the genus Arachis eg the genus and species Arachis hypogaea [ Peanut], Linaceae as the genera Linum, Adenolinum eg the genera and species Linum usitatissimum, Linum humile, Linum austήacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne , Linum perenne var. Lewisii, Linum pratense or Linum trigynum [flax], Lythrarieae as the genus Punica eg the genus and Art Punica gran atum [pomegranate], Malvaceae such as the genus Gossypium eg the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberi [cotton], Marchantiaceae such as the genus Marchantia eg the genera and species Marchantia berteroana, Marchantia foliacea , Marchantia macropora, Musaceae as the genus Musa eg the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [Banana], Onagraceae such as the genera Camissonia, Oenothera eg the genera and species Oenothera biennis or Camissonia brevipes [evening primrose], Palmae as the genus Elacis eg the genus and species Elaeis guineensis [oil palm], Papaveraceae as the genus Papaver eg the genera and Species Papaver Oriental, Papaver rhoeas, Papaver dubium [poppy], Pedaliaceae as the genus Sesamum eg the genus and species Sesamum indicum [sesame], Piperaceae as the genera Piper, Artanthe, Peperomia, Steffenia eg the genera and species Piper adυncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofracture, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum,
Steffensia elongata. [Cayennepfeffer], Poaceae wie die Gattungen Hordeum, Seeale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgäre, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hordeum irreguläre, Hordeum sativum, Hordeum secalinum [Gerste], Seeale cereale [Roggen], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgäre, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgäre, Holcus halepen- sis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis], Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgäre [Weizen], Porphyri- diaceae wie die Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodel- Ia, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium crυentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergri- folia [Macadamia], Prasinophyceae wie die Gattungen Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus z.B. die Gattungen und ArtenSteffensia elongata. [Cayenne pepper], Poaceae such as the genera Hordeum, Seeale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum eg the genera and species Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregular, Hordeum sativum, Hordeum secalinum [Barley], Sea ale cereale [Rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. Sativa, Avena hybrida [Oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgaris, Andropogon drummondii, Holcus bicolor, Holcus Sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgaris, Holcus halepensis, Sorghum Miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridaceae the genera Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodel- Ia, Rhodosorus, Vanhoeffenia eg the genus and species Porphyridium crutentum, Proteaceae such as the genus Macada mia eg the genus and species Macadamia intergrifolia [Macadamia], Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus eg the genera and species
Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea liberica [Kaffee], Scrophulariaceae wie die Gattung Verbascum z.B. die Gattungen und Arten Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerze], Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [Pfeffer], Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorifii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyήforme, Solanum integrifolium oder Solanum lycopersicum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Thea- ceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee].Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae such as the genus Coffea e.g. the genera and species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee], Scrophulariaceae such as the genus Verbascum e.g. the genera and species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phenicum, Verbascum pulverulentum or Verbascum thapsus [Mullein], Solanaceae such as the genera Capsicum, Nicotiana , Solanum, Lycopersicon eg the genera and species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana slowdorifii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyήforme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae such as the genus Theobroma eg the genus and species Theobroma cacao [cocoa] or Theaceae such as the genus Camellia e.g. the genus and species Camellia sinensis [tea].
Vorteilhafte Mikroorganismen sind beispielweise Pilze ausgewählt aus der Gruppe der Familien Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomyce- taceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae oder Tubercularia- ceae.Advantageous microorganisms are, for example, fungi selected from the group of the families Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycesaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae or Tubercularaceae.
Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Choanephoraceae wie den Gattungen Blakeslea, Choanephora z.B. die Gattungen und Arten Blakeslea trispora, Choanephora cueurbitarum, Choanephora infundibulifera var. cueurbitarum, Mortierellaceae wie der Gattung Mortierella z.B. die Gattungen und Arten Mortierella isabellina, Mortierella polycephala , Mortierella ramanniana , Mortierella vinacea, Mortierella zonata, Pythiaceae wie den Gattungen Phytium, Phytophthora z.B. die Gattungen und Arten Pythium debaryanum, Pythium intermedium, Pythium irreguläre, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinna- momi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae wie den Gattungen Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia z.B. die Gattungen und Arten Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorphe, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorphe, Pichia quercuum, Pichia rhodanen- sis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharo- myces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia lipolytica,Examples include the following microorganisms selected from the group: Choanephoraceae as the genera Blakeslea, Choanephora eg the genera and species Blakeslea trispora, Choanephora cueurbitarum, Choanephora infundibulifera var. Cueurbitarum, Mortierellaceae as the genus Mortierella eg the genera and species Mortierella isabellina, Mortierella polycephala , Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae such as the genera Phytium, Phytophthora eg the genera and species Pythium debaryanum, Pythium intermedium, Pythium irregular, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae such as the genera Hansenula, Pichia, Saccharomyces, Saccharomyces, Yarrowia eg the genera and species Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hans enula polymorph, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans , Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. Minuta, Pichia minuta var. Nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorph, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbe rgensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomyces ludwigii, Yarrowia lipolytica,
Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althomia, Aplanochytrium, Japono- chytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggrega- tum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoe- boideum, Thraustochytrium antacticum, Thraustochytrium arudimentale, Thrausto- chytrium aureum, Thraustochytrium benthicola, Thraustochytrium globosum, Thrausto- chytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraυsto- chytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachyder- mum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum oder Thraustochytrium visurgense. Weitere vorteilhafte Mikroorganismen sind beispielweise Bakterien ausgewählt aus der Gruppe der Familien Bacillaceae, Enterobacteriacae oder Rhizobiaceae.Schizosaccharomyces eg Schizosaccharomyces eg the Schizosaccharomyces japonicus var. Japonicus, Schizosaccharomyces japonicus var. Versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. Malidevorans, Schizosaccharomyces pombe var. Pombe, Thraustochytriaceae such as the Genera Althomia, Aplanochytrium, Japono- chytrium, Schizochytrium, Thraustochytrium eg the species Schizochytrium aggregatum, Schizochytrium limacinum, minutum Schizochytrium mangrovei, Schizochytrium, Schizochytrium octosporum, aggregatum Thraustochytrium, Thraustochytrium amoe- boideum, antacticum Thraustochytrium, Thraustochytrium arudimentale, aureum Thraustochytrium, benthicola Thraustochytrium, globosum Thraustochytrium, Thrausto- chytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum or Thraustochytrium visurgense. Further advantageous microorganisms are, for example, bacteria selected from the group of the families Bacillaceae, Enterobacteriacae or Rhizobiaceae.
Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Bacillaceae wie die Gattung Bacillus z.B die Gattungen und Arten Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefa- ciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lenti- morbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis oder Bacillus thuringiensis; Enterobacteriacae wie die Gattungen Citrobacter, Edwardsieila, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella oder Serratia z.B die Gattungen und Arten Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter geno- mospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsieila ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthe- /77/, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora,Examples include the following microorganisms selected from the group: Bacillaceae such as the genus Bacillus eg the genera and species Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis or Bacillus thuringiensis; Enterobacteriacae such as the genera Citrobacter, Edwardsieila, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella or Serratia eg the genera and species Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomicpecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsieila ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwiniaananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia carcinogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthe- / 77 /, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora,
Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia Salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivo- rans oder Serratia rubidaea; Rhizobiaceae wie die Gattungen Agrobacterium, Car- bophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium z.B. die Gattungen und Arten Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatino- vorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummero- wiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli oder Sinorhizobium xinjiangense.Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae , Escherichia coli, Escherichia coli var. Communior, Escherichia coli mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella spp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. Salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans or Serratia rubidaea; Rhizobiaceae such as the genera Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium eg the genera and species Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatino- vorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum , Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer costiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessse, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhi zobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, rubi Rhizobium, sullae Rhizobium, tianshanense Rhizobium trifolii Rhizobium, tropici Rhizobium, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, fredii Sinorhizobium, Sinorhizobium kostiense, kummerowiae Sinorhizobium, Sinorhizobium medicae , Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli or Sinorhizobium xinjiangense.
Weitere vorteilhafte Mikroorganismen für das erfindungsgemäße Verfahren sind beispielweise Protisten oder Diatomeen ausgewählt aus der Gruppe der Familien Dinophyceae, Turaniellidae oder Oxytrichidae wie die Gattungen und Arten: Crypthe- codinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustula- ta, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum oder Colpidium sp.Further advantageous microorganisms for the method according to the invention are, for example, protists or diatoms selected from the group of the families Dinophyceae, Turaniellidae or Oxytrichidae such as the genera and species: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulara, Stylonychia putrina, Stylonychia notophora , Stylonychia sp., Colpidium campylum or Colpidium sp.
Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizo- saccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Thrausto- chytrium, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avoca- do, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola,Advantageous in the process according to the invention are transgenic organisms such as fungi such as Mortierella or Traustochytrium, yeasts such as Saccharomyces or Schizosaccharomyces, mosses such as Physcomitrella or Ceratodon, nonhuman animals such as Caenorhabditis, algae such as Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus , Crypthecodinium or Phaeodactylum or plants such as dicotyledonous or monocotyledonous plants. Organisms which belong to the oil-producing organisms, ie those used for the production of oils, such as fungi such as Mortierella or Thraustochytrium, algae such as Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, are particularly advantageously used in the process according to the invention. Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum or plants, especially plants prefers oilseed crops containing high levels of lipid compounds such as peanut, rapeseed, canola, sunflower, safflower (Carthamus tinctoria), poppy, mustard, hemp, castor, olive, sesame, calendula , Punica, evening primrose, mullein, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay leaf, pumpkin, flax, soya, pistachios, borage, trees (oil palm, coconut or walnut) or crops such as corn, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or Bush plants (coffee, cocoa, tea), Salix species and perennial grasses and forage crops. Preferred plants according to the invention are oil crop plants, such as peanut, canola, canola,
Sonnenblume, Saflor , Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C 18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sindSunflower, safflower, poppy, mustard, hemp, castor, olive, calendula, punica, evening primrose, pumpkin, flax, soy, borage, trees (oil palm, coconut). Particularly preferred are C 18: 2 and / or C18: 3 fatty acid rich plants such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower. Very particularly preferred are
Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.Plants such as safflower, sunflower, poppy, evening primrose, walnut, flax or hemp.
Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ-5-Desaturase(n), Δ-δ-Desaturase(n), Δ-4- Desaturase(n) und/oder Δ-12-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäureoder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäu- re-Acyl-Transferase(n), Acyl-CoAiLysophospholipid-Acyltransferasen, Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl- Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxy- genasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in Kombination mit der Δ-5-Desaturase(n), Δ-6-Desaturase(n), Δ-4-Desaturase(n) und/oder Δ-12-Desaturase(n) verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ-4-Desatu rasen, Δ-5-Desaturasen, Δ- 6-Desaturasen, Δ-9-Desaturasen, Δ-12-Desaturasen, Δ-6-Elongasen oder Δ-5- Elongasen in Kombination mit den vorgenannten Genen für die Δ-5-Desaturase(n), Δ- δ-Desaturase(n), Δ-4-Desaturase(n) und/oder Δ-12-Desaturase(n) verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können. Die erfindungsgemäßen Δ-5-Elongasen haben gegenüber den humanen Elongasen die vorteilhafte Eigenschaft, dass sie C22-Fettsäuren nicht zu den entsprechenden C24- Fettsäuren elongieren. Besonders vorteilhafte Δ-5-Elongasen setzen bevorzugt nur ungesättigte C2o-Fettsäuren um. Vorteilhaft werden nur C2o-Fettsäuren mit einer Doppelbindung in Δ-5-Position umgesetzt, wobei ω-3-C20 Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ-5-Elongaseaktivität keine oder nur eine relativ geringe Δ-6-Elongaseaktivität aufweisen. Vorteilhaft setzen sie in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, c22:5Δ7|1°i13 16 19), vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat γ-Linolensäure (= GLA, C18:3Δ6'9 12) gegeben, so wird diese vorteilhaft gar nicht elongiert. Ebenfalls wird auch C18:3Δ5t9 12 nicht elongiert. In einer anderen vorteilhaften Ausführungsform werden weniger als 60 Gew.-% des zugesetz- ten GLA zu Dihomo-γ-linolensäure (= C20:3A8'11 14) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungsform der erfindungsgemäßen Δ-5-Elongaseaktivität wird GLA nicht umgesetzt.In principle, all genes of the fatty acid or lipid metabolism may advantageously be used in combination with the inventive Δ-5-desaturase (s), Δ-δ-desaturase (s), Δ-4-desaturase (s) and / or Δ- 12-desaturase (s) [in the meaning of this application, the plural is to include the singular and vice versa] in the process for producing polyunsaturated fatty acids are advantageous genes of fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase (s), acyl ACP [= acyl carrier protein] desaturase (s), acyl-ACP thioesterase (s), fatty acid acyltransferase (s), acyl-CoAlysophospholipid acyltransferases, fatty acid synthase (s), fatty acid hydroxylase ( n), acetyl coenzyme A carboxylase (s), acyl coenzyme A oxidase (s), fatty acid desaturase (s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or Fatty acid elongase (s) in combination with Δ-5-desaturase (s), Δ-6-desaturase (s), Δ-4-desaturase ( n) and / or Δ-12-desaturase (s). Particular preference is given to genes selected from the group of Δ-4-desaturases, Δ-5-desaturases, Δ-6-desaturases, Δ-9-desaturases, Δ-12-desaturases, Δ-6-elongases or Δ-5. Elongases in combination with the abovementioned genes for the Δ-5-desaturase (s), Δ-δ-desaturase (s), Δ-4-desaturase (s) and / or Δ-12-desaturase (s) are used, wherein individual Genes or multiple genes can be used in combination. The Δ-5 elongases according to the invention have the advantageous property that they do not elongate C 22 -fatty acids to the corresponding C 24 -fatty acids compared to the human elongases. Particularly advantageous Δ-5-elongases preferably convert only unsaturated C 2 o-fatty acids. Advantageously, only C 2 o-fatty acids are reacted with a double bond in Δ 5-position, with ω-3-C 20 fatty acids being preferred (EPA). Furthermore, in a preferred embodiment of the invention they have the property that they have no or only a relatively low Δ6-elongase activity in addition to the Δ-5 elongase activity. Advantageously, in a yeast feeding text in which EPA has been added to the yeasts as substrate, at least 15% by weight of the EPA added to docosapentaenoic acid (DPA, c22: 5 Δ7 | 1 ° i13 16 19 ), advantageously at least 20% by weight , Particularly advantageous at least 25 wt .-% to. If γ-linolenic acid (= GLA, C18: 3 Δ6 ' 9 12 ) is added as the substrate, it is advantageously not elongated at all. Likewise, C18: 3 Δ5t9 12 is also not elongated. In another advantageous embodiment, less than 60% by weight of the added th GLA to dihomo-γ-linolenic acid (= C20: 3 A8 '11 14 ), preferably less than 55 wt .-%, preferably less than 50 wt .-%, more preferably less than 45 wt .-%, very particularly advantageously less than 40 wt .-%. In a further very preferred embodiment of the Δ 5-elongase activity according to the invention, GLA is not reacted.
Die erfingungsgemäßen Δ-4-Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen haben gegenüber den bekannten Δ-4-Desaturasen, Δ-5-Desaturasen und Δ-6- Desaturasen den Vorteil, dass sie Fettsäuren gebunden an Phospholipide oder CoA- Fettsäureester, vorteilhaft CoA-Fettsäureester umsetzen können. Vorteilhaft setzen die erfingungsgemäßen Verfahren verwendeten Δ-12-Desaturasen Ölsäure (C18:1Δ9) zu Linolsäure (C18:2Δ9 12) oder C18:2Δ6|9 zu C18:3Δ6 9'12 (= GLA) um. den Vorteilhaft setzen die verwendeten Δ-12-Desaturasen Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoA-Fettsäureester um. Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Desaturasen ihre jeweiligen Substrate in Form der CoA-Fettsäureester um. Dies führt, wenn vorher ein Elongationsschritt stattgefunden hat, vorteilhaft zu einer erhöhten Produktausbeute. Die jeweiligen Desaturierungsprodukte werden dadurch in höheren Mengen synthetisiert, da der Elongationsschritt in der Regel an den CoA-Fettsäureestern erfolgt, während der Desaturierungsschritt überwiegend an den Phospholipiden oder an den Triglyceriden erfolgt. Eine Ausstauschreaktion, die eine weitere möglicherweise limitierende Enzymreaktion erfoderlich machen würde, zwischen den CoA- Fettsäureestern und den Phospholipiden oder Triglyceriden ist somit nicht erforderlich.The Δ-4-desaturases according to the invention, Δ-5-desaturases and Δ-6-desaturases have the advantage over the known Δ-4-desaturases, Δ-5-desaturases and Δ-6-desaturases that they bind to fatty acids or phospholipids CoA fatty acid esters, advantageous to implement CoA fatty acid esters. Advantageously, the processes according to the invention used Δ-12-desaturases oleic acid (C18: 1 Δ9 ) to give linoleic acid (C18: 2 Δ9 12 ) or C18: 2 Δ6 | 9 to C18: 3 Δ6 9 '12 (= GLA). Advantageously, the Δ-12-desaturases used bind fatty acids bound to phospholipids or CoA fatty acid esters, advantageously bound to CoA fatty acid esters. Advantageously, the desaturases used in the process according to the invention convert their respective substrates in the form of the CoA fatty acid esters. This leads, if previously a Elongationsschritt has taken place, advantageously to an increased product yield. The respective desaturation products are thereby synthesized in higher amounts, since the elongation step usually takes place on the CoA fatty acid esters, while the desaturation step takes place predominantly on the phospholipids or on the triglycerides. An exchange reaction, which would make a further possibly limiting enzyme reaction erfoderlich, between the CoA fatty acid esters and the phospholipids or triglycerides is therefore not required.
Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-4- Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase- und/oder Δ-6-Elongase-aktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden mit Δ-4-, Δ-5-, Δ- 6-, Δ-12-Desaturase- oder Δ-5- oder Δ-6-Elongaseaktivität codieren, können unter- schiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2- Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2Δ9 12) vor, so können als Produk- te des Verfahrens nur GLA1 DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesät- tigte Fettsäure nur α-Linolensäure (= ALA, C18:3Λ9'12'15) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme Δ-5-Desaturase, Δ-6- Desaturase, Δ-4-Desaturase, Δ-12-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ-5-Desaturase, die Δ-5-Elongase und die Δ-4-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, EPA und/oder DHA. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.- % bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischungen vorteilhaft EPA oder DHA oder deren Mischungen.By the enzymatic activity of the nucleic acids used in the method according to the invention, for polypeptides with Δ-5-desaturase, Δ-6-desaturase, Δ-4-desaturase, Δ-12-desaturase, Δ-5-elongase and or Δ6-elongase activity, advantageously in combination with nucleic acid sequences which are suitable for polypeptides of the fatty acid or lipid metabolism, such as further polypeptides having Δ-4-, Δ-5, Δ-6, Δ-12-desaturase or Δ-5 or Δ-6 elongase activity, it is possible to prepare a wide variety of polyunsaturated fatty acids in the process according to the invention. Depending on the selection of the organisms used for the process according to the invention, such as the advantageous plant, it is possible to prepare mixtures of the various polyunsaturated fatty acids or individual polyunsaturated fatty acids, such as EPA or ARA, in free or bound form. Depending on which fatty acid composition prevails in the starting plant (C18: 2 or C18: 3 fatty acids), fatty acids derived from C18: 2 fatty acids, such as GLA, DGLA or ARA, or those derived from C18: 3 fatty acids derive, such as SDA, ETA or EPA. If only linoleic acid (= LA, C18: 2 Δ9 12 ) is present as unsaturated fatty acid in the plant used for the process, only GLA 1 DGLA and ARA can be produced as products of the process, which may be present as free fatty acids or bound. Is in the plant used in the process as unsatisfactory For example, as in flax, the only products of the method that can be produced are SDA, ETA, EPA and / or DHA, which are as described above as free fatty acids or fatty acids only α-linolenic acid (= ALA, C18: 3 Λ9 ' 12 ' 15 ) may be present. By modifying the activity of the enzymes involved in the synthesis Δ-5-desaturase, Δ-6-desaturase, Δ-4-desaturase, Δ-12-desaturase, Δ-5 elongase and / or Δ-6 elongase can be targeted in the aforementioned organisms advantageously produce only individual products in the aforementioned plants. Due to the activity of Δ-6-desaturase and Δ-6 elongase, for example, GLA and DGLA or SDA and ETA are formed, depending on the starting plant and unsaturated fatty acid. Preference is given to DGLA or ETA or mixtures thereof. If the Δ-5-desaturase, the Δ-5 elongase and the Δ-4-desaturase are additionally introduced into the organism advantageously into the plant, ARA, EPA and / or DHA are additionally produced. Advantageously, only ARA, EPA or DHA or their mixtures are synthesized, depending on the fatty acid present in the organism or in the plant, which serves as the starting substance for the synthesis. Since these are biosynthetic chains, the respective end products are not present as pure substances in the organisms. There are always small amounts of precursor compounds in the final product. These small amounts are less than 20 wt .-%, advantageously less than 15 wt .-%, more preferably less than 10 wt .-%, most preferably less than 5, 4, 3, 2 or 1 wt .-% based to the end product DGLA, ETA or mixtures thereof or ARA, EPA, DHA or mixtures thereof advantageously EPA or DHA or mixtures thereof.
Neben der Produktion der Ausgangsfettsäuren für die im erfindungsgemäßen Verfahren verwendeten Δ-5-Desaturase, Δ-6-Desaturase, Δ-4-Desaturase, Δ-12-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase direkt im Organismus können die Fettsäuren auch von außen gefüttert werden. Aus kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugte Substrate sind die Linolsäure (C18:2Δ9'12), die y- Linolensäure (C18:3Δ6 9 12), die Eicosadiensäure (C20:2Δ11 14), die Dihomo-γ- linolensäure (C20:3Δ8'11'14), die Arachidonsäure (C20:4Δ5811'14), die Docosatetraensäure (C22.4 Δ7,io,i3,i6) und dje Docosapentaensäure (C22:5Δ4Λ10 ' 13 15).In addition to the production of the starting fatty acids for the Δ-5-desaturase used in the method according to the invention, Δ-6-desaturase, Δ-4-desaturase, Δ-12-desaturase, Δ-5 elongase and / or Δ-6 elongase directly in Organism, the fatty acids can also be fed from the outside. For cost reasons, production in the organism is preferred. Preferred substrates are the linoleic acid (C18: 2 Δ9 '12 ), the γ-linolenic acid (C18: 3 Δ6 9 12 ), the eicosadienoic acid (C20: 2 Δ11 14 ), the dihomo-γ-linolenic acid (C20: 3 Δ8 ' 11 '14), arachidonic acid (C20: 4 Δ5811'. 14) docosatetraenoic acid (C22 4 Δ7, i o, i3, i6) and DJE Docosapen taensäure (C22: 5 Δ4Λ10 '13 15).
Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica z.B. Raps; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art Glycine max, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American OiI Chemical Society, 38, 1961 , 678 - 681) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft. Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. Rubens oder Tetraselmis sp. Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattungen Mantonielle oder Ostreococcus.To increase the yield in the described process for the preparation of oils and / or triglycerides having an advantageously increased content of polyunsaturated fatty acids, it is advantageous to increase the amount of starting material for the fatty acid synthesis, this can be achieved, for example, by introducing a nucleic acid into the organism for a polypeptide encoded with Δ-12-desaturase. This is particularly advantageous in oil-producing organisms such as the family Brassicaceae such as the genus Brassica eg rape; the family of Elaeagnaceae as the genus Elaeagnus eg the genus and species Olea europaea or family Fabaceae as the genus Glycine eg the genus and species Glycine max, which have a high oleic acid content. Since these organisms have only a low content of linoleic acid (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678-681), the use of said Δ-12-desaturases for the preparation of the starting product linoleic acid is advantageous. Nucleic acids used in the method according to the invention are advantageously derived from plants such as algae, for example algae of the family Prasinophyceae as from the genera Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia or Tetraselmis such as the genera and Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. Rubens or Tetraselmis sp. Advantageously, the nucleic acids used are derived from algae of the genera Mantonielle or Ostreococcus.
Weitere vorteilhafte Pflanzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/ Diatomeen wie Thalassiosira, Phaeodactylum oder Thraustochytrium, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen wie den Primulaceae wieFurther advantageous plants are algae such as Isochrysis or Crypthecodinium, algae / diatoms such as Thalassiosira, Phaeodactylum or Thraustochytrium, mosses such as Physcomitrella or Ceratodon or higher plants such as Primulaceae such as
Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyose- roides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder Fischen. Vorteilhaft stammen die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einem Tier aus derAleuritia, Calendula stellata, Osteospermum spinescens or Osteospermum hyose roides, microorganisms such as fungi such as Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor or Mortierella, bacteria such as Shewanella, yeasts or animals such as nematodes such as Caenorhabditis, insects or fish. Advantageously, the isolated nucleic acid sequences according to the invention are derived from an animal from the
Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus. Besonders vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantonielle oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thalassiosira oder Crypthecodinium.Order of the Vertebrates. Preferably, the nucleic acid sequences are of the vertebrate class; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae or Oncorhynchus. The nucleic acids originate particularly advantageously from fungi, animals or from plants such as algae or mosses, preferably from the order of the Salmoniformes such as the family Salmonidae such as the genus Salmo, for example from the genera and species Oncorhynchus mykiss, Trutta trutta or Salmo trutta fario, from algae such as the genera Mantonielle or Ostreococcus or from the diatoms such as the genera Thalassiosira or Crypthecodinium.
Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ-12- Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressions- konstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.Advantageous in the method according to the invention are the abovementioned nucleic acid sequences or their derivative or homologs which code for polypeptides which still possess the enzymatic activity of the proteins encoded by nucleic acid sequences. These sequences are used singly or in combination with the nucleic acid sequences encoding Δ12-desaturase, Δ4-desaturase, Δ5-desaturase, Δ6-desaturase, Δ5-elongase and / or Δ6-elongase cloned into expression constructs and used for introduction and expression in organisms. This expression By their construction, constructs enable a favorable optimum synthesis of the polyunsaturated fatty acids produced in the process according to the invention.
Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren ver- wendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ-12-Desaturase, Δ-4- Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Organismus oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces oder Thraustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch. Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.In a preferred embodiment, the method further comprises the step of obtaining a cell or a whole organism containing the nucleic acid sequences used in the method, wherein the cell and / or the organism with a nucleic acid sequence according to the invention, for the Δ-12-desaturase , Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase, Δ-5 elongase and / or Δ-6 elongase, a gene construct or a vector as described below, alone or in combination with other nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism is transformed. In a further preferred embodiment, this method further comprises the step of recovering the oils, lipids or free fatty acids from the organism or from the culture. The culture may be, for example, a fermentation culture, for example, in the case of culturing microorganisms such as e.g. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces or Thraustochytrium or to act as a greenhouse or field crop of a plant. The cell or organism thus produced is advantageously a cell of an oil-producing organism such as an oil crop such as peanut, canola, canola, flax, hemp, peanut, soybean, safflower, hemp, sunflower or borage. Cultivation is, for example, culturing in the case of plant cells, tissue or organs on or in a nutrient medium or the whole plant on or in a substrate, for example in hydroponics, potting soil or on arable land.
"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder a) die erfindungsgemäße Nukleinsäuresequenz, oder b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder c) (a) und (b) sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gen- technische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine"Transgene" or "recombinant" in the sense of the invention means, for example, a nucleic acid sequence, an expression cassette (= gene construct) or a vector containing the nucleic acid sequence according to the invention or an organism transformed with the nucleic acid sequences, expression cassette or vector according to the invention all such by genetic engineering methods Constructions in which either a) the nucleic acid sequence according to the invention, or b) a genetic control sequence functionally linked to the nucleic acid sequence according to the invention, for example a promoter, or c) (a) and (b) are not in their natural, genetic environment or were modified by genetic engineering methods, the modification being exemplified by
Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleo- tidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenzen mit den entsprechenden Δ-12-Desaturase-, Δ-4- Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase- und/oder Δ-5-Elongasegenen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.Substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. Natural genetic environment means the natural genomic or chromosomal locus in the source organism or presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence preferably at least partially preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, more preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette - for example, the naturally occurring combination of the natural promoter of the nucleic acid sequences of the invention with the corresponding Δ-12-desaturase, Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase and / or Δ -5-elongase genes - becomes a transgenic expression cassette when modified by non-natural, synthetic ("artificial") methods such as mutagenization. Corresponding methods are described, for example, in US Pat. No. 5,565,350 or WO 00/15815.
Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Phytophtora, Moose wie Physcomitrella, Algen wie Mantoniella oder Ostreococcus, Diatomeen wie Thalassiosira oder Crypthecodinium oder Pflanzen wie die Ölfruchtpflanzen.Under the transgenic organism or transgenic plant according to the invention as mentioned above is to be understood that the nucleic acids used in the method are not in their natural place in the genome of an organism, while the nucleic acids can be expressed homologously or heterologously. However, transgene also means, as mentioned, that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or the regulatory sequences of the natural sequences have been changed. Transgenic is preferably understood to mean the expression of the nucleic acids according to the invention at a non-natural site in the genome, that is to say a homologous or preferably heterologous expression of the nucleic acids is present. Preferred transgenic organisms are fungi such as Mortierella or Phytophthora, mosses such as Physcomitrella, algae such as Mantoniella or Ostreococcus, diatoms such as Thalassiosira or Crypthecodinium or plants such as the oil crop plants.
Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thrausto- chytrium, Saprolegnia, Phytophtora oder Pythium, Bakterien wie die Gattung Escheri- chia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien,In principle, all organisms which are capable of synthesizing fatty acids, especially unsaturated fatty acids, or which are suitable for the expression of recombinant genes, are suitable in principle as organisms or host organisms for the nucleic acids, the expression cassette or the vector used in the method according to the invention. Examples include plants such as Arabidopsis, Asteraceae such as calendula or crops such as soybean, peanut, castor, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, dyer safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example, the genus Mortierella, Thrausto- chytrium, saprolegnia, phytophthora or pythium, bacteria such as the genus Escherichia or Shewanella, yeasts such as the genus Saccharomyces, cyanobacteria,
Ciliaten, Algen wie Mantoniella oder Ostreococcus oder Protozoen wie Dinoflagellaten wie Thalassiosira oder Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum, Phytophtora infestans oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, FärberSaflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss,Ciliates, algae such as Mantoniella or Ostreococcus or protozoans such as dinoflagellates such as Thalassiosira or Crypthecodinium called. Preference is given to organisms which are naturally capable of synthesizing oils in large quantities, such as fungi such as Mortierella alpina, Pythium insidiosum, Phytophtora infestans or plants such as soybean, oilseed rape, coconut, oil palm, dyer's safflower, flax, hemp, castor, calendula, peanut,
Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nichthumane Tiere geeignet beispielsweise C. elegans.Cocoa bean or sunflower or yeasts such as Saccharomyces cerevisiae, with particular preference being given to soybean, flax, rapeseed, dyer's safflower, sunflower, calendula, mortierella or Saccharomyces cerevisiae. In principle, as host organisms next Transgenic animals are advantageously also suitable for non-human animals, for example C. elegans, for the abovementioned transgenic organisms.
Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.Useful host cells are also mentioned in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Useful expression strains e.g. those which have lower protease activity are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, KaIIi, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.These include plant cells and certain tissues, organs and parts of plants in all their manifestations, such as anthers, fibers, root hairs, stems, embryos, cilia, kotelydons, petioles, crops, plant tissue, reproductive tissue and cell cultures, that of the actual transgenic plant is derived and / or can be used to produce the transgenic plant.
Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehr- fach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, KaIIi, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispiels- Transgenic plants which contain the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without the synthesized oils, lipids or fatty acids having to be isolated. Plants in the process according to the invention include whole plants and all plant parts, plant organs or plant parts such as leaves, stems, seeds, roots, tubers, anthers, fibers, root hairs, stems, embryos, callosis, kotelydons, petioles, crop material, plant tissue, reproductive tissue, Cell cultures that can be derived from the transgenic plant and / or used to produce the transgenic plant. The seed includes all seed parts such as the seed shells, epidermis and sperm cells, endosperm or embryonic tissue. However, the compounds prepared in the process according to the invention can also be isolated from the organisms advantageously plants in the form of their oils, fat, lipids and / or free fatty acids. Polyunsaturated fatty acids produced by this process can be harvested by harvesting the organisms either from the culture in which they grow or from the field. This can be done by pressing or extraction of the plant parts, preferably the plant seeds. In this case, the oils, fats, lipids and / or free fatty acids by so-called cold beat or cold pressing can be obtained without supplying heat by pressing. In order for the plant parts, especially the seeds, to be easier to digest, they are first crushed, steamed or roasted. The thus pretreated seeds can then be pressed or extracted with solvents such as warm hexane. Subsequently, the solvent is removed again. In the case of microorganisms, these are harvested after harvesting, for example, directly without further working steps, or else extracted after digestion by various methods known to the person skilled in the art. In this way, more than 96% of the compounds prepared in the process can be isolated. Subsequently, the products thus obtained are further processed, that is refined. First of all, for example, the mucilages and turbid matter are removed. So-called degumming can be enzymatic or
weise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einerwise chemically / physically by addition of acid such as phosphoric acid. Subsequently, the free fatty acids are removed by treatment with a base, for example sodium hydroxide solution. The product obtained is thoroughly washed with water to remove the lye remaining in the product and dried. In order to remove the dyes still contained in the product, the products of a
Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.Bleaching with, for example, bleaching earth or activated carbon subjected. Finally, the product is still deodorized, for example, with steam.
Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C18-, C2O- oder C22-Fettsäuremoleküle vorteilhaft C20- oder C22-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C18-, C20- oder C22-Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen. Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.The PUFAs or LCPUFAs C 1 8, C 2 O or C 22 fatty acid molecules produced by this process are preferably C 20 - or C 22 -fatty acid molecules having at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds , These C 18 , C 20 or C 22 fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants. One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been prepared by the method described above, more preferably oil, lipid or fatty acid composition comprising PUFAs derived from transgenic plants.
Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 - 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9, 10-Methylene octadec-9- enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11- dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6- Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepe- nyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13- ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octa- decadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatrien- säure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-These oils, lipids or fatty acids advantageously contain 6 to 15% palmitic acid, 1 to 6% stearic acid as described above; 7 - 85% oleic acid; 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachidic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids in each case based on 100% and on the total fatty acid content of the organisms. As advantageous polyunsaturated fatty acid in the fatty acid esters or fatty acid mixtures are preferably at least 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 or 1% based on the total fatty acid content of arachidonic acid. Furthermore, the fatty acid esters or fatty acid mixtures prepared by the process according to the invention advantageously contain fatty acids selected from the group of the fatty acids erucic acid (13-docosaoic acid), sterculic acid (9,10-methylene octadec-9-enoic acid), malvalic acid (8,9 -Methylene heptadec-8-enoic acid), chaulmoogric acid (cyclopentenodecanoic acid), furan fatty acid (9,12-epoxy-octadeca-9,11-dienoic acid), vernonic acid (9,10-epoxyoctadec-12-enoic acid), tartric acid ( 6- octadecynoic acid), 6-nonadecynoic acid, santalbic acid (t11-octadecen-9-ynoic acid), 6,9-octadecenynoic acid, pyrulic acid (t10-heptadecen-8-ynonic acid), crepenyninic acid (9-octadecen-12-ynonic acid) , 13,14-dihydrooropheic acid, octadecene-13-ene-9,11-diynoic acid, petroselenoic acid (cis-6-octadecenoic acid), 9c, 12t-octadecadienoic acid, calendulic acid (8t10t12c octadecatrienoic acid), catalpinic acid (9t11t13c octadecatrienoic acid), Eleosteric acid (9c11t13t octadecatrienoic acid), Jaca ricinic acid (8c10t12c-octadecatrienoic acid), punicic acid (9c11t13c-octadecatrienoic acid), parinaric acid (9c11t13t15c-octadecatetraenoic acid), pinolenic acid (all-cis-
5,9,12-Octadecatriensäure), Labaliensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienon- säure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaen- säure, C22:5A4t8'12'15'21) sowie keine Nisinsäure (Tetracosahexaensäure, C23'6A3|8 ' 12|i5 li8|2-u5,9,12-octadecatrienoic acid), labialic acid (5,6-octadecadienelene acid), ricinoleic acid (12-hydroxyoleic acid) and / or coriolinic acid (13-hydroxy-9c, 11t-octadecadienoic acid). acid). The abovementioned fatty acids are generally advantageously present only in traces in the fatty acid esters or fatty acid mixtures prepared by the process according to the invention, that is to say they are less than 30%, preferably less than 25%, 24%, 23%, based on the total fatty acids. , 22% or 21%, more preferably less than 20%, 15%, 10%, 9%, 8%, 7%, 6% or 5%, most preferably less than 4%, 3%, 2% or 1% ago. Advantageously, the fatty acid esters or mixtures of fatty acids prepared by the process according to the invention contain less than 0.1% based on the total fatty acids or no butter butyric acid, no cholesterol, no clupanodonic acid (= docosapentaenoic acid, C22: 5 A4t8 ' 12 ' 15 '21 ) and none Nisic acid (tetracosahexaenoic acid, C23 ' 6 A3 | 8 ' 12 | i 5 l | 8 | 2 -u
Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, 7%, 8%, 9% oder 10%, besonders vorteilhaft mindestens 11%, 12%, 13%, 14% oder 15% ARA oder mindes- tens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, oder 7%, besonders vorteilhaft mindestens 8%, 9% oder 10% EPA und/oder DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färber- safflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen.The oils, lipids or fatty acids according to the invention advantageously contain at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, 7%, 8%, 9% or 10%, particularly advantageously at least 11%, 12%, 13%, 14% or 15% ARA or at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, or 7%, especially advantageous at least 8%, 9% or 10% EPA and / or DHA based on the total fatty acid content of the production organism advantageously a plant, particularly advantageous an oil crop such as soybean, rapeseed, coconut, oil palm, safflower, flax, hemp, castor, calendula, peanut , Cocoa bean, sunflower or the above-mentioned other monocotyledonous or dicotyledonous oil crops.
Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide, Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden. Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomo- γ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.Another embodiment of the invention is the use of the oil, lipid, fatty acids and / or fatty acid composition in feed, food, cosmetics or pharmaceuticals. The oils, lipids, fatty acids or fatty acid mixtures according to the invention can be used in the manner known to those skilled in the art for blending with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as fish oils. These oils, lipids, fatty acids or fatty acid mixtures, which consist of vegetable and animal components, can be used for the production of feed, food, cosmetics or pharmaceuticals. The term "oil", "lipid" or "fat" is understood as meaning a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s). It is preferred that the oil, lipid or fat contains a high proportion of polyunsaturated free or advantageously esterified fatty acid (s), in particular linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, α-linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, Docosapentaenoic acid or docosahexaenoic acid has. Preferably, the proportion of unsaturated esterified fatty acids is about 30%, more preferred is a proportion of 50%, even more preferred is a proportion of 60%, 70%, 80% or more. For the determination, for example, the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by transesterification by gas chromatography. The oil, lipid or fat can be various other saturated or unsaturated fatty acids, eg calendulic acid, palmitic, palmitoleic, stearic, oleic acid etc., contain. In particular, depending on the starting organism, the proportion of the various fatty acids in the oil or fat may vary.
Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipi- de, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.The polyunsaturated fatty acids having advantageously at least two double bonds which are produced in the process are, as described above, for example sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkali- behandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H2SO4. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen. Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einemFrom the polyunsaturated fatty acids thus produced in the process according to the invention advantageously having at least five or six double bonds, the polyunsaturated fatty acids containing, for example, via an alkali treatment, for example aqueous KOH or NaOH or acid hydrolysis in the presence of an alcohol such as methanol or ethanol or over a release enzymatic cleavage and isolate via, for example, phase separation and subsequent acidification over, for example, H 2 SO 4 . The release of the fatty acids can also be carried out directly without the workup described above. The nucleic acids used in the process can after introduction into a
Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.Organism advantageously a plant cell or plant are either on a separate plasmid or advantageously integrated into the genome of the host cell. When integrated into the genome, integration may be at random or by such recombination as to replace the native gene with the incorporated copy, thereby modulating the production of the desired compound by the cell, or by using a gene in trans such that Gene having a functional expression unit, which contains at least one expression of a gene ensuring sequence and at least one polyadenylation of a functionally transcribed gene ensuring sequence is operably linked. Advantageously, the nucleic acids are brought into the plants via multi-expression cassettes or constructs for multiparallel expression in the organisms, advantageously for multiparallel seed-specific expression of genes.
Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.Moose and algae are the only known plant systems that produce significant amounts of polyunsaturated fatty acids, such as arachidonic acid (ARA) and / or eicosapentaenoic acid (EPA) and / or docosahexaenoic acid (DHA). Moose contain PUFAs in membrane lipids, while algae, algae-related organisms and some fungi also accumulate significant levels of PUFAs in the triacylglycerol fraction. Therefore, nucleic acid molecules isolated from strains which also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the process of the invention and thus for modification of the lipid and PUFA production system in a host, in particular plants such as oilseed crops, for example oilseed rape. Canola, flax, hemp, soy, sunflower, borage. They are therefore advantageous for use in the process according to the invention.
Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-12-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-6-As substrates of the nucleic acids used in the method according to the invention which are useful for polypeptides having Δ-12-desaturase, Δ-5-desaturase, Δ-4-desaturase, Δ-6
Desaturase-, Δ-5-Elongase- und/oder Δ-6-Elongase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA- Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP- Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoAiLysophospholipid- Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Encode desaturase, Δ-5 elongase and / or Δ-6 elongase activity, and / or the other used nucleic acids such as the nucleic acids selected for polypeptides of fatty acid or lipid metabolism from the group acyl-CoA dehydrogenase (s), acyl-ACP [= acyl carrier protein] desaturase (s), acyl-ACP thioesterase (n ), Fatty acid acyltransferase (s), acyl-CoAlysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl
Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid- Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft Ci6-, C18- oder C2o-Fettsäuren. Bevorzugt werden die im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt.Coenzyme A carboxylase (s), acyl coenzyme A oxidase (s), fatty acid desaturase (s), fatty acid acetylenase (s), lipoxygenase (s), triacylglycerol lipase (s), allene oxide synthase (s) , Hydroperoxide lyase (s) or fatty acid elongase (s) encode advantageously Ci 6 -, C 18 - or C 2 o fatty acids. The fatty acids reacted as substrates in the process are preferably reacted in the form of their acyl-CoA esters and / or their phospholipid esters.
Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C18-Fettsäuren zunächst durch die enzymatische Aktivität einer Desatu- rase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C20-Fettsäuren, und nach zwei Elongationsrunden zu C22-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu Ci8-, C20- und/oder C22-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt zu C20- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt mit fünf oder sechs Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie z.B. eine solche Desaturierung in Δ-5- und Δ-4-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachi- donsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C20-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.To prepare the long-chain PUFAs according to the invention, the polyunsaturated C 18 -fatty acids must first be desaturated by the enzymatic activity of a desaturase and then be extended by at least two carbon atoms via an elongase. After one round of elongation, this enzyme activity leads to C 20 -fatty acids, and after two rounds of elongation to C 22 -fatty acids. The activity of the method of the desaturases and elongases used in the invention preferably leads to C 8 -, C 20 - and / or C 22 fatty acids advantageously having at least two double bonds in the fatty acid molecule, preferably with three, four, five or six double bonds, especially preferably to C 20 - and / or C 22 fatty acids having at least two double bonds in the fatty acid molecule, preferably having three, four, five or six double bonds, most preferably having five or six double bonds in the molecule. After a first desaturation and extension, further desaturation and elongation steps, such as desaturation at Δ-5 and Δ-4 positions, may occur. Particularly preferred products of the process according to the invention are dihomo-γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid and / or docosaheic acid. The C 20 fatty acids having at least two double bonds in the fatty acid can be extended by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Ver- fahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.The preferred biosynthesis site of fatty acids, oils, lipids or fats in the advantageously used plants is, for example, generally the seed or cell layers of the seed, so that a seed-specific expression of the nucleic acids used in the process makes sense. However, it is obvious that the biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but may also be tissue-specific in all other parts of the plant - for example in epidermal cells or in the tubers.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Mantonielia, Ostreococcus, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.Are in the process of the invention as organisms microorganism such as yeasts such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor or Thraustochytrium algae such as Isochrysis, Mantonielia, Ostreococcus, Phaeodactylum or Crypthecodinium used, these organisms are advantageously attracted to fermentation.
Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ-5- Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.By using the nucleic acids according to the invention which code for a Δ-5 elongase, the polyunsaturated fatty acids prepared in the process can be at least 5%, preferably at least 10%, more preferably at least 20%, very particularly preferably at least 50%. be increased compared to the wild type of organisms that do not contain the nucleic acids recombinantly.
Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach unge- sättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.By the method according to the invention, the polyunsaturated fatty acids produced in the organisms used in the process can in principle be increased in two ways. Advantageously, the pool of free polyunsaturated fatty acids and / or the proportion of esterified polyunsaturated fatty acids produced by the process can be increased. Advantageously, the process according to the invention increases the pool of esterified polyunsaturated fatty acids in the transgenic organisms.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 00C und 1000C, bevorzugt zwischen 100C bis 600C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.If microorganisms are used as organisms in the process according to the invention, they are grown or grown, depending on the host organism, in a manner known to the person skilled in the art. Microorganisms are usually in a liquid medium containing a carbon source usually in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and optionally vitamins, at temperatures between 0 0 C and 100 0 C, preferably between 10 0 C to 60 0 C attracted under oxygen fumigation. In this case, the pH of the nutrient fluid can be kept at a fixed value, that is regulated during the cultivation or not. The cultivation can be batchwise, semi-batch wise or continuous. Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously. The polyunsaturated fatty acids prepared can be isolated from the organisms by methods known to those skilled in the art as described above. For example, extraction, distillation, crystallization, optionally salt precipitation and / or chromatography. The organisms can be opened up for this purpose yet advantageous.
Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95° , bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 75°C, ganz besonders bevorzugt zwischen 15°C bis 45°C durchgeführt.The method according to the invention, when the host organisms are microorganisms, is particularly advantageous at a temperature between 0 ° C to 95 °, preferably between 10 ° C to 85 ° C, more preferably between 15 ° C to 75 ° C preferably carried out between 15 ° C to 45 ° C.
Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.The pH is advantageously maintained between pH 4 and 12, preferably between pH 6 and 9, more preferably between pH 7 and 8.
Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrens- technik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.The process according to the invention can be operated batchwise, semi-batchwise or continuously. A summary of known cultivation methods can be found in the textbook by Chmiel (Bioprozesstechnik 1. Introduction to Bioprocessing Methods). technique (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994)).
Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der merican Society für Bacteriology (Washington D. C1 USA, 1981) enthalten.The culture medium to be used must suitably satisfy the requirements of the respective strains. Descriptions of culture media of various microorganisms are included in the Manual of Methods for General Bacteriology of the American Society of Bacteriology (Washington D.C. 1 USA, 1981).
Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.As described above, these media which can be used according to the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and / or trace elements.
Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Examples of very good carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugar can also be added to the media via complex compounds, such as molasses, or other by-products of sugar refining. It may also be advantageous to add mixtures of different carbon sources. Other possible sources of carbon are oils and fats, e.g. Soybean oil, sunflower oil, peanut oil and / or coconut fat, fatty acids such as e.g. Palmitic acid, stearic acid and / or linoleic acid, alcohols and / or polyhydric alcohols such. Glycerol, methanol and / or ethanol and / or organic acids such as e.g. Acetic acid and / or lactic acid.
Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Arnmoniumcarbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds. Exemplary nitrogen sources include ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soybean meal, soy protein, yeast extract, meat extract and others. The nitrogen sources can be used singly or as a mixture.
Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.Inorganic salt compounds which may be included in the media include the chloride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.As the sulfur source for the production of sulfur-containing fine chemicals, in particular methionine, inorganic sulfur-containing compounds such as sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides but also organic sulfur compounds, such as mercaptans and thiols can be used.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikalium- hydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the phosphorus source. Chelating agents can be added to the medium to keep the metal ions in solution. Particularly suitable chelating agents include dihydroxyphenols, such as catechol or protocatechuate, or organic acids, such as citric acid.
Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentati- onsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthogenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.The fermentation media used according to the invention for the cultivation of microorganisms usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthogenate and pyridoxine. Growth factors and salts are often derived from complex media components, such as yeast extract, molasses, corn steep liquor, and the like. In addition, suitable precursors can be added to the culture medium. The exact composition of the media compounds will depend heavily on the particular experiment and will be decided on a case by case basis. Information about the media optimization is available from the textbook "Applied Microbiol Physiology, A Practical Approach" (ed. P. M. Rhodes, P. F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media may also be obtained from commercial suppliers, such as standard 1 (Merck) or BHI (Brain Heart Infusion, DIFCO) and the like.
Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1 ,5 bar und 1210C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medien- komponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.All media components are sterilized either by heat (20 min at 1, 5 bar and 121 0 C) or by sterile filtration. The components can either be sterilized together or, if necessary, sterilized separately. All media components may be present at the beginning of the culture or added randomly or batchwise, as desired.
Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 400C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugs- weise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Anti- schaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrecht- erhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 200C bis 450C und vorzugsweise bei 25°C bis 400C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.The temperature of the culture is usually between 15 ° C and 45 ° C, preferably at 25 ° C to 40 0 C and can be kept constant or changed during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably 7.0. The pH for cultivation can be controlled during cultivation by addition of basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid. To control the foaming anti-foaming agents such. As fatty acid polyglycol, are used. To maintain the stability of plasmids, the medium can be suitably selected substances such. As antibiotics, are added. In order to maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as ambient air, are introduced into the culture. The temperature of the culture is normally from 20 0 C to 45 0 C and preferably at 25 ° C to 40 0 C. The culture is continued until a maximum of the desired product has formed. This goal is usually reached within 10 hours to 160 hours.
Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.The fermentation broths thus obtained, in particular containing polyunsaturated fatty acids, usually have a dry matter content of 7.5 to 25% by weight.
Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.The fermentation broth can then be further processed. Depending on the requirement, the biomass can be wholly or partly by separation methods, such. As centrifugation, filtration, decantation or a combination of these methods removed from the fermentation broth or left completely in it. Advantageously, the biomass is worked up after separation.
Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.The fermentation broth can also without cell separation with known methods such. B. with the aid of a rotary evaporator, thin film evaporator, falling film evaporator, by reverse osmosis, or by nanofiltration, thickened or concentrated. This concentrated fermentation broth may eventually be worked up to recover the fatty acids contained therein.
Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.The fatty acids obtained in the process are also suitable as starting material for the chemical synthesis of further products of value. They may be used, for example, in combination with each other or solely for the manufacture of pharmaceuticals, foods, animal feed or cosmetics.
Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 13 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 14 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 13 dargestellten Nukleinsäuresequenz, die für PoIy- peptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 14 codieren und eine Δ-6-Desaturaseaktivität aufweisen.A further subject of the invention are isolated nucleic acid sequences which code for polypeptides with Δ-6-desaturase activity selected from the group: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 13, b) nucleic acid sequences resulting from the degenerate genetic code or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 13 which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 14 and a Δ- derivative of the amino acid sequence shown in SEQ ID NO: 14. Having 6-desaturase activity.
Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 9 oder in SEQ ID NO: 11 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 10 oder in SEQ ID NO: 12 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 9 oder in SEQ ID NO: 11 dargestellten Nukleinsäure- sequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 10 oder in SEQ ID NO: 12 codieren und eine Δ-5- Desaturaseaktivität aufweisen. Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 7 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 8 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 8 codieren und eine Δ-4-Desaturaseaktivität aufweisen. Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 15 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 16 dargestellten Aminosäuresequenz ableiten las- sen, oder c) Derivate der in SEQ ID NO: 15 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 16 codieren und eine Δ-12-Desaturaseaktivität aufweisen.A further subject of the invention are isolated nucleic acid sequences which code for polypeptides with Δ5-desaturase activity, selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 9 or SEQ ID NO: 11, b) nucleic acid sequences which can be derived as the result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 10 or in SEQ ID NO: 12, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 or in SEQ ID NO: 11, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 10 or in SEQ ID NO: 12 and have a Δ-5-desaturase activity. A further subject of the invention are isolated nucleic acid sequences which code for polypeptides with Δ-4-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 7, b) nucleic acid sequences resulting from the degenerate genetic code or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 7, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 8 and a Δ-4- Have desaturase activity. A further subject of the invention are isolated nucleic acid sequences which code for polypeptides with Δ-12-desaturase activity, selected from the group: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, b) nucleic acid sequences resulting from the degenerate genetic code derive from the amino acid sequence shown in SEQ ID NO: 16, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15 which encode polypeptides having at least 50% homology at the amino acid level with SEQ ID NO: 16 and a Δ- Have 12-desaturase activity.
Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-ThioesteraseCn), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospho- lipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl- Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid- Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) im Genkonstrukt eπt- halten sein. Vorteilhaft sind zusätzlich Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ-4-Desaturase, Δ-5-Desaturase, Δ- 6-Desaturase, Δ-9-Desaturase, Δ-12-Desaturase oder Δ-6-Elongase enthalten.A further subject of the invention are gene constructs which contain the nucleic acid sequences according to the invention SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, wherein the nucleic acid is functional with one or more regulatory signals connected is. In addition, other biosynthesis genes of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase (s), acyl-ACP [acyl carrier protein] desaturase (s), acyl-ACP-thioesteraseCn), fatty acid acyl transferase (n), acyl-CoA: lysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl coenzyme A carboxylase (s), acyl coenzyme A oxidase (s) , Fatty acid desaturase (s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase (s) may be present in the gene construct. In addition, biosynthesis genes of the fatty acid or lipid metabolism selected from the group of Δ4-desaturase, Δ5-desaturase, Δ6-desaturase, Δ9-desaturase, Δ12-desaturase or Δ6-elongase are advantageously also contained ,
Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Algen wie Mantoniella oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thalassiosira oder Crypthecodinium.Advantageously, all the nucleic acid sequences used in the method according to the invention are derived from a eukaryotic organism such as a plant, a microorganism or an animal. Preferably, the nucleic acid sequences are from the order Salmoniformes, algae such as Mantoniella or Ostreococcus, fungi such as the genus Phytophtora or diatoms such as the genera Thalassiosira or Crypthecodinium.
Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit Δ-4- Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Eloπgase- oder Δ-6-Elongase-Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht, eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ-12- Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase enthalten sein.The nucleic acid sequences used in the method, which are proteins for Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase, Δ-9-desaturase, Δ-12-desaturase, Δ-5-Eloπgase - or Δ 6 -ongase activity, are advantageously alone or preferably in combination in an expression cassette (= nucleic acid construct), which allows expression of the nucleic acids in an organism advantageously a plant or a microorganism introduced. There may be more than one nucleic acid sequence of an enzymatic activity, e.g. a Δ-12-desaturase, Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase, Δ-5 elongase and / or Δ-6 elongase.
Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA- . Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einemFor introduction, the nucleic acids used in the method are advantageously subjected to amplification and ligation in a known manner. Preferably, the procedure is based on the protocol of Pfu DNA polymerase or a Pfu / Taq DNA. Polymerasegemisches ago. The primers are selected on the basis of the sequence to be amplified. Conveniently, the primers should be chosen so that the amplificate comprises the entire codogenic sequence from the start to the stop codon. Following amplification, the amplificate is conveniently analyzed. For example, the analysis can be carried out after gel electrophoretic separation in terms of quality and quantity. Subsequently, the amplificate can after a
Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifi- kats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonie- rungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E. -coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101 , pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446—451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsen- donuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen.Standard protocol be cleaned (eg Qiagen). An aliquot of the purified amplificate is then available for subsequent cloning. Suitable cloning vectors are generally known to the person skilled in the art. These include, in particular, vectors which can be replicated in microbial systems, ie in particular vectors which ensure efficient cloning in yeasts or fungi, and which enable stable transformation of plants. In particular, various suitable for T-DNA-mediated transformation, binary and co-integrated vector systems. Such vector systems are usually characterized in that they contain at least the vir genes required for the Agrobacterium-mediated transformation as well as the T-DNA limiting sequences (T-DNA border). Preferably, these vector systems also include other cis-regulatory regions, such as promoters and terminators and / or selection markers, with which appropriately transformed organisms can be identified. Whereas in co-integrated vector systems vir genes and T-DNA sequences are located on the same vector, binary systems are based on at least two vectors, one of them vir genes, but no T-DNA and a second T-DNA, but no carries vir gene. As a result, the latter vectors are relatively small, easy to manipulate and replicate in both E.coli and Agrobacterium. These binary vectors include vectors of the series pBIB-HYG, pPZP, pBecks, pGreen. Bin19, pBI101, pBinAR, pGPTV and pCAMBIA are preferably used according to the invention. For a review of binary vectors and their use, see Hellens et al, Trends in Plant Science (2000) 5, 446-451. For the vector preparation, the vectors can first be linearized with restriction endonuclease (s) and then enzymatically modified in a suitable manner become. The vector is then purified and an aliquot used for cloning. In cloning, the enzymatically cut and if necessary purified amplicon is cloned with similarly prepared vector fragments using ligase. In this case, a particular nucleic acid construct or vector or plasmid construct can have one or more codogenic gene segments.
Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.Preferably, the codogenic gene segments in these constructs are functionally linked to regulatory sequences. The regulatory sequences include, in particular, plant sequences such as the promoters and terminators described above. The constructs can advantageously be stably propagated in microorganisms, in particular Escherichia coli and Agrobacterium tumefaciens, under selective conditions and enable a transfer of heterologous DNA into plants or microorganisms.
Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäure- konstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechno- logy (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1 , Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1 , Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäure- konstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.With the advantageous use of cloning vectors, the nucleic acids used in the method, the inventive nucleic acids and nucleic acid constructs can be introduced into organisms such as microorganisms or advantageously plants and thus used in plant transformation, such as those published in and cited therein Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Chapter 6/7, pp. 71-119 (1993); F. F. White, Vectors for Gene Transfer to Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds .: Kung and R. Wu, Academic Press, 1993, 15-38; Genes Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). The nucleic acids used in the method, the inventive nucleic acids and nucleic acid constructs and / or vectors can thus be used advantageously for the genetic modification of a broad spectrum of organisms to plants, so that they become better and / or more efficient producers of PUFAs.
Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungsgemäßen Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase, Δ-5-Desaturase-, Δ-4- Desaturase- und/oder Δ-6-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5- Desaturase- oder Δ-4-Desaturase-Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5- Elongase- oder Δ-4-Desaturase-Proteine oder -Gene kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einem Organismus, dem die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichemden Gewebes ermöglicht. Durch das Einbringen eines Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5- Desaturase-, Δ-5-Elongase- und/oder Δ-4-Desaturase-Genes in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende TYi- acylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkomparti- ments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6- Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.There are a number of mechanisms by which a change in the Δ-12-desaturase, Δ-5-elongase, Δ-6 elongase, Δ-5-desaturase, Δ-4-desaturase and / or Δ 6-desaturase protein and the other proteins used in the method, such as the Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase or Δ4-desaturase proteins is possible, so that the yield, production and / or efficiency of the production of the advantageous polyunsaturated fatty acids in a plant preferably in an oil crop or a microorganism due to this altered protein can be directly influenced. The number or activity of Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase proteins or genes can be increased so that larger amounts of the gene products and thus ultimately larger amounts of the compounds of general formula I are produced. Also, a de novo synthesis in an organism lacking the activity and ability to biosynthesize the compounds before introducing the gene (s) of interest is possible. The same applies to the combination with other desaturases or elongases or other enzymes from the fatty acid and lipid metabolism. Also the use different divergent, ie different sequences on DNA sequence level may be advantageous or the use of promoters for gene expression, which allows a different time gene expression, for example, depending on the degree of ripeness of a seed or oil-speichemden tissue. By introducing a Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase and / or Δ4-desaturase gene into one Organism alone or in combination with other genes in a cell can not only increase the biosynthetic flux to the final product, but also increase the corresponding TYi acylglycerin composition or created de novo. Likewise, the number or activity of other genes necessary for the import of nutrients necessary for the biosynthesis of one or more fatty acids, oils, polar and / or neutral lipids may be increased, such that the concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment, thereby further increasing the ability of the cells to produce PUFAs, as described below. By optimizing the activity or increasing the number of one or more Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ-4- Desaturase genes involved in the biosynthesis of these compounds or by disrupting the activity of one or more genes involved in the degradation of these compounds may allow the yield, production and / or efficiency of fatty acid and fatty acid production To increase lipid molecules from organisms and advantageously from plants.
Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16 dargestellt ist, so dass die Proteine oder Teile davon noch eine Δ-12- Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Aktivität aufweisen. Vorzugsweise haben die Proteine oder Teile davon, die von dem Nukleinsäuremolekül/den Nukieinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft sind die von den Nuklein- säuremolekülen kodierten Proteine zu mindestens etwa 40 %, vorzugsweise mindestens etwa 50% oder 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbe- reich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PiIeUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden.The isolated nucleic acid molecules used in the method of the invention encode proteins or parts thereof, wherein the proteins or the single protein or parts thereof contain an amino acid sequence sufficiently homologous to an amino acid sequence represented in the sequences SEQ ID NO: 2, SEQ ID NO 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16, so that the proteins or parts thereof still one Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase activity. Preferably, the proteins or portions thereof encoded by the nucleic acid molecule (s) still have their essential enzymatic activity and the ability to metabolically metabolize compounds or to transport molecules necessary to build cell membranes or lipid bodies in organisms in organisms to participate through these membranes. Advantageously, the proteins encoded by the nucleic acid molecules are at least about 40%, preferably at least about 50% or 60%, and more preferably at least about 70%, 80% or 90%, and most preferably at least about 85%, 86%, 87 %, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to those shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16 shown amino acid sequences. For the purposes of the invention is meant homology or homologous, identical or identical. The homology was calculated over the entire amino acid or nucleic acid sequence range. For the comparison of different sequences, a number of programs that are based on different algorithms are available to the person skilled in the art. The algorithms of Needleman and Wunsch or Smith and Waterman provide particularly reliable results. For the sequence comparisons the program PiIeUp was used (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48: 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2: 482-489 (1981)], which are described in the GCG Software Packet [Genetics Computer Group, 575 Science Drive, Madison , Wisconsin, USA 53711 (1991)]. The percent sequence homology values given above were determined using the GAP program over the entire sequence range with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000, and Average Mismatch: 0.000 These settings were always used as default settings for sequence comparisons unless otherwise specified.
Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ-12-Desaturase-, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5- Elongase oder Δ-4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C18-, C20- oder C22- Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind.Significant enzymatic activity of the Δ-12-desaturase, Δ-6-desaturase, Δ-6 elongase, Δ-5-desaturase, Δ-5 elongase or Δ-4-desaturase used in the method according to the invention is understood to mean that they are opposite to those represented by the sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 and their derivatives encoded proteins / enzymes by comparison still have at least one enzymatic activity of at least 10%, preferably 20%, more preferably 30% and very particularly 40% and thus the metabolism of the structure of fatty acids, fatty acid esters such as diacylglycerides and / or triacylglycerides in an organism can advantageously participate in a plant or plant cell necessary compounds or in the transport of molecules via membranes, wherein C 18 , C 20 or C 22 carbon chains in the fatty acid molecule having double bonds to at least two, preferably three, four, fo five or six digits are meant.
Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders vorteilhaft aus Oncorhynchus mykiss, Thalassiosira pseudonona oder Crypthecodinium cohnii.Nucleic acids useful in the method are derived from bacteria, fungi, diatoms, animals such as Caenorhabditis or Oncorhynchus or plants such as algae or mosses such as the genera Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella , Borago, Phaeodactylum, Crypthecodinium, especially of the genera and species Oncorhynchus mykiss, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophthora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans, or more particularly from Oncorhynchus mykiss, Thalassiosira pseudonona or Crypthecodinium cohnii.
Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet werden, die für eine Δ-12-Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren und die an eine Nukleotidsequenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisieren. Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.Alternatively, nucleotide sequences may be used in the method according to the invention which are suitable for a Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase and which are linked to a nucleotide sequence as in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 are shown to hybridize advantageously under stringent conditions. The nucleic acid sequences used in the method are advantageously introduced into an expression cassette which enables expression of the nucleic acids in organisms such as microorganisms or plants.
Dabei werden die Nukleinsäuresequenzen, die für die Δ-12-Desaturase, Δ-6- Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zurThe nucleic acid sequences encoding Δ-12-desaturase, Δ-6-desaturase, Δ-6 elongase, Δ-5-desaturase, Δ-5 elongase or Δ-4-desaturase are thereby amplified with one or more regulatory signals advantageously for
Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenen- falls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressions- konstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ-12-Desaturase-, Δ-4-Desaturase-, Δ5- Desaturase-, Δ-6-Desaturase-, Δ-5-Elongase- und/oder Δ-6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem - oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber imIncrease in gene expression functionally linked. These regulatory sequences are intended to allow the targeted expression of genes and protein expression. Depending on the host organism, this may mean, for example, that the gene is expressed and / or overexpressed only after induction, or that it is expressed and / or overexpressed immediately. For example, these regulatory sequences are sequences that bind to the inducers or repressors and thus regulate the expression of the nucleic acid. In addition to these new regulatory sequences or instead of these sequences, the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically altered so that natural regulation is eliminated and expression of genes increased. However, the expression cassette (= expression construct = gene construct) can also have a simpler structure, ie no additional regulatory signals were inserted before the nucleic acid sequence or its derivatives and the natural promoter with its regulation was not removed. Instead, the natural regulatory sequence has been mutated to no longer regulate and / or increase gene expression. These modified promoters can be brought in the form of partial sequences (= promoter with parts of the nucleic acid sequences according to the invention) alone before the natural gene for increasing the activity. In addition, the gene construct may advantageously also contain one or more so-called enhancer sequences functionally linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences can also be inserted at the 3 'end of the DNA sequences, such as further regulatory elements or terminators. The Δ12-desaturase, Δ4-desaturase, Δ5-desaturase, Δ6-desaturase, Δ5-elongase and / or Δ6-elongase genes may be present in one or more copies in the expression cassette (= gene construct) may be included. Advantageously, only one copy of the genes is present in the expression cassette. This gene construct or gene constructs can be expressed together in the host organism. In this case, the gene construct or the gene constructs can be inserted in one or more vectors and be present freely in the cell or else in the
Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen. ^ Be inserted genome. It is advantageous for the insertion of additional genes in the host genome when the genes to be expressed are present together in a gene construct. ^
4242
Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can, as described above, preferably positively influence the gene expression of the introduced genes and thereby increase them. Thus, enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers. In addition, however, an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16 kodieren. Die genannten Δ-12-Desaturase-, Δ-6- Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase- Proteine führen dabei vorteilhaft zu einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft ein, zwei, drei, vier, fünf oder sechs Doppelbindungen aufweist und vorteilhaft 18, 20 oder 22 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.A further embodiment of the invention is one or more gene constructs which contain one or more sequences represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or its derivatives are defined and for polypeptides according to SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16. The abovementioned Δ-12-desaturase, Δ-6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase proteins advantageously lead to desaturation or Elongierung of fatty acids, wherein the substrate advantageously one, two, three, four, five or six double bonds and advantageously has 18, 20 or 22 carbon atoms in the fatty acid molecule. The same applies to their homologs, derivatives or analogs which are operably linked to one or more regulatory signals, advantageously to increase gene expression.
Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp— , tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7- , T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulations- Sequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1 , MFa, AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285- 294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1 , B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-O 388 186Advantageous regulatory sequences for the novel process are, for example, in promoters, such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5 , T3, gal, trc, ara, SP6, λ-PR or λ-PL promoter and are advantageously used in Gram-negative bacteria. Further advantageous regulatory sequences are, for example, in the Gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [ Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Also advantageous in this context are inducible promoters, such as those described in EP-A-0 388 186
(Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclin- induzierbar), EP-A-O 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI- Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosyl- pyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-O 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP(Benzylsulfonamide inducible), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracycline inducible), EP-AO 335 528 (abzisinic inducible) or WO 93/21334 (ethanol or cyclohexenol inducible) described promoters. Further suitable plant promoters are the promoter of cytosolic FBPase or the potato ST LSI promoter (Stockhaus et al., EMBO J. 8, 1989, 2445), the glycine max phosphoribosyl pyrophosphatamidotransferase promoter (Genbank Accession No. U87999) or the nodia-specific promoter described in EP-A-0 249 676. Particularly advantageous promoters are promoters which allow expression in tissues involved in fatty acid biosynthesis. Very particularly advantageous are seed-specific promoters, such as the USP
Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin- Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1 -Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.Promoter but also other promoters such as the LeB4, DC3, phaseolin or napin promoter. Further particularly advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and in US Pat. No. 5,608,152 (rapeseed napin promoter), WO 98/45461 (oleosin promoter from Arobidopsis), US Pat. No. 5,504,200 (Phaseolin promoter from Phaseolus vulgaris), WO 91/13980 (Bce4 promoter from Brassica), von Baeumlein et al , Plant J., 2, 2, 1992: 233-239 (LeB4 promoter from a legume), these promoters being suitable for dicotyledons. The following promoters are suitable, for example, for barley monocotylone lpt-2 or lpt-1 promoter (WO 95/15389 and WO 95/23230), barley hordein promoter and other suitable promoters described in WO 99/16890.
Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.It is possible in principle to use all natural promoters with their regulatory sequences, such as those mentioned above, for the new method. It is also possible and advantageous to use, in addition or alone, synthetic promoters, especially if they mediate seed-specific expression, e.g. described in WO 99/16890.
Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet, 1991 , 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phospho- enol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849]. Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbarenIn order to achieve a particularly high content of PUFAs, especially in transgenic plants, the PUFA biosynthesis genes should advantageously be seed-specifically expressed in oilseeds. For this purpose, seed-specific promoters can be used, or such promoters that are active in the embryo and / or in the endosperm. In principle, seed-specific promoters can be isolated from both dicotolydone and monocotolydonous plants. Preferred preferred promoters are listed below: USP (= unknown seed protein) and Vicilin (Vicia faba) [Baumlein et al., Mol. Gen Genet, 1991, 225 (3)], Napin (rapeseed) [US Pat. No. 5,608,152], acyl Carrier protein (rapeseed) [US 5,315,001 and WO 92/18634], oleosin (Arabidopsis thaliana) [WO 98/45461 and WO 93/20216], phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980] , Legumes B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 and lpt1 (barley) [WO 95/15389 u. WO95 / 23230], seed-specific promoters from rice, maize and the like. Wheat [WO 99/16890], Amy32b, Amy 6-6 and Aleurain [US 5,677,474], Bce4 (rape) [US 5,530,149], glycinin (soybean) [EP 571 741], phospholene-pyruvate carboxylase (soybean) [JP 06/62870], ADR12-2 (soybean) [WO 98/08962], isocitrate lyase (rapeseed) [US 5,689,040] or α-amylase (barley) [EP 781 849]. Plant gene expression can also be achieved via a chemically inducible
Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.Promoter facilitate (see a review in Gatz 1997, Annu Rev. Plant Physiol Plant Mol. Biol., 48: 89-108). Chemically inducible promoters are particularly useful when it is desired that gene expression be in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-12-Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5- Desaturase, Δ-5-Elongase und/oder Δ-4-Desaturase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu exprimierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nuklein- säuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Derartige vorteilhafte Konstrukte werden beispielsweise in DE 10102337 oder DE 10102338 offenbart. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3- Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.In order to ensure stable integration of the biosynthesis genes into the transgenic plant over several generations, each of the nucleic acids used in the method, which is responsible for Δ-12-desaturase, Δ-6-desaturase, Δ6-elongase, Δ5-desaturase, Δ-5 elongase and / or Δ-4-desaturase are expressed under the control of its own preferred a different promoter, as Repetitive sequence motifs can lead to instability of the T-DNA or to recombination events. The expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable interface for insertion of the nucleic acid to be expressed, advantageously followed by a terminator behind the polylinker in a polylinker. This sequence is repeated several times, preferably three, four or five times, so that up to five genes can be brought together in one construct and thus introduced into the transgenic plant for expression. Advantageously, the sequence is repeated up to three times. The nucleic acid sequences are inserted for expression via the appropriate interface, for example in the polylinker behind the promoter. Advantageously, each nucleic acid sequence has its own promoter and optionally its own terminator. Such advantageous constructs are disclosed for example in DE 10102337 or DE 10102338. However, it is also possible to insert several nucleic acid sequences behind a promoter and possibly in front of a terminator. In this case, the insertion site or the sequence of the inserted nucleic acids in the expression cassette is not of decisive importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette, without this significantly influencing the expression. It is advantageous to use different promoters, for example the USP, LegB4 or DC3 promoter and different terminators, in the expression cassette. But it is also possible to use only one type of promoter in the cassette. However, this can lead to unwanted recombination events.
Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.As described above, transcription of the introduced genes should be advantageously aborted by suitable terminators at the 3 'end of the introduced biosynthetic genes (beyond the stop codon). It can be used here e.g. the OCS1 terminator. As for the promoters, different terminator sequences should be used for each gene.
Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oderThe gene construct may, as described above, also include other genes to be introduced into the organisms. It is possible and beneficial to regulate genes in the host organisms, such as genes for inducers, repressors or
Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]- Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl- CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure—Enzyme, which engage by their enzyme activity in the regulation of one or more genes of a biosynthetic pathway, introduce and express therein. These genes may be of heterologous or homologous origin. Furthermore, further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct, or else these genes can be located on a further or several further nucleic acid constructs. Advantageously, as biosynthesis genes of the fatty acid or lipid metabolism, a gene selected from the group acyl-CoA-dehydrogenase (s), acyl-ACP [= acyl carrier protein] - desaturase (s), acyl-ACP-thioesterase (s), fatty acid Acyltransferase (s), acyl CoA: lysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid
Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol- Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, Δ-4-Desaturase, Δ-5- Desaturase, Δ-6-Desaturase, Δ-9-Desaturase, Δ-12-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase.Hydroxylase (s), Acetyl Coenzyme A Carboxylase (s), Acyl Coenzyme A Oxidase (s), Fatty Acid Desaturase (s), Fatty Acid Acetylenase (s), Lipoxygenase (s), Triacylglycerol Lipase (s) , Allene oxide synthase (s), hydroperoxide lyase (s) or fatty acid elongase (s) or their combinations used. Particularly advantageous nucleic acid sequences are biosynthesis genes of the fatty acid or lipid metabolism selected from the group of acyl-CoA: lysophospholipid acyltransferase, Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase, Δ-9-desaturase, Δ-12 Desaturase, Δ-5 elongase and / or Δ-6 elongase.
Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen Mithilfe von Agrobakterium eingesetzt werden. Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.The abovementioned nucleic acids or genes can be cloned in combination with other elongases and desaturases in expression cassettes, such as those mentioned above, and used to transform plants using Agrobacterium. The regulatory sequences or factors can, as described above, preferably positively influence the gene expression of the introduced genes and thereby increase them. Thus, enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers. In addition, however, an enhancement of the translation is possible by, for example, the stability of the mRNA is improved. The expression cassettes can in principle be used directly for introduction into the plant or else introduced into a vector.
Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für die Δ-12-Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturasen, Δ-5-Elongase oder Δ-4-Desaturase codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-CoAiLysophospholipid-Acyltransferasen, Δ-4-Desaturasen, Δ-5-Desaturasen, Δ-6- Desaturasen, Δ-9-Desaturasen, Δ-12-Desaturasen, ω3-Desaturasen, Δ-5-Elongasen und/oder Δ-6-Elongasen. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nuklein- säuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfin- düng soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.These advantageous vectors, preferably expression vectors, contain the nucleic acids used in the method which are useful for Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturases, Δ5-elongase or Δ-4 Or a nucleic acid construct containing the nucleic acid used alone or in combination with other fatty acid or lipid metabolism biosynthesis genes such as the acyl-CoAl-lysophospholipid acyltransferases, Δ-4-desaturases, Δ-5-desaturases, Δ-6-desaturases, Δ-9-desaturases, Δ-12-desaturases, ω3-desaturases, Δ-5-elongases and / or Δ-6-elongases. As used herein, the term "vector" refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached. One type of vector is a "plasmid," which is a circular double-stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, where additional DNA segments can be ligated into the viral genome. Certain vectors may autonomously replicate in a host cell into which they have been introduced (eg bacterial vectors of bacterial origin of replication). Other vectors are advantageously integrated into the genome of a host cell upon introduction into the host cell and thereby replicated together with the host genome. In addition, certain vectors may direct the expression of genes to which they are operably linked. These vectors are referred to herein as "expression vectors". Usually, expression vectors suitable for recombinant DNA techniques are in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably because the plasmid is the most commonly used vector form. However, the invention is intended to encompass these other forms of expression vectors, such as viral vectors that perform similar functions. Furthermore, the term vector is also intended to mean other vectors which are known to the person skilled in the art, such as phages, viruses, such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro- Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren,The recombinant expression vectors advantageously used in the method comprise the below-described nucleic acids or the above-described gene construct in a form suitable for expression of the nucleic acids used in a host cell, which means that the recombinant expression vectors comprise one or more regulatory sequences selected on the basis of For expression to be used host cells, which is operably linked to the nucleic acid sequence to be expressed comprises. In a recombinant expression vector, "operably linked" means that the nucleotide sequence of interest is bound to the regulatory sequence (s) such that expression of the nucleotide sequence is possible and they are linked to each other such that both sequences fulfill the predicted function ascribed to the sequence (eg in an in vitro transcription / translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to mean promoters,
Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.Enhancers and other expression control elements (e.g., polyadenylation signals). These regulatory sequences are e.g. in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Eds .: Glick and Thompson, chapters 7, 89-108, including references therein. Regulatory sequences include those that direct the constitutive expression of a nucleotide sequence in many types of host cells and those that direct the direct expression of the nucleotide sequence only in certain host cells under certain conditions. One skilled in the art will appreciate that the design of the expression vector may depend on factors such as the selection of the host cell to be transformed, the level of expression of the desired protein, etc.
Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Δ- 12-Desaturasen, Δ-6-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischen seh ritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwen- düng von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, PJ. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1 , 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmanieila und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1 , Engineering and Utiliza- tion, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.The recombinant expression vectors used can be used to express Δ-12-desaturases, Δ-6-desaturases, Δ-6 elongases, Δ-5-desaturases, Δ-5 elongases and / or Δ-4-desaturases in prokaryotic or eukaryotic cells be designed. This is advantageous because often intermediate steps of the vector construction are carried out for simplicity in microorganisms. For example, the Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase and / or Δ-4-desaturase genes can be expressed in bacterial cells Insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA, et al., 1992, Foreign gene expression in yeast: a review, Yeast 8: 423-488, van den Hondel, CAMJJ, et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, eds., Pp. 396-428: Academic Press: San Diego, and van Hondel, CAMJJ, & Punt, PJ. (1991) Gene transfer systems and vector development for filamentous fungi, Applied Molecular Genetics of Fungi, Peberdy, JF, et al., Eds., pp. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al., 1999, Marine Biotechnology.1, 3: 239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmanieila and Stylonychia, in particular of the genus Stylonychia lemnae, with vectors according to a transformation method as described in WO 98/01572, and preferably in cells of multicellular plants (See Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep. 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton , Florida, Chapter 6/7, pp. 71-119 (1993); FF White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, ed. Kung and R. Wu, Academic Press (1993), 128-43, Potrykus, Annu., Rev. Plant Physiol, Plant Molec Biol, 42 (1991), 205-225 (and references cited therein)). Suitable host cells are further discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). The recombinant expression vector may alternatively be transcribed and translated in vitro using, for example, T7 promoter regulatory sequences and T7 polymerase.
Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konsti- tutive oder induzierbare Promotoren enthalten, welche die Expression von Fusionsoder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Ine; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31- 40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.The expression of proteins in prokaryotes is mostly carried out with vectors containing constitutive or inducible promoters which direct the expression of fusion or non-fusion proteins. Typical fusion expression vectors include i.a. pGEX (Pharmacia Biotech Inc., Smith, DB, and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), in which glutathione-S Transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc- Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA- Polymerase (T7 gn1 ) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5- Promotors birgt. Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR- Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1 , pHS2, pPLc236, pMBL24, pLG200, pUR290, plN-111113-B1 , λgt11 or pBdCI, in Streptomyces plJ101 , plJ364, plJ702 oder plJ361 , in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667. Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturased (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, PJ. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Acade- mic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1 , YEp6, YEp13 oder pEMBLYe23.Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69: 301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60 -89). Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector is based on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. Other suitable vectors in prokaryotic organisms are known to the person skilled in the art, these vectors are, for example, in E. coli pLG338, pACYC184, the pBR series, such as pBR322, the pUC series, such as pUC18 or pUC19, the M113mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, plN-111113-B1, λgt11 or pBdCI, in Streptomyces plJ101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667. In another embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in the yeast S. cerevisiae include pYeDesaturased (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for constructing vectors suitable for use in other fungi, such as filamentous fungi, include those described in detail in: van den Hondel, CAMJJ, & Punt, PJ. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, JF Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [JW Bennet & LL Lasure, eds., Pp. 396-428: Acadic Press: San Diego] Other suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23.
Alternativ kann die Δ-12-Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und/oder Δ-4-Desaturase in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Bio!.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39). Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P. H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E. F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989.Alternatively, Δ-12-desaturase, Δ-6-desaturase, Δ-6 elongase, Δ-5-desaturase, Δ-5 elongase and / or Δ-4-desaturase can be expressed in insect cells using baculovirus expression vectors , Baculovirus vectors available for expression of proteins in cultured insect cells (eg, Sf9 cells) include the pAc series (Smith et al (1983) Mol. Cell Bio! 3: 2156-2165) and the pVL Series (Lucklow and Summers (1989) Virology 170: 31-39). The above vectors provide only a brief overview of possible suitable vectors. Other plasmids are known in the art and are described, for example, in: Cloning Vectors (Eds. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). For other suitable expression systems for prokaryotic and eukaryotic cells, see Chapters 16 and 17 of Sambrook, J., Fritsch, EF, and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd Ed., CoId Spring Harbor Laboratory, ColD Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform des Verfahrens kann die Δ-12-Desaturase, Δ-6- Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und/oder Δ-4-Desaturase in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechno- logy 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195- 1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1 , Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38. Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylie- rungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACHδ (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.In a further embodiment of the method, Δ-12-desaturase, Δ-6-desaturase, Δ-6 elongase, Δ-5-desaturase, Δ-5 elongase and / or Δ-4-desaturase can be produced in unicellular plant cells (such as Algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 and references cited therein, and plant cells from higher plants (eg, spermatophytes, such as crops) are expressed. Examples of plant expression vectors include those described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left Border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, MW (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721; Vectors for Gene Transfer to Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds .: Kung and R. Wu, Academic Press, 1993, pp. 15-38. A plant expression cassette preferably contains regulatory sequences that can control gene expression in plant cells and are functional so that each sequence can fulfill its function, such as termination of transcription, for example, polyadenylation signals. Preferred polyadenylation signals are those derived from Agrobacterium tumefaciens T-DNA, such as the gene 3 of the Ti plasmid pTiACHδ known as octopine synthase (Gielen et al., EMBO J. 3 (1984) 835ff.) Or functional equivalents thereof, but also all other terminators functionally active in plants are suitable.
Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive- Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).Because plant gene expression is very often not limited to transcriptional levels, a plant expression cassette preferably contains other operably linked sequences, such as translation enhancers, e.g., the overdrive sequence containing the 5'-untranslated tobacco mosaic virus leader sequence, which is the protein / RNA ratio increases (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco. Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Piastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, diePlant gene expression, as described above, must be operably linked to a suitable promoter that performs gene expression in a timely, cell or tissue-specific manner. Useful promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those derived from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913) or plant promoters, such as the Rubisco small subunit described in US 4,962,028. Other preferred sequences for use in the functional compound in plant gene expression cassettes are targeting sequences necessary to direct the gene product into its corresponding cell compartment (see review in Kermode, Crit., Plant, 15, 4 (1996) 285) -423 and references cited therein), for example, in the vacuole, the nucleus, all kinds of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the
Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.Mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor. Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1 -Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80- Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinll-Promotor (EP-A-O 375 091). Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbio- synthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet,Plant gene expression can also be facilitated by a chemically inducible promoter as described above (see review in Gatz 1997, Annu Rev. Plant Physiol Plant Mol. Biol., 48: 89-108). Chemically inducible promoters are particularly useful when it is desired that gene expression be in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter. Promoters which react to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant Mol. Biol. 22 (1993) 361-366), the heat-inducible hsp80 promoter Tomato (US 5,187,267), the potato inducible alpha-amylase promoter (WO 96/12814) or the wound inducible pinll promoter (EP-A-0 375 091). In particular, those promoters which induce gene expression in tissues and organs in which the fatty acid, lipid and oil biosynthesis take place are preferred in sperm cells such as the cells of the endosperm and the developing embryo. Suitable promoters are the rapeseed napin promoter (US Pat. No. 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet.
1991 , 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al.,1991, 225 (3): 459-67), the Arabidopsis oleosin promoter (WO 98/45461), the phaseolin promoter from Phaseolus vulgaris (US 5,504,200), the Brassica Bce4 promoter (WO 91/13980) or the legumin B4 promoter (LeB4, Baeumlein et al.
1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder Ipt1- Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen- Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin- Gen, dem Roggen-Secalin-Gen).1992, Plant Journal, 2 (2): 233-9) as well as promoters which induce seed specific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice, etc. Suitable noteworthy promoters are the lpt2 or Ipt1 gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene , the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the rye secalin gene).
Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ-12- Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und/oder Δ-4-Desaturase gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Kon- strukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.In particular, multiparallel expression of Δ-12-desaturase, Δ-6-desaturase, Δ-6 elongase, Δ-5-desaturase, Δ-5 elongase and / or Δ-4-desaturase used in the method may be desired. The introduction of such expression cassettes can be carried out via a simultaneous transformation of a plurality of individual expression constructs or preferably by combining a plurality of expression cassettes on a construct. It is also possible to transform a plurality of vectors each having a plurality of expression cassettes and to transfer them to the host cell.
Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Piastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394. Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchen- beschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey. Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wieAlso particularly suitable are promoters which induce plastid-specific expression, since plastids are the compartment in which the precursors as well as some end products of lipid biosynthesis are synthesized. Suitable promoters, such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the Arabidopsis clpP promoter described in WO 99/46394. Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", conjugation and transduction are intended to encompass a variety of methods known in the art for introducing foreign nucleic acid (eg DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE- Dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for transforming or transfecting host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd ed., CoId Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, ColD Spring Harbor, NY, 1989) and other laboratory manuals, such as Methods in Molecular Biology, 1995, Vol. 44 , Agrobacterium protocols, Eds: Gartland and Davey, Humana Press, Totowa, New Jersey. Host cells which are suitable in principle for receiving the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms. The host organisms which are advantageously used are microorganisms, such as fungi or yeasts or plant cells, preferably plants or parts thereof. Fungi, yeasts or plants are preferably used, more preferably plants, most preferably plants such as oilseed crops containing high levels of lipid compounds such as rapeseed, evening primrose, hemp, Diestel, peanut, canola, flax, soy, safflower, sunflower, borage , or plants such as corn, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, tagetes, solanaceae plants, such as
Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnen- blume, Saflor, Bäume (Ölpalme, Kokosnuss).Potato, tobacco, aubergine and tomato, Vicia species, pea, alfalfa, bush plants (coffee, cocoa, tea), Salix species, trees (oil plan, coconut) and perennial grasses and forage crops. Particularly preferred plants according to the invention are oil crop plants, such as soybean, peanut, rapeseed, canola, flax, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).
Weitere Erfindungsgegenstände sind die im folgenden aufgezählten Nukleinsäurese- quenzen, die für Δ-6-Desaturasen, Δ-5-Desaturasen, Δ-4-Desaturasen oder Δ-12- Desaturasen codieren.Further subjects of the invention are the nucleic acid sequences enumerated below which code for Δ-6-desaturases, Δ-5-desaturases, Δ-4-desaturases or Δ-12-desaturases.
Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 13 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 14 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 13 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 14 codieren und eine Δ-6-Desaturaseaktivität aufweisen.Isolated nucleic acid sequences encoding polypeptides having Δ-6 desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 13, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 13, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 14 and have a Δ6-desaturase activity.
Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 9 oder in SEQ ID NO: 11 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 10 oder in SEQ ID NO: 12 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 9 oder in SEQ ID NO: 11 dargestellten Nukleinsäure- sequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 10 oder in SEQ ID NO: 12 codieren und eine Δ-5- Desaturaseaktivität aufweisen. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 7 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 8 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 8 codieren und eine Δ-6-Desaturaseaktivität aufweisen.Isolated nucleic acid sequences encoding polypeptides having Δ5-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 9 or SEQ ID NO: 11, b) nucleic acid sequences resulting as the result of degenerate genetic code derived from the amino acid sequence shown in SEQ ID NO: 10 or in SEQ ID NO: 12, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 or in SEQ ID NO: 11, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 10 or SEQ ID NO: 12 and a Δ- 5- have desaturase activity. Isolated nucleic acid sequences encoding polypeptides having Δ-4-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 7, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 7, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 8 and have a Δ6-desaturase activity.
Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 15 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 16 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 15 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 16 codieren und eine Δ-12-Desaturaseaktivität aufweisen.Isolated nucleic acid sequences encoding polypeptides having Δ12-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, b) nucleic acid sequences resulting from the degenerate genetic code of the sequence shown in SEQ Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which code for polypeptides having at least 50% homology at the amino acid level with SEQ ID NO: 16 and have a Δ-12 desaturase activity.
Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie nicht-humanen Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.The above-mentioned nucleic acids of the present invention are derived from organisms such as non-human animals, ciliates, fungi, plants such as algae or dinoflagellates which can synthesize PUFAs.
Vorteilhaft stammen die isolierten oben genannten Nukleinsäuresequenzen aus der Ordnung Salmoniformes, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae wie der Gattung Ostreococcus oder Pythia- ceae wie der Gattung Phytophtora stammt. Zu den erfindungsgemäßen Gegenständen gehören außerdem, wie oben beschrieben, isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasen, Δ-4- Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen codieren, wobei die durch diese Nukleinsäuresequenzen codierten Δ-12-Desaturasen, Δ-4-Desaturasen, Δ-5- Desaturasen oder Δ-6-Desaturasen C18-, C2o- und C22-Fettsäuren mit ein, zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte Ci8-Fettsäuren mit ein, zwei oder drei Doppelbindungen wie C18:1Δ9, C18:2Δ9 12oder C18:3 Δ9 12/l5 , mehrfach ungesättigte C20-Fettsäuren mit drei oder vier Doppelbindungen wie C20:3 Δ8,i i,i4 oder C20:4 Δ8,ii,i4,i7 oder menrfacn ungesättigte C22-Fettsäuren mit vier oder fünf Doppelbindungen wie C22:4Δ7'10'13'16 oder C22:5Δ7'10'13 16'19 umsetzen. Vorteilhaft werden die Fettsäuren in den Phospholipiden oder CoA-Fettsäureestern desatu- riert, vorteilhaft in den CoA-Fettsäureester.The isolated above-mentioned nucleic acid sequences advantageously originate from the order Salmoniformes, the diatom genus Thalassiosira or Crythecodinium or from the family Prasinophyceae such as the genus Ostreococcus or Pythiaceae such as the genus Phytophtora. The articles of the invention also include, as described above, isolated nucleic acid sequence encoding polypeptides having Δ-12-desaturases, Δ-4-desaturases, Δ-5-desaturases and Δ-6-desaturases, the Δ. Coding sequences encoded by these nucleic acid sequences -12-desaturases, Δ-4-desaturases, Δ-5-desaturases or Δ-6-desaturases C 18 , C 2 o and C 22 fatty acids having one, two, three, four or five double bonds and advantageously polyunsaturated Ci 8 -fatty acids with one, two or three double bonds such as C18: 1 Δ9 , C18: 2 Δ9 12 or C18: 3 Δ9 12 / l5 , polyunsaturated C 20 -fatty acids having three or four double bonds such as C 2 0: 3 Δ8, ii, i4 or C 2 0: 4 Δ8, ii, i4, i 7 or menf acn unsaturated C 22 fatty acids having four or five double bonds as C22: 4 Δ7 ' 10 ' 13 '16 or C22: 5 Δ7 ' 10 '13 16 ' 19 implement. Advantageously, the fatty acids in the phospholipids or CoA fatty acid esters are desatured, advantageously into the CoA fatty acid ester.
Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotid- Sequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.The term "nucleic acid (molecule)" as used herein also comprises, in an advantageous embodiment, the untranslated sequence located at the 3 'and 5' end of the coding gene region: at least 500, preferably 200, more preferably 100 nucleotides of the sequence upstream of the 5 'end of the coding region and at least 100, preferably 50, more preferably 20 nucleotides of the sequence downstream of the 3' end of the coding gene region. An "isolated" nucleic acid molecule is separated from other nucleic acid molecules present in the natural source of the nucleic acid. An "isolated" nucleic acid preferably does not have sequences that naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid is derived (e.g., sequences located at the 5 'and 3' ends of the nucleic acid). For example, in various embodiments, the isolated Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ-4-desaturase molecule may be less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid is derived.
Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard- Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Bioche- mistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV- Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse- Transkriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID N0:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimem gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleo- tide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard- Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.The nucleic acid molecules used in the method, for example a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or a part thereof can be isolated using standard molecular biology techniques and the sequence information provided herein. Also, by comparison algorithms, for example, a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level can be identified. These may be used as a hybridization probe as well as standard hybridization techniques (such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., CoId Spring Harbor Laboratory, ColD Spring Harbor Laboratory Press, ColD Spring Harbor, NY, 1989) Isolation of other useful in the process of nucleic acid sequences can be used. In addition, a nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO 13 or SEQ ID NO: 15 or a part thereof, by polymerase chain reaction, using oligonucleotide primers based on this sequence or parts thereof (eg, a nucleic acid molecule comprising the complete sequence or a part thereof, by polymerase chain reaction isolated using oligonucleotide primers prepared on the basis of this same sequence). For example, mRNA can be isolated from cells (eg by the guanidinium thiocyanate extraction method of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and cDNA by reverse transcriptase (eg Moloney MLV). Reverse transcriptase, available from Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be prepared on the basis of one of the sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or using the sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO : 12, SEQ ID NO: 14 or SEQ ID NO: 16 create amino acid sequences shown. A nucleic acid of the invention may be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques. The thus amplified nucleic acid can be cloned into a suitable vector and characterized by DNA sequence analysis. Oligonucleotides corresponding to a desaturase nucleotide sequence can be prepared by standard synthetic methods, for example, with an automated DNA synthesizer.
Homologe der verwendeten Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5- Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 bedeutet beispielsweise allelische Varianten mit mindestens etwa 40 oder 50 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Unter einem Teil gemäß der Erfindung ist dabei zu verstehen, dass mindestens 25 Basenpaare (= bp), 50 bp, 75 bp, 100 bp, 125 bp oder 150 bp, bevorzugt mindestens 175 bp, 200 bp, 225 bp, 250 bp, 275 bp oder 300 bp, besonders bevorzugt 350 bp, 400 bp, 450 bp, 500 bp oder mehr Basenpaare für die Hybridisierung verwendet werden. Es kann auch vorteilhaft die Gesamtsequenz verwendet werden. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzym- aktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymati- sche Aktivität der Δ-12-Desaturase, Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 kodierten Protein. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PiIeUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS1 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Gene- tics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.Homologs of the Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase nucleic acid sequences of the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 means for example allelic variants with at least about 40 or 50%, preferably at least about 60 or 70%, more preferably at least about 70 or 80%, 90% or 95% ■, and even more preferably at least about 85%, 86%, 87%, 88%, 89% , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity to each other in SEQ ID NO: 1, SEQ ID NO: 3 , SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 shown nucleotide sequences or their homologs, derivatives or analogs or parts thereof. Furthermore, isolated nucleic acid molecules of a nucleotide sequence which correspond to one of the amino acid sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 hybridize or a part thereof hybridized, for example, under stringent conditions. A part according to the invention is understood to mean that at least 25 base pairs (= bp), 50 bp, 75 bp, 100 bp, 125 bp or 150 bp, preferably at least 175 bp, 200 bp, 225 bp, 250 bp, 275 bp or 300 bp, more preferably 350 bp, 400 bp, 450 bp, 500 bp or more base pairs are used for the hybridization. It may also be advantageous to use the overall sequence. In particular, allelic variants include functional variants which are obtained by deletion, insertion or substitution of nucleotides from / in which is shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, but the intention is that the enzyme activity of the resulting synthesized proteins is advantageously retained for the insertion of one or more genes , Proteins which still possess the enzymatic activity of Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase, ie their Activity is substantially not reduced, means proteins with at least 10%, preferably 20%, more preferably 30%, most preferably 40% of the original enzyme activity compared to that represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 encoded protein. Homology was calculated over the entire amino acid or nucleic acid sequence range. For the comparison of different sequences, a number of programs that are based on different algorithms are available to the person skilled in the art. The algorithms of Needleman and Wunsch or Smith and Waterman provide particularly reliable results. For the sequence comparisons the program PiIeUp was used (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS 1 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48: 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2: 482-489 (1981)], which are described in the GCG Software Packet [Genetic Computer Group, 575 Science Drive , Madison, Wisconsin, USA, 53711 (1991)]. The percent sequence homology values given above were determined using the GAP program over the entire sequence range with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000, and Average Mismatch: 0.000, which were always used for sequence comparisons unless otherwise specified as the default settings.
Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngi- ge DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 for example, also bacterial, fungal and plant homologs, truncated sequences, single-stranded DNA or RNA of the coding and non-coding DNA sequence.
Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 bedeutet auch Deriva- te, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch lnsertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 also derivatives, such as, for example, promoter variants. The promoters upstream of the indicated nucleotide sequences may be modified by one or more nucleotide exchanges, insertions, and / or deletions, without, however, interfering with the functionality or activity of the promoters. It is also possible that the activity of the promoters is increased by modification of their sequence or that they are completely replaced by more active promoters, even from heterologous organisms.
Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Δ-12-Desaturase-, Δ-6- Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-4- Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA- Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wieThe aforementioned nucleic acids and protein molecules having Δ12-desaturase, Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase and / or Δ-4-desaturase activity , which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds via membranes, are advantageously used in the method according to the invention for modulating the production of PUFAs in transgenic organisms in plants such as corn, wheat, rye, oats, Triticale, rice, barley, soybean, peanut, cotton, linum species such as oil or fiber kidney, Brassica species such as oilseed rape, canola and turnip rape, pepper, sunflower, borage, evening primrose and Tagetes, Solanacaen plants such as
Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und aus- dauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswir- kung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oderPotato, tobacco, eggplant and tomato, Vicia species, pea, manioc, alfalfa, bush plants (coffee, cocoa, tea), Salix species, trees (oil palm, coconut) and permanent grasses and forage crops, either directly (eg, when overexpression or optimization of a fatty acid biosynthesis protein has a direct impact on the yield, production, and / or efficiency of fatty acid production from modified organisms), and / or may have a indirect effect , which nevertheless increase the yield, production and / or
Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).Efficiency of the production of the PUFAs or a decrease of undesired compounds leads (eg if the modulation of the metabolism of lipids and fatty acids, cofactors and enzymes leads to changes in the yield, production and / or efficiency of the production or the composition of the desired compounds within the cells in turn, may affect the production of one or more fatty acids).
Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.The combination of different precursor molecules and biosynthetic enzymes leads to the production of various fatty acid molecules, which has a decisive effect on the composition of the lipids. Since polyunsaturated fatty acids (= PUFAs) are not only simply incorporated in triacylglycerol but also in membrane lipids.
Besonders zur Herstellung von PUFAs1 beispielsweise Stearidonsäure , Eicosapen- taensäure und Docosahexaensäure eignen sich Brasicaceae, Boraginaceen, Primula- ceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum) zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.Particularly suitable for the production of PUFAs 1, for example stearidonic acid, eicosapentaenoic acid and docosahexaenoic acid, are Brasicaceae, boraginaceous plants, primulas or linaceae. Particularly advantageous is Lein (Linum usitatissimum) for the production of PUFAS with the nucleic acid sequences of the invention advantageously, as described, in combination with other desaturases and elongases.
Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Aceto- acetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisie- rungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F. C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D. C1 S. 612-636 und darin enthaltene Literatur- stellen; Lengeier et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiolo- gical Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estem auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.The lipid synthesis can be divided into two sections: the synthesis of fatty acids and their attachment to sn-glycerol-3-phosphate and the addition or modification of a polar head group. Common lipids used in membranes include phospholipids, glycolipids, sphingolipids and phosphoglycerides. Fatty acid synthesis begins with the conversion of acetyl-CoA into malonyl-CoA by the acetyl-CoA carboxylase or into acetyl-ACP by the acetyl transacylase. After a condensation reaction, these two product molecules together form acetoacetyl-ACP, which is converted via a series of condensation, reduction and dehydration reactions, so that a saturated fatty acid molecule with the desired chain length is obtained. The production of unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically by molecular oxygen or anaerobically (for fatty acid synthesis in microorganisms see FC Neidhardt et al., (1996) E. coli and Salmonella ASM Press: Washington, D C 1 pp. 612-636 and references therein; Lengeier et al. (Eds) (1999) Biology of Procaryotes, Thieme: Stuttgart, New York, and the references therein, and Magnuson, K., et al (1993) Microbiological Reviews 57: 522-542 and the references contained therein). The fatty acids thus bound to phospholipids must then be converted again for the further elongations from the phospholipids into the fatty acid CoA ester pool. This is facilitated by acyl-CoA: lysophospholipid acyltransferases. Furthermore these enzymes can the elongated fatty acids from the CoA esters to the Transmitted phospholipids. This reaction sequence can optionally be run through several times.
Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C18-Kohlenstoff-Fettsäuren müssen auf C2o und C22 verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ-12-, Δ-4-, Δ-5- und Δ-6-Desaturasen und/oder der Δ-5-, Δ-6-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschließend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C2o- und/oder C22-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturie- rung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturie- rung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C2o zu C22-Fettsäuren,zu Fettsäuren wie γ~ Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraen- säure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen undPrecursors for the PUFA biosynthesis are, for example, oleic acid, linoleic acid and linolenic acid. These C 18 -carbon fatty acids must be extended to C 2 o and C 22 in order to obtain fatty acids of the eicosa- and docosa-chain type. Arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid can be used with the aid of the desaturases used in the process, such as Δ-12, Δ-4-, Δ-5- and Δ-6-desaturases and / or Δ-5-, Δ-6-elongases advantageously eicosapentaenoic acid and / or docosahexaenoic acid are prepared and then used for various purposes in food, feed, cosmetic or pharmaceutical applications. C 2 - and / or C 22 -fatty acids having at least two, preferably at least three, four, five or six double bonds in the fatty acid molecule, preferably C 20 - or C 22 -fatty acids with advantageously four, five or six double bonds in the Fatty acid molecule can be produced. The desaturation can take place before or after elongation of the corresponding fatty acid. Thus, the products of desaturase activities and possible further desaturation and elongation result in preferred PUFAs having a higher degree of desaturation, including a further elongation of C 2 O to C 22 fatty acids, to fatty acids such as γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid , Stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. Substrates of the desaturases used and
Elongasen im erfindungsgemäßen Verfahren sind C16-, C18- oder C20-Fettsäuren wie zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo-γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, y- Linolensäure und/oder α-Linolensäure, Dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C20- oder C22- Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.Elongases in the process according to the invention are C 16 , C 18 or C 20 fatty acids, for example linoleic acid, γ-linolenic acid, α-linolenic acid, dihomo-γ-linolenic acid, eicosatetraenoic acid or stearidonic acid. Preferred substrates are linoleic acid, γ-linolenic acid and / or α-linolenic acid, dihomo-γ-linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. The synthesized C 20 - or C 22 - fatty acids having at least two, three, four, five or six double bonds in the fatty acid in the process according to the invention in the form of the free fatty acid or in the form of their esters, for example in the form of their glycerides.
Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten ver- estertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das GIy- ceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.The term "glyceride" is understood to mean a glycerol esterified with one, two or three carboxylic acid residues (mono-, di- or triglyceride). By "glyceride" is also meant a mixture of different glycerides. The glyceride or glyceride mixture may contain other additives, e.g. contain free fatty acids, antioxidants, proteins, carbohydrates, vitamins and / or other substances.
Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt. Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5): 161 -166).A "glyceride" in the sense of the method according to the invention is also understood to mean derivatives derived from glycerol. In addition to the fatty acid glycerides described above, these also include glycerophospholipids and glyceroglycolipids. The glycerophospholipids, such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids, may be mentioned by way of example here. Furthermore, fatty acids must then be transported to various modification sites and incorporated into the triacylglycerol storage lipid. Another important Step in the lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol-fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100 (4-5): 161-166).
Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxi- dation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641 ; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31 :397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1- 16.For publications on plant fatty acid biosynthesis, desaturation, lipid metabolism and membrane transport of fatty compounds, beta oxidation, fatty acid modification and cofactors, triacylglycerol storage and assembly, including references therein, see the following articles: Kinney, 1997, Genetic Engineering, eds .: JK Setlow, 19: 149-166; Ohlrogge and Browse, 1995, Plant Cell 7: 957-970; Shanklin and Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611-641; Voelker, 1996, Genetic Engineering, eds .: JK Setlow, 18: 111-13; Gerhardt, 1992, Prog. Lipid R. 31: 397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256: 181-186; Kunau et al., 1995, Prog. Lipid Res. 34: 267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, eds .: Murata and Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13 (1): 1-16.
Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.The PUFAs produced in the process comprise a group of molecules that are no longer able to synthesize, and therefore need to take up, higher animals, or that can no longer sufficiently produce higher animals themselves, and thus have to additionally take up, even though they are readily synthesized by other organisms, such as bacteria For example, cats can no longer synthesize arachidonic acid.
Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phospha- tidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Es umfasst auch die Produktivität innerhalb einer Pflanzenzelle oder einer Pflanze, das heißt den Gehalt an den gewünschten im Verfahren hergestellten Fettsäuren bezogen auf den Gehalt an allen Fettsäuren in dieser Zelle oder Pflanze. Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Ver- bindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbau- wege dieser Verbindung in der Zelle, die diese Verbindung betreffen.In the context of the invention, phospholipids are to be understood as meaning phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and / or phosphatidylinositol, advantageously phosphatidylcholine. The terms production or productivity are known in the art and include the concentration of the fermentation product (compounds of formula I) formed in a given period of time and fermentation volume (eg, kg of product per hour per liter). It also includes productivity within a plant cell or plant, that is, the content of the desired fatty acids produced in the process based on the content of all fatty acids in that cell or plant. The term efficiency of production includes the time required to reach a certain amount of production (eg, how long the cell needs to set up a specific throughput rate of a fine chemical). The term yield or product / carbon yield is known in the art and includes the efficiency of converting the carbon source into the product (ie, the fine chemical). This is usually expressed, for example, as kg of product per kg of carbon source. By increasing the yield or production of the compound, the amount of the recovered molecules or molecules of this compound obtained in a given amount of culture is increased over a fixed period of time. The terms biosynthesis or biosynthetic pathway are known in the art and include the synthesis of a compound, preferably an organic compound. bond, through a cell of interconnects, for example in a multi-step and highly regulated process. The terms degradation or degradation pathway are well known in the art and involve the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), for example in a multi-step and highly regulated process. The term metabolism is known in the art and includes the entirety of the biochemical reactions that take place in an organism. The metabolism of a particular compound (eg the metabolism of a fatty acid) then comprises the entirety of the biosynthesis, modification and degradation pathways of this compound in the cell which affect this compound.
Bei einer weiteren Ausführungsform kodieren Derivate des erfiηdungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 Proteine mit mindestens 40 %, vorteilhaft etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 % und stärker bevor- zugt mindestens etwa 70 oder 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Se- quenzvergleiche wurde das Programm PiIeUp verwendet (J. Mol. Evolution., 25, 351- 360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Gene- tics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden. Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Δ-12-Desaturase, Δ-6-Desaturase, Δ-5- Desaturase oder Δ-4-Desaturase codieren wie diejenige, die von den in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Nukleotidsequenzen kodiert wird.In a further embodiment, derivatives of the nucleic acid molecule according to the invention encoded in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 encode proteins with at least 40%, advantageously approximately 50 or 60%, preferably at least about 60 or 70%, and more preferably at least about 70 or 80%, 80 to 90%, 90 to 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homology (= identity) to a complete amino acid sequence of SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16. The homology was over the entire amino acid or Nucleic acid sequence range calculated. For the comparison of sequences the program PiIeUp was used (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch Biol. 48: 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2: 482-489 (1981)], which are described in the GCG Software Packet [Genetic Computer Group, 575 Science Drive, Madison, Wisconsin, USA, 53711 (1991)]. The percent sequence homology values given above were determined using the BestFit program over the entire sequence range with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000 and Average Mismatch: 0.000, which were always used for sequence comparisons unless otherwise stated The invention also includes nucleic acid molecules which differ from any of the amino acid molecules shown in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 shown nucleotide sequences (and parts thereof) due to the degenerate differing genetic codes and thus encode the same Δ-12-desaturase, Δ-6-desaturase, Δ-5-desaturase or Δ-4-desaturase as that derived from those shown in SEQ ID NO: 7, SEQ ID NO: 9 , SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 is encoded.
Zusätzlich zu den in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 oder SEQ ID NO: 15 gezeigten Δ-12-Desaturasen, Δ-6-Desaturasen, Δ-5-Desaturasen oder Δ-4-Desaturasen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Δ-12-Desaturase, Δ-6-In addition to the Δ-12-desaturases shown in SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, Δ-6-desaturases, Δ-5 Those skilled in the art will recognize that desaturases or Δ-4-desaturases exhibit DNA sequence polymorphisms leading to changes in the Δ-12 desaturase amino acid sequences, Δ-6.
Desaturase, Δ-5-Desaturase und/oder Δ-4-Desaturase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Δ-12-Desaturase-, Δ-6- Desaturase-, Δ-5-Desaturase- und/oder Δ-4-Desaturase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase- und/oder Δ-4-Desaturase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Δ-12-Desaturase, Δ-6-Desaturase, Δ- 5-Desaturase und/oder Δ-4-Desaturase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von nicht verändern, sollen im Umfang der Erfindung enthalten sein. Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Δ-12-Desaturase-, Δ-5- Elongase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase- und/oder Δ-6- Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränken- des Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 650C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard- Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA: DNA-Hybride zum Beispiel 0,1 x SSC und 200C bis 45°C, vorzugsweise zwischen 300C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 300C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridi- sierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", CoId Spring Harbor Laboratory, 1989; Harnes und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991 , "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können. Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-Ηomologie", wie hier verwendet, entspricht Aminosäure- oder Nuklein- säure-"ldentität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.Desaturase, Δ-5-desaturase and / or Δ-4-desaturase can exist within a population. These genetic polymorphisms in Δ12-desaturase, Δ-6 Desaturase, Δ-5-desaturase and / or Δ-4-desaturase genes may exist between individuals within a population due to natural variation. These natural variants usually cause a variance of 1 to 5% in the nucleotide sequence of the Δ12-desaturase, Δ6-desaturase, Δ5-desaturase and / or Δ4-desaturase gene. All and all of these nucleotide variations and resulting amino acid polymorphisms in Δ12-desaturase, Δ6-desaturase, Δ5-desaturase and / or Δ4-desaturase are the result of natural variation and do not alter the functional activity of are intended to be included within the scope of the invention. Nucleic acid molecules which are advantageous for the process according to the invention can be prepared on the basis of their homology to the Δ-12-desaturase, Δ-5-elongase, Δ-6-desaturase, Δ-5-desaturase, Δ-4-desaturase and / or Δ-6 elongase nucleic acids using the sequences or a portion thereof as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. For example, isolated nucleic acid molecules which are at least 15 nucleotides long and can be used under stringent conditions with the nucleic acid molecules which have a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 comprise hybridizing. Nucleic acids of at least 25, 50, 100, 250 or more nucleotides may also be used. The term "hybridized under stringent conditions" as used herein is intended to describe hybridization and washing conditions under which nucleotide sequences that are at least 60% homologous to one another usually remain hybridized to one another. The conditions are preferably such that sequences that are at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous, are usually hybridized to each other. These stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridizations in 6x sodium chloride / sodium citrate (SSC) at about 45 ° C, followed by one or more washes in 0.2x SSC, 0.1%. SDS at 50 to 65 ° C. It is known to the person skilled in the art that these hybridization conditions differ depending on the type of nucleic acid and, for example, if organic solvents are present, with regard to the temperature and the concentration of the buffer. The temperature differs, for example under "standard hybridization conditions" depending on the type of nucleic acid between 42 ° C and 58 ° C in aqueous buffer with a concentration of 0.1 to 5 x SSC (pH 7.2). If organic solvent is present in the above buffer, for example 50% formamide, the temperature is about 42 ° C under standard conditions. Preferably, the hybridization conditions for DNA: DNA hybrids are, for example, 0.1 x SSC and 20 0 C to 45 ° C, preferably between 30 0 C and 45 ° C. Preferably, the hybridization conditions for DNA: RNA hybrids are, for example, 0.1 x SSC and 30 0 C to 55 ° C, preferably between 45 ° C and 55 ° C. The above-mentioned hybridization sierungsstemperaturen are determined, for example, for a nucleic acid having about 100 bp (= base pairs) in length and a G + C content of 50% in the absence of formamide. Those skilled in the art will understand how to obtain the required hybridization conditions from textbooks such as the aforementioned or the following textbooks, Sambrook et al., "Molecular Cloning", CoId Spring Harbor Laboratory, 1989; Harnes and Higgins (Eds.) 1985, Nucleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed.) 1991, Essential Molecular Biology: A Practical Approach, IRL Press at Oxford University Press, Oxford. To determine the percent homology (= identity) of two amino acid sequences (eg one of the sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16) or of two nucleic acids (eg SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15), the sequences are written one below the other for the purpose of optimal comparison (eg, gaps may be inserted into the sequence of a protein or nucleic acid for optimal alignment) the other protein or nucleic acid). The amino acid residues or nucleotides at the corresponding amino acid positions or nucleotide positions are then compared. If a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding site in the other sequence, then the molecules are homologous at that position (ie, amino acid or nucleic acid "homology" as used herein corresponds to amino acid The percentage homology between the two sequences is a function of the number of identical positions common to the sequences (ie% homology = number of identical positions / total number of positions x 100) Homology and identity are thus to be regarded as synonymous The programs or algorithms used are described above.
Ein isoliertes Nukleinsäuremolekül, das für eine Δ-12-Desaturase, Δ-6-Desaturase, Δ- 5-Desaturase, Δ-4-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 oder SEQ ID NO: 16 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder - deletionen in eine Nukleotidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 durch Standard- techniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin,An isolated nucleic acid molecule which encodes a Δ12-desaturase, Δ6-desaturase, Δ5-desaturase, Δ4-desaturase, Δ5-elongase and / or Δ6-elongase resulting in a protein sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16 is homologous can be prepared by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations may be included in any of the sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 by standard techniques such as site-specific mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made on one or more of the predicted nonessential amino acid residues. In a "conservative amino acid substitution", the amino acid residue is challenged exchanged an amino acid residue with a similar side chain. In the art, families of amino acid residues have been defined with similar side chains. These families include amino acids with basic side chains (eg, lysine, arginine, histidine), acidic side chains (eg, aspartic acid, glutamic acid), uncharged polar side chains (eg, glycine, asparagine, glutamine, serine, threonine, tyrosine,
Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Δ-12- Desaturase, Δ-6-Desaturase, Δ-5-Desaturase, Δ-4-Desaturase, Δ-5-Elongase oder Δ- 6-Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Δ- 12-Desaturase, Δ-6-Desaturase, Δ-5-Desaturase, Δ-4-Desaturase, Δ-5-Elongase oder Δ-6-Elongase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmuta- genese, und die resultierenden Mutanten können nach der hier beschriebenen Δ-12- Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-5-Elongase- oder Δ-6-Elongase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Δ- 12-Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-5-Elongase- oder Δ-6-Elongase-Aktivität beibehalten haben. Nach der Mutagenese einer derCysteine), non-polar side chains, (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (eg threonine, valine, isoleucine) and aromatic side chains (eg tyrosine, phenylalanine, tryptophan, histidine) , A predicted nonessential amino acid residue in a Δ12-desaturase, Δ6-desaturase, Δ5-desaturase, Δ4-desaturase, Δ5-elongase or Δ6-elongase is thus preferably replaced by a different amino acid residue exchanged from the same side chain family. Alternatively, in another embodiment, the mutations may be randomized over all or part of the Δ12-desaturase, Δ6-desaturase, Δ5-desaturase, Δ4-desaturase, Δ5-elongase or Δ-6. Elongase coding sequence can be introduced, eg by saturation mutagenesis, and the resulting mutants can be prepared according to the herein described Δ12-desaturase, Δ6-desaturase, Δ5-desaturase, Δ4-desaturase, Δ5-elongase or Δ 6 elongase activity to identify mutants carrying the Δ12-desaturase, Δ6-desaturase, Δ5-desaturase, Δ4-desaturase, Δ5-elongase or Δ6-elongase activity. After mutagenesis one of
Sequenzen SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden. Weitere Erfindungsgegenstände sind transgene nicht-humane Organismen, die die erfindungsgemäßen Nukleinsäuren SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13 oder SEQ ID NO: 15 enthalten oder ein Genkonstrukt oder einen Vektor, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten. Vorteilhaft handelt es sich bei dem nicht-humanen Organismus um einen Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze, besonders bevorzugt um eine Pflanze.Sequences SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 may be the coded protein can be recombinantly expressed, and the activity of the protein can be eg be determined using the tests described herein. Further subjects of the invention are transgenic non-human organisms which contain the inventive nucleic acids SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 or SEQ ID NO: 15 or a gene construct or a vector, containing these nucleic acid sequences according to the invention. Advantageously, the non-human organism is a microorganism, a non-human animal or a plant, more preferably a plant.
Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen. BeispieleThis invention is further illustrated by the following examples, which should not be construed as limiting. The contents of all references cited in this patent application, patent applications, patents, and published patent applications are incorporated herein by reference. Examples
Beispiel 1 : Allgemeine Klonierungsverfahren:Example 1 General Cloning Methods
Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (CoId Spring Harbor Laboratory Press: ISBN 0- 87969-309-6) beschrieben durchgeführt.The cloning methods such as restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli cells, culture of bacteria and sequence analysis of recombinant DNA were as in Sambrook et al. (1989) (CoId Spring Harbor Laboratory Press: ISBN 0-87969-309-6).
Beispiel 2: Sequenzanalyse rekombinanter DNA:Example 2 Sequence Analysis of Recombinant DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz- DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sei. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimieren- den Konstrukten sequenziert und überprüft.The sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. See, USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
Beispiel 3: Lipidextraktion aus Hefen und Samen: Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs- Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al.,Example 3: Lipid Extraction from Yeasts and Seeds: The effect of genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by subjecting the modified microorganisms or modified plant under suitable conditions ( as described above) and the medium and / or cellular components are assayed for increased production of the desired product (ie, lipids or a fatty acid). These analytical techniques are well known to those skilled in the art and include spectroscopy, thin layer chromatography, staining methods of various types, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al.
(1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemis- try and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al.(1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product Recovery and Purification", pp. 469-714, VCH: Weinheim; Belter, P.A., et al.
(1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J. F., und Cabral, J. M. S. (1992) Recovery processes for biological(1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological
Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11 , S. 1-27, VCH: Weinheim; und Dechow, FJ. (1989) Separation and purification techniques in biotechnology, Noyes Publications). Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22): 12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: OiIy Press (OiIy Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: OiIy Press, 1989, Repr. 1992, IX, 307 S. (OiIy Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, pp. 1-27, VCH: Weinheim; and Dechow, FJ. (1989) Separation and purification techniques in biotechnology, Noyes Publications). In addition to the above-mentioned methods, plant lipids derived from plant material as described by Cahoon et al. (1999) Proc. Natl. Acad. Be. USA 96 (22): 12935-12940, and Browse et al. (1986) Analytic Biochemistry 152: 141-145. Qualitative and quantitative lipid or fatty acid analysis is described in Christie, William W., Advances in Lipid Methodology, Ayr / Scotland: OiIy Press (Oli Press Lipid Library, 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: OiIy Press, 1989, Repr. 1992, IX, 307 p. (OiIy Press Lipid Library, 1); Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) et al .: Progress in the Chemistry of Fats and Other Lipids CODES.
Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P. F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin ange- gebenen Literaturstellen beschrieben.In addition to measuring the end product of the fermentation, it is also possible to analyze other components of the metabolic pathways involved in the production of the desired compound, such as intermediates and by-products, to determine the overall efficiency of production of the compound. The analytical methods include measurements of nutrient levels in the medium (eg, sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of biomass composition and growth, analysis of production of common biosynthetic pathway metabolites, and measurements of gases generated during fermentation. Standard methods for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, Eds., IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and references cited therein.
Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Tria- cylglycerin; TLC, Dünnschichtchromatographie).One example is the analysis of fatty acids (abbreviations: FAME, fatty acid methyl ester, GC-MS, gas-liquid chromatography-mass spectrometry, TAG, triacylglycerol, TLC, thin-layer chromatography).
Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, OiIy Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie- Verfahren, Lipide 33:343-353). Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in derThe unambiguous evidence for the presence of fatty acid products can be obtained by analysis of recombinant organisms by standard analytical methods: GC, GC-MS or TLC as variously described by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition. Christie, Oliver Press, Dundee, 119-169, 1998, Gas Chromatography Mass Spectrometry Method, Lipids 33: 343-353). The material to be analyzed can be prepared by ultrasonic treatment, grinding in the
Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 1000C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 900C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 1700C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.Glass mill, liquid nitrogen and grinding or broken down by other applicable methods. The material must be centrifuged after rupture. The sediment is distilled in aqua. re-suspended, heated at 100 ° C. for 10 minutes, cooled on ice and recentrifuged, followed by extraction into 0.5 M sulfuric acid in methanol with 2% dimethoxypropane for 1 hour at 90 ° C., resulting in hydrolyzed oil and lipid compounds, which give transmethylated lipids. These fatty acid methyl ester are extracted in petroleum ether and finally subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0.32 mm) at a temperature gradient between 170 0 C and 240 ° C for 20 min and 5 min at 240 ° C subjected. The identity of the resulting fatty acid methyl esters must be defined using standards available from commercial sources (ie Sigma).
Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen. Dann wird 10 min auf 1000C erhitzt und nach dem Abkühlen auf Eis erneut sedimen- tiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1 h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxy- oxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden. Beispiel 4: Klonierung von Genen aus Ostreococcus tauriPlant material is first mechanically homogenized by mortars to make it more accessible to extraction. The mixture is then heated for 10 min at 100 0 C and sedimented again after cooling on ice. The cell pellet is hydrolyzed with 1 M methanolic sulfuric acid and 2% dimethoxypropane for 1 h at 90 ° C and transmethylated the lipids. The resulting fatty acid methyl esters (FAME) are extracted into petroleum ether. The extracted FAME are purified by gas chromatography using a capillary column (Chrompack, WCOT Fused silica, CP-Wax-52CB, 25 m, 0.32 mm) and a temperature gradient from 170 ° C to 240 ° C in 20 min and 5 min at 240 ° C analyzed. The identity of Fatty acid methyl ester is confirmed by comparison with corresponding FAME standards (Sigma). The identity and the position of the double bond can be further analyzed by GC-MS by suitable chemical derivatization of the FAME mixtures, for example to give 4,4-dimethoxoxazoline derivatives (Christie, 1998). Example 4: Cloning of genes from Ostreococcus tauri
Durch Suche nach konservierten Bereichen in den Proteinsequenzen in Elongase- Genen konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:By searching for conserved regions in the protein sequences in elongase genes, two sequences with corresponding motifs could be identified in an Ostreococcus tauri sequence database (genomic sequences). These are the following sequences:
OtEIoI weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physco- mitrella EIo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn- Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 - 410) durchgeführt. OteloI has the highest similarity to an elongase from Danio rerio (GenBank AAN77156, about 26% identity), while OtElo2 bears the greatest similarity to the Physcomitella EIo (PSE) [ca. 36% identity] (alignments were performed with the tBLASTn algorithm (Altschul et al., J. Mol. Biol. 1990, 215: 403-410).
Die Klonierung wurde wie folgt durchgeführt: 40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei -200C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtEIo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Tag-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungs- schritt bei 72°C für 10 Minuten.The cloning was carried out as follows: 40 ml of a Ostreococcus tauri culture in the stationary phase were collected by centrifugation and resuspended in 100 .mu.l double-distilled Aqua and stored at -20 0 C. Based on the PCR method, the associated genomic DNAs were amplified. The appropriate primer pairs were selected to carry the yeast consensus sequence for high efficiency translation (Kozak, Cell 1986, 44: 283-292) adjacent to the start codon. The amplification of the OtEIo DNAs was carried out in each case with 1 μl of thawed cells, 200 μM dNTPs, 2.5 U day polymerase and 100 pmol of each primer in a total volume of 50 μl. The conditions for the PCR were as follows: first denaturation at 95 ° C for 5 minutes, followed by 30 cycles at 94 ° C for 30 seconds, 55 ° C for 1 minute and 72 ° C for 2 minutes and a final extension step at 72 ° C for 10 minutes.
Beispiel 5: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:Example 5 Cloning of Expression Plasmids for Heterologous Expression in Yeasts
Zur Charakterisierung der Funktion der Elongasen aus Ostreococcus tauri wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1 -Promotors von pYES2.1Λ/5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.To characterize the function of the elongases from Ostreococcus tauri, the open reading frames of the respective DNAs were cloned downstream of the galactose-inducible GAL1 promoter of pYES2.1Λ / 5-His-TOPO (Invitrogen) to give pOTE1 and pOTE2.
Der Saccharomyces cerev/s/ae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transfor- mierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.Saccharomyces cerev / s / ae strain 334 was transformed by electroporation (1500 V) with the vector pOTE1 and pOTE2, respectively. As a control, a yeast was used, which was transformed with the empty vector pYES2. The selection of the transfor- Yeasts were made on complete minimal medium (CMdum) agar plates with 2% glucose but without uracil. After selection, three transformants each were selected for further functional expression.
Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 300C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD600 von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 200C inkubiert.For the expression of the Ot elongases, first precultures each of 5 ml of CMdum liquid medium with 2% (w / v) raffinose but without uracil with the selected transformants were inoculated and incubated for 2 days at 30 ° C., 200 rpm. 5 ml of CMdum liquid medium (without uracil) containing 2% raffinose and 300 μM of various fatty acids were then inoculated with the precultures to an OD 600 of 0.05. Expression was induced by the addition of 2% (w / v) galactose. The cultures were incubated for a further 96 h at 20 ° C.
Beispiel 6: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in PflanzenExample 6: Cloning of expression plasmids for seed-specific expression in plants
Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtEIoI und OtElo2 abgeleitet.For the transformation of plants another transformation vector based on pSUN-USP was generated. For this purpose, Notl interfaces were inserted at the 5 'and 3' end of the coding sequences by means of PCR. The corresponding primer sequences were derived from the 5 'and 3 regions of OtElOI and OtElo2.
Zusammensetzung des PCR-Ansatzes (50 μl_):Composition of the PCR approach (50 μl_):
5,00 μL Template cDNA5.00 μL template cDNA
5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCI2 5,00 μL 2mM dNTP5.00 μL 10x buffer (Advantage polymerase) + 25 mM MgCl 2 5.00 μL 2 mM dNTP
1 ,25 μL je Primer (10 pmol/μL) 0,50 μL Advantage-Polymerase1.25 μL per primer (10 pmol / μL) 0.50 μL Advantage polymerase
Die Advantage-Polymerase von Clontech wurden eingesetzt. Reaktionsbedingungen der PCR: Anlagerungstemperatur: 1 min 550C Denaturierungstemperatur: 1 min 940C Elongationstemperatur: 2 min 720C Anzahl der Zyklen: 35The Advantage polymerase from Clontech was used. Reaction conditions of the PCR: annealing temperature: 1 min 55 ° C. Denaturation temperature: 1 min 94 ° C. Elongation temperature: 2 min 72 ° C. Number of cycles: 35
Die PCR Produkte wurden für 16 h bei 37 0C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose- Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert. pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz.P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny- lierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve.H., Dhaese,P., Seurinck.J., Lemmers.M., Van Montagu.M. and Schell.J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag- ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: δ'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-S'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.The PCR products were incubated for 16 h at 37 0 C with the restriction enzyme Notl. The plant expression vector pSUN300-USP was incubated in the same way. Subsequently, the PCR products and the vector were separated by agarose gel electrophoresis and the corresponding DNA fragments were excised. The purification of the DNA was carried out using Qiagen Gel Purification Kit according to the manufacturer. Subsequently, vector and PCR products were ligated. The Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids pSUN-OtELO1 and pSUN-OtELO2 were verified by sequencing. pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994). pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment. The polyadenylation signal is that of the Ostreococcus gene from the A. tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu M. and Schell J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl Genet 1 (6), 499-511 (1982) The USP promoter corresponds nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter The 684 base pair promoter fragment was transfected via commercially available T7 standard primer (Stratagene) and with the aid of a synthesized primer PCR reaction amplified by standard methods (primer sequence: δ'-GTCGACCCGCGGACTAGTGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-S ') The PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator to give the plasmid designated pSUN-USP .The K Onstrukt was used to transform Arabidopsis thaliana, rapeseed, tobacco and flaxseed.
Beispiel 7: Expression von OtELOI und OtELO2 in Hefen Hefen, die wie unter Beispiel 5 mit den Plasmiden pYES3, pYES3-0tEL01 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:Example 7: Expression of OtELOI and OtELO2 in Yeasts Yeasts transformed with the plasmids pYES3, pYES3-0tEL01 and pYES3-OtELO2 as in example 5 were analyzed as follows:
Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 200C) geerntet und mit 100 mM NaHCO3, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl- ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 800C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2SO4 getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23- Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850- Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.The yeast cells from the main cultures were (100 × g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed. From the yeast cell sediments, fatty acid methyl esters (FAMEs) were prepared by acid methanolysis. For this purpose, the cell sediments were incubated with 2 ml of 1N methanolic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° C. The extraction of the FAMES was carried out by extraction twice with petroleum ether (PE). To remove non-derivatized fatty acids, the organic phases were washed once each with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed. Subsequently, the PE phases were dried with Na 2 SO 4 , evaporated under argon and taken up in 100 μl of PE. The samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 μm, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector. The conditions for the GLC analysis were as follows: The oven temperature was programmed from 50 ° C to 250 ° C at a rate of 5 ° C / min and finally 10 min at 250 ° C (hold).
Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001 ,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360): 1581-1585, Sperling et al., 2001 , Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218. Beispiel 8: Funktionelle Charakterisierung von OtELOI und OtELO2:The signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma). The methodology is described, for example, in Napier and Michaelson, 2001, Lipids. 36 (8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52 (360): 1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388 (2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439 (3): 215-218. Example 8: Functional Characterization of OtELOI and OtELO2:
Die Substratspezifität der OtEIoI konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtEIoI -Reaktion. Dies bedeutet, dass das Gen OtEIoI funktional exprimiert werden konnte.The substrate specificity of OtEIoI was determined after expression and feeding of various fatty acids (Table 2). The lined substrates can be detected in large quantities in all transgenic yeasts. The transgenic yeasts showed the synthesis of new fatty acids, the products of the OtEIoI reaction. This means that the gene OteloI could be functionally expressed.
Tabelle 2 zeigt, dass die OtEIoI eine enge Substratspezifität aufweist. Die OtEIoI konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 2) und Arachidonsäure (Figur 3) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure. Tabelle 2:Table 2 shows that OteloI has a narrow substrate specificity. The OteloI was able to elongate only the C20 fatty acids eicosapentaenoic acid (Figure 2) and arachidonic acid (Figure 3), but preferred the ω-3-desaturated eicosapentaenoic acid. Table 2:
Tabelle 2 zeigt die Substratspezifität der Elongase OtEIoI für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in Δ5 Position gegenüber verschiedenen Fettsäuren. Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.Table 2 shows the substrate specificity of the elongase OteloI for C20 polyunsaturated fatty acids with a double bond in Δ5 position towards different fatty acids. The yeasts transformed with the vector pOTE1 were cultured in minimal medium in the presence of the indicated fatty acids. The synthesis of fatty acid methyl esters was carried out by acidic methanolysis of intact cells. Subsequently, the FAMEs were analyzed by GLC. Each value represents the mean value (n = 3) ± standard deviation.
Die Substratspezifität der OtElo2 (SEQ ID NO: 1) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 3). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.The substrate specificity of OtElo2 (SEQ ID NO: 1) could be determined after expression and feeding of various fatty acids (Table 3). The lined substrates can be detected in large quantities in all transgenic yeasts. The transgenic yeasts showed the synthesis of new fatty acids, the products of the OtElo2 reaction. This means that the gene OtElo2 could be expressed functionally.
Tabelle 3:Table 3:
Tabelle 3 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren. Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.Table 3 shows the substrate specificity of the elongase OtElo2 towards different fatty acids. The yeasts transformed with the vector pOTE2 were cultured in minimal medium in the presence of the indicated fatty acids. The synthesis of fatty acid methyl esters was carried out by acidic methanolysis of intact cells. Subsequently, the FAMEs were analyzed by GLC. Each value represents the mean value (n = 3) ± standard deviation.
Die enzymatische Aktivität, die in Tabelle 3 wiedergegeben wird, zeigt klar, dass OtElo2 eine Δ-6-Elongase ist.The enzymatic activity shown in Table 3 clearly shows that OtElo2 is a Δ6-elongase.
Beispiel 9: Rekonstitution der Synthese von DHA in HefeExample 9: Reconstitution of the Synthesis of DHA in Yeast
Die Rekonstitution der Biosynthese von DHA (22:6 ω3) kann ausgehend von EPA (20:5 ω3) bzw. Stearidonsäure (18:4 ω3) durch die Coexpression der OtEIoI mit der mit der Δ-4-Desaturase aus Euglena gracilis bzw. der Δ-5-Desaturase aus Phaeodac- tylum tricornutum und der Δ-4-Desaturase aus Euglena gracilis durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OtElo1 transformiert ist, kann dann weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu- PtD5 transformiert werden. Die Selektion der transformierten Hefen kann auf Komplett- Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OtElo/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OtElo/pYes2-EgD4+pESCLeu-PtD5-Stammes erflogen. Die Expression wird dann durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen werden anschließend für weitere 120 h bei 15°C inkubiert.The reconstitution of the biosynthesis of DHA (22: 6 ω3) can be carried out starting from EPA (20: 5 ω3) or stearidonic acid (18: 4 ω3) by the coexpression of OtEIoI with the Δ-4-desaturase from Euglena gracilis or the Δ-5-desaturase from Phaeodactylum tricornutum and the Δ-4-desaturase from Euglena gracilis performed. For this purpose, the expression vectors pYes2-EgD4 and pESCLeu-PtD5 were further constructed. The o.g. Yeast strain already transformed with the pYes3-OtElo1 can then be further transformed with the pYes2-EgD4 or simultaneously with pYes2-EgD4 and pESCLeu-PtD5. The selection of the transformed yeasts can be performed on complete minimal medium agar plates with 2% glucose but without tryptophan and uracil in the case of the pYes3-OtElo / pYes2-EgD4 strain and without tryptophan, uracil and leucine in the case of the pYes3-OtElo / pYes2- EgD4 + pESCLeu-PtD5 strain. Expression is then induced by the addition of 2% (w / v) galactose. The cultures are then incubated for a further 120 h at 15 ° C.
Beispiel 10: Erzeugung von transgenen Pflanzen a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242) Zur Erzeugung transgener Rapspflanzen werden die binäre Vektoren in Agrobacterium tumefaciens C58C1 :pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Hohenlieth, Deutschland), wird eine 1 :50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm2) werden dazu in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung erfolgt dann 3 Tage mit 16 Stunden Licht / 8 Stunden Dunkelheit. In wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) wird dann mit 1 ,6 g/l Glukose weiterinkubiert. Wachsende Sprosse werden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wird als Wachstumshormon 2-lndolbuttersäure zum Bewurzeln zum Medium gegeben.Example 10 Generation of Transgenic Plants a) Generation of Transgenic Rape Plants (Modified by Moloney et al., 1992, Plant Cell Reports, 8: 238-242) The transgenic rape plants are grown using the binary vectors in Agrobacterium tumefaciens C58C1: pGV2260 or Escherichia coli (Deblaere et al., 1984, Nucl. Acids. Res. 13, 4777-4788). For the transformation of oilseed rape plants (Var Drakkar, NPZ Nordeutsche plant breeding, Hohenlieth, Germany), a 1:50 dilution of an overnight culture of a positively transformed agrobacterial colony in Murashige-Skoog medium (Murashige and Skoog 1962 Physiol., Plant 15, 473) with 3 % Sucrose (3MS medium). Petioles or hypocotyledons of freshly germinated sterile rape plants (each about 1 cm 2 ) are incubated in a Petri dish with a 1:50 Agrobakterienverdünnung for 5-10 minutes. This is followed by a 3-day colncubation in darkness at 25 ° C on 3MS medium with 0.8% Bacto agar. Cultivation then takes 3 days with 16 hours of light / 8 hours of darkness. Weekly on MS medium containing 500 mg / l claforan (cefotaxime sodium), 50 mg / l kanamycin, 20 microM benzylaminopurine (BAP) is then further incubated with 1, 6 g / l glucose. Growing shoots are transferred to MS medium with 2% sucrose, 250 mg / L claforan and 0.8% Bacto agar. Formed after three weeks no roots, then 2-indolebutyric acid is added to the medium as growth hormone for rooting.
Regenerierte Sprosse werden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Elongase-Expression wie Δ-5-Elongase- oder Δ-6-Elongaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren können so identifiziert werden. b) Herstellung von transgenen LeinpflanzenRegenerated shoots are obtained on 2MS medium with kanamycin and claforan, transferred into soil after rooting and grown in a climatic chamber or greenhouse after cultivation for two weeks, flowered, harvested mature seeds and for elongase expression such as Δ-5 elongase or Δ6-elongase activity by lipid analysis. Lines with elevated levels of C20 and C22 polyunsaturated fatty acids can thus be identified. b) Production of transgenic flax plants
Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. Agrobakterien-vermittelte Transformationen können zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 hergestellt werden. Beispiel 11 : Klonierung von Desaturasegenen aus Ostreococcus tauriThe production of transgenic flax plants can be carried out, for example, according to the method of Bell et al., 1999, In Vitro Cell. Dev. Biol. Plant. 35 (6): 456-465 by means of particle bombartment. Agrobacteria-mediated transformations can be carried out, for example, according to Mlynarova et al. (1994), Plant Cell Report 13: 282-285. Example 11: Cloning of desaturase genes from Ostreococcus tauri
Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, Domergue et al. 2002, Eur. J. Biochem. 269, 4105- 4113) konnten fünf Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:By searching for conserved regions in the protein sequences using conserved motifs (His-Boxes, Domergue et al., 2002, Eur. J. Biochem., 269, 4105-4113), five sequences with corresponding motifs in an Ostreococcus tauri sequence database (genomic sequences ) be identified. These are the following sequences:
Die Alignments zur Auffindung von Homologien der einzelnen Gene wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 - 410) durchgeführt. Die Klonierung erfolgte wie folgt:The alignments for finding homologies of the individual genes were performed using the tBLASTn algorithm (Altschul et al., J. Mol. Biol. 1990, 215: 403-410). The cloning was as follows:
40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei -200C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtDes-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Tag-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 940C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungs- schritt bei 720C für 10 Minuten.40 ml of an Ostreococcus tauri culture in the stationary phase were centrifuged off and resuspended in 100 .mu.l bidistilled water and stored at -20 0 C. Based on the PCR method, the associated genomic DNAs were amplified. The appropriate primer pairs were selected to carry the yeast consensus sequence for high efficiency translation (Kozak, Cell 1986, 44: 283-292) adjacent to the start codon. Amplification of the OtDes DNAs was done with 1 μl of thawed cells, 200 μM dNTPs, 2.5 U Tag polymerase and 100 pmol of each primer in a total volume of 50 μl. The conditions for the PCR were as follows: first denaturation at 95 ° C for 5 minutes, followed by 30 cycles at 94 0 C for 30 seconds, 55 ° C for 1 minute and 72 ° C for 2 minutes, and a final extension step at 72 0 C for 10 minutes.
Folgende Primer wurden für die PCR eingesetzt:The following primers were used for the PCR:
OtD6.1 Forward: 5'ggtaccacataatgtgcgtggagacggaaaataacg3' OtD6.1 Reverse: 5'ctcgagttacgccgtctttccggagtgttggcc3'OtD6.1 Forward: 5'ggtaccacataatgtgcgtggagacggaaaataacg3 'OtD6.1 Reverse: 5'ctcgagttacgccgtctttccggagtgttggcc3'
Beim Vergleich der Aminosäure-Sequenz von Ot6.1 mit Sequenzen aus Datenbanken (National Center for Biotechnology, NCBI) durch BLAST (Altschul et al., J. Mol. Biol. 1990, 215: 403 - 410), zeigte sich, dass die höchste Sequenzähnlichkeit zu einer Δ5- Desaturase aus Thraustochytrium sp. vorliegt (Tabelle 4, Auswahl von Desaturasen). Für den Vergleich wurde das Program GAP der vorgenannten Software benutzt.When comparing the amino acid sequence of Ot6.1 with sequences from databases (National Center for Biotechnology, NCBI) by BLAST (Altschul et al., J. Mol. Biol. 1990, 215: 403-410), it was found that the highest sequence similarity to a Δ5-desaturase from Thraustochytrium sp. present (Table 4, selection of desaturases). For the comparison, the program GAP of the aforementioned software was used.
Tabelle 4: Liste von Fettsäure-Desaturasen mit den höchsten Sequenzhomologien zur Δ6-Desaturase von Osterococcus.Table 4: List of fatty acid desaturases with the highest sequence homologies to the Δ6-desaturase of Osterococcus.
Beispiel: 12 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen: Example: 12 Cloning of expression plasmids for heterologous expression in yeasts:
Zur Charakterisierung der Funktion der Desaturase OtD6.1 (= Δ-6-Desaturase) aus Ostreococcus tauri wurde der offenen Leserahmen der DNA stromabwärts des Galactose-induzierbaren GAL1 -Promotors von pYES2.1Λ/5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-OtD6.1 Klon erhalten wurde. In entsprechender Art und Weise können weitere Desaturase-Gene aus Ostreococcus kloniert werden.To characterize the function of the desaturase OtD6.1 (= Δ-6-desaturase) from Ostreococcus tauri, the open reading frame of the DNA was cloned downstream of the galactose-inducible GAL1 promoter of pYES2.1Λ / 5-His-TOPO (Invitrogen) the corresponding pYES2.1-OtD6.1 clone was obtained. In a corresponding manner, further desaturase genes from Ostreococcus can be cloned.
Der Saccharomyces cerews/'ae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pYES2.1-OtD6.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.The Saccharomyces cerews / ' ae strain 334 was transformed by electroporation (1500 V) with the vector pYES2.1-OtD6.1. As a control, a yeast was used, which was transformed with the empty vector pYES2. The selection of the transformed yeasts was carried out on complete minimal medium (CMdum) agar plates with 2% glucose, but without uracil. After selection, three transformants each were selected for further functional expression.
Für die Expresssion der OtD6.1 Desaturase wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 300C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD600 von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 200C inkubiert.For the expression of the OtD6.1 desaturase, precultures from 5 ml of CMdum liquid medium containing 2% (w / v) raffinose but no uracil were first inoculated with the selected transformants and incubated for 2 days at 30 ° C., 200 rpm. 5 ml of CMdum liquid medium (without uracil) containing 2% raffinose and 300 μM of various fatty acids were then inoculated with the precultures to an OD 600 of 0.05. Expression was induced by the addition of 2% (w / v) galactose. The cultures were incubated for a further 96 h at 20 ° C.
Beispiel: 13 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in PflanzenExample: 13 Cloning of expression plasmids for seed-specific expression in plants
Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Notl-Schnittstellen am 5' und 3'- Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.For the transformation of plants another transformation vector based on pSUN-USP is generated. For this purpose, Notl interfaces are inserted at the 5 'and 3' end of the coding sequences by means of PCR. The corresponding primer sequences are derived from the 5'- and 3-region desaturases.
Zusammensetzung des PCR-Ansatzes (50 μl_):Composition of the PCR approach (50 μl_):
5,00 μL Template cDNA 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCI2 5,00 μL 2mM dNTP 1 ,25 μL je Primer (10 pmol/μL) 0,50 μL Advantage-Polymerase5.00 μL template cDNA 5.00 μL 10x buffer (Advantage polymerase) + 25 mM MgCl 2 5.00 μL 2 mM dNTP 1.25 μL per primer (10 pmol / μL) 0.50 μL Advantage polymerase
Die Advantage-Polymerase von Clontech wurden eingesetzt. Reaktionsbedingungen der PCR:The Advantage polymerase from Clontech was used. Reaction conditions of the PCR:
Anlagerungstemperatur: 1 min 550C Denaturierungstemperatur: 1 min 940C Elongationstemperatur: 2 min 720C Anzahl der Zyklen: 35Annealing temperature: 1 min 55 0 C denaturation temperature: 1 min 94 0 C elongation temperature: 2 min 72 0 C number of cycles: 35
Die PCR Produkte werden für 16 h bei 37 0C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose- Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnit- ten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.The PCR products are incubated for 16 h at 37 0 C with the restriction enzyme Notl. The plant expression vector pSUN300-USP is incubated in the same way. The PCR products and the vector are subsequently separated by agarose gel electrophoresis and the corresponding DNA fragments are excised. The DNA is purified using the Qiagen Gel Purification Kit according to the manufacturer's instructions. Subsequently, vector and PCR products are ligated. The Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids are verified by sequencing.
pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz.P, Svab, Z1 Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny- lierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck.J., Lemmers.M., Van Montagu.M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag- ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z 1 Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation, Plant Mol Biol 25: 989-994). pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment. The polyadenylation signal is that of the Ostreococcus gene from the A. tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck J., Lemmers, M., Van Montagu M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl Genet 1 (6), 499-511 (1982) The USP promoter corresponds nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter The 684 base pair promoter fragment was transfected via commercially available T7 standard primer (Stratagene) and with the aid of a synthesized primer PCR reaction amplified by standard methods (primer sequence: 5'-
GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3 '). The PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator. The resulting plasmid was named pSUN-USP. The construct was used to transform Arabidopsis thaliana, rapeseed, tobacco and linseed.
Beispiel: 14 Expression von OtDes6.1 in HefenExample: 14 Expression of OtDes6.1 in Yeasts
Hefen, die wie unter Beispiel 11 mit den Plasmiden pYES2 und pYES2-OtDes6.1 transformiert wurden, wurden folgendermaßen analysiert: Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 200C) geerntet und mit 100 mM NaHCO3, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Die Hefe-Zellsedimente wurden 4 h mit Chloroform/Methanol (1:1) extrahiert. Die resultierende organische Phase wurde mit 0,45 % NaCI extrahiert, mit Na2SO4 getrocknet und unter Vakuum evaporiert. Der Lipidextrakt wurde durch Dünnschicht-Chromatographie (Horizontal-Tank,Yeasts transformed with the plasmids pYES2 and pYES2-OtDes6.1 as in Example 11 were analyzed as follows: The yeast cells from the main cultures were (100 × g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed. The yeast cell pellets were extracted with chloroform / methanol (1: 1) for 4 hours. The resulting organic phase was extracted with 0.45% NaCl, dried with Na 2 SO 4 and evaporated in vacuo. The lipid extract was purified by thin layer chromatography (horizontal tank,
Chloroform:Methanol:Essigsäure 65:35:8) weiter in die Lipidklassen Phosphatidylcholin (PC), Phosphatidiylinositol (PI), Phosphatidyserin (PS), Phosphatidylethanolamine (PE) und Neutral-Lipide (NL) aufgetrennt. Die verschiedenen aufgetrennten Spots auf der Dünnschichtplatte wurden abgekratzt. Für die gaschromatografische Analyse wurdeChloroform: methanol: acetic acid 65: 35: 8) are further separated into the lipid classes phosphatidylcholine (PC), phosphatidiylinositol (PI), phosphatidyserine (PS), phosphatidylethanolamine (PE) and neutral lipids (NL). The various split spots on the thin-layer plate were scraped off. For gas chromatographic analysis was
Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypro- pan für 1 h bei 800C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2SO4 getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB- 23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850- Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 2500C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.Fatty acid methyl ester (FAMEs) produced by acid methanolysis. For this purpose, the cell sediments were incubated with 2 ml of 1 N methanolic sulfuric acid and 2% (v / v) dimethoxypropane at 80 ° C. for 1 h. The extraction of the FAMES was carried out by extraction twice with petroleum ether (PE). To remove non-derivatized fatty acids, the organic phases were washed once each with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed. Subsequently, the PE phases were dried with Na 2 SO 4 , evaporated under argon and taken up in 100 μl of PE. The samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 μm, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector. The conditions for the GLC analysis were as follows: The oven temperature was finally programmed from 50 ° C to 250 0 C at a rate of 5 ° C / min and 10 min at 250 ° C (hold).
Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001 ,Lipids. 36(8):761-766; Sayanova et al., 2001 , Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001 , Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.The signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma). The methodology is described, for example, in Napier and Michaelson, 2001, Lipids. 36 (8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52 (360): 1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388 (2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439 (3): 215-218.
Für die Extraktion (Scherling et al. 1996, J Biol Chem 271 , 22514-22521) von Acyl- CoA-Estern wurden 4 ml Hefe-Kultur (OD600=1 ,5) nach der Methode von) verwendet. Die Derivatisierung der Acyl-Co-Ester und deren Analyse durch HPLC wurde wie in Larson TR and Graham IA, 2001 Plant J 25, 115-125 beschrieben, durchgeführt.For the extraction (Scherling et al., 1996, J Biol Chem 271, 22514-22521) of acyl-CoA esters, 4 ml of yeast culture (OD600 = 1.5) was used according to the method of FIG. Derivatization of the acyl-co-esters and their analysis by HPLC was performed as described in Larson TR and Graham IA, 2001 Plant J 25, 115-125.
Beispiel: 15 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus:Example: 15 Functional Characterization of Desaturases from Ostreococcus:
Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15-Desaturasen, WO 94/11516 für Δ12-Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001 , J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hoπg et al. 2002, Lipids 37,863-868 für Δ5- Desatu rasen.The substrate specificity of desaturases can be determined after expression in yeast (see examples cloning of desaturase genes, yeast expression) by feeding using various yeasts. Descriptions for the determination of the individual activities can be found in WO 93/11245 for Δ15 desaturases, WO 94/11516 for Δ12 desaturases, WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO0021557 and WO 99/27111 for Δ6-desaturases, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 for Δ4-desaturases, Hoπg et al. 2002, Lipids 37,863-868 for Δ5-desaturase.
Tabelle 4 gibt die Substratspezifität der Desaturase OtDes6.1 gegenüber verschiedenen Fettsäuren wieder. Die Substratspezifität der OtDes6.1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtDes6.2-Reaktion (Fig. 4). Dies bedeutet, dass das Gen OtDes6.1 funktional exprimiert werden konnte.Table 4 shows the substrate specificity of the desaturase OtDes6.1 versus various fatty acids. The substrate specificity of OtDes6.1 could be determined after expression and feeding of different fatty acids. The lined substrates can be detected in large quantities in all transgenic yeasts. The transgenic yeasts showed the synthesis of new fatty acids, the products of the OtDes6.2 reaction (Figure 4). This means that the gene OtDes6.1 could be expressed functionally.
Die Hefen, die mit dem Vektor pYES2-OtDes6.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder. Die Aktivität entspricht der Konversionsrate errechnet nach [Substrat/(Substrat+Produkt)*100].Yeasts transformed with the vector pYES2-OtDes6.1 were cultured in minimal medium in the presence of the indicated fatty acids. The synthesis of fatty acid methyl esters was carried out by acidic methanolysis of intact cells. Subsequently, the FAMEs were analyzed by GLC. Each value represents the mean value (n = 3) ± standard deviation. The activity corresponds to the conversion rate calculated according to [substrate / (substrate + product) * 100].
Tabelle 4 zeigt, dass die OtDes6.1 eine Substratspezifität für Linol- und Linolensäure (18:2 und 18:3) aufweist, da mit diesen Fettsäuren die höchsten Aktivitäten erreicht werden. Die Aktivität für Ölsäure (18:1) und Palmitoleinsäure (16:1) ist dagegen deutlich geringer. Die bevorzugte Umsetzung von Linol- und Linolensäure zeigt die Eignung dieser Desaturase für die Herstellung von polyungesättigten Fettsäuren.Table 4 shows that the OtDes6.1 has a substrate specificity for linoleic and linolenic acid (18: 2 and 18: 3), since these fatty acids achieve the highest activities. The activity for oleic acid (18: 1) and palmitoleic acid (16: 1), however, is significantly lower. The preferred reaction of linoleic and linolenic acid shows the suitability of this desaturase for the production of polyunsaturated fatty acids.
Figur 4 zeigt die Umsetzung von Linolsäure durch OtDes6.2. Die Analyse der FAMEs erfolgte über Gaschrommatographie. Das gefütterte Substrat (C18:2) wird zu γ-C18:3 umgesetzt. Sowohl Edukt als auch das entstandene Produkt sind durch Pfeile markiert.FIG. 4 shows the conversion of linoleic acid by OtDes6.2. The analysis of the FAMEs was done by gas chromatography. The lined substrate (C18: 2) is converted to γ-C18: 3. Both starting material and the resulting product are marked by arrows.
Kinetische Analyse der Fettsäureveränderungen in Acyl-CoA-Estern und Lipiden von Hefekulturen, die OtDes6.1 exprimieren:Kinetic analysis of fatty acid changes in acyl-CoA esters and lipids from yeast cultures expressing OtDes6.1:
Eine Kultur des Hefestammes INVSd , transformiert mit pYES-Ot6.1 (siehe Beispiel 12), wurde für 24 h bei 30 0C in der Gegenwart von Galaktose inkubiert. Anschliessend wurde 250 uM Linolsäure (18:2Δ9,12) zugesetzt und zu verschiedenen Zeitpunkten Hefezellen entnommen und analysiert (0 min, 5 min, 1 h, 4 h). Analysiert wurden das Gesamtfettsäurespektrum durch GC (Fig. 6, links) bzw. die Acyl-CoA-Ester durch HPLC (Fig. 6, rechts).A culture of the yeast strain INVSd transformed with pYES-Ot6.1 (see Example 12) was incubated for 24 h at 30 0 C in the presence of galactose. Subsequently 250 μM linoleic acid (18: 2Δ9,12) was added and yeast cells were removed at various times and analyzed (0 min, 5 min, 1 h, 4 h). The total fatty acid spectrum was analyzed by GC (FIG. 6, left) or the acyl-CoA esters by HPLC (FIG. 6, right).
Dabei kann beobachtet werden, dass die zugegebene Fettsäure (18:2Δ9,12) bereits beim ersten Messpunkt (5 min) sowohl in den Gesamtlipiden als auch in den Acyl-CoA- Estern detektierbar ist. Ebenfalls zu diesem frühen Zeitpunkt ist auch schon das Produkt der Reaktion der Ot6.1-Desaturase in den Acyl-CoA-Estern zu finden. Dieses Produkt bleibt über den weiteren Zeitverlauf quantitative stabil. In den Gesamtlipiden ist das Produkt erst nach 4 h deutlich sichtbar. Die Detektion des Acy-CoA-Ester-It can be observed that the added fatty acid (18: 2Δ9,12) is already detectable at the first measuring point (5 min) both in the total lipids and in the acyl-CoA esters. Also at this early stage is already the product of the reaction of Ot6.1-desaturase in the acyl-CoA esters. This product remains quantitatively stable over time. In the total lipids, the product is clearly visible after 4 hours. The detection of the Acy-CoA ester
Produktes der Ot6.1-Desaturase bevor das Produkt in den Gesamtlipiden detektiert werden kann, spricht dafür, dass die Desaturase als Substrat CoA-Ester und nicht Phospholipide verwendet.Product of Ot6.1-desaturase before the product can be detected in the total lipids, suggests that the desaturase used as a substrate CoA ester and not phospholipids.
In Figur 7 wird die Umsetzung von Linolsäure (= LA) und α-Linolensäure (= ALA) in Gegenwart von OtDes6.1 zu γ-Linolensäure (= GLA) bzw. Stearidonsäure (= STA) wiedergegeben (Figur 5 A und C). Weiterhin zeigt Figur 5 die Umsetzung von Linolsäure (= LA) und α-Linolensäure (= ALA) in Gegenwart der Δ-6-Desaturase OtDes6.1 zusammen mit der Δ-6-Elongase PSE1 aus Physcomitrella patens (Zank et al. 2002, Plant J. 31 :255-268) und der Δ-5-Desaturase PtD5 aus Phaeodactylum tricomutum (Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) zu Dihomo-γ-linolensäure (= DHGLA) und Arachidonsäure (= ARA, Figur 5 B) bzw. zu Dihomostearidonsäure (= DHSTA) bzw. Eicosapentaensäure (= EPA, Figur 5 D). Figur 5 zeigt deutlich, dass die Reaktionsprodukte GLA und STA der Δ-6-Desaturase OtDes6.1 in Gegenwart der Δ-6- Elongase PSE1 fast quantitativ zu DHGLA bzw. DHSTA elongiert wird. Die nachfol- gende Desaturierung durch die Δ-5-Desaturase PtD5 erfolgt ebenfalls reibungslos zu ARA bzw. EPA. Es werden ca. 25 - 30% des Elongaseprodukts desaturiert (Figur 5 B und D). Tabelle 5 gibt eine Übersicht über die Rekonstitution von ARA bzw. EPA. Gemessen wurden die Gesamtfettsäuren. Verglichen mit Phospholipid-abhängigen Desaturasen wie z.B. beschrieben in Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113, ist ein deutlicher Anstieg (ca. 6fach) der Endprodukte ARA und EPA zu verzeichnen. Tabelle 5: Rekonstituierung der Biosynthese von PUFA in Hefe.FIG. 7 shows the reaction of linoleic acid (= LA) and α-linolenic acid (= ALA) in the presence of OtDes6.1 to form γ-linolenic acid (= GLA) or stearidonic acid (= STA) (FIGS. 5 A and C). 5 shows the reaction of linoleic acid (= LA) and α-linolenic acid (= ALA) in the presence of the Δ-6-desaturase OtDes6.1 together with the Δ-6 elongase PSE1 from Physcomitrella patens (Zank et al. Plant J. 31: 255-268) and Phaeodactylum tricomutum Δ5-desaturase PtD5 (Domergue et al., 2002, Eur. J. Biochem 269, 4105-4113) to dihomo-γ-linolenic acid (= DHGLA) and Arachidonic acid (= ARA, FIG. 5 B) or to dihomostearidonic acid (= DHSTA) or eicosapentaenoic acid (= EPA, FIG. 5 D). FIG. 5 clearly shows that the reaction products GLA and STA of Δ6-desaturase OtDes6.1 are almost quantitatively elongated to DHGLA or DHSTA in the presence of Δ6-elongase PSE1. The subsequent desaturation by the Δ-5-desaturase PtD5 also proceeds smoothly to ARA or EPA. Approximately 25-30% of the elongated gland product is desaturated (FIGS. 5 B and D). Table 5 gives an overview of the reconstitution of ARA or EPA. The total fatty acids were measured. Compared with phospholipid-dependent desaturases such as described in Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113, there is a clear increase (about 6-fold) of the final products ARA and EPA. Table 5: Reconstitution of the biosynthesis of PUFA in yeast.
Die Synthese von isoARA (20:4Δ8, 11 ,14,17) wurde in einem ähnlichen Experiment wie oben beschrieben auch im CoA-Ester-Pool untersucht. Dazu wurde eine Hefekultur transformiert mit pYES-Ot6.1 und pLEU-PSE1 (beschrieben in Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) angezogen und Linolensäure (18:3Δ9,12,15) zugegeben. Nach verschiedenen Zeitpunkten (0 min, 5 min, 1 h, 4 h) nach Zugabe wurden Hefezellen entnommen und die Gesamtlipide durch GC (Fig. 7, links) bzw. die Acyl-CoA-Ester durch HPLC analysiert (Fig. 7, rechts). Dabei konnte gezeigt werden, dass sowohl die Produkte von Ot6.1 als auch der Elongase PSE1 bereits zum fürhesten Zeitpunkt im Acyl-CoA-Pool gefunden werden. Da für Elongasen die Acyl-CoA-Ester als Substrat dienen (Zank et al. 2002, Plant J, 31 :255-268), kann damit gezeigt werden, dass auch die Ot6.1-Desaturase dasselbe Substrat haben muss. Figur 8 fasst dieses Ergebnis zusammen. Während die Verteilung der beiden Acyl-CoA-abhängigen Enzyme OtD6 und PSE1 über die verschiedenen Lipidklassen und Positionen sehr homogen ist, ist dies für die Phospholipid- abhängige Δ5-Desaturase aus Phaeodactylum tricornutum nicht der Fall. Hier kann eine Akkumulation in der sn-2 Position von Phosphatidylcholin demonstriert werden. Wie in Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113 beschrieben, hat die Δ5-Desaturase Phosphatidylcholin als Substrat.The synthesis of isoARA (20: 4Δ8, 11, 14, 17) was also investigated in the CoA ester pool in a similar experiment as described above. For this, a yeast culture transformed with pYES-Ot6.1 and pLEU-PSE1 (described in Domergue et al., 2002, Eur. J. Biochem., 269, 4105-4113) was added and linolenic acid (18: 3Δ9, 12, 15) added. After various time points (0 min, 5 min, 1 h, 4 h) after addition, yeast cells were removed and the total lipids were analyzed by GC (FIG. 7, left) or the acyl-CoA esters by HPLC (FIG. 7, right ). It could be shown that both the products of Ot6.1 and the elongase PSE1 are already found in the acyl-CoA pool at the earliest stage. Since the acyl-CoA esters serve as substrate for elongases (Zank et al., 2002, Plant J, 31: 255-268), it can be shown that the Ot6.1 desaturase must also have the same substrate. FIG. 8 summarizes this result. While the distribution of the two acyl-CoA-dependent enzymes OtD6 and PSE1 is very homogeneous across the different lipid classes and positions, this is not the case for the phospholipid-dependent Δ5-desaturase from Phaeodactylum tricornutum. Here an accumulation in the sn-2 position of phosphatidylcholine can be demonstrated. As in Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113, the Δ5-desaturase has phosphatidylcholine as a substrate.
Die folgenden Tabelle 6 gibt eine Übersiche über die Monierten Ostreococcus Desatu- rasen wieder:The following Table 6 gives an overview of the Montenal Ostreococcus Desaturases:
Beispiel: 16 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in PflanzenExample: 16 Cloning of expression plasmids for seed-specific expression in plants
Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Noti-Schnittstellen am 5' und 3'- Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet. Zusammensetzung des PCR-Ansatzes (50 μL):For the transformation of plants another transformation vector based on pSUN-USP is generated. For this purpose Noti interfaces are inserted at the 5 'and 3' end of the coding sequences by means of PCR. The corresponding primer sequences are derived from the 5'- and 3-region desaturases. Composition of the PCR approach (50 μL):
5,00 μL Template cDNA5.00 μL template cDNA
5,00 μL 1Ox Puffer (Advantage-Polymerase)+ 25mM MgCI2 5,00 μL 2mM dNTP 1 ,25 μL je Primer (10 pmol/μL) 0,50 μL Advantage-Polymerase5.00 μL 1X buffer (Advantage polymerase) + 25 mM MgCl 2 5.00 μL 2 mM dNTP 1.25 μL per primer (10 pmol / μL) 0.50 μL Advantage polymerase
Die Advantage-Polymerase von Clontech wurden eingesetzt.The Advantage polymerase from Clontech was used.
Reaktionsbedingungen der PCR:Reaction conditions of the PCR:
Anlagerungstemperatur: 1 min 550C Denaturierungstemperatur: 1 min 940C Elongationstemperatur: 2 min 720C Anzahl der Zyklen: 35Annealing temperature: 1 min 55 0 C denaturation temperature: 1 min 94 0 C elongation temperature: 2 min 72 0 C number of cycles: 35
Die PCR Produkte werden für 16 h bei 37 0C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-The PCR products are incubated for 16 h at 37 0 C with the restriction enzyme Notl. The plant expression vector pSUN300-USP is incubated in the same way. Subsequently, the PCR products and the vector are replaced by agarose
Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.Separated gel electrophoresis and cut out the corresponding DNA fragments. The DNA is purified using the Qiagen Gel Purification Kit according to the manufacturer's instructions. Subsequently, vector and PCR products are ligated. The Rapid Ligation Kit from Roche was used for this purpose. The resulting plasmids are verified by sequencing.
pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz.P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyade- nylierungssignal ist das OCS-Gen aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck.J., Lemmers.M., Van Montagu.M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Gen- bank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'- GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-S1). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation, Plant Mol Biol 25: 989-994). pSUN-USP was generated from pSUN300 by inserting into pSUN300 a USP promoter as an EcoRI fragment. The polyadenylation signal is the OCS gene from the A. tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve.H., Dhaese.P., Seurinck J., Lemmers. M., Van Montagu M.M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl Genet 1 (6), 499-511 (1982) The USP promoter corresponds to the Nucleotides 1 to 684 (Genbank Accession X56240), wherein part of the non-coding region of the USP gene is contained in the promoter The 684 base pair promoter fragment was obtained by commercially available T7 standard primer (Stratagene) and by means of a synthesized primer via PCR Reaction amplified by standard methods (primer sequence: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-S 1 ). The PCR fragment was rescored with EcoRI / SalI and inserted into the vector pSUN300 with OCS terminator. The resulting plasmid was named pSUN-USP. The construct was used to transform Arabidopsis thaliana, rapeseed, tobacco and linseed.
Beispiel: 17 Expression von Ostreococcus-Desaturasen in HefenExample: 17 Expression of Ostreococcus Desaturases in Yeasts
Hefen, die wie unter Beispiel 11 mit den Plasmiden pYES2 und pYES2-Ostreococcus- Desaturasen transformiert werden, werden folgendermaßen analysiert:Yeasts which are transformed as described in Example 11 with the plasmids pYES2 and pYES2-Ostreococcus desaturases are analyzed as follows:
Die Hefezellen aus den Hauptkulturen werden durch Zentrifugation (100 x g, 5 min, 200C) geerntet und mit 100 mM NaHCO3, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten werden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu werden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 800C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren werden die organi- sehen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend werden die PE-Phasen mit Na2SO4 getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben werden auf einer DB-23- Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850- Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse sind wie folgt: Die Ofentemperatur wird von 500C bis 25O0C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.The yeast cells from the main cultures are (100 × g, 5 min, 20 0 C) harvested by centrifugation and washed with 100 mM NaHCO 3, pH 8.0 to remove residual medium and fatty acids to be removed. From the yeast cell sediments, fatty acid methyl esters (FAMEs) are produced by acid methanolysis. For this purpose, the cell sediments are incubated with 2 ml of 1N methanolic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° C. The extraction of the FAMES was carried out by extraction twice with petroleum ether (PE). To remove non-derivatized fatty acids, the organic phases are each determined once with 2 ml of 100 mM NaHCO 3 , pH 8.0 and 2 ml of distilled water. washed. Subsequently, the PE phases are dried with Na 2 SO 4 , evaporated under argon and taken up in 100 μl of PE. The samples are separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 μm, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector. The conditions for the GLC analysis are as follows: The oven temperature is eventually programmed from 50 0 C to 25O 0 C at a rate of 5 ° C / min and 10 min at 250 ° C (hold).
Die Identifikation der Signale erfolgt durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001 ,Lipids. 36(8):761-766; Sayanova et al., 2001 , Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001 , Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.The signals are identified by comparison of the retention times with corresponding fatty acid standards (Sigma). The methodology is described, for example, in Napier and Michaelson, 2001, Lipids. 36 (8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52 (360): 1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388 (2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439 (3): 215-218.
Beispiel: 18 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus tauri: ''Example: 18 Functional characterization of desaturases from Ostreococcus tauri: ''
Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15-Desaturasen, WO 94/11516 für Δ12-Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001 , J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5- Desaturasen. Die Aktivität der einzelnen Desaturasen wird aus der Konversionsrate errechnet nach der Formel [Substrat/(Substrat+Produkt)*100].The substrate specificity of desaturases can be determined after expression in yeast (see examples cloning of desaturase genes, yeast expression) by feeding using various yeasts. Descriptions for the determination of the individual activities can be found in WO 93/11245 for Δ15 desaturases, WO 94/11516 for Δ12 desaturases, WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO0021557 and WO 99/27111 for Δ6-desaturases, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 for Δ4-desaturases, Hong et al. 2002, Lipids 37,863-868 for Δ5-desaturases. The activity of the individual desaturases is calculated from the conversion rate according to the formula [substrate / (substrate + product) * 100].
Äquivalente:equivalents:
Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfin- dungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglichThe person skilled in the art will recognize or be able to ascertain many equivalents of the specific embodiments according to the invention described here, by merely specifying
Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein. Routine experiments used. These equivalents are intended to be encompassed by the claims.

Claims

Patentansprücheclaims
1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I1. A process for the preparation of compounds of general formula I.
in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-6-Desaturase-Aktivität codiert, und b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-6-Elongase-Aktivität codiert, und c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:in transgenic organisms with a content of at least 1 wt .-% of these compounds based on the total lipid content of the transgenic organism, characterized in that it comprises the following steps: a) introducing at least one nucleic acid sequence into the organism, which for a Δ-6-desaturase And b) introduction of at least one nucleic acid sequence into the organism which codes for a Δ6-elongase activity, and c) introduction of at least one nucleic acid sequence into the organism which codes for a Δ5-desaturase activity, and d) introducing into the organism at least one nucleic acid sequence encoding Δ5-elongase activity, and e) introducing into the organism at least one nucleic acid sequence encoding a Δ4-desaturase activity, and wherein the variables and substituents in the formula I have the following meaning:
R1 = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso- Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel IlR 1 = hydroxyl, coenzyme A (thioester), lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso-phosphatidylserine, lyso-phosphatidylinositol, sphingobase, or a residue of the general Formula Il
R = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-R = hydrogen, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol, lyso-diphosphatidylglycerol, lyso
8 Fig / 16 Seq Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-,8 Fig. 16 Seq Phosphatidylserine, lyso-phosphatidylinositol or saturated or unsaturated C 2 -C 24 alkylcarbonyl,
R = Wasserstoff-, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, - oder R2 oder R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia:R = hydrogen, saturated or unsaturated C 2 -C 24 -alkylcarbonyl-, or R 2 or R 3 independently of one another a radical of general formula Ia:
n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.n = 2, 3, 4, 5, 6, 7 or 9, m = 2, 3, 4, 5 or 6 and p = 0 or 3.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Nuklein- säuresequenzen, die für Polypeptide mit Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 oder SEQ ID NO: 13 dargestellten Sequenz, oder b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 oder SEQ ID NO: 14 dargestellten Aminosäuresequenzen ableiten lassen, oder c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID N0:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 oder SEQ ID NO: 13 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % I- dentität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID N0:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 oder SEQ ID NO: 14 codieren und eine Δ-6-Desaturase-, Δ-6-Elongase-, Δ-5- Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität aufweisen.Process according to Claim 1, characterized in that the nucleic acid sequences which are suitable for polypeptides having Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ-4- Desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID SEQ ID NO: 11 or SEQ ID NO: 13, or b) nucleic acid sequences which, as a result of the degenerate genetic code, are different from those shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or SEQ ID NO: 14, or c) derivatives of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 shown for polypeptides having at least 40% identity at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 SEQ ID NO: 12 or SEQ ID NO: 14 and have a Δ6-desaturase, Δ6-elongase, Δ5-desaturase, Δ5-elongase or Δ4-desaturase activity.
Verfahren nach den Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit Δ-12-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 15 dargestellten Sequenz, oder b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 16 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 15 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mitA method according to claim 1 or 2, characterized in that in addition to the organism a nucleic acid sequence is introduced which codes for polypeptides with Δ-12 desaturase activity, selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15 shown sequence, or b) nucleic acid sequences which can be derived as a result of the degenerate genetic code of the amino acid sequence shown in SEQ ID NO: 16, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which for polypeptides having at least 50% identity at the amino acid level
SEQ ID NO: 16 codieren und eine Δ-12-Desaturasaktivität aufweisen.SEQ ID NO: 16 and have Δ-12 desaturase activity.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die4. Process according to claims 1 to 3, characterized in that the
Substituenten R2 oder R3 unabhängig voneinander gesättigtes oder ungesättigtes C18-C22-Alkylcarbonyl- bedeuten. 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Substituenten R2 oder R3 unabhängig voneinander ungesättigtes C18-, C20- oder C22-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.Substituents R 2 or R 3 independently of one another are saturated or unsaturated C 18 -C 22 -alkylcarbonyl-. 5. Process according to claims 1 to 4, characterized in that the substituents R 2 or R 3 independently of one another are unsaturated C 18 -, C 20 - or C 22 -alkylcarbonyl having at least two double bonds.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der transgene Organismus ein transgener Mikroorganismus oder eine transgene Pflanze ist.6. Process according to claims 1 to 5, characterized in that the transgenic organism is a transgenic microorganism or a transgenic plant.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der transgene Organismus eine Öl-produzierende Pflanze, eine Gemüsepflanze oder Zierpflanze ist.7. The method according to claims 1 to 6, characterized in that the transgenic organism is an oil-producing plant, a vegetable or ornamental plant.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der8. Process according to claims 1 to 7, characterized in that the transgenic organism is a transgenic plant selected from the group of
Pflanzenfamilien: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Be- tulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannaba- ceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Gerania- ceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae oderPlant families: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Tuluaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaeae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae or
Prasinophyceae ist.Prasinophyceae is.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer öle, Lipide oder freien Fettsäuren isoliert werden. 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die9. Process according to claims 1 to 8, characterized in that the compounds of the general formula I are isolated from the organism in the form of their oils, lipids or free fatty acids. 10. The method according to claims 1 to 9, characterized in that the
Verbindungen der allgemeinen Formel I in einer Konzentration von mindestens 5 Gew.-% bezogenen auf den gesamten Lipidgehalt des transgenen Organismus isoliert werden.Compounds of general formula I in a concentration of at least 5 wt .-% based on the total lipid content of the transgenic organism can be isolated.
11. öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 10. 12. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 umfasst und von trans- genen Pflanzen stammt.11. Oil, lipids or fatty acids or a fraction thereof, prepared by the process according to any one of claims 1 to 10. 12. An oil, lipid or fatty acid composition comprising PUFAs prepared by a process according to any one of claims 1 to 10 and derived from transgenic plants.
13. Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammen- Setzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 11 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 12 mit tierischen Ölen, Lipiden oder Fettsäuren.13. A process for the preparation of oils, lipids or fatty acid compositions by mixing oil, lipids or fatty acids according to claim 11 or oil, lipid or fatty acid composition according to claim 12 with animal oils, lipids or fatty acids.
14. Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 11 oder öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 12 oder Ölen, Lipi- den oder Fettsäurezusammensetzungen hergestellt gemäß Anspruch 13 in14. Use of oil, lipids or fatty acids according to claim 11 or oil, lipid or fatty acid composition according to claim 12 or oils, lipids or fatty acid compositions prepared according to claim 13 in
Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.Food, food, cosmetics or pharmaceuticals.
15. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturas- eaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 13 dargestellten Se- quenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 14 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 13 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 14 codieren und eine Δ-6-Desaturaseaktivität aufweisen.15. Isolated nucleic acid sequences which code for polypeptides with Δ-6 desaturase activity, selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 13, b) nucleic acid sequences that result as a result of the degenerate or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 13, which code for polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 14 and a Δ- Having 6-desaturase activity.
16. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturase- aktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 9 oder in16. Isolated nucleic acid sequences which code for polypeptides with Δ-5-desaturase activity selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 9 or in
SEQ ID NO: 11 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 10 oder in SEQ ID NO: 12 dargestellten Aminosäuresequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 9 oder in SEQ ID NO: 11 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 10 oder in SEQ ID NO: 12 codieren und eine Δ-5-Desaturaseaktivität aufweisen.SEQ ID NO: 11, b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 10 or SEQ ID NO: 12, or c) derivatives of SEQ ID NO: 9 or SEQ ID NO: 11, which encode polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 10 or in SEQ ID NO: 12 and have a Δ-5-desaturase activity.
17. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturase- aktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 7 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 8 dargestellten Aminosäurese- quenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 8 codieren und eine Δ-4-Desaturaseaktivität aufweisen.17. Isolated nucleic acid sequences which code for polypeptides with Δ-4-desaturase activity, selected from the group: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 7, b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the amino acid sequence shown in SEQ ID NO: 8, or c) derivatives of SEQ ID NO: 7 encoding polypeptides having at least 40% homology at the amino acid level with SEQ ID NO: 8 and having a Δ-4-desaturase activity.
18. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasaktivität codieren, ausgewählt aus der Gruppe bestehend aus: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 15 dargestellten Sequenz, oder b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 16 dargestellten Aminosäurese- quenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 15 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mit SEQ ID NO: 16 codieren und eine Δ-12-Desaturasaktivität aufweisen.18. An isolated nucleic acid sequence encoding polypeptides having Δ12-desaturase activity selected from the group consisting of: a) a nucleic acid sequence having the sequence shown in SEQ ID NO: 15, or b) nucleic acid sequences resulting from the degenerate genetic sequence Or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 15, which code for polypeptides having at least 50% identity at the amino acid level with SEQ ID NO: 16 and a Δ -12 desaturase activity.
19. Isolierte Nukleinsäuresequenz nach den Ansprüchen 15 bis 18, wobei die Sequenz von einer Alge, einem Pilz, einem Mikroorganismus, einer Pflanze oder einem nicht-humanen Tier stammt.The isolated nucleic acid sequence of claims 15 to 18, wherein the sequence is from an alga, a fungus, a microorganism, a plant or a non-human animal.
20. Isolierte Nukleinsäuresequenz nach den Ansprüchen 15 bis 19, wobei die Sequenz aus der Ordnung Salmoniformes, den Diatomeengattungen Thalas- siosira oder Crythecodinium oder aus der Familie der Prasinophyceae oder Pythiaceae stammt.20. An isolated nucleic acid sequence according to claims 15 to 19, wherein the sequence is from the order Salmoniformes, the diatom species Thalasiosira or Crythecodinium or from the family of Prasinophyceae or Pythiaceae.
21. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 15 bis 20 codiert wird.21. Amino acid sequence which is encoded by an isolated nucleic acid sequence according to any one of claims 15 to 20.
22. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 15 bis 20, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.22. A gene construct containing an isolated nucleic acid according to any one of claims 15 to 20, wherein the nucleic acid is operably linked to one or more regulatory signals.
23. Genkonstrukt nach Anspruch 22, dadurch gekennzeichnet, dass das Nuklein- säurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoff- wechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl— Transferase(n), Acyl-CoA:Lysophospholipid-Acyltrans- ferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym ^23. Gene construct according to claim 22, characterized in that the nucleic acid construct contains additional biosynthesis genes of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase (s), acyl-ACP [= acyl carrier protein] desaturase ( n), acyl-ACP thioesterase (s), fatty acid acyltransferase (s), acyl CoA: lysophospholipid acyltransferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl coenzyme ^
8888
A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid- Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).A-carboxylase (s), acyl-coenzyme A oxidase (s), fatty acid desaturase (s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase (s).
24. Genkonstrukt nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder24. Gene construct according to claim 22 or 23, characterized in that the nucleic acid construct additional biosynthesis genes of the fatty acid or
Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase- oder Δ-6-Elongase.Lipid metabolism contains selected from the group of Δ-4-desaturase, Δ-5-desaturase, Δ-6-desaturase, Δ-9-desaturase, Δ-12-desaturase or Δ-6 elongase.
25. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 15 bis 20 oder ein Genkonstrukt nach Anspruch 22 oder 23.25. A vector containing a nucleic acid according to claims 15 to 20 or a gene construct according to claim 22 or 23.
26. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 15 bis 20, ein Genkonstrukt nach Anspruch 22 oder einen Vektor nach Anspruch 25.26. Transgenic non-human organism containing at least one nucleic acid according to claims 15 to 20, a gene construct according to claim 22 or a vector according to claim 25.
27. Transgener nicht-humaner Organismus nach Anspruch 26, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.The non-human transgenic organism of claim 26, wherein the organism is a microorganism, a non-human animal or a plant.
28. Transgener nicht-humaner Organismus nach Anspruch 26 oder 27, wobei der Organismus eine Pflanze ist. The non-human transgenic organism of claim 26 or 27, wherein the organism is a plant.
EP05819684A 2004-12-23 2005-12-21 Method for producing polyunsaturated fatty acids in transgenic organisms Withdrawn EP1831377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004063326A DE102004063326A1 (en) 2004-12-23 2004-12-23 Process for producing polyunsaturated fatty acids in transgenic organisms
PCT/EP2005/013803 WO2006069710A1 (en) 2004-12-23 2005-12-21 Method for producing polyunsaturated fatty acids in transgenic organisms

Publications (1)

Publication Number Publication Date
EP1831377A1 true EP1831377A1 (en) 2007-09-12

Family

ID=35911218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05819684A Withdrawn EP1831377A1 (en) 2004-12-23 2005-12-21 Method for producing polyunsaturated fatty acids in transgenic organisms

Country Status (7)

Country Link
US (1) US20080076166A1 (en)
EP (1) EP1831377A1 (en)
AU (1) AU2005321576A1 (en)
CA (1) CA2590329A1 (en)
DE (1) DE102004063326A1 (en)
NO (1) NO20073045L (en)
WO (1) WO2006069710A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357244A3 (en) 2004-04-22 2011-11-23 Commonwealth Scientific and Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells.
DK1756280T3 (en) 2004-04-22 2015-02-02 Commw Scient Ind Res Org SYNTHESIS OF CHAIN, polyunsaturated fatty acids BY RECOMBINANT CELLS
BRPI0716075A2 (en) 2006-08-29 2013-08-06 Commw Scient Ind Res Org Fatty Acid Synthesis
AU2013273704C1 (en) * 2006-10-06 2023-03-16 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
EP2054509A2 (en) 2006-10-06 2009-05-06 BASF Plant Science GmbH Processes for producing polyunsaturated fatty acids in transgenic organisms
CA2989798C (en) 2008-07-01 2019-11-05 Basf Plant Science Gmbh Promoters from brassica napus for seed specific gene expression
NO2358882T3 (en) 2008-11-18 2017-12-23
AU2015224521B2 (en) * 2008-11-18 2017-09-14 Commonwealth Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
EP2821492A3 (en) 2009-05-13 2015-04-08 BASF Plant Science Company GmbH Acyltransferases and uses thereof in fatty acid production
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
CA3037072C (en) 2009-07-17 2022-07-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
EP2473609B1 (en) 2009-08-31 2016-10-12 BASF Plant Science Company GmbH Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
US9388436B2 (en) 2009-11-24 2016-07-12 Basf Plant Science Company Gmbh Fatty acid desaturase and uses thereof
WO2011064183A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
EP2585603B1 (en) 2010-06-25 2017-12-20 BASF Plant Science Company GmbH Acyltransferases and uses therof in fatty acid production
CA2814892A1 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses thereof
JP6168700B2 (en) 2011-03-07 2017-07-26 ディーエスエム ニュートリショナル プロダクツ アーゲーDSM Nutritional Products AG Operation of Thraustoquitolide Microorganisms
CA3082388A1 (en) 2012-06-15 2013-12-19 Commonwealth Scientific And Industrial Research Organisation Genetic constructs for producing long chain polyunsaturated fatty acids in plant cells
CN104520313A (en) 2012-08-03 2015-04-15 巴斯夫植物科学有限公司 Novel enzymes, enzyme components and uses thereof
GB201217524D0 (en) * 2012-10-01 2012-11-14 Rothamsted Res Ltd Recombinant organisms
ES2666895T3 (en) 2013-03-13 2018-05-08 Dsm Nutritional Products Ag Genetic modification of microorganisms
MX2016000225A (en) 2013-07-05 2016-06-15 Basf Plant Science Co Gmbh Gene expression or activity enhancing elements.
WO2015089587A1 (en) 2013-12-18 2015-06-25 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
WO2015196250A1 (en) 2014-06-27 2015-12-30 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
US11033593B2 (en) 2014-11-14 2021-06-15 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
US20220127630A1 (en) 2019-02-14 2022-04-28 Cargill, Incorporated Brassica Plants Producing Elevated Levels of Polyunsaturated Fatty Acids
US20230397562A1 (en) 2020-11-04 2023-12-14 Cargill, Incorporated Harvest Management
CA3213206A1 (en) 2021-03-25 2022-09-29 Kristin Gray Fertilizer management

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614393A (en) * 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
EP0736598B1 (en) * 1993-12-28 2004-08-11 Kirin Beer Kabushiki Kaisha Gene for fatty acid desaturase, vector containing said gene, plant containing said gene transferred thereinto, and process for creating said plant
PL207026B1 (en) * 2000-02-09 2010-10-29 Basf Ag Novel elongase gene and method for producing multiple-unsaturated fatty acids
DE10219203A1 (en) * 2002-04-29 2003-11-13 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in plants
US20040172682A1 (en) * 2003-02-12 2004-09-02 Kinney Anthony J. Production of very long chain polyunsaturated fatty acids in oilseed plants
BRPI0413073A (en) * 2003-08-01 2006-10-03 Basf Plant Science Gmbh process for the production of compounds, oil, lipid or fatty acid, or a fraction thereof, oil, lipid or fatty acid composition, process for the production of oils, lipids or fatty acid compositions, use of oil, lipid or acids fatty acids or compositions of oil, lipid or fatty acid or oils, lipids or fatty acid compositions, isolated nucleic acid sequence, amino acid sequence, gene construct, vector, and transgenic non-human organism
US7777098B2 (en) * 2004-02-27 2010-08-17 Basf Plant Science Gmbh Method for producing unsaturated ω-3-fatty acids in transgenic organisms
CA2559360A1 (en) * 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing c18, c20 and c22 polyunsaturated fatty acids in transgenic plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006069710A1 *

Also Published As

Publication number Publication date
DE102004063326A1 (en) 2006-07-06
WO2006069710A1 (en) 2006-07-06
NO20073045L (en) 2007-09-11
CA2590329A1 (en) 2006-06-06
AU2005321576A1 (en) 2006-07-06
US20080076166A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
EP2169052B1 (en) Method for production of polyunsaturated fatty acids in transgenic organisms
EP1720988B1 (en) METHOD FOR PRODUCING UNSATURATED omega-3 FATTY ACIDS IN TRANSGENIC ORGANISMS
EP2177605B1 (en) Delta-5 Desaturases and method for producing polyunsaturated fatty acids in transgenic non-human organisms
EP1866417B1 (en) Method for producing polyunsaturated c20 and c22fatty acids with at least four double bonds in transgenic plants
EP2176433B1 (en) Desaturases and methods for producing polyunsaturated fatty acids in transgenic organisms
EP2176416B1 (en) Elongases and methods for producing polyunsaturated fatty acids in transgenic organisms
EP1831377A1 (en) Method for producing polyunsaturated fatty acids in transgenic organisms
EP1769074A2 (en) Method for increasing the content of polyunsaturated long-chained fatty acids in transgenic organisms
DE112009003708T5 (en) Desaturases and methods of producing polyunsaturated fatty acids in transgenic organisms
WO2008104559A1 (en) Method for the production of polyunsaturated fatty acids in transgenic organisms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071113

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100421