EP1815622B1 - Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal. - Google Patents

Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal. Download PDF

Info

Publication number
EP1815622B1
EP1815622B1 EP05815700.9A EP05815700A EP1815622B1 EP 1815622 B1 EP1815622 B1 EP 1815622B1 EP 05815700 A EP05815700 A EP 05815700A EP 1815622 B1 EP1815622 B1 EP 1815622B1
Authority
EP
European Patent Office
Prior art keywords
signal
masking
digital signal
broadcasting
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05815700.9A
Other languages
German (de)
French (fr)
Other versions
EP1815622A1 (en
Inventor
Bruno Jahan
Pierrick Louin
Pierre Urcun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Original Assignee
Telediffusion de France ets Public de Diffusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP1815622A1 publication Critical patent/EP1815622A1/en
Application granted granted Critical
Publication of EP1815622B1 publication Critical patent/EP1815622B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/20Arrangements for broadcast or distribution of identical information via plural systems
    • H04H20/22Arrangements for broadcast of identical information via plural broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/72Wireless systems of terrestrial networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/12Aspects of broadcast communication characterised by the type of broadcast system digital radio mondiale [DRM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/18Aspects of broadcast communication characterised by the type of broadcast system in band on channel [IBOC]
    • H04H2201/186AM digital or hybrid

Definitions

  • the field of the invention is that of the diffusion of signals, in particular in systems of the DAB (Digital Audio Broadcasting) type, or DRM (for "Digital World Radio"), in frequency bands below 30 MHz.
  • DAB Digital Audio Broadcasting
  • DRM Digital World Radio
  • the invention relates to the diffusion, in the same propagation channel, of analog and digital signals, for example of the audio type.
  • the invention applies in particular, but not exclusively, to the simultaneous broadcasting, from the same transmission point, called “simulcast” broadcasting, of a digital signal of the DRM type, implementing an OFDM type modulation, and an analog signal carrying an audio signal modulating the amplitude of a carrier AM ("Amplitude Modulation" in English, “Amplitude Modulation” MA in French).
  • the OFDM modulation consists in distributing in the time / frequency space symbols of duration Tu (called useful symbol time) on a plurality of independently modulated carrier frequencies, for example in QPSK (of the English “Quadrature Phase Shift Keying” for “Quadrature phase shift keying") or QAM ("Quadrature Amplitude Modulation” for "Quadrature Amplitude Modulation") including 16, 64, 256, ..., states.
  • QPSK of the English "Quadrature Phase Shift Keying" for "Quadrature phase shift keying”
  • QAM Quadrature Amplitude Modulation
  • the OFDM thus cuts the channel into cells along the axes of time 11 and frequencies 12, as shown in FIG. figure 1 . Each of the carriers is orthogonal to the previous one.
  • the channel is decomposed into a sequence of frequency sub-bands 14 and a sequence of time segments 15 (also called time slots).
  • Each time / frequency cell is assigned a dedicated carrier. We go therefore distribute the information to be transported on all of these carriers, each modulated at a low rate, for example by QPSK or QAM type modulation.
  • An OFDM symbol comprises all the information carried by all the carriers at a time t.
  • each OFDM symbol 21 includes a guard interval 22 and data 23.
  • the carriers may have undergone either an attenuation (destructive echoes), an amplification (constructive echoes) and / or a phase rotation.
  • synchronization pilot carriers which are often of a higher amplitude than the useful data carriers
  • reference pilots also called reference pilots
  • the reference pilots inserted into the multicarrier signal are used to estimate the propagation channel.
  • the estimation of the propagation channel notably makes it possible to correct the received data, also called data pilots, at the receiver (equalization), and to obtain the impulse response of the propagation channel.
  • the impulse response obtained can then be used to refine the temporal synchronization of the receiver (s).
  • OFDM modulation is increasingly used in digital broadcasting because it is very well adapted to variations in the radio channel, which are mainly related to echoes and the Doppler effect. It has been selected for digital broadcasting in the AM (DRM) bands.
  • DRM AM
  • the figure 3 thus presents the OFDM structure in A mode of a set of DRM symbols, illustrating the distribution of the reference pilots 31 in the time / frequency space. This structure is described in particular in the ETSI ES 201 980 DRM standard.
  • Digital broadcasting for example of the DRM type, gradually replaces the analog AM broadcast in the frequency bands below 30 MHz, which requires, during at least one transition period, the broadcasting (possibly simultaneous) of digital and analogue signals carrying a digital signal. similar information from the same site.
  • a first technique for broadcasting such signals has been proposed by D. Schill and J. Wildhagen, in the document EP 1 276 257 .
  • a digital signal and an analog signal are combined in a so-called signal simulcast, the digital signal being modulated on a sideband of a carrier of the propagation channel and a correction signal being modulated on the other sideband.
  • the correction signal is determined so that the envelope of the received signal corresponds to the envelope of a double band analog signal.
  • This technique thus makes it possible to broadcast in a same channel a digital signal and an analog signal, by modifying the analog part of the simulcast signal so that the overall envelope of this signal is seen as a dual band AM signal for a conventional analog receiver.
  • the simulcast signal is obtained by successive iterations, so as to maintain the envelope modulation of the analog signal, that is to say so that the global simulcast signal is comparable to a dual-band AM signal in the time domain.
  • a receiver demodulating the signal envelope is thus only slightly disturbed by the digital part of the simulcast signal.
  • Another major disadvantage of this technique is that it is not suitable for receivers using synchronous demodulation.
  • this technique only modifies the analog part of the simulcast signal. It adds a signal compression analog (eg audio) to minimize the contribution of the digital signal, such a digital signal disturbing the desired signal by the analog receivers (that is to say, changing its "color").
  • a signal compression analog eg audio
  • the invention particularly aims to overcome these disadvantages of the prior art.
  • an object of the invention is to provide a technique for broadcasting, in the same propagation channel, a digital signal and an analogue signal, which is simple and effective.
  • Another objective of the invention is to propose such a technique making it possible to reduce, on reception, the influence of the digital signal on the analog signal.
  • an object of the invention is to provide such a technique for improving the reception performance of data at a receiver, and the audio signal restored.
  • Yet another object of the invention is to provide such a technique which is easy to implement, while remaining at a reasonable cost.
  • a further object of the invention is to provide such a technique having good performance with a receiver implementing a synchronous demodulation.
  • such a method comprises a step of amplitude modulation in the frequency domain of the digital signal by a masking signal representative of a psycho-acoustic masking curve of the source audio signal.
  • the invention proposes to calculate a masking level associated with a "conventional" audio signal carried by an analog signal and to apply this masking to the digital signal that it is desired to transmit in the same channel. propagation that the analog signal, so that the latter is not (or little) disturbed on large portions according to a psycho-acoustic criterion.
  • the analog signal received at a receiver is then undisturbed by the digital signal modulated by the masking signal, and can be easily demodulated.
  • the digital signal is "hidden" in the analog signal by its modulation by the masking signal.
  • the invention is particularly remarkable in that the digital and analog signals are transmitted in the same propagation channel.
  • the masking signal corresponds to the masking curve, after low-pass filtering in the frequency domain and / or in the time domain.
  • Such low-pass filtering makes it possible in particular to smooth the masking curve, and thus to improve (or at least not to degrade) the channel estimation implemented in reception of the digital signal.
  • the masking signal always remains greater than a predetermined threshold.
  • the audio signals in particular the speech signals, are generally not continuous in time.
  • the modulation of the digital signal by the masking signal would produce a virtually zero digital signal over longer or shorter time intervals.
  • the information carried by the digital signal would be lost in the absence of a predetermined threshold below which said masking signal should not descend.
  • the masking signal is amplified according to a predetermined gain.
  • the invention is also remarkable in that the digital signal and the analog signal are synchronized.
  • the synchronization between the digital signal, modulated by the masking signal, and the analog signal thus makes it possible to optimally reduce the contribution of the digital signal to the analogue signal on reception.
  • the modulated digital signal is entirely “hidden” in the analog signal, and the analog receivers are not (or very little) disturbed by the digital signal.
  • the digital and analog signals carry the same source audio signal.
  • any receiver whether of analog or digital type, can effectively receive and demodulate the source audio signal.
  • This feature is particularly advantageous for the transition period between the transition from analogue to digital broadcasting.
  • users of digital receivers will be able to receive and demodulate information broadcast from a transmission site (source audio signal), and users of old analog receivers will also be able to receive the same information broadcast from the same transmission site, without have to change receiving device.
  • the digital signal is a multicarrier signal.
  • Such a signal for example of the OFDM type, is well adapted to the variations of the radio channel, essentially related to multipaths.
  • This modulation has In particular, it has been selected for digital broadcasting in the AM (DRM) bands.
  • the invention can thus be applied to a digital signal of the DRM type.
  • the masking curve is obtained by adapting the conventional method to the bandwidth of the audio signal in the AM bands.
  • a "classic" psychoacoustic masking curve that can be used is described in particular in the MPEG1 or MPEG2 specification.
  • the invention also relates to a device for broadcasting a corresponding digital signal.
  • Such a device comprises frequency modulation means in the frequency domain of the digital signal by a masking signal representative of a psycho-acoustic masking curve of the source audio signal.
  • the invention also relates to a digital signal intended to be transmitted in the vicinity of an analog signal carrying a source audio signal modulating the amplitude of a corresponding AM carrier.
  • the general principle of the invention is based on the modulation of a digital signal by a masking signal from an analog signal carrying an audio signal, so that the digital signal does not disturb the reception of the analog signal, when the signal analog and digital signal are transmitted in the same channel.
  • the invention proposes to "hide” the digital signal in the analog signal so that the analog receivers can demodulate simple and effective way the audio signal, and without degrading the performance of receiving the digital signal.
  • the amplitude modulated digital signal 41 by the masking signal, and the analog signal 42 are simultaneously broadcast (simulcast mode), and are carried by the same carrier frequency 43, in the AM bands.
  • a first sideband 44 of the carrier 43 carries the analog signal
  • the other sideband 45 carries the modulated digital signal
  • Such a diffusion of the digital signal modulated by the masking signal 41 and the analog signal 42 on the same carrier frequency 43 is implemented, according to the invention, from a broadcasting method as shown in the block diagram. of the figure 5 .
  • a first step (52) of the invention is based on the calculation of the overall masking curve of the analog signal carrying the source audio signal modulating the amplitude of the AM carrier that is to be broadcast.
  • the bandwidth of the audio signal is 4.5 or 5kHz.
  • This calculation requires an adaptation of the "classical" psycho-acoustic masking curve model resulting from the MPEG1 or MPEG2 specification, to adapt to the bandwidth of the audio signal in the AM bands.
  • the analog signal carrying a source audio signal modulating the amplitude of the AM carrier is first transposed into the frequency domain, from a Fourier Transform (FFT) type mathematical transformation (Fast Fourier Transform).
  • FFT Fourier Transform
  • the calculation of the masking curve requiring an estimation of the power spectral density for each of the frequencies of the audio signal is implemented a Fourier transformation at 1024 samples for a sampling frequency of 48 kHz in order to obtain the different frequencies and their power spectral densities.
  • the transform is calculated from the input analog signal to which a Hanning window is applied.
  • the second sub-step of the calculation of the masking curve of the analog signal requires the determination of an absolute mask, corresponding to the hearing threshold for each of the frequencies corresponding to the components delivered by the Fourier transform.
  • LTq (k) The hearing thresholds for the different frequencies, denoted LTq (k), come from the MPEG1 standard, and are presented in Appendix 1.
  • the third substep implements a discrimination between the tonal components and the non-tonal components.
  • the tone of a component has an influence on the contribution of the component in the calculation of the masking curve.
  • the separation of the tonal and non-tonal components takes place in several phases: determination of the local maxima, extraction of the tonal components, and calculation of the intensity of the non-tonal components of a critical band.
  • a component of the spectral density obtained by the Fourier transform will be called local maximum if: X k > X k - 1 and X k ⁇ X k + 1
  • the frequency components are analyzed in packets of three, and if the central component has a higher level than the other two, it is considered as a local maximum.
  • the Figure 6A illustrates in particular the technique for determining local maxima, based on an example of a frequency spectrum 61 of the analog signal.
  • the first three frequency components (carriers 1, 2 and 3) of a portion 61 of the spectrum of the analog signal are first analyzed.
  • the central component (carrier 2) having a level, that is to say a spectral power density, higher than the other two (carriers 1 and 3), it is considered a local maximum.
  • This analysis is then repeated for the other frequency components (carriers 2, 3 and 4, then carriers 3, 4 and 5, ).
  • the local maxima correspond to the carriers 2, 5, 7, 13, 15 and 17.
  • the tonal components correspond to the grouping of the lines contributing to the same harmonic component.
  • the width of the analysis band is modified around the local maxima determined according to the position of the maxima in the spectrum, which implies that the value of j varies according to the values of k.
  • the analysis width is modified as follows: ⁇ f (Hz) Frequency (kHz) MPEG1 125 0 ⁇ f ⁇ 4 187.5 4 ⁇ f ⁇ 8 375 8 ⁇ f ⁇ 15
  • the Figure 6B illustrates in particular the determination of a tonal component, from the local maxima as determined previously.
  • the spectrum components that were used for the determination of the tonal components are set to an infinitely low level: the index components 4, 5, 6, 8, 9 , 10 and 11 disappear.
  • the non-tonal components correspond to the grouping of lines that have no connection with harmonic components.
  • each critical band a linear sum of the power of the remaining spectral components (after having put to infinite power the components of the spectrum that were used for the determination of the tonal components) in order to determine the sound pressure level the non-tonal component X nm (k) corresponding to this critical band.
  • Figure 6D presents the portion of the spectrum remaining after extraction of the tonal and non-tonal components, and determination of their sound pressure levels.
  • the av index of masking of the component has a different value depending on whether it is a tonal component or a non-tonal component.
  • the mask on the sample i is equal to the linear sum of the individual masks of the samples situated in the range [8; -3] barks and of the absolute mask:
  • LT g (i) represents the level of the masking curve for sample i (for the calculation of the overall mask, 72 or 75 samples are used, depending on the audio bandwidth, according to the MPEG1 specification).
  • the samples do not have the same frequency width as a function of their positions in the spectrum (from 62.5 to 250 Hz according to the MPEG1 specification).
  • the second step of the invention in its preferred embodiment, implements a filtering (53) in the frequency and / or time domain of the masking curve corresponding to the global mask, to deliver a masking signal.
  • a conventional "envelope detection” type receiver demodulates the so-called “simulcast” signal (analog signal on a first sideband, and amplitude modulated digital signal by the masking signal on the second sideband). ), and delivers a base signal corresponding to the sum of the modulating signals on each of the two lateral bands of the carrier.
  • the frequency masking makes it possible to render inaudible any signal that follows the amplitude variations of the masking curve.
  • the time and frequency variations of the masking curve will be too great for the DRM signal, because of its multicarrier structure ( OFDM), and it appears necessary to smooth the masking curve.
  • OFDM multicarrier structure
  • the invention thus proposes to limit these variations in time and in frequency by implementing a low-pass filtering of the masking curve in the time and frequency domains delivering the masking signal, according to this preferred embodiment of the invention. , in order to improve (or at least not to degrade) the channel estimation implemented in reception of the digital signal.
  • the channel estimate thus follows the evolution of the masking signal.
  • the invention also proposes, in its preferred embodiment, to determine a minimum threshold to be applied to the masking signal and to add a gain (that is to say to amplify it) during a third step. referenced 54.
  • the audio signals are generally not continuous in time. This is particularly the case of speech signals, such as the human voice.
  • the masking curve would produce a masking signal that is almost zero over longer or shorter time intervals.
  • the data transported by the digital signal masked by a silence of the analog signal would be lost in reception.
  • the invention proposes to define a minimum threshold below which the masking signal can not go down.
  • this amplification of masking signal is to the detriment of the inaudibility of the digital signal in reception: by increasing the power of the digital signal, it improves its reception quality, but it also risks to disturb the reception of the audio signal carried by the signal analog by analog receivers.
  • a fourth step (55) is to amplitude modulate the digital signal by the masking signal.
  • the modulating signal that is to say the masking signal, is then applied in the frequency domain to the carriers constituting an OFDM symbol of the DRM type digital signal.
  • the amplitude modulation step in the frequency domain of the digital signal by the masking signal is implemented during the creation of the DRM signal on transmission, in the frequency domain.
  • the signal DRM is processed at the end of the OFDM modulation chain, before transmission on an AM carrier, by going back to the frequency domain from a fast Fourier transform step 51, for example to 1024. points for a sampling frequency of 48kHz.
  • the modulated digital signal again transposed in the time domain (56), is synchronized with the analog signal carrying the source audio signal modulating the amplitude of the AM carrier.
  • the digital signal and the analog signal may be interesting for the digital signal and the analog signal to carry the same audio signal, especially during the transition period between the transition from analogue to digital broadcasting.
  • the invention thus proposes a technique for broadcasting a digital signal and an analogue signal in the same channel, called “simulcat" broadcasting, based on the main stages of calculation of the masking level related to the analog signal, and of application of this masking to the digital signal.
  • this technique also has good performance with a receiver implementing a synchronous demodulation, for example single sideband.
  • the signal demodulated by a conventional receiver is not disturbed by the digital signal, if the digital signal follows the masking curve varying in time and frequency.
  • the invention is not limited to a purely hardware implementation but that it can also be implemented in the form of a sequence of instructions of a computer program or any form mixing a hardware part and a software part.
  • the corresponding instruction sequence can be stored in a removable storage means (such as for example a floppy disk, a CD-ROM or a DVD-ROM) or no, this storage means being partially or completely readable by a computer or a microprocessor.
  • Appendix 1 Table of absolute masks according to the audio frequencies Frequency (Hz) Critical band rate (z) Absolute mask LT q (dB) 62.50 0617 33.44 125.00 1232 19.20 187.50 1842 13.87 250.00 2445 11.01 312.50 3037 9.20 375.00 3618 7.94 437.50 4.185 7.00 500.00 4736 6.28 562.50 5.272 5.70 625.00 5789 5.21 687.50 6289 4.80 750.00 6770 4.45 812.50 7.233 4.14 875.00 7.677 3.86 937.50 8.103 3.61 1000.00 8511 3.37 1062.50 8901 3.15 1125.00 9275 2.93 1187.50 9632 2.73 1250.00 9974 2.53 1312.50 10.301 2.32 1375.00 10614 2.12 1437.50 10913 1.92 1500.00 11.199 1.71 1562.50 11474 1.49 1625.00 11736 1.27 1687.50 11988 1.04 1750.00 12,230 0.80 1812.50 124
  • Hz Zwicker Band number Central frequency (Hz) Width of the band (Hz) 1 50 80 2 150 100 3 250 100 4 350 100 5 450 100 6 570 120 7 700 140 8 840 150 9 1000 160 10 1170 190 11 1370 210 12 1600 240 13 1850 280 14 2150 320 15 2500 380 16 2900 450 17 3400 550 18 4000 700 19 4800 900 20 5800 1100 21 7000 1300 22 8500 1800 23 10500 2500 24 13500 3500

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Description

1. Domaine de l'invention1. Field of the invention

Le domaine de l'invention est celui de la diffusion de signaux, notamment dans des systèmes du type DAB (de l'anglais « Digital Audio Broadcasting » pour « radiodiffusion numérique »), ou DRM (pour « Digital Radio Mondiale »), dans des bandes de fréquences inférieures à 30 MHz.The field of the invention is that of the diffusion of signals, in particular in systems of the DAB (Digital Audio Broadcasting) type, or DRM (for "Digital World Radio"), in frequency bands below 30 MHz.

Plus précisément, l'invention concerne la diffusion, dans un même canal de propagation, de signaux analogiques et numériques, par exemple de type audio.More specifically, the invention relates to the diffusion, in the same propagation channel, of analog and digital signals, for example of the audio type.

L'invention s'applique notamment, mais non exclusivement, à la diffusion simultanée, depuis le même point d'émission, dite diffusion « simulcast », d'un signal numérique de type DRM, mettant en oeuvre une modulation de type OFDM, et d'un signal analogique portant un signal audio modulant l'amplitude d'une porteuse AM (« Amplitude Modulation » en anglais, « Modulation d'Amplitude » MA en français).The invention applies in particular, but not exclusively, to the simultaneous broadcasting, from the same transmission point, called "simulcast" broadcasting, of a digital signal of the DRM type, implementing an OFDM type modulation, and an analog signal carrying an audio signal modulating the amplitude of a carrier AM ("Amplitude Modulation" in English, "Amplitude Modulation" MA in French).

2. L'art antérieur2. The prior art 2.1. Rappel sur le principe de la modulation OFDM2.1. Reminder on the principle of OFDM modulation

La modulation OFDM consiste à répartir dans l'espace temps/fréquence des symboles de durée Tu (dit temps-symbole utile) sur une pluralité de fréquences porteuses modulées indépendamment, par exemple en QPSK (de l'anglais « Quadrature Phase Shift Keying » pour « modulation à déplacement de phase en quadrature ») ou QAM (de l'anglais « Quadrature Amplitude Modulation » pour « Modulation d'amplitude en quadrature ») notamment à 16, 64, 256, ..., états. L'OFDM découpe ainsi le canal en cellules selon les axes du temps 11 et des fréquences 12, comme illustré sur la figure 1. Chacune des porteuses est orthogonale à la précédente.The OFDM modulation consists in distributing in the time / frequency space symbols of duration Tu (called useful symbol time) on a plurality of independently modulated carrier frequencies, for example in QPSK (of the English "Quadrature Phase Shift Keying" for "Quadrature phase shift keying") or QAM ("Quadrature Amplitude Modulation" for "Quadrature Amplitude Modulation") including 16, 64, 256, ..., states. The OFDM thus cuts the channel into cells along the axes of time 11 and frequencies 12, as shown in FIG. figure 1 . Each of the carriers is orthogonal to the previous one.

Le canal, de largeur prédéterminée 13, est décomposé en une suite de sous-bandes de fréquence 14 et d'une suite de segments temporels 15 (encore appelés intervalles de temps).The channel, of predetermined width 13, is decomposed into a sequence of frequency sub-bands 14 and a sequence of time segments 15 (also called time slots).

A chaque cellule temps/fréquence est attribuée une porteuse dédiée. On va donc répartir l'information à transporter sur l'ensemble de ces porteuses, modulée chacune à faible débit, par exemple par une modulation du type QPSK ou QAM. Un symbole OFDM comprend l'ensemble des informations portées par l'ensemble des porteuses à un instant t.Each time / frequency cell is assigned a dedicated carrier. We go therefore distribute the information to be transported on all of these carriers, each modulated at a low rate, for example by QPSK or QAM type modulation. An OFDM symbol comprises all the information carried by all the carriers at a time t.

Cette technique de modulation est notamment efficace dans les situations où l'on rencontre des multitrajets. Ainsi, comme illustré sur la figure 2 qui présente un ensemble de symboles OFDM 21, une même suite de symboles arrivant à un récepteur par deux chemins différents se présente comme la même information arrivant à deux instants différents et qui s'additionnent. Ces échos provoquent deux types de défauts :

  • l'interférence intra symbole : addition d'un symbole avec lui-même légèrement déphasé ;
  • l'interférence inter symbole : addition d'un symbole avec le suivant et/ou le précédent légèrement déphasé.
This modulation technique is particularly effective in situations where multipaths are encountered. So, as illustrated on the figure 2 which presents a set of OFDM symbols 21, the same sequence of symbols arriving at a receiver by two different paths is presented as the same information arriving at two different times and which add up. These echoes cause two types of defects:
  • intra-symbol interference: addition of a symbol with itself slightly out of phase;
  • inter-symbol interference: addition of a symbol with the next and / or the preceding slightly out of phase.

Entre chaque symbole transmis, on insère une zone « morte » appelée intervalle de garde 22, dont la durée Δ est choisie suffisamment grande par rapport à l'étalement des échos. Ces précautions vont limiter l'interférence inter-symbole (celle-ci étant absorbée par l'intervalle de garde). Ainsi chaque symbole OFDM 21 comprend un intervalle de garde 22 et des données 23.Between each transmitted symbol, a "dead" zone called guard interval 22 is inserted, the duration Δ of which is chosen to be sufficiently large relative to the spreading of the echoes. These precautions will limit inter-symbol interference (the latter being absorbed by the guard interval). Thus each OFDM symbol 21 includes a guard interval 22 and data 23.

A la réception, les porteuses peuvent avoir subi en outre soit une atténuation (échos destructifs), soit une amplification (échos constructifs) et/ou une rotation de phase.At the reception, the carriers may have undergone either an attenuation (destructive echoes), an amplification (constructive echoes) and / or a phase rotation.

Pour calculer la fonction de transfert du canal, en vue d'effectuer une égalisation du signal avant démodulation, on insère également des porteuses pilotes de synchronisation (d'amplitude souvent supérieure aux porteuses de données utiles), encore appelées pilotes de référence. La valeur et l'emplacement de ces pilotes de référence dans l'espace temps/fréquence sont prédéfinis et connus des récepteurs.In order to calculate the transfer function of the channel, in order to equalize the signal before demodulation, synchronization pilot carriers (which are often of a higher amplitude than the useful data carriers), also called reference pilots, are also inserted. The value and location of these reference drivers in the time / frequency space are predefined and known to the receivers.

Après une interpolation en temps et en fréquence, on obtient une estimation de la réponse du canal, plus ou moins pertinente en fonction du nombre de pilotes de référence et de leur répartition dans le domaine temps/fréquence.After interpolation in time and frequency, we obtain an estimate of the response of the channel, more or less relevant depending on the number reference pilots and their distribution in the time / frequency domain.

Ainsi, les pilotes de référence insérés dans le signal multiporteuse sont utilisés pour estimer le canal de propagation. L'estimation du canal de propagation permet notamment de corriger les données reçues, encore appelées pilotes de données, au niveau du récepteur (égalisation), et d'obtenir la réponse impulsionnelle du canal de propagation. La réponse impulsionnelle obtenue peut alors être utilisée pour affiner la synchronisation temporelle du (ou des) récepteur(s).Thus, the reference pilots inserted into the multicarrier signal are used to estimate the propagation channel. The estimation of the propagation channel notably makes it possible to correct the received data, also called data pilots, at the receiver (equalization), and to obtain the impulse response of the propagation channel. The impulse response obtained can then be used to refine the temporal synchronization of the receiver (s).

2.2. Application dans les bandes AM (DRM)2.2. Application in AM (DRM) bands

La modulation OFDM est de plus en plus utilisée dans la diffusion numérique car elle très bien adaptée aux variations du canal radio, qui sont essentiellement liées aux échos et à l'effet Doppler. Elle a ainsi été sélectionnée pour la radiodiffusion numérique dans les bandes AM (DRM).OFDM modulation is increasingly used in digital broadcasting because it is very well adapted to variations in the radio channel, which are mainly related to echoes and the Doppler effect. It has been selected for digital broadcasting in the AM (DRM) bands.

La figure 3 présente ainsi la structure OFDM en mode A d'un ensemble de symboles DRM, en illustrant la répartition des pilotes de référence 31 dans l'espace temps/fréquence. Cette structure est notamment décrite dans la norme DRM ETSI ES 201 980.The figure 3 thus presents the OFDM structure in A mode of a set of DRM symbols, illustrating the distribution of the reference pilots 31 in the time / frequency space. This structure is described in particular in the ETSI ES 201 980 DRM standard.

2.3. La diffusion simulcast2.3. The simulcast broadcast

La diffusion numérique, par exemple de type DRM, remplace progressivement la diffusion AM analogique dans les bandes de fréquence inférieures à 30MHz, ce qui nécessite, durant au moins une période de transition, la diffusion (éventuellement simultanée) de signaux numériques et analogiques portant une information similaire, depuis un même site d'émission.Digital broadcasting, for example of the DRM type, gradually replaces the analog AM broadcast in the frequency bands below 30 MHz, which requires, during at least one transition period, the broadcasting (possibly simultaneous) of digital and analogue signals carrying a digital signal. similar information from the same site.

La diffusion de ces deux signaux, portés par une même fréquence porteuse, dans un même canal de propagation, provoque une dégradation du signal audio restitué par les récepteurs analogiques. En effet, le signal numérique perturbe le signal analogique, et gêne sa démodulation.The diffusion of these two signals, carried by the same carrier frequency, in the same propagation channel, causes a degradation of the audio signal reproduced by the analogical receivers. Indeed, the digital signal disturbs the analog signal, and hinders its demodulation.

Une première technique de diffusion de tels signaux a été proposée par D. Schill et J. Wildhagen, dans le document EP 1 276 257 . Selon cette technique, un signal numérique et un signal analogique sont combinés dans un signal dit simulcast, le signal numérique étant modulé sur une bande latérale d'une porteuse du canal de propagation et un signal de correction étant modulé sur l'autre bande latérale.A first technique for broadcasting such signals has been proposed by D. Schill and J. Wildhagen, in the document EP 1 276 257 . According to this technique, a digital signal and an analog signal are combined in a so-called signal simulcast, the digital signal being modulated on a sideband of a carrier of the propagation channel and a correction signal being modulated on the other sideband.

Selon cette technique de l'art antérieur, le signal de correction est déterminé de sorte que l'enveloppe du signal reçu corresponde à l'enveloppe d'un signal analogique double bande.According to this technique of the prior art, the correction signal is determined so that the envelope of the received signal corresponds to the envelope of a double band analog signal.

Cette technique permet ainsi de diffuser dans un même canal un signal numérique et un signal analogique, en modifiant la partie analogique du signal simulcast pour que l'enveloppe globale de ce signal soit vue comme un signal AM double bande pour un récepteur analogique classique.This technique thus makes it possible to broadcast in a same channel a digital signal and an analog signal, by modifying the analog part of the simulcast signal so that the overall envelope of this signal is seen as a dual band AM signal for a conventional analog receiver.

Il est également connu du document EP 1 041 756 une technique de transmission de signaux audio permettant d'éviter des interférences susceptibles de se produire lorsque deux systèmes de diffusion par radio numérique sont localement proches.It is also known from the document EP 1 041 756 a technique for transmitting audio signals to avoid interference that may occur when two digital radio broadcast systems are locally close.

2.4. Inconvénients des techniques de l'art antérieur2.4. Disadvantages of the techniques of the prior art

Selon la technique présentée dans le document EP 1 276 257 , le signal simulcast est obtenu par itérations successives, de sorte à conserver la modulation d'enveloppe du signal analogique, c'est-à-dire de sorte que le signal simulcast global soit assimilable à un signal AM double bande dans le domaine temporel.According to the technique presented in the document EP 1 276 257 , the simulcast signal is obtained by successive iterations, so as to maintain the envelope modulation of the analog signal, that is to say so that the global simulcast signal is comparable to a dual-band AM signal in the time domain.

Un récepteur démodulant l'enveloppe du signal n'est ainsi que peu perturbé par la partie numérique du signal simulcast.A receiver demodulating the signal envelope is thus only slightly disturbed by the digital part of the simulcast signal.

Cependant, une telle technique itérative est non linéaire, et demande un réglage fin des paramètres pour obtenir un résultat satisfaisant, notamment en terme de dégradation pour un signal audio démodulé. Par conséquent, cette technique requiert une puissance de calculs importante pour un traitement en temps réel.However, such an iterative technique is non-linear, and requires a fine-tuning of the parameters to obtain a satisfactory result, especially in terms of degradation for a demodulated audio signal. Therefore, this technique requires significant computing power for real-time processing.

Un autre inconvénient majeur de cette technique est qu'elle n'est pas adaptée aux récepteurs mettant en oeuvre une démodulation synchrone.Another major disadvantage of this technique is that it is not suitable for receivers using synchronous demodulation.

Par ailleurs, on peut noter que cette technique modifie uniquement la partie analogique du signal simulcast. Elle ajoute en outre une compression du signal analogique (par exemple audio) permettant de minimiser la contribution du signal numérique, un tel signal numérique perturbant le signal souhaité par les récepteurs analogiques (c'est-à-dire modifiant sa « couleur »).Moreover, it can be noted that this technique only modifies the analog part of the simulcast signal. It adds a signal compression analog (eg audio) to minimize the contribution of the digital signal, such a digital signal disturbing the desired signal by the analog receivers (that is to say, changing its "color").

3. Objectifs de l'invention3. Objectives of the invention

L'invention a notamment pour objectif de pallier ces inconvénients de l'art antérieur.The invention particularly aims to overcome these disadvantages of the prior art.

Plus précisément, un objectif de l'invention est de fournir une technique de diffusion, dans un même canal de propagation, d'un signal numérique et d'un signal analogique, qui soit simple et efficace.More precisely, an object of the invention is to provide a technique for broadcasting, in the same propagation channel, a digital signal and an analogue signal, which is simple and effective.

Un autre objectif de l'invention est de proposer une telle technique permettant de diminuer, en réception, l'influence du signal numérique sur le signal analogique.Another objective of the invention is to propose such a technique making it possible to reduce, on reception, the influence of the digital signal on the analog signal.

Notamment, un objectif de l'invention est de fournir une telle technique permettant d'améliorer les performances de réception de données au niveau d'un récepteur, et du signal audio restitué.In particular, an object of the invention is to provide such a technique for improving the reception performance of data at a receiver, and the audio signal restored.

Encore un autre objectif de l'invention est de proposer une telle technique qui soit facile à mettre en oeuvre, tout en restant à un coût raisonnable.Yet another object of the invention is to provide such a technique which is easy to implement, while remaining at a reasonable cost.

Un objectif supplémentaire de l'invention est de fournir une telle technique présentant de bonnes performances avec un récepteur mettant en oeuvre une démodulation synchrone.A further object of the invention is to provide such a technique having good performance with a receiver implementing a synchronous demodulation.

4. Caractéristiques principales de l'invention4. Main features of the invention

Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un procédé de diffusion d'un signal numérique transmis au voisinage d'un signal analogique portant un signal audio source modulant l'amplitude d'une porteuse AM (de l'anglais « Amplitude Modulation », en français « Modulation d'Amplitude »).These objectives, as well as others that will appear later, are achieved by a method of broadcasting a digital signal transmitted in the vicinity of an analog signal carrying a source audio signal modulating the amplitude of an AM carrier (of the English "Amplitude Modulation", in French "Modulation Amplitude").

Selon l'invention, un tel procédé comprend une étape de modulation en amplitude dans le domaine fréquentiel du signal numérique par un signal de masquage représentatif d'une courbe de masquage psycho-acoustique du signal audio source.According to the invention, such a method comprises a step of amplitude modulation in the frequency domain of the digital signal by a masking signal representative of a psycho-acoustic masking curve of the source audio signal.

Ainsi, l'invention propose de calculer un niveau de masquage associé à un signal audio « classique » porté par un signal analogique et à appliquer ce masquage au signal numérique que l'on souhaite transmettre dans le même canal de propagation que le signal analogique, de façon que ce dernier ne soit pas (ou peu) perturbé sur les portions importantes selon un critère psycho-acoustique.Thus, the invention proposes to calculate a masking level associated with a "conventional" audio signal carried by an analog signal and to apply this masking to the digital signal that it is desired to transmit in the same channel. propagation that the analog signal, so that the latter is not (or little) disturbed on large portions according to a psycho-acoustic criterion.

Le signal analogique reçu au niveau d'un récepteur est alors peu perturbé par le signal numérique modulé par le signal de masquage, et peut être facilement démodulé.The analog signal received at a receiver is then undisturbed by the digital signal modulated by the masking signal, and can be easily demodulated.

On peut ainsi considérer que le signal numérique est « caché » dans le signal analogique grâce à sa modulation par le signal de masquage.It can thus be considered that the digital signal is "hidden" in the analog signal by its modulation by the masking signal.

L'invention est notamment remarquable en ce que les signaux numérique et analogique sont transmis dans un même canal de propagation.The invention is particularly remarkable in that the digital and analog signals are transmitted in the same propagation channel.

Avantageusement, le signal de masquage correspond à la courbe de masquage, après filtrage passe-bas dans le domaine fréquentiel et/ou dans le domaine temporel.Advantageously, the masking signal corresponds to the masking curve, after low-pass filtering in the frequency domain and / or in the time domain.

Un tel filtrage passe-bas permet notamment de lisser la courbe de masquage, et donc d'améliorer (ou à tout le moins de ne pas dégrader) l'estimation de canal mise en oeuvre en réception du signal numérique.Such low-pass filtering makes it possible in particular to smooth the masking curve, and thus to improve (or at least not to degrade) the channel estimation implemented in reception of the digital signal.

De manière préférentielle, le signal de masquage reste toujours supérieur à un seuil prédéterminé.Preferably, the masking signal always remains greater than a predetermined threshold.

De cette façon, on évite la perte d'informations portées par le signal numérique lors de silences dans le signal audio source.In this way, the loss of information carried by the digital signal during silence in the source audio signal is avoided.

En effet, les signaux audio, notamment les signaux de parole, ne sont généralement pas continus dans le temps.Indeed, the audio signals, in particular the speech signals, are generally not continuous in time.

Lors d'un silence dans le signal audio, la courbe de masquage correspondante étant quasiment nulle, la modulation du signal numérique par le signal de masquage produirait un signal numérique quasiment nul sur des intervalles temporels plus ou moins longs. Par conséquent, les informations portées par le signal numérique seraient perdues en l'absence d'un seuil prédéterminé en dessous duquel ledit signal de masquage ne doit pas descendre.During a silence in the audio signal, the corresponding masking curve being almost zero, the modulation of the digital signal by the masking signal would produce a virtually zero digital signal over longer or shorter time intervals. As a result, the information carried by the digital signal would be lost in the absence of a predetermined threshold below which said masking signal should not descend.

De façon avantageuse, le signal de masquage est amplifié selon un gain prédéterminé.Advantageously, the masking signal is amplified according to a predetermined gain.

On peut ainsi amplifier le signal de masquage pour augmenter la puissance du signal numérique. En amplifiant le signal de masquage, on améliore la qualité de réception du signal numérique. Cependant, si la puissance du signal numérique est trop importante, il est possible que le signal numérique soit audible au niveau d'un récepteur analogique. Il faut donc trouver un compromis pour améliorer la qualité de réception du signal numérique sans détériorer la qualité de réception du signal analogique.It is thus possible to amplify the masking signal to increase the power of the digital signal. By amplifying the masking signal, the reception quality of the digital signal is improved. However, if the digital signal strength is too great, the digital signal may be heard at an analog receiver. We must therefore find a compromise to improve the quality of reception of the digital signal without deteriorating the quality of reception of the analog signal.

L'invention est également remarquable en ce que le signal numérique et le signal analogique sont synchronisés.The invention is also remarkable in that the digital signal and the analog signal are synchronized.

La synchronisation entre le signal numérique, modulé par le signal de masquage, et le signal analogique permet ainsi de diminuer de façon optimale la contribution du signal numérique sur le signal analogique en réception.The synchronization between the digital signal, modulated by the masking signal, and the analog signal thus makes it possible to optimally reduce the contribution of the digital signal to the analogue signal on reception.

En effet, lors d'une synchronisation parfaite entre les signaux analogique et numérique, le signal numérique modulé est entièrement « caché » dans le signal analogique, et les récepteurs analogiques ne sont pas (ou très peu) perturbés par le signal numérique.Indeed, during a perfect synchronization between the analog and digital signals, the modulated digital signal is entirely "hidden" in the analog signal, and the analog receivers are not (or very little) disturbed by the digital signal.

Préférentiellement, les signaux numérique et analogique portent le même signal audio source.Preferably, the digital and analog signals carry the same source audio signal.

Ainsi, n'importe quel récepteur, qu'il soit de type analogique ou numérique, peut recevoir et démoduler efficacement le signal audio source.Thus, any receiver, whether of analog or digital type, can effectively receive and demodulate the source audio signal.

Cette caractéristique est particulièrement avantageuse pour la période de transition prévue entre le passage de la diffusion analogique à la diffusion numérique. Ainsi, les utilisateurs de récepteurs numériques pourront recevoir et démoduler une information diffusée depuis un site d'émission (signal audio source), et les utilisateurs d'anciens récepteurs analogiques pourront également recevoir la même information diffusée depuis le même site d'émission, sans avoir à changer de dispositif de réception.This feature is particularly advantageous for the transition period between the transition from analogue to digital broadcasting. Thus, users of digital receivers will be able to receive and demodulate information broadcast from a transmission site (source audio signal), and users of old analog receivers will also be able to receive the same information broadcast from the same transmission site, without have to change receiving device.

De manière avantageuse, le signal numérique est un signal multiporteuse.Advantageously, the digital signal is a multicarrier signal.

Un tel signal, par exemple de type OFDM, est bien adapté aux variations du canal radio, essentiellement liées aux multi-trajets. Cette modulation a notamment été sélectionnée pour la radiodiffusion numérique dans les bandes AM (DRM). L'invention peut ainsi s'appliquer à un signal numérique de type DRM.Such a signal, for example of the OFDM type, is well adapted to the variations of the radio channel, essentially related to multipaths. This modulation has In particular, it has been selected for digital broadcasting in the AM (DRM) bands. The invention can thus be applied to a digital signal of the DRM type.

De façon préférentielle, la courbe de masquage est obtenue selon au moins une des étapes suivantes :

  • transformation mathématique du signal audio source du domaine temporel vers le domaine fréquentiel ;
  • détermination d'un masque absolu, correspondant à un seuil d'audition pour chacune des fréquences correspondant aux composantes délivrées par la transformation mathématique ;
  • identification des composantes tonales et des composantes non-tonales parmi les composantes ;
  • décimation des composantes, par suppression des composantes inférieures au masque absolu ;
  • calcul de masques individuels pour un nombre prédéterminé de composantes ;
  • calcul du signal de masquage correspondant à une somme linéaire des masques individuels.
Preferably, the masking curve is obtained according to at least one of the following steps:
  • mathematical transformation of the source audio signal from the time domain to the frequency domain;
  • determining an absolute mask, corresponding to a hearing threshold for each of the frequencies corresponding to the components delivered by the mathematical transformation;
  • identification of tonal components and non-tonal components among components;
  • decimation of the components, by deleting the components lower than the absolute mask;
  • calculating individual masks for a predetermined number of components;
  • calculation of the masking signal corresponding to a linear sum of the individual masks.

Selon l'invention, la courbe de masquage est obtenue en adaptant la méthode classique à la bande passante du signal audio dans les bandes AM. Une courbe de masquage psycho-acoustique «classique » utilisable est notamment décrite dans la spécification MPEG1 ou MPEG2.According to the invention, the masking curve is obtained by adapting the conventional method to the bandwidth of the audio signal in the AM bands. A "classic" psychoacoustic masking curve that can be used is described in particular in the MPEG1 or MPEG2 specification.

L'invention concerne également un dispositif de diffusion d'un signal numérique correspondant.The invention also relates to a device for broadcasting a corresponding digital signal.

Un tel dispositif comprend des moyens de modulation en amplitude dans le domaine fréquentiel du signal numérique par un signal de masquage représentatif d'une courbe de masquage psycho-acoustique du signal audio source.Such a device comprises frequency modulation means in the frequency domain of the digital signal by a masking signal representative of a psycho-acoustic masking curve of the source audio signal.

L'invention concerne encore un signal numérique destiné à être transmis au voisinage d'un signal analogique portant un signal audio source modulant l'amplitude d'une porteuse AM correspondant.The invention also relates to a digital signal intended to be transmitted in the vicinity of an analog signal carrying a source audio signal modulating the amplitude of a corresponding AM carrier.

Les avantages du dispositif de diffusion et du signal correspondants sont les mêmes que ceux du procédé de diffusion. Par conséquent, ils ne sont pas détaillés plus amplement.The advantages of the broadcasting device and the corresponding signal are the same as those of the diffusion method. Therefore, they are not detailed further.

5. Liste des figures5. List of figures

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels :

  • les figures 1 et 2, précédemment décrites en préambule, illustrent le principe général de la modulation OFDM à partir d'une représentation temps/fréquence d'un canal OFDM ;
  • la figure 3, également décrite en préambule, présente un exemple de structure OFDM pour un ensemble de symboles DRM en mode A ;
  • la figure 4 illustre une diffusion simulcast d'un signal numérique et d'un signal analogique portant un signal audio, modulés sur une même fréquence porteuse, selon l'invention ;
  • la figure 5 présente l'algorithme de diffusion simulcast de la figure 4, à l'aide d'un schéma bloc ;
  • les figures 6A à 6D illustrent, dans le domaine fréquentiel, les différentes sous-étapes du calcul de la courbe de masquage intervenant dans la modulation du signal numérique.
Other characteristics and advantages of the invention will appear more clearly on reading the following description of a preferred embodiment, given as a simple illustrative and nonlimiting example, and the appended drawings, among which:
  • the Figures 1 and 2 , previously described in the preamble, illustrate the general principle of OFDM modulation from a time / frequency representation of an OFDM channel;
  • the figure 3 , also described in the preamble, shows an exemplary OFDM structure for a set of mode A DRM symbols;
  • the figure 4 illustrates a simulcast broadcast of a digital signal and an analog signal carrying an audio signal, modulated on the same carrier frequency, according to the invention;
  • the figure 5 presents the simulcast diffusion algorithm of the figure 4 , using a block diagram;
  • the Figures 6A to 6D illustrate, in the frequency domain, the different substeps of the calculation of the masking curve involved in the modulation of the digital signal.

6. Description d'un mode de réalisation de l'invention6. Description of an embodiment of the invention

Le principe général de l'invention repose sur la modulation d'un signal numérique par un signal de masquage issu d'un signal analogique portant un signal audio, de sorte que le signal numérique ne perturbe pas la réception du signal analogique, lorsque le signal analogique et le signal numérique sont émis dans le même canal de propagation.The general principle of the invention is based on the modulation of a digital signal by a masking signal from an analog signal carrying an audio signal, so that the digital signal does not disturb the reception of the analog signal, when the signal analog and digital signal are transmitted in the same channel.

Autrement dit, l'invention propose de « cacher » le signal numérique dans le signal analogique pour que les récepteurs analogiques puissent démoduler de manière simple et efficace le signal audio, et ce, sans dégrader les performances de réception du signal numérique.In other words, the invention proposes to "hide" the digital signal in the analog signal so that the analog receivers can demodulate simple and effective way the audio signal, and without degrading the performance of receiving the digital signal.

On présente, en relation avec la figure 4, un mode de réalisation de réalisation préférentiel de l'invention, dans lequel le signal numérique, de type DRM, et un signal analogique portant un signal audio modulant l'amplitude d'une porteuse AM 43 sont transmis dans un même canal de propagation de 9 ou 10 kHz de bande passante, ce qui correspond à la bande passante allouée par l'ITU (de l'anglais « International Télécommunication Union », en français « Union Internationale des Télécommunications ») pour la radiodiffusion AM (modulation d'amplitude) dans les bandes de fréquences inférieures à 30 MHz.We present, in relation to the figure 4 , a preferred embodiment of the invention, in which the digital signal, of the DRM type, and an analog signal carrying an audio signal modulating the amplitude of an AM carrier 43 are transmitted in the same channel of propagation of 9 or 10 kHz bandwidth, which corresponds to the bandwidth allocated by the ITU ("International Telecommunications Union", in English "International Telecommunications Union") for broadcasting AM (amplitude modulation) in the frequency bands below 30 MHz.

Selon ce mode de réalisation préférentiel, le signal numérique modulé en amplitude 41 par le signal de masquage, et le signal analogique 42 sont diffusés simultanément (mode simulcast), et sont portés par la même fréquence porteuse 43, dans les bandes AM.According to this preferred embodiment, the amplitude modulated digital signal 41 by the masking signal, and the analog signal 42 are simultaneously broadcast (simulcast mode), and are carried by the same carrier frequency 43, in the AM bands.

Ainsi, une première bande latérale 44 de la porteuse 43 porte le signal analogique, et l'autre bande latérale 45 porte le signal numérique modulé.Thus, a first sideband 44 of the carrier 43 carries the analog signal, and the other sideband 45 carries the modulated digital signal.

Une telle diffusion du signal numérique modulé par le signal de masquage 41 et du signal analogique 42 sur la même fréquence porteuse 43 est mise en oeuvre, selon l'invention, à partir d'un procédé de diffusion tel que présenté dans le schéma-bloc de la figure 5.Such a diffusion of the digital signal modulated by the masking signal 41 and the analog signal 42 on the same carrier frequency 43 is implemented, according to the invention, from a broadcasting method as shown in the block diagram. of the figure 5 .

Plus précisément, le procédé de diffusion d'un signal numérique transmis au voisinage d'un signal analogique selon l'invention met en oeuvre les étapes suivantes :

  • calcul (52) de la courbe de masquage, dans le domaine fréquentiel, à partir du signal analogique 42 portant un signal audio modulant l'amplitude de la porteuse AM (porteuse 43) ;
  • filtrage (53) dans le domaine fréquentiel et/ou temporel de la courbe de masquage, délivrant le signal de masquage ;
  • détermination d'un seuil minimal et ajout d'un gain(54) à appliquer au signal de masquage pour augmenter la puissance du signal numérique, de type DRM dans ce mode de réalisation préférentiel, ;
  • modulation en amplitude, en fonction du signal de masquage, des porteuses de chaque symbole OFDM du signal numérique (55) ;
  • synchronisation de la diffusion du signal analogique 42 et du signal DRM modulé 41 par le signal de masquage, dans le domaine temporel (57).
More specifically, the method of broadcasting a digital signal transmitted in the vicinity of an analog signal according to the invention implements the following steps:
  • calculating (52) the masking curve, in the frequency domain, from the analog signal 42 carrying an audio signal modulating the amplitude of the carrier AM (carrier 43);
  • filtering (53) in the frequency and / or time domain of the masking curve, delivering the masking signal;
  • determining a minimum threshold and adding a gain (54) to be applied to the masking signal to increase the digital signal strength, of the DRM type in this preferred embodiment,;
  • amplitude modulation, as a function of the masking signal, of the carriers of each OFDM symbol of the digital signal (55);
  • synchronization of the diffusion of the analog signal 42 and the modulated DRM signal 41 by the masking signal, in the time domain (57).

6.1 Calcul de la courbe de masquage (52)6.1 Calculation of the masking curve (52)

Ainsi, une première étape (52) de l'invention repose sur le calcul de la courbe de masquage globale du signal analogique portant le signal audio source modulant l'amplitude de la porteuse AM que l'on souhaite diffuser. On rappelle que la bande passante du signal audio est de 4,5 ou 5kHz.Thus, a first step (52) of the invention is based on the calculation of the overall masking curve of the analog signal carrying the source audio signal modulating the amplitude of the AM carrier that is to be broadcast. Remember that the bandwidth of the audio signal is 4.5 or 5kHz.

On présente maintenant en relation avec les figures 6A à 6D les différentes sous-étapes du calcul de la courbe de masquage intervenant dans la modulation du signal numérique.We now present in relation with Figures 6A to 6D the different sub-steps of the calculation of the masking curve involved in the modulation of the digital signal.

Ce calcul nécessite une adaptation du modèle de courbe de masquage psycho-acoustique «classique» issu la spécification MPEG1 ou MPEG2, pour s'adapter à la bande passante du signal audio dans les bandes AM.This calculation requires an adaptation of the "classical" psycho-acoustic masking curve model resulting from the MPEG1 or MPEG2 specification, to adapt to the bandwidth of the audio signal in the AM bands.

Cette étape 52 de calcul de la courbe de masquage met en oeuvre les sous-étapes suivantes :

  • conversion temps-fréquence par transformée de Fourier;
  • détermination du masque absolu ;
  • mise en évidence des composantes tonales et non-tonales ;
  • décimation des différentes composantes ;
  • calcul des masques individuels ;
  • calcul du masque global.
This step 52 of calculation of the masking curve implements the following substeps:
  • time-frequency conversion by Fourier transform;
  • determination of the absolute mask;
  • highlighting tonal and non-tonal components;
  • decimation of the different components;
  • calculation of individual masks;
  • calculation of the global mask.

6.1.1 Convertion temps-fréquence6.1.1 Time-frequency conversion

Le signal analogique portant un signal audio source modulant l'amplitude de la porteuse AM est tout d'abord transposé dans le domaine fréquentiel, à partir d'une transformation mathématique de type transformée de Fourrier (FFT « Fast Fourier Transform).The analog signal carrying a source audio signal modulating the amplitude of the AM carrier is first transposed into the frequency domain, from a Fourier Transform (FFT) type mathematical transformation (Fast Fourier Transform).

Plus précisément, le calcul de la courbe de masquage nécessitant une estimation de la densité spectrale de puissance pour chacune des fréquences du signal audio, on met en oeuvre une transformation de Fourrier à 1024 échantillons pour une fréquence d'échantillonnage de 48kHz afin d'obtenir les différentes fréquences et leurs densités spectrale de puissance. La transformée est calculée à partir du signal analogique d'entrée auquel on applique une fenêtre de Hanning.More precisely, the calculation of the masking curve requiring an estimation of the power spectral density for each of the frequencies of the audio signal, is implemented a Fourier transformation at 1024 samples for a sampling frequency of 48 kHz in order to obtain the different frequencies and their power spectral densities. The transform is calculated from the input analog signal to which a Hanning window is applied.

On rappelle ci-après la définition d'une fenêtre de Hanning, et l'expression de la densité spectrale de puissance :

  • Fenêtre de Hanning : h i = 1 2 / 3 8 1 cos 2 π / N i 0 i N 1 ;
    Figure imgb0001
  • Densité spectrale de puissance : X k = 10 log 1 N l = 0 N 1 h l s l e 2 jkπ / N l 2 dB k = 0 , , / 2 N ;
    Figure imgb0002
où N correspond à la largeur de la bande passante (ici, N est égal à 9 ou 10 kHz), et l'indice k correspond à la position de la composante par rapport à la fréquence centrale AM de la bande passante.The definition of a Hanning window and the expression of the power spectral density are described below:
  • Hanning Window: h i = 1 2 / 3 8 1 - cos 2 π / NOT i 0 i NOT - 1 ;
    Figure imgb0001
  • Spectral power density: X k = 10 log 1 NOT Σ l = 0 NOT - 1 h l s l e - 2 jkπ / NOT l 2 dB k = 0 , ... , / 2 NOT ;
    Figure imgb0002
where N is the width of the bandwidth (here N is equal to 9 or 10 kHz), and the index k is the position of the component relative to the center frequency AM of the bandwidth.

6.1.2 Détermination du masque absolu6.1.2 Determination of the absolute mask

La deuxième sous-étape du calcul de la courbe de masquage du signal analogique nécessite la détermination d'un masque absolu, correspondant au seuil d'audition pour chacune des fréquences correspondant aux composantes délivrées par la transformée de Fourier.The second sub-step of the calculation of the masking curve of the analog signal requires the determination of an absolute mask, corresponding to the hearing threshold for each of the frequencies corresponding to the components delivered by the Fourier transform.

Les seuils d'audition pour les différentes fréquences, notés LTq(k), sont issus de la norme MPEG1, et présentés en annexe 1.The hearing thresholds for the different frequencies, denoted LTq (k), come from the MPEG1 standard, and are presented in Appendix 1.

6.1.3 Mise en évidence des composantes tonales et non-tonales6.1.3 Highlighting the tonal and non-tonal components

La troisième sous-étape met en oeuvre une discrimination entre les composantes tonales et les composantes non-tonales.The third substep implements a discrimination between the tonal components and the non-tonal components.

En effet, la tonalité d'une composante a une influence sur la contribution de la composante dans le calcul de la courbe de masquage.Indeed, the tone of a component has an influence on the contribution of the component in the calculation of the masking curve.

La séparation des composantes tonales et non-tonales s'effectue en plusieurs phases : détermination des maxima locaux, extraction des composantes tonales, et calcul de l'intensité des composantes non-tonales d'une bande critique.The separation of the tonal and non-tonal components takes place in several phases: determination of the local maxima, extraction of the tonal components, and calculation of the intensity of the non-tonal components of a critical band.

(i) Détermination des maxima locaux(i) Determination of local maxima

Par définition, une composante de la densité spectrale obtenue par la transformation de Fourier sera dite maximum local si : X k > X k 1 et X k X k + 1

Figure imgb0003
By definition, a component of the spectral density obtained by the Fourier transform will be called local maximum if: X k > X k - 1 and X k X k + 1
Figure imgb0003

Selon le mode de réalisation préférentiel de l'invention, on analyse les composantes fréquentielles par paquet de trois, et si la composante centrale possède un niveau supérieur aux deux autres, elle est considérée comme un maximum local.According to the preferred embodiment of the invention, the frequency components are analyzed in packets of three, and if the central component has a higher level than the other two, it is considered as a local maximum.

La figure 6A illustre notamment la technique de détermination des maxima locaux, à partir d'un exemple de spectre fréquentiel 61 du signal analogique.The Figure 6A illustrates in particular the technique for determining local maxima, based on an example of a frequency spectrum 61 of the analog signal.

On analyse tout d'abord les trois premières composantes fréquentielles (porteuses 1, 2 et 3) d'une portion 61 du spectre du signal analogique. Ici, la composante centrale (porteuse 2) possédant un niveau, c'est-à-dire une densité spectrale de puissance, supérieur aux deux autres (porteuses 1 et 3), elle est considérée comme un maximum local. On recommence ensuite cette analyse pour les autres composantes fréquentielles (porteuses 2, 3 et 4, puis porteuses 3, 4 et 5, ...). Finalement, dans cet exemple, les maxima locaux correspondent aux porteuses 2, 5, 7, 13, 15 et 17.The first three frequency components (carriers 1, 2 and 3) of a portion 61 of the spectrum of the analog signal are first analyzed. Here, the central component (carrier 2) having a level, that is to say a spectral power density, higher than the other two (carriers 1 and 3), it is considered a local maximum. This analysis is then repeated for the other frequency components (carriers 2, 3 and 4, then carriers 3, 4 and 5, ...). Finally, in this example, the local maxima correspond to the carriers 2, 5, 7, 13, 15 and 17.

(ii) Extraction des composantes tonales(ii) Extraction of tonal components

Les composantes tonales correspondent au regroupement des raies contribuant à la même composante harmonique.The tonal components correspond to the grouping of the lines contributing to the same harmonic component.

Par définition, un maximum local est considéré comme appartenant à la liste des composantes tonales si les conditions suivantes sont respectées : X k X k + j 7 dB

Figure imgb0004
avec j tel que :

  • si 2 < k < 63 , alors j ∈ {-2,2} ;
  • si 62 < k < 127, alors j ∈ {-3,-2,2,3}.
By definition, a local maximum is considered to belong to the list of tonal components if the following conditions are met: X k - X k + j 7 dB
Figure imgb0004
with j such that:
  • if 2 <k <63, then j ∈ {-2,2};
  • if 62 < k < 127 , then j ∈ {-3, -2,2,3}.

En effet, pour tenir compte de la meilleure résolution fréquentielle de l'oreille dans la région des basses fréquences, on modifie la largeur de la bande d'analyse autour des maxima locaux déterminés en fonction de la position des maxima dans le spectre, ce qui implique que la valeur de j varie en fonction des valeurs de k. In fact, to take account of the best frequency resolution of the ear in the low frequency region, the width of the analysis band is modified around the local maxima determined according to the position of the maxima in the spectrum, which implies that the value of j varies according to the values of k.

Ainsi, comme défini dans la spécification MPEG1, la largeur d'analyse est modifiée de la façon suivante : Δf (Hz) Fréquence (kHz) MPEG1 125 0 < f ≤ 4 187,5 4 < f ≤ 8 375 8 < f ≤ 15 Thus, as defined in the MPEG1 specification, the analysis width is modified as follows: Δf (Hz) Frequency (kHz) MPEG1 125 0 <f ≤ 4 187.5 4 <f ≤ 8 375 8 <f ≤ 15

Si, à l'examen de ces différentes conditions, un maximum local correspond à une composante tonale, alors on calcule son niveau de pression acoustique Xtm(k), et toutes les composantes de la densité spectrale ayant été utilisées pour la détermination dans la bande considérée sont mises à un niveau de -∞ dB.If, on examination of these different conditions, a local maximum corresponds to a tonal component, then its sound pressure level X tm (k) is calculated, and all the components of the spectral density that have been used for the determination in the considered band are set at a level of -∞ dB.

Le niveau de pression acoustique Xtm(k) est déterminé par la relation suivante : X tm k = 10 log n = 1 1 10 / N X k + n dB

Figure imgb0005
The sound pressure level X tm (k) is determined by the following relation: X tm k = 10 log Σ not = - 1 1 10 / NOT X k + not dB
Figure imgb0005

La figure 6B illustre notamment la détermination d'une composante tonale, à partir des maxima locaux tels que déterminés précédemment.The Figure 6B illustrates in particular the determination of a tonal component, from the local maxima as determined previously.

Dans cet exemple, si on considère l'indice k égal à 7, les composantes du spectre ayant été utilisées pour la détermination des composantes tonales sont mises à un niveau infiniment bas : les composantes d'indice 4, 5, 6, 8, 9, 10 et 11 disparaissent.In this example, if we consider the index k equal to 7, the spectrum components that were used for the determination of the tonal components are set to an infinitely low level: the index components 4, 5, 6, 8, 9 , 10 and 11 disappear.

(iii) Calcul de l'intensité des composantes non-tonales(iii) Calculation of the intensity of the non-tonal components

Les composantes non-tonales correspondent au regroupement des raies n'ayant aucun lien avec des composantes harmoniques.The non-tonal components correspond to the grouping of lines that have no connection with harmonic components.

Comme illustré en figure 6C, on utilise toutes les composantes de densité spectrale subsistant après le calcul des composantes tonales pour déterminer le niveau des composantes non-tonales dans une bande critique.As illustrated in Figure 6C all remaining spectral density components after the calculation of the tonal components are used to determine the level of the non-tonal components in a critical band.

On rappelle que les bandes critiques sont définies par E. Zwicker et al dans « Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System » (Journal of Audio Engineering Society, vol. 39, No. 3, Mars 1991, pp. 115-126 ), et reprises à titre informatif en annexes 1 et 2.It is recalled that the critical bands are defined by E. Zwicker et al, "Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, The Human Auditory System" (Journal of Audio Engineering Society, 39, No. 3, March 1991, pp. 115-126). ), and included for information purposes in Appendices 1 and 2.

Ainsi, dans chaque bande critique, on effectue une somme linéaire de la puissance des composantes spectrales restantes (après avoir mis à une puissance infiniment faible les composantes du spectre ayant été utilisées pour la détermination des composantes tonales) afin de déterminer le niveau de pression acoustique de la composante non-tonale Xnm(k) correspondant à cette bande critique.Thus, in each critical band, a linear sum of the power of the remaining spectral components (after having put to infinite power the components of the spectrum that were used for the determination of the tonal components) in order to determine the sound pressure level the non-tonal component X nm (k) corresponding to this critical band.

Le niveau de pression acoustique de la composante non-tonale Xnm(k) est alors défini par la relation : X nm k = 10 log i Bc e / 10 X i ;

Figure imgb0006

  • où Bc est la bande critique considérée, et
  • k correspond à l'indice de la composante la plus proche du centre géométrique de la bande critique.
The sound pressure level of the non-tonal component X nm (k) is then defined by the relation: X nm k = 10 log Σ i Bc e / 10 X i ;
Figure imgb0006
  • where Bc is the considered critical band, and
  • k is the index of the component closest to the geometric center of the critical band.

Finalement, la figure 6D présente la portion de spectre restant après extraction des composantes tonales et non-tonales, et détermination de leurs niveaux de pression acoustique.Finally, the Figure 6D presents the portion of the spectrum remaining after extraction of the tonal and non-tonal components, and determination of their sound pressure levels.

6.1.4 Décimation des différentes composantes6.1.4 Decimation of the different components

La quatrième sous-étape du calcul de la courbe de masquage du signal analogique met en oeuvre une réduction du nombre de composantes des masques individuels, en éliminant certaines composantes tonales et non-tonales du spectre restant en fonction des conditions suivantes :

  • les composantes tonales et non-tonales sont conservées si leurs niveaux (c'est-à-dire leurs densités spectrales de puissance) sont supérieurs au masque absolu (où le masque absolu correspond au seuil d'audition pour les différentes composantes, et est présenté en annexe 1) : X tm k LT q k et X nm k LT q k
    Figure imgb0007
  • seule la composante tonale de puissance la plus élevée sera conservée dans une bande de 0,5 bark à l'intérieur d'une bande critique. Cette opération nécessite l'utilisation d'une fenêtre glissante de largeur 0,5 bark.
The fourth sub-step of the calculation of the masking curve of the analog signal implements a reduction in the number of components of the individual masks, eliminating certain tonal and non-tonal components of the remaining spectrum according to the following conditions:
  • the tonal and non-tonal components are conserved if their levels (ie their spectral power densities) are greater than the absolute mask (where the absolute mask corresponds to the hearing threshold for the different components, and is presented in Annex 1): X tm k LT q k and X nm k LT q k
    Figure imgb0007
  • only the highest power tonal component will be conserved in a band of 0.5 bark within a critical band. This operation requires the use of a sliding window of 0.5 bark width.

On rappelle que E. Zwicker et al, dans « Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System » (Journal of Audio Engineering Society, vol. 39, No. 3, Mars 1991, pp. 115-126 ), a défini une échelle pour représenter la largeur et la position des bandes critiques dans le spectre fréquentiel. Il s'agit d'une échelle non-linéaire des fréquences, variant de 0 à 24 barks, où chacune des 24 bandes critiques possède une largeur de 1 bark.It is recalled that E. Zwicker et al, "Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, The Human Auditory System" (Journal of Audio Engineering Society, 39, No. 3, March 1991, pp. 115-126). ), defined a scale to represent the width and position of the critical bands in the frequency spectrum. It is a non-linear scale of frequencies, ranging from 0 to 24 barks, where each of the 24 critical bands has a width of 1 bark.

6.1.5 Calcul des masques individuels6.1.5 Calculation of individual masks

De tous les échantillons calculés lors de la sous-étape de transformation de Fourier, seul un certain nombre est conservé pour le calcul du masque global (par exemple 72 ou 75 échantillons pour le niveau 1 de la spécification MPEG). Selon la spécification MPEG1, tous les échantillons des six premières sous-bandes sont utilisés, puis un sur deux pour les six sous-bandes suivantes, et enfin un sur quatre pour le reste du spectre audio de largeur 4,5 ou 5kHz.Of all the samples computed during the Fourier transformation sub-step, only a certain number is retained for the calculation of the global mask (for example 72 or 75 samples for level 1 of the MPEG specification). According to the MPEG1 specification, all samples of the first six subbands are used, then one out of two for the next six subbands, and one out of four for the rest of the audio spectrum of 4.5 or 5kHz width.

On peut remarquer que chacune des composantes tonales et non-tonales, déterminée lors de la sous-étape d'extraction des composantes tonales et non-tonales, doit exister dans la nouvelle sélection (pour le calcul du masque global) avec un indice aussi proche que possible (voire identique) de l'indice original.We can notice that each of the tonal and non-tonal components, determined during the sub-step of extraction of the tonal and non-tonal components, must exist in the new selection (for the computation of the global mask) with a similar index as possible (or even identical) of the original index.

Après ces opérations de sélection, on obtient : LT tm z j , z i = X tm z j + av tm z j + vf z j , z i dB

Figure imgb0008
LT nm z j , z i = X nm z j + av nm z j + vf z j , z i dB
Figure imgb0009
où :

  • LTtm et LTnm sont les masques individuels (composantes tonale et non-tonale) de la composante masquante z(j) en z(i) ;
  • Xtm et Xnm sont les niveaux de pression acoustique des composantes tonales et non-tonales ;
  • av l'index de masquage de la composante en z(j) ;
  • vf la fonction de masquage de la composante en z(j).
After these selection operations, we obtain: LT tm z j , z i = X tm z j + BC tm z j + vF z j , z i dB
Figure imgb0008
LT nm z j , z i = X nm z j + BC nm z j + vF z j , z i dB
Figure imgb0009
or :
  • LT tm and LT nm are the individual masks (tonal and non-tonal components) of the masking component z (j) in z (i);
  • X tm and X nm are the sound pressure levels of the tonal and non-tonal components;
  • av the masking index of the component in z (j);
  • vf the function of masking the component in z (j).

L'index av de masquage de la composante possède une valeur différente selon qu'il s'agisse d'une composante tonale ou d'une composante non-tonale.The av index of masking of the component has a different value depending on whether it is a tonal component or a non-tonal component.

Ainsi, dans le cas d'une composante tonale, on a : av tm = 6.025 0.275 z j dB ;

Figure imgb0010
et dans le cas d'une composante non-tonale, on a : av nm = 2.025 0.175 z j dB .
Figure imgb0011
Thus, in the case of a tonal component, we have: BC tm = - 6,025 - 0275 z j dB ;
Figure imgb0010
and in the case of a non-tonal component, we have: BC nm = - 2025 - 0175 z j dB .
Figure imgb0011

La fonction vf de masquage, identique pour les composantes tonales et non-tonales, est caractérisée par la distance, dans le domaine fréquentiel, entre la composante masquante (issue du signal analogique) et la composante masquée (issue du signal numérique) : Δz=z(i)-z(j).The masking function vf , identical for the tonal and non-tonal components, is characterized by the distance, in the frequency domain, between the masking component (resulting from the analog signal) and the masked component (resulting from the digital signal): Δz = z (i) -z (j).

Ainsi, la fonction de masquage est égale à : vf = 17 Δ z + 1 0.4 X z j + 6 dB pour 3 Δ z < 1 bark ;

Figure imgb0012
vf = 0.4 X z j + 6 Δ z dB pour 1 Δ z < 0 bark ;
Figure imgb0013
vf = 17 Δ z dB pour 0 Δ z < 1 bark ;
Figure imgb0014
vf = Δ z 1 17 0.15 X z j 17 dB pour 1 Δ z < 8 bark .
Figure imgb0015
Thus, the masking function is equal to: vF = 17 Δ z + 1 - 0.4 X z j + 6 dB for - 3 Δ z < - 1 bark ;
Figure imgb0012
vF = 0.4 X z j + 6 Δ z dB for - 1 Δ z < 0 bark ;
Figure imgb0013
vF = - 17 Δ z dB for 0 Δ z < 1 bark ;
Figure imgb0014
vF = - Δ z - 1 17 - 0.15 X z j - 17 dB for 1 Δ z < 8 bark .
Figure imgb0015

Selon la spécification MPEG, le masquage issu des composantes situées à des valeurs supérieures à 8 barks ou inférieures à -3 barks de la composante masquée n'est pas utilisé, pour des raisons de complexité d'implémentation et de non pertinence, ces composantes étant trop éloignées de la composante masquante pour perturber sa densité spectrale de puissance.According to the MPEG specification, masking from components at values greater than 8 barks or less than -3 barks of the masked component is not used, for reasons of implementation complexity and irrelevance, these components being too far from the masking component to disrupt its power spectral density.

6.1.6 Calcul du masque global6.1.6 Computation of the global mask

Le masque sur l'échantillon i, noté LTg(i), est égal à la somme linéaire des masques individuels des échantillons situés dans la gamme [8;-3] barks et du masque absolu : LT g i = 10 log 10 / 10 LT q i + j = 1 m 10 / 10 LT tm i + j = 1 j = n 10 / 10 LT nm z i , z j

Figure imgb0016
The mask on the sample i , denoted by LT g (i), is equal to the linear sum of the individual masks of the samples situated in the range [8; -3] barks and of the absolute mask: LT boy Wut i = 10 log 10 / 10 LT q i + Σ j = 1 m 10 / 10 LT tm i + Σ j = 1 j = not 10 / 10 LT nm z i , z j
Figure imgb0016

LTg(i) représente le niveau de la courbe de masquage pour l'échantillon i (pour le calcul du masque global, 72 ou 75 échantillons i sont utilisés, en fonction de la bande passante audio, selon la spécification MPEG1).LT g (i) represents the level of the masking curve for sample i (for the calculation of the overall mask, 72 or 75 samples are used, depending on the audio bandwidth, according to the MPEG1 specification).

On rappelle notamment que les échantillons ne possèdent pas la même largeur en fréquence en fonction de leurs positions dans le spectre (de 62,5 à 250Hz selon la spécification MPEG1).In particular, the samples do not have the same frequency width as a function of their positions in the spectrum (from 62.5 to 250 Hz according to the MPEG1 specification).

6.2 Filtrage (53) du masque global6.2 Filtering (53) of the global mask

La deuxième étape de l'invention, dans son mode de réalisation préférentiel, met en oeuvre un filtrage (53) dans le domaine fréquentiel et/ou temporel de la courbe de masquage correspondant au masque global, pour délivrer un signal de masquage.The second step of the invention, in its preferred embodiment, implements a filtering (53) in the frequency and / or time domain of the masking curve corresponding to the global mask, to deliver a masking signal.

En effet, en réception, un récepteur classique de type « à détection d'enveloppe » démodule le signal dit « simulcast » (signal analogique sur une première bande latérale, et signal numérique modulé en amplitude par le signal de masquage sur la seconde bande latérale), et délivre un signal de base correspondant à la somme des signaux modulants sur chacune des deux bandes latérales de la porteuse.Indeed, in reception, a conventional "envelope detection" type receiver demodulates the so-called "simulcast" signal (analog signal on a first sideband, and amplitude modulated digital signal by the masking signal on the second sideband). ), and delivers a base signal corresponding to the sum of the modulating signals on each of the two lateral bands of the carrier.

Selon les techniques présentées dans la spécification MPEG1, le masquage fréquentiel permet de rendre inaudible tout signal qui suit les variations en amplitude de la courbe de masquage.According to the techniques presented in the MPEG1 specification, the frequency masking makes it possible to render inaudible any signal that follows the amplitude variations of the masking curve.

Cependant, selon l'invention, si le masquage est appliqué directement en fréquence sur le signal numérique de type DRM, les variations en temps et en fréquence de la courbe de masquage seront trop importantes pour le signal DRM, du fait de sa structure multiporteuse (OFDM), et il apparaît nécessaire de lisser la courbe de masquage.However, according to the invention, if the masking is applied directly in frequency on the DRM type digital signal, the time and frequency variations of the masking curve will be too great for the DRM signal, because of its multicarrier structure ( OFDM), and it appears necessary to smooth the masking curve.

L'invention propose ainsi de limiter ces variations en temps et en fréquence en mettant en oeuvre un filtrage passe-bas de la courbe de masquage dans les domaines temporel et fréquentiel délivrant le signal de masquage, selon ce mode de réalisation préférentiel de l'invention, afin d'améliorer (ou à tout le moins de ne pas dégrader) l'estimation de canal mise en oeuvre en réception du signal numérique. L'estimation de canal suit ainsi l'évolution du signal de masquage.The invention thus proposes to limit these variations in time and in frequency by implementing a low-pass filtering of the masking curve in the time and frequency domains delivering the masking signal, according to this preferred embodiment of the invention. , in order to improve (or at least not to degrade) the channel estimation implemented in reception of the digital signal. The channel estimate thus follows the evolution of the masking signal.

6.3 Détermination d'un seuil minimal et d'un gain à appliquer au masque (54)6.3 Determination of a minimum threshold and a gain to be applied to the mask (54)

L'invention propose également, dans son mode de réalisation préférentiel, de déterminer un seuil minimal à appliquer au signal de masquage et de lui ajouter un gain (c'est-à-dire de l'amplifier) au cours d'une troisième étape référencée 54.The invention also proposes, in its preferred embodiment, to determine a minimum threshold to be applied to the masking signal and to add a gain (that is to say to amplify it) during a third step. referenced 54.

En effet, on peut constater que les signaux audio ne sont généralement pas continus dans le temps. C'est notamment le cas des signaux de parole, comme la voix humaine.Indeed, it can be seen that the audio signals are generally not continuous in time. This is particularly the case of speech signals, such as the human voice.

Dans le cas de silences, si aucune amélioration n'est proposée, la courbe de masquage produirait un signal de masquage quasiment nul sur des intervalles temporels plus ou moins long. On perdrait donc, en réception, les données transportées par le signal numérique masquées par un silence du signal analogique.In the case of silences, if no improvement is proposed, the masking curve would produce a masking signal that is almost zero over longer or shorter time intervals. Thus, the data transported by the digital signal masked by a silence of the analog signal would be lost in reception.

Pour pallier cet inconvénient et assurer une continuité de la réception des données (par exemple, une continuité du service DRM), l'invention propose de définir un seuil minimal en dessous duquel le signal de masquage ne peut descendre.To overcome this disadvantage and to ensure a continuity of the data reception (for example, a continuity of the DRM service), the invention proposes to define a minimum threshold below which the masking signal can not go down.

On peut par exemple définir un seuil de 40dB en dessous d'un signal modulant crête-crête de 96dB, en dessous duquel le signal de masquage ne peut descendre.For example, it is possible to define a threshold of 40 dB below a peak-to-peak modulating signal of 96 dB, below which the masking signal can not descend.

Il est également possible, dans ce mode de réalisation préférentiel de l'invention, d'amplifier le signal de masquage afin d'augmenter la puissance du signal numérique, par exemple de type DRM. Cependant, cette amplification du signal de masquage se fait au détriment de l'inaudibilité du signal numérique en réception : en effet, en augmentant la puissance du signal numérique, on améliore sa qualité de réception, mais on risque également de perturber la réception du signal audio porté par le signal analogique par les récepteurs analogiques.It is also possible, in this preferred embodiment of the invention, to amplify the masking signal in order to increase the power of the digital signal, for example of the DRM type. However, this amplification of masking signal is to the detriment of the inaudibility of the digital signal in reception: by increasing the power of the digital signal, it improves its reception quality, but it also risks to disturb the reception of the audio signal carried by the signal analog by analog receivers.

Par conséquent, il est nécessaire de trouver un compromis entre le masquage du signal numérique et les performances de réception numérique et analogique vis-à-vis du canal de propagation.Therefore, it is necessary to find a compromise between the masking of the digital signal and the digital and analog reception performance vis-à-vis the propagation channel.

6.4 Modulation en amplitude du signal numérique par la courbe de masquage filtrée (55)6.4 Amplitude modulation of the digital signal by the filtered masking curve (55)

Après avoir déterminé un seuil minimal et un gain à apporter à la courbe de masquage filtrée, c'est-à-dire au signal de masquage, une quatrième étape (55) consiste à moduler en amplitude le signal numérique par le signal de masquage.After determining a minimum threshold and a gain to be made to the filtered masking curve, i.e. the masking signal, a fourth step (55) is to amplitude modulate the digital signal by the masking signal.

Le signal modulant, c'est-à-dire le signal de masquage, est alors appliqué dans le domaine fréquentiel aux porteuses constituant un symbole OFDM du signal numérique de type DRM.The modulating signal, that is to say the masking signal, is then applied in the frequency domain to the carriers constituting an OFDM symbol of the DRM type digital signal.

Selon une première variante, l'étape de modulation en amplitude dans le domaine fréquentiel du signal numérique par le signal de masquage est mise en oeuvre lors de la création du signal DRM à l'émission, dans le domaine fréquentiel.According to a first variant, the amplitude modulation step in the frequency domain of the digital signal by the masking signal is implemented during the creation of the DRM signal on transmission, in the frequency domain.

Selon une seconde variante, le signal DRM est traité à la fin de la chaîne de modulation OFDM, avant transmission sur une porteuse AM, en repassant dans le domaine fréquentiel à partir d'une étape 51 de transformée de Fourier rapide, par exemple à 1024 points pour une fréquence d'échantillonnage de 48kHz.According to a second variant, the signal DRM is processed at the end of the OFDM modulation chain, before transmission on an AM carrier, by going back to the frequency domain from a fast Fourier transform step 51, for example to 1024. points for a sampling frequency of 48kHz.

6.5 Synchronisation du signal numérique modulé et du signal analogique avant transmission (57)6.5 Synchronization of modulated digital signal and analogue signal before transmission (57)

Au cours d'une cinquième étape 57, le signal numérique modulé, de nouveau transposé dans le domaine temporel (56), est synchronisé avec le signal analogique portant le signal audio source modulant l'amplitude de la porteuse AM.During a fifth step 57, the modulated digital signal, again transposed in the time domain (56), is synchronized with the analog signal carrying the source audio signal modulating the amplitude of the AM carrier.

En effet, pour optimiser le gain apporté par cette technique de diffusion et diminuer les perturbations provoquées par le signal numérique sur la réception analogique, une synchronisation parfaite entre le signal DRM, modulé par le signal de masquage, et le signal analogique est nécessaire avant la diffusion du signal dit « simulcast » illustré en figure 4. Le signal numérique est alors correctement « caché » lors de la diffusion, et ne perturbe pas (ou très peu) les récepteurs analogiques, tout en conservant une bonne qualité de réception pour les récepteurs numériques.Indeed, to optimize the gain provided by this diffusion technique and to reduce the disturbances caused by the digital signal on the analog reception, a perfect synchronization between the signal DRM, modulated by the masking signal, and the analog signal is necessary before the broadcast of the so-called "simulcast" signal illustrated in figure 4 . The digital signal is then correctly "hidden" during the broadcast, and does not disturb (or very little) analog receivers, while maintaining a good reception quality for digital receivers.

Il peut par exemple être intéressant que le signal numérique et le signal analogique portent le même signal audio, notamment durant la période de transition prévue entre le passage de la diffusion analogique à la diffusion numérique.For example, it may be interesting for the digital signal and the analog signal to carry the same audio signal, especially during the transition period between the transition from analogue to digital broadcasting.

L'invention propose ainsi une technique de diffusion d'un signal numérique et d'un signal analogique dans un même canal, dite diffusion « simulcat », reposant sur des étapes principales de calcul du niveau de masquage lié au signal analogique, et d'application de ce masquage au signal numérique.The invention thus proposes a technique for broadcasting a digital signal and an analogue signal in the same channel, called "simulcat" broadcasting, based on the main stages of calculation of the masking level related to the analog signal, and of application of this masking to the digital signal.

Il est à noter que cette technique présente également de bonnes performances avec un récepteur mettant en oeuvre une démodulation synchrone, par exemple à bande latérale unique.It should be noted that this technique also has good performance with a receiver implementing a synchronous demodulation, for example single sideband.

Ainsi, le signal démodulé par un récepteur classique n'est pas perturbé par le signal numérique, si le signal numérique suit la courbe de masquage variant en temps et en fréquence.Thus, the signal demodulated by a conventional receiver is not disturbed by the digital signal, if the digital signal follows the masking curve varying in time and frequency.

Pour une bonne réception du signal numérique, il est cependant nécessaire de limiter les variations de la courbe de masquage en fonction de la structure du signal numérique (par exemple en fonction des symboles OFDM d'un signal DRM). Il est donc nécessaire de trouver un compromis entre le masquage du signal numérique et les performances de la réception analogique ou numérique vis-à-vis du canal de propagation.For good reception of the digital signal, however, it is necessary to limit the variations of the masking curve as a function of the structure of the digital signal (for example according to the OFDM symbols of a DRM signal). It is therefore necessary to find a compromise between the masking of the digital signal and the performance of the analogue or digital reception vis-à-vis the propagation channel.

Bien entendu, la présente invention ne se limite pas aux détails des formes de réalisation décrits ici à titre d'exemple, mais s'étend au contraire aux modifications à la portée de l'homme de l'art, sans sortir du cadre de l'invention.Of course, the present invention is not limited to the details of the embodiments described here by way of example, but extends instead to modifications within the scope of those skilled in the art, without departing from the scope of the present invention. 'invention.

On notera d'ailleurs que l'invention ne se limite pas à une implantation purement matérielle mais qu'elle peut aussi être mise en oeuvre sous la forme d'une séquence d'instructions d'un programme informatique ou toute forme mixant une partie matérielle et une partie logicielle. Dans le cas où l'invention est implantée partiellement ou totalement sous forme logicielle, la séquence d'instructions correspondante pourra être stockée dans un moyen de stockage amovible (tel que par exemple une disquette, un CD-ROM ou un DVD-ROM) ou non, ce moyen de stockage étant lisible partiellement ou totalement par un ordinateur ou un microprocesseur.It will be noted moreover that the invention is not limited to a purely hardware implementation but that it can also be implemented in the form of a sequence of instructions of a computer program or any form mixing a hardware part and a software part. In the case where the invention is partially or totally implemented in software form, the corresponding instruction sequence can be stored in a removable storage means (such as for example a floppy disk, a CD-ROM or a DVD-ROM) or no, this storage means being partially or completely readable by a computer or a microprocessor.

ANNEXESNOTES

Annexe 1 : Tableau des masques absolus en fonction des fréquences audioAppendix 1: Table of absolute masks according to the audio frequencies Fréquence (Hz)Frequency (Hz) Taux bande critique (z)Critical band rate (z) Masque Absolu LTq (dB)Absolute mask LT q (dB) 62.5062.50 0.6170617 33.4433.44 125.00125.00 1.2321232 19.2019.20 187.50187.50 1.8421842 13.8713.87 250.00250.00 2.4452445 11.0111.01 312.50312.50 3.0373037 9.209.20 375.00375.00 3.6183618 7.947.94 437.50437.50 4.1854.185 7.007.00 500.00500.00 4.7364736 6.286.28 562.50562.50 5.2725.272 5.705.70 625.00625.00 5.7895789 5.215.21 687.50687.50 6.2896289 4.804.80 750.00750.00 6.7706770 4.454.45 812.50812.50 7.2337.233 4.144.14 875.00875.00 7.6777.677 3.863.86 937.50937.50 8.1038.103 3.613.61 1000.001000.00 8.5118511 3.373.37 1062.501062.50 8.9018901 3.153.15 1125.001125.00 9.2759275 2.932.93 1187.501187.50 9.6329632 2.732.73 1250.001250.00 9.9749974 2.532.53 1312.501312.50 10.30110.301 2.322.32 1375.001375.00 10.61410614 2.122.12 1437.501437.50 10.91310913 1.921.92 1500.001500.00 11.19911.199 1.711.71 1562.501562.50 11.47411474 1.491.49 1625.001625.00 11.73611736 1.271.27 1687.501687.50 11.98811988 1.041.04 1750.001750.00 12.23012,230 0.800.80 1812.501812.50 12.46112461 0.550.55 1875.001875.00 12.68412684 0.290.29 1937.501937.50 12.89812.898 0.020.02 2000.002000.00 13.10413.104 -0.25-0.25 2062.502062.50 13.30213302 -0.54-0.54 2125.002125.00 13.49313493 -0.83-0.83 2187.502187.50 13.67813.678 -1.12-1.12 2250.002250.00 13.85513855 -1.43-1.43 2312.502312.50 14.02714027 -1.73-1.73 2375.002375.00 14.19314.193 -2.04-2.04 2437.502437.50 14.35414354 -2.34-2.34 2500.002500.00 14.50914509 -2.64-2.64 2562.502562.50 14.66014660 -2.93-2.93 2625.002625.00 14.80714807 -3.22-3.22 2687.502687.50 14.94914949 -3.49-3.49 2750.002750.00 15.08715,087 -3.74-3.74 2812.502812.50 15.22115221 -3.98-3.98 2875.002875.00 15.35115351 -4.20-4.20 2937.502937.50 15.47815478 -4.40-4.40 3000.003000.00 15.60215602 -4.57-4.57 3125.003125.00 15.84115841 -4.82-4.82 3250.003250.00 16.06916069 -4.96-4.96 3375.003375.00 16.28716287 -4.97-4.97 3500.003500.00 16.49616496 -4.86-4.86 3625.003625.00 16.69716697 -4.63-4.63 3750.003750.00 16.89116,891 -4.29-4.29 3875.003875.00 17.07817078 -3.87-3.87 4000.004000.00 17.25917259 -3.39-3.39 4125.004125.00 17.43417434 -2.86-2.86 4250.004250.00 17.60517605 -2.31-2.31 4375.004375.00 17.77017770 -1.77-1.77 4500.004500.00 17.93217932 -1.24-1.24 4625.004625.00 18.08918089 -0.74-0.74 4750.004750.00 18.24218242 -0.29-0.29 4875.004875.00 18.39218392 0.120.12 5000.005000.00 18.53918539 0.480.48 Annexe 2 : Tableau des fréquences centrales des bandes critiques établies par E. ZwickerAppendix 2: Table of Central Frequencies of Critical Bands Established by E. Zwicker Numéro de la bandeBand number Fréquence centrale (Hz)Central frequency (Hz) Largeur de la bande (Hz)Width of the band (Hz) 11 5050 8080 22 150150 100100 33 250250 100100 44 350350 100100 55 450450 100100 66 570570 120120 77 700700 140140 88 840840 150150 99 10001000 160160 1010 11701170 190190 1111 13701370 210210 1212 16001600 240240 1313 18501850 280280 1414 21502150 320320 1515 25002500 380380 1616 29002900 450450 1717 34003400 550550 1818 40004000 700700 1919 48004800 900900 2020 58005800 11001100 2121 70007000 13001300 2222 85008500 18001800 2323 1050010500 25002500 2424 1350013500 35003500

Claims (11)

  1. Method for broadcasting a modulated digital signal and an analogue signal carrying a source audio signal modulating the amplitude of an AM carrier, comprising a step of modulating the amplitude (55), in the frequency domain, of a digital signal by a masking signal, delivering said modulated digital signal, and a step of broadcasting said modulated digital signal and analogue signal over one same carrying frequency, characterised in that the masking signal is representative of a psychoacoustic masking curve of said source audio signal.
  2. Method for broadcasting according to claim 1, characterised in that said modulated digital signal and analogue signal are transmitted in one same propagation channel.
  3. Method for broadcasting according to any one of claims 1 and 2, characterised in that said masking signal corresponds to said masking curve, after low-pass filtering (53) in the frequency domain and/or in the time domain.
  4. Method for broadcasting according to any one of claims 1 to 3, characterised in that said masking signal always remains above a predetermined threshold.
  5. Method for broadcasting according to any one of claims 1 to 4, characterised in that said masking signal is amplified (54) according to a predetermined gain.
  6. Method for broadcasting according to any one of claims 1 to 5, characterised in that said modulated digital signal and analogue signal are synchronised (57).
  7. Method for broadcasting according to any one of claims 1 to 6, characterised in that said modulated digital signal and analogue signal carry the same source audio signal.
  8. Method for broadcasting according to any one of claims 1 to 7, characterised in that said modulated digital signal is a multicarrier signal.
  9. Method for broadcasting according to any one of claims 1 to 8, characterised in that said masking curve is obtained according to at least one of the following steps:
    - mathematical transformation of said source audio signal from the time domain to the frequency domain;
    - determination of an absolute mask, corresponding to an auditory threshold for each one of the frequencies corresponding to the components delivered by said mathematical transformation;
    - identification of tonal components and non-tonal components among said components;
    - decimation of said components, by removing components below said absolute mask;
    - calculation of individual masks for a predetermined number of components;
    - calculation of said masking signal corresponding to a linear sum of said individual masks.
  10. Device for broadcasting a modulated digital signal and an analogue signal carrying a source audio signal modulating the amplitude of an AM carrier, comprising means for modulating the amplitude (55) in the frequency domain, of a digital signal by a masking signal, delivering said modulated digital signal, and means for broadcasting said modulated digital signal and analogue signal over one same carrying frequency, characterised in that the masking signal is representative of a psychoacoustic masking curve of said source audio signal.
  11. Modulated digital signal intended to be broadcast over one same carrying frequency as an analogue signal carrying a source audio signal modulating the amplitude of an AM carrier, obtained by modulating the amplitude of a digital signal, in the frequency domain, by a masking signal, characterised in that the masking signal is representative of a psychoacoustic masking curve of said source audio signal.
EP05815700.9A 2004-11-25 2005-11-07 Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal. Active EP1815622B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0412546A FR2878388B1 (en) 2004-11-25 2004-11-25 METHOD FOR DIFFUSING A DIGITAL SIGNAL TRANSMITTED IN THE VICINITY OF AN ANALOGUE SIGNAL, DIFFUSION DEVICE AND DIGITAL SIGNAL CORRESPONDING
PCT/EP2005/055795 WO2006056528A1 (en) 2004-11-25 2005-11-07 Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal.

Publications (2)

Publication Number Publication Date
EP1815622A1 EP1815622A1 (en) 2007-08-08
EP1815622B1 true EP1815622B1 (en) 2017-11-01

Family

ID=34951292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815700.9A Active EP1815622B1 (en) 2004-11-25 2005-11-07 Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal.

Country Status (3)

Country Link
EP (1) EP1815622B1 (en)
FR (1) FR2878388B1 (en)
WO (1) WO2006056528A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247768B2 (en) * 1999-03-29 2009-04-02 ルーセント テクノロジーズ インコーポレーテッド Information signal processing method
DE10123150A1 (en) * 2001-05-03 2002-11-21 Deutsche Telekom Ag Method for increasing the radiated power when transmitting digital multi-carrier signals with AM transmitters
EP1363417A1 (en) * 2002-05-13 2003-11-19 Sony International (Europe) GmbH Peak reduction for simulcast broadcast signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2006056528A1 (en) 2006-06-01
EP1815622A1 (en) 2007-08-08
FR2878388B1 (en) 2007-01-26
FR2878388A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
EP0950306B1 (en) Method and device for formatting a clipping noise in a multicarrier modulation
EP0762703B1 (en) Multicarrier demodulation with reduction of white frequency distortion
FR2707127A1 (en) Digital transmission system with predisposition.
EP1810470B1 (en) Method for receiving a multicarrier signal using at least two estimations of a propagation channel and corresponding reception device
WO1996038927A1 (en) Data broadcasting system using the human ear properties
FR2726417A1 (en) TRANSMISSION AND RECEIVER SYSTEM OF SIGNALS WITH MULTIPLEXED SPEECHOGONAL FREQUENCY DISTRIBUTION EQUIPPED WITH A FREQUENCY SYNCHRONIZATION DEVICE
FR2891674A1 (en) METHOD AND SYSTEM FOR AUTOMATIC DELAY PLANNING OF EMISSION TIMES OF TRANSMITTERS OF SYNCHRONOUS DIFFUSION NETWORK IN TIME AND FREQUENCY
EP1661348B1 (en) Method and device for improving the estimation of a propagation channel of a multicarrier signal
FR3047578A1 (en) METHOD OF ESTIMATING PARAMETERS OF SIGNALS CONTAINED IN A FREQUENCY BAND
EP0762702A1 (en) Method and apparatus for demodulating a multicarrier signal, taking a channel response estimate and an estimate of white frequency distortion into account
EP1815622B1 (en) Method for broadcasting a digital signal transmitted in the vicinity of an analog signal, and corresponding broadcasting device and digital signal.
CA2358719C (en) Broadcasting system, and process ensuring the continuity of service
EP1908197A1 (en) Method and device for receiving a digital signal transmitted in the vicinity of an analog signal
FR2826208A1 (en) System and method for transmitting an audio or phonic signal, by utilizing a digital modem for transmitting analogue signals
EP2093889B1 (en) Method for processing a first and second signal superimposed within an incident aggregate signal and corresponding device.
WO2014128176A2 (en) Methods and devices for transmitting and receiving a multicarrier signal reducing the peak-to-average power ratio, and corresponding programme and signal
WO2020188113A1 (en) Method for estimating a signal-to-noise ratio
EP4290814A1 (en) Method and device for synchronizing a digital radio signal
FR2755553A1 (en) METHOD AND DEVICE FOR CANCELLING CO-CHANNEL INTERFERING SIGNALS AND ADJACENT FM RECEIVER CHANNELS
WO2009000995A1 (en) Method for receiving a frequency multiplexed transmitted signal
FR2942092A1 (en) METHOD AND DEVICE FOR TRANSMITTING A MULTI-CARRIER SIGNAL REDUCING THE CORRELATED POWER RATIO WITH AVERAGE POWER, PROGRAM AND CORRESPONDING SIGNAL
EP2201735A1 (en) Frame synchronisation in an ofdm communication system
FR2815794A1 (en) Device to identify interference signals in a radio electric signal with a constant module
WO2015185073A1 (en) Selective upstream asymmetric filtering by frequency modulation
FR2927746A1 (en) METHOD FOR RECEIVING WIRELESS TELECOMMUNICATION USING SINGLE LATERAL BAND AMPLITUDE MODULATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005052996

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04H0001000000

Ipc: H04H0020300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04H 20/30 20080101AFI20170519BHEP

Ipc: H04H 20/72 20080101ALN20170519BHEP

Ipc: H04H 20/22 20080101ALN20170519BHEP

INTG Intention to grant announced

Effective date: 20170609

RIC1 Information provided on ipc code assigned before grant

Ipc: H04H 20/72 20080101ALN20170529BHEP

Ipc: H04H 20/22 20080101ALN20170529BHEP

Ipc: H04H 20/30 20080101AFI20170529BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 943018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005052996

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 943018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005052996

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231020

Year of fee payment: 19