EP1815110B1 - Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine - Google Patents

Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine Download PDF

Info

Publication number
EP1815110B1
EP1815110B1 EP05799743A EP05799743A EP1815110B1 EP 1815110 B1 EP1815110 B1 EP 1815110B1 EP 05799743 A EP05799743 A EP 05799743A EP 05799743 A EP05799743 A EP 05799743A EP 1815110 B1 EP1815110 B1 EP 1815110B1
Authority
EP
European Patent Office
Prior art keywords
positional sensor
rotor
gas exchange
electric motor
exchange valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05799743A
Other languages
German (de)
French (fr)
Other versions
EP1815110A1 (en
Inventor
Rudolf Seethaler
Ralf Cosfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1815110A1 publication Critical patent/EP1815110A1/en
Application granted granted Critical
Publication of EP1815110B1 publication Critical patent/EP1815110B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/044Reciprocating cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2167Sensing means
    • F01L2009/2169Position sensors

Definitions

  • the present invention relates to a method for calibrating a displacement sensor of a Drehaktuatorvortechnik for controlling a gas exchange valve of an internal combustion engine according to the preamble of claim 1.
  • the method finds application in Drehaktuatorvortechniken without mechanical stops.
  • the camshaft for controlling the gas exchange valves is mechanically driven by a timing chain or a timing belt from the crankshaft.
  • a so-called fully variable (variable timing and variable valve lift) for example, a so-called electromagnetic valve train.
  • an "actuator unit” is assigned to each valve or "valve group" of a cylinder.
  • stroke actuators a valve or a valve group is associated with an opening and a closing magnet.
  • valves By energizing the magnets, the valves can be moved axially, ie opened or closed.
  • the other basic type (so-called rotary actuator) is a control shaft provided with a cam, wherein the control shaft is pivotable by an electric motor back and forth.
  • valve spring and additional spring are such that during periodic operation of the rotary actuator device according to the position of the gas exchange valve, the kinetic energy is stored either in the valve spring (closing spring) or in the additional spring (opening spring).
  • the device described proposes for the unique positioning of the control cam in its end positions, which is clearly positioned by means of a first and by means of a second rotation stop.
  • a disadvantage of this arrangement is that the calibration of displacement sensors for position determination by approaching mechanical stops does not have a satisfactory accuracy for all applications.
  • the mechanical tolerances of the system are so large that a required accuracy can not be achieved.
  • the object of the invention is to provide a method for measuring and calibrating a displacement sensor for a rotary actuator device, by means of which a more accurate positioning or position determination of the actuating element (and thus also of the gas exchange valve) is ensured.
  • a method is to be specified, which ensures a measurement or calibration in both operating phases with low engine speed and operating phases with high engine speed in a reliable manner.
  • the object is achieved by the entirety of the features of the independent claim.
  • at least one state variable of the electric motor is determined and compared with a stored reference variable.
  • the stored nominal path is controlled by means of which the electric motor or the rotor of the electric motor is controlled and / or the value detected by the displacement sensor as a function of the height the deviation of the state quantity from the reference value, changed.
  • the determination of the state variable is preferably carried out by measuring the corresponding value.
  • the state variable can also be calculated on the basis of a stored model.
  • the state variable is the rotor angle, a time derivative of the rotor angle, and / or the motor current of the electric motor or one to the motor current proportional size (motor power, supply voltage of the electric motor) determined.
  • the change in the stored nominal trajectory and / or the detected travel sensor value preferably takes place by multiplying the stored desired trajectory values or travel sensor values by a correction factor and / or by adding a stored offset value.
  • Correction factor and / or offset value are referred to below as the correction value.
  • the correction value is determined as a function of the determined path deviation. The determination can be made by selecting from a stored stored table or by online calculation. At a high deviation (above a predetermined first deviation threshold), due to which the rotor threatens to fall, for example, in an unwanted intermediate position, a correspondingly high correction value is assigned, so that even in the same cycle or in the immediately subsequent cycle of the rotor this highly corrected values is regulated. A drop of the rotor in the described intermediate position is effectively prevented.
  • the at least one monitored state value determined with each or every nth cycle can be averaged over a plurality of working cycles.
  • An assignment or determination of a corresponding correction factor then takes place in particular on the basis of the averaged correction factor.
  • a working cycle in the context of the invention, in particular the opening or closing operation of a gas exchange valve or the immediately attributable thereto associated pivoting operation of the rotor of the electric motor is called. Also possible is a definition of the work cycle which includes closing and opening operation.
  • the method according to the invention preferably takes place during the calibration of the displacement sensor during the closing process of the gas exchange valve assigned to the displacement sensor.
  • the method according to the invention comprises two different strategies for measuring or calibrating the rotary actuator.
  • a first strategy is to detect smaller deviations of the rotor from the predetermined desired path by means of which it is controlled, averaging over a plurality of work cycles and depending on the averaged deviation to make a change in the desired path based on the rotor in the future and / or to change the path sensor signals in such a way that a correspondingly corrected path profile is adjusted in future due to the changed path sensor signals.
  • This strategy extends over several working cycles (slow intervention).
  • the second strategy is to counteract larger deviations with a quick rule intervention.
  • FIG. 1 shows the schematic representation of a rotary actuator for driving a gas exchange valve 2 of an internal combustion engine, not shown.
  • the essential components of this device are, in particular designed as a servomotor electric motor 4 (drive means), one driven by this, preferably two cams 6a, 6b different hubs and rotationally fixed with the Rotor shaft connected camshaft 6 (actuator), one with the camshaft 6 on the one hand and with the gas exchange valve 2 on the other hand operatively connected rocker arm 8 (transmission element) for transmitting movement of the given by the cam 6a, 6b lifting height on the gas exchange valve 2 and a, the gas exchange valve 2 in Closing direction with a spring force acting on and designed as a closing spring first energy storage means 10 and, via the camshaft 6 and the drag lever 8, the gas exchange valve 2 with an opening force beauf fileddes and designed as an opening spring second energy storage means 12.
  • a servomotor electric motor 4 drive means
  • actuator Rotor shaft connected camshaft 6
  • rocker arm 8 transmission
  • control device In order to ensure the lowest possible operation of the electric motor 4, which drives the existing gas exchange valve 2 via the camshaft 6, in addition to the optimal design of the counteracting springs (closing spring 10, opening spring 12) and the ideal positioning of rotation and articulation points in the Geometry of the device itself, the electric motor 4 via a control and regulating device 20 (hereinafter referred to as control device) according to a nominal path, which maps the ideal swing-out behavior of the spring-mass-spring system regulated. In particular, this control is done by controlling the rotor profile of the, at least one actuator 6, 6a, 6b driving electric motor 4.
  • the ideal path of the rotor, which resonates as part of the vibration system is calculated analogously to the ideal waveform of the overall system and forms the desired path to Regulation of the electric motor 4.
  • a non-illustrated displacement sensor is present, which transmits a sensor signal S to the control device 20 or another control device.
  • the electric motor 4 is so by the Controlled control device 20 that the at least one gas exchange valve 2 from a first Ventilendlage E1, which corresponds for example to the closed valve position, in a second Ventilendlage E2, E2 ', for example, a partial (E2': partial stroke) or maximum open (E2: full stroke) Valve position corresponds, is transferred and vice versa.
  • the system is ideally designed so that the actuator 6, 6a, 6b in the exclusion (targeted disregard) of environmental influences (in particular friction and gas back pressure) the way between two end positions R1 - R2 (full stroke) or R1 '- R2' (partial stroke) without Infeed additional energy, ie without active drive by the drive device 4, travels and thus engages supportive only in the environmental conditions occurring in practice.
  • the system is preferably designed such that it is in the maximum end positions R1, R2 of the rotor (vibration end positions at maximum vibration) each in a metastable torque neutral position in which the forces are in an equilibrium of forces and in which the rotor without applying a additional holding force is held.
  • the gas exchange valve 2 in the first metastable and torque-neutral position R1 (shown in Figure 1) the gas exchange valve 2 is closed and thus the closing spring 10 while maintaining a residual preload maximum relaxed, while the opening spring 12 is biased to the maximum.
  • the force of the prestressed opening spring 12 is via a stationary Supporting member 6c of the camshaft 6 transmitted to this and is directed in the position R1 exactly through the center of the camshaft 6 and thus virtually neutralized.
  • the existing due to the residual bias force of the closing spring 10 is neutralized in the described position, as this is also directed via the cam followers 8 in the center of the camshaft 6.
  • the gas exchange valve 2 In the second metastable and torque-neutral position R2, not shown, the gas exchange valve 2 would be opened with its maximum stroke according to the main cam 6b and the closing spring 10 arranged around the gas exchange valve 2 is biased to a maximum while the opening spring 12 would be maximally relaxed while maintaining a residual bias.
  • the arrangement of the individual components is chosen such that again the force of the maximum prestressed spring means (now: closing spring 10) and the maximum relaxed spring means (now: opening spring 12) respectively directed through the center of the camshaft 6 and thus virtually neutralized in this position are.
  • a third, also not shown, stable and torque-neutral position R0 is present when the system assumes a so-called dropped state in which the camshaft 6 occupies a position between the two first metastable and torque-neutral positions R1, R2. From the fallen position, the system can be brought out again only by means of a high energy expenditure, in which, for example, by swinging or swinging the rotor, the camshaft 6 is again transferred to one of the first two metastable torque-neutral positions R1, R2 or the camshaft 6 at least up to a partial lift is swung, in which a regular operation of the rotary actuator device is possible again.
  • the rotor therefore oscillates from one end position E1, E1 'into the other end position E2, E2' solely on the basis of the energy stored in the energy storage means 10, 12 without the introduction of additional energy, for example by the electric motor 4.
  • FIGS. 2 and 3 the state variables rotor angle, rotor angular velocity and output torque or current consumption of the electric motor are shown in three different diagrams ac in the case of smaller displacement sensor errors, while FIGS. 4 and 5 show the state variables for the sensor analogous to FIGS Case of larger sensor error show.
  • FIGS. 2-5 the setpoint values or the values to be expected on the basis of the setpoint path are in each case shown as uninterrupted lines and the actual values resulting from a deviation are shown as dashed lines.
  • FIGS. 2a-c describe the case in which the rotor of the electric motor 4 moves beyond the setpoint end position due to a faulty path sensor signal S (smaller extent error - within a predetermined first deviation range or below a first deviation threshold, respectively).
  • the calibration of the displacement sensor takes place by evaluation of the state variables of the electric motor 4, preferably during the closing phase P closing of a gas exchange valve 2.
  • FIGS. 3a-c Analogous to FIGS. 2a-c, the case is described in FIGS. 3a-c in that the rotor of the electric motor 4 does not reach the desired setpoint end position due to a faulty displacement sensor signal S (minor error - within a predetermined first deviation range). Due to a present faulty displacement sensor signal S, the control device 20 is suggested that already before reaching the desired rotor end position at R2; R2 '(target rotor end position) has already been reached (comparison of the actual control path IB due to the control for the rotor angle profile with the predetermined desired path SB on the basis of which the rotor angle was adjusted due to the (erroneous) displacement sensor signals).
  • a correction value for compensating the present error is also determined here.
  • the setpoint path to be corrected and / or the path sensor (value) to be corrected are subjected to a correction factor (multiplication) and / or an offset (addition).
  • the change of the setpoint path SB and / or the Wegsensorsignals S made such that during a later cycle increased maximum stroke of the gas exchange valve 2 (compared to the maximum stroke reached in faulty Wegsensorsignalen according to actual IB), and in the event that the target value is exceeded, the change in the setpoint path SB and / or the path sensor signal S is made such that a reduced maximum lift of the gas exchange valve 2 is achieved during a later work cycle.
  • This essentially results in a targeted displacement of the control technology defined end stops (and thus an adjustment of the maximum stroke) for the rotor of the electric motor.
  • a rapid intervention immediately counteracts (FIG. 4a-c, FIG. 5a-c) by using a correction value associated with the present deviation (FIG. Correction factor and / or offset) as far as possible during the same or current work arcade, but at the latest in the next working cycle of the rotor this is controlled by means of a modified reference path SB or a modified path signal S of a newly calibrated displacement sensor.
  • the change of the setpoint path SB and / or the Wegsensorsignals S is such that during the same cycle a delayed closing operation of the gas exchange valve 2 is achieved and in the following working cycle (without averaging the measured variables over several Working cycles) the maximum stroke is reduced and a previous closing time is set again.
  • a delayed closing operation of the gas exchange valve 2 is achieved and in the following working cycle (without averaging the measured variables over several Working cycles) the maximum stroke is reduced and a previous closing time is set again.
  • FIG. 6 shows the linear relationship between the signal S of the displacement sensor (which depicts the position of the rotor) and the actually set rotor angle RW of the electric motor 4.
  • a characteristic according to K1 originating at zero point arises.
  • a characteristic curve / straight line according to K2 or K3 is established, which is in each case rotated by one point on the error-free straight line.
  • the displacement sensor can again supply error-free signals to the control device 20.
  • the setpoint path SB can also be adapted for the control of the rotor, or both correction options for parts can be carried out.

Abstract

A method for calibrating a distance sensor of a rotary actuator device for controlling a charge cycle valve of an internal combustion engine. The rotary actuator device includes a controllable electric motor having an actuator element for actuating the charge cycle valve, two energy storage means acting in opposite drive directions on the charge cycle valve, a control and regulating device which controls the electric motor with regard to its rotor angle according to a stored setpoint path and a distance sensor for detecting the rotor position. At least one state variable of the electric motor is measured, the at least one state variable being compared with a reference variable. If there is a deviation between the variables being compared, the stored setpoint path and/or the distance sensor signal detected is/are altered as a function of the state variable.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Kalibrierung eines Wegsensors einer Drehaktuatorvorrichtung zur Ansteuerung eines Gaswechselventils einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1. Insbesondere findet das Verfahren Anwendung bei Drehaktuatorvorrichtungen ohne mechanische Endanschläge.The present invention relates to a method for calibrating a displacement sensor of a Drehaktuatorvorrichtung for controlling a gas exchange valve of an internal combustion engine according to the preamble of claim 1. In particular, the method finds application in Drehaktuatorvorrichtungen without mechanical stops.

Bei herkömmlichen Verbrennungsmotoren wird die Nockenwelle zur Steuerung der Gaswechselventile mechanisch über eine Steuerkette oder einen Steuerriemen von der Kurbelwelle angetrieben. Zur Steigerung der Motorleistung und zur Senkung des Kraftstoffverbrauchs bringt es erhebliche Vorteile, die Ventile der einzelnen Zylinder individuell anzusteuern. Dies ist durch einen sogenannten vollvariablen (veränderbare Steuerzeiten und veränderbarer Ventilhub), beispielsweise einen sogenannten elektromagnetischen Ventiltrieb möglich. Bei einem vollvariablen Ventiltrieb ist jedem Ventil bzw. jeder "Ventilgruppe" eines Zylinders eine "Aktuatoreinheit" zugeordnet. Derzeit werden unterschiedliche Grundtypen von Aktuatoreinheiten erforscht.
Bei einem Grundtyp (sogenannte Hubaktuatoren) sind einem Ventil oder einer Ventilgruppe ein Öffnungs- und ein Schließmagnet zugeordnet. Durch Bestromen der Magneten können die Ventile axial verschoben, d.h. geöffnet bzw. geschlossen werden.
Bei dem anderen Grundtyp (sogenannter Drehaktuator) ist eine Steuerwelle mit einem Nocken vorgesehen, wobei die Steuerwelle durch einen Elektromotor hin und her schwenkbar ist.
In conventional internal combustion engines, the camshaft for controlling the gas exchange valves is mechanically driven by a timing chain or a timing belt from the crankshaft. To increase the engine performance and to reduce fuel consumption, it brings considerable advantages to individually control the valves of the individual cylinders. This is possible by a so-called fully variable (variable timing and variable valve lift), for example, a so-called electromagnetic valve train. In the case of a fully variable valve train, an "actuator unit" is assigned to each valve or "valve group" of a cylinder. Currently, different basic types of actuator units are being researched.
In a basic type (so-called stroke actuators), a valve or a valve group is associated with an opening and a closing magnet. By energizing the magnets, the valves can be moved axially, ie opened or closed.
The other basic type (so-called rotary actuator) is a control shaft provided with a cam, wherein the control shaft is pivotable by an electric motor back and forth.

Zur Regelung eines Drehaktuators sind genaueste Sensorwerte erforderlich, die eine Information wiedergeben über die momentane Position des rotierenden Antriebselements und/oder des das Antriebselement des Drehaktuators antreibenden Elementes selbst, z.B. die Position des vom Rotor angetriebenen Betätigungselements (z.B. Nockenwelle) oder die Rotorposition selbst. In bekannten Drehaktuatorvorrichtungen werden Wegsensoren jeweils durch das Anfahren von mechanischen Anschlägen, die die Endpositionen eines Steuernockens definieren, kalibriert.To control a rotary actuator, most accurate sensor values are required which represent information about the instantaneous position of the rotary drive element and / or the element driving the drive element of the rotary actuator itself, e.g. The position of the rotor-driven actuator (e.g., camshaft) or the rotor position itself. In known rotary actuator devices, displacement sensors are each calibrated by the approach of mechanical stops that define the end positions of a control cam.

Aus der DE 101 40 461 A1 ist eine Drehaktuatorvorrichtung zur Hubsteuerung eines Gaswechselventils mit derartigen mechanischen Anschlägen bekannt. Die Hubsteuerung der Gaswechselventile erfolgt hier über einen kennfeldgesteuerten Elektromotor, an dessen Rotor eine Welle mit einem drehfest verbundenen Steuernocken angeordnet ist. Beim Betrieb der Brennkraftmaschine schwenkt, bzw. pendelt der Rotor des Elektromotors hin und her und der Steuernocken drückt über einen Schwenkhebel periodisch das Gaswechselventil in seine Öffnungsstellung. Geschlossen wird das Gaswechselventil durch die Federkraft einer Ventilfeder. Damit der Elektromotor nicht die gesamte Federkraft der Ventilfeder beim Öffnen des Gaswechselventils überwinden muss, ist an die Welle eine zusätzliche Feder angebracht. Die Kräfte von Ventilfeder und zusätzlicher Feder sind dergestalt, dass beim periodischen Betrieb der Drehaktuatorvorrichtung entsprechend der Stellung des Gaswechselventils die kinetische Energie entweder in der Ventilfeder (Schließfeder) oder in der zusätzlichen Feder (Öffnungsfeder) gespeichert ist. Die beschriebene Vorrichtung schlägt zur eindeutigen Positionierung des Steuernockens in seinen Endlagen vor, das dieser mittels eines ersten und mittels eines zweiten Drehanschlages eindeutig positioniert wird. Nachteilig bei dieser Anordnung ist allerdings, dass die Kalibrierung von Wegsensoren zur Positionsbestimmung durch Anfahren von mechanischen Anschlägen nicht für alle Anwendungsfälle eine zufriedenstellende Genauigkeit aufweist. Je nach Aufbau der verwendeten Drehaktuatorvörrichtung sind die mechanischen Toleranzen des Systems so groß, dass eine erforderliche Genauigkeit nicht erreicht werden kann.From the DE 101 40 461 A1 is a Drehaktuatorvorrichtung for stroke control of a gas exchange valve with such mechanical attacks known. The stroke control of the gas exchange valves takes place here via a map-controlled electric motor, on whose rotor a shaft is arranged with a rotatably connected control cam. During operation of the internal combustion engine pivots, or oscillates the rotor of the electric motor back and forth and the control cam presses via a pivot lever periodically the gas exchange valve in its open position. The gas exchange valve is closed by the spring force of a valve spring. So that the electric motor does not have to overcome the entire spring force of the valve spring when opening the gas exchange valve, an additional spring is attached to the shaft. The forces of valve spring and additional spring are such that during periodic operation of the rotary actuator device according to the position of the gas exchange valve, the kinetic energy is stored either in the valve spring (closing spring) or in the additional spring (opening spring). The device described proposes for the unique positioning of the control cam in its end positions, which is clearly positioned by means of a first and by means of a second rotation stop. A disadvantage of this arrangement, however, is that the calibration of displacement sensors for position determination by approaching mechanical stops does not have a satisfactory accuracy for all applications. Depending on the structure of the Drehaktuatorvörrichtung used, the mechanical tolerances of the system are so large that a required accuracy can not be achieved.

Aufgabe der Erfindung ist es, ein Verfahren zur Vermessung und Kalibrierung eines Wegsensors für eine Drehaktuatorvorrichtung anzugeben, mittels welchem eine genauere Positionierung bzw. Positionsbestimmung des Betätigungselementes (und damit auch des Gaswechselventils) gewährleistet wird. Insbesondere soll ein Verfahren angegeben werden, welches eine Vermessung bzw. Kalibrierung sowohl bei Betriebsphasen mit niedriger Brennkraftmaschinendrehzahl als auch bei Betriebsphasen mit hoher Brennkraftmaschinendrehzahl auf zuverlässige Weise gewährleistet.The object of the invention is to provide a method for measuring and calibrating a displacement sensor for a rotary actuator device, by means of which a more accurate positioning or position determination of the actuating element (and thus also of the gas exchange valve) is ensured. In particular, a method is to be specified, which ensures a measurement or calibration in both operating phases with low engine speed and operating phases with high engine speed in a reliable manner.

Erfindungsgemäß wird die Aufgabe durch die Gesamtheit der Merkmale des unabhängigen Anspruchs gelöst. Hierbei wird mindestens eine Zustandsgröße des Elektromotors ermittelt und mit einer hinterlegten Referenzgröße verglichen. Bei einer Abweichung zwischen der ermittelten Zustandsgröße und der mit dieser zu vergleichenden Referenzgröße über einen vorbestimmten Wert hinaus wird die hinterlegte Sollbahn anhand der der Elektromotor bzw. der Rotor des Elektromotors geregelt wird und/oder der durch den Wegsensor erfasste Wert, in Abhängigkeit von der Höhe der Abweichung der Zustandsgröße von dem Referenzwert, verändert.According to the invention the object is achieved by the entirety of the features of the independent claim. In this case, at least one state variable of the electric motor is determined and compared with a stored reference variable. In the case of a deviation between the determined state variable and the reference variable to be compared therewith above a predetermined value, the stored nominal path is controlled by means of which the electric motor or the rotor of the electric motor is controlled and / or the value detected by the displacement sensor as a function of the height the deviation of the state quantity from the reference value, changed.

Die Ermittlung der Zustandsgröße erfolgt bevorzugt durch Messung des entsprechenden Wertes. Alternativ kann die Zustandsgröße aber auch anhand eines hinterlegten Modells berechnet werden. Vorzugsweise wird als Zustandsgröße der Rotorwinkel, eine zeitliche Ableitung des Rotorwinkels, und/oder der Motorstrom des Elektromotors oder eine zu dem Motorstrom proportionale Größe (Motorleistung, Speisespannung des Elektromotors) ermittelt.The determination of the state variable is preferably carried out by measuring the corresponding value. Alternatively, however, the state variable can also be calculated on the basis of a stored model. Preferably, the state variable is the rotor angle, a time derivative of the rotor angle, and / or the motor current of the electric motor or one to the motor current proportional size (motor power, supply voltage of the electric motor) determined.

Die Veränderung der hinterlegten Sollbahn und/oder des erfassten Wegsensorwertes erfolgt bevorzugt durch Multiplikation der hinterlegten Sollbahnwerte bzw. Wegsensorwerte mit einem Korrekturfaktor und/oder durch Addition eines hinterlegten Offsetwertes. Korrekturfaktor und/oder Offsetwert werden im Folgenden als Korrekturwert bezeichnet. Der Korrekturwert wird in Abhängigkeit von der ermittelten Wegabweichung ermittelt. Die Ermittlung kann durch Auswahl aus einer hinterlegten abgespeicherten Tabelle oder durch online-Berechnung erfolgen. Bei einer hohen Wegabweichung (oberhalb einer vorbestimmten ersten Abweichungsschwelle), aufgrund welcher der Rotor beispielsweise in eine ungewollte Zwischenposition abzufallen droht, wird ein entsprechend hoher Korrekturwert zugeordnet, so dass bereits noch im selben Arbeitsspiel oder im unmittelbar nachfolgenden Arbeitsspiel des Rotors dieser anhand stark korrigierter Werte geregelt wird. Ein Abfallen des Rotors in die beschriebene Zwischenposition wird so wirksam verhindert. Bei einer geringeren Wegabweichung, bei deren Vorliegen kein Abfallen des Rotors droht, kann der zumindest eine überwachte und bei jedem oder jedem n-ten Arbeitsspiel ermittelte Zustandswert über eine Vielzahl von Arbeitsspielen gemittelt werden. Eine Zuordnung bzw. Ermittlung eines entsprechenden Korrekturfaktors erfolgt dann insbesondere anhand des gemittelten Korrekturfaktors. Als Arbeitsspiel im Sinne der Erfindung wird insbesondere der Öffnungs- oder Schließvorgang eines Gaswechselventils beziehungsweise der unmittelbar darauf zurückzuführende zugehörige Schwenkvorgang des Rotors des Elektromotors bezeichnet. Möglich ist auch eine Definition des Arbeitsspiels welches Schließ- und Öffnungsvorgang umfasst.The change in the stored nominal trajectory and / or the detected travel sensor value preferably takes place by multiplying the stored desired trajectory values or travel sensor values by a correction factor and / or by adding a stored offset value. Correction factor and / or offset value are referred to below as the correction value. The correction value is determined as a function of the determined path deviation. The determination can be made by selecting from a stored stored table or by online calculation. At a high deviation (above a predetermined first deviation threshold), due to which the rotor threatens to fall, for example, in an unwanted intermediate position, a correspondingly high correction value is assigned, so that even in the same cycle or in the immediately subsequent cycle of the rotor this highly corrected values is regulated. A drop of the rotor in the described intermediate position is effectively prevented. In the case of a smaller path deviation, in the presence of which there is no risk of the rotor dropping off, the at least one monitored state value determined with each or every nth cycle can be averaged over a plurality of working cycles. An assignment or determination of a corresponding correction factor then takes place in particular on the basis of the averaged correction factor. As a working cycle in the context of the invention, in particular the opening or closing operation of a gas exchange valve or the immediately attributable thereto associated pivoting operation of the rotor of the electric motor is called. Also possible is a definition of the work cycle which includes closing and opening operation.

Da während des Schließvorgangs keine Gasgegendrücke zu berücksichtigen sind, findet das erfindungsgemäße Verfahren vorzugsweise bei der Kalibrierung des Wegsensors während des Schließvorgangs des dem Wegsensor zugeordneten Gaswechselventils statt.Since no gas counterpressures are to be taken into account during the closing process, the method according to the invention preferably takes place during the calibration of the displacement sensor during the closing process of the gas exchange valve assigned to the displacement sensor.

Das erfindungsgemäße Verfahren umfasst insbesondere zwei verschiedene Strategien zur Vermessung bzw. Kalibrierung des Drehaktuators. Eine erste Strategie besteht darin, kleinere Abweichungen des Rotors von der vorgegebenen Sollbahn anhand der er geregelt wird zu erfassen, über eine Mehrzahl von Arbeitsspielen zu mitteln und in Abhängigkeit von der gemittelten Abweichung eine Änderung der Sollbahn anhand der der Rotor dann zukünftig geregelt wird vorzunehmen und/oder die Wegsensorsignale derart zu verändern, dass ein entsprechend korrigierter Wegverlauf zukünftig aufgrund der veränderten Wegsensorsignale eingeregelt wird. Diese Strategie erstreckt sich zeitlich über mehrere Arbeitsspiele (langsamer Eingriff). Im Gegensatz dazu besteht die zweite Strategie darin, größeren Abweichungen mit einem schnellen Regeleingriff entgegenzuwirken. Dies geschieht, indem mittels einer entsprechenden Veränderung der Sollbahn und/oder der Wegsensorsignale die Regelung des Rotors bereits im selben oder im nächsten Arbeitsspiel anhand der veränderten Werte von Sollbahn und/oder Wegsensorsignalen erfolgt. Die beiden Strategien unterscheiden sich dabei jedoch weiter in den zu ergreifenden Maßnahmen, auf die im Zuge der nachfolgenden Figurenbeschreibung eingegangen wird.In particular, the method according to the invention comprises two different strategies for measuring or calibrating the rotary actuator. A first strategy is to detect smaller deviations of the rotor from the predetermined desired path by means of which it is controlled, averaging over a plurality of work cycles and depending on the averaged deviation to make a change in the desired path based on the rotor in the future and / or to change the path sensor signals in such a way that a correspondingly corrected path profile is adjusted in future due to the changed path sensor signals. This strategy extends over several working cycles (slow intervention). In contrast, the second strategy is to counteract larger deviations with a quick rule intervention. This is done by means of a corresponding change in the desired path and / or the Wegsensorsignale the control of the rotor already in the same or in the next cycle on the basis of the changed values of desired path and / or Wegsensorsignalen. However, the two strategies differ further in the measures to be taken, which will be discussed in the following description of the figures.

Im Folgenden wird die Erfindung anhand von Figuren näher erläutert. Es zeigen:

Figur 1:
die schematische Darstellung einer Drehaktuatorvorrichtung für den Antrieb eines Gaswechselventils einer nicht dargestellten Brennkraftmaschine,
Figur 2a-c:
veranschaulicht in drei unterschiedlichen Diagrammen die Zustandsgrößen Rotorwinkel, Rotorwinkelgeschwindigkeit und abgegebenes Drehmoment bzw. Stromaufnahme des Elektromotors, für den Fall, dass aufgrund eines Wegsensorfehlers kleineren Ausmaßes der Rotor sich über die Sollendposition hinaus bewegt,
Figur 3a-c:
veranschaulicht in drei unterschiedlichen Diagrammen die Zustandsgrößen Rotorwinkel, Rotorwinkelgeschwindigkeit und abgegebenes Drehmoment bzw. Stromaufnahme des Elektromotors, für den Fall, dass aufgrund eines Wegsensorfehlers kleineren Ausmaßes der Rotor nicht die Sollendposition erreicht,
Figur 4a-c:
die Zustandsgrößen gemäß Figur 2a-c für den Fall, dass aufgrund eines Wegsensorfehlers größeren Ausmaßes der Rotor sich über die Sollendposition hinaus bewegt,
Figur 5a-c:
die Zustandsgrößen gemäß Figur 3a-c für den Fall, dass aufgrund eines Wegsensorfehlers größeren Ausmaßes der Rotor nicht die Sollendposition erreicht, und
Figur 6:
zeigt den linearen Zusammenhang zwischen Wegsensor und Rotorwinkel im fehlerfreien und im fehlerbehafteten Fall.
In the following the invention will be explained in more detail with reference to figures. Show it:
FIG. 1:
the schematic representation of a Drehaktuatorvorrichtung for driving a gas exchange valve of an internal combustion engine, not shown,
Figure 2a-c:
FIG. 3 illustrates, in three different diagrams, the state variables rotor angle, rotor angular velocity and emitted torque or current consumption of the electric motor, in the event that the rotor moves beyond the setpoint end position due to a path error of smaller magnitude,
FIG. 3a-c:
FIG. 3 illustrates, in three different diagrams, the state variables rotor angle, rotor angular velocity and emitted torque or current consumption of the electric motor, in the event that the rotor does not reach the setpoint end position due to a path sensor error of lesser extent,
Figure 4a-c:
the state variables according to FIGS. 2a-c for the case in which the rotor moves beyond the setpoint end position due to a path sensor error of greater magnitude,
FIG. 5a-c:
the state variables according to FIG. 3 a - c in the event that the rotor does not reach the setpoint end position due to a path sensor error of greater magnitude, and
FIG. 6:
shows the linear relationship between displacement sensor and rotor angle in the faultless and faulty case.

Figur 1 zeigt die schematische Darstellung einer Drehaktuatorvorrichtung für den Antrieb eines Gaswechselventils 2 einer nicht dargestellten Brennkraftmaschine. Die wesentlichen Bestandteile dieser Vorrichtung sind ein, insbesondere als Servomotor ausgebildeter Elektromotor 4 (Antriebseinrichtung), eine von diesem angetriebene, vorzugsweise zwei Nocken 6a, 6b unterschiedlichen Hubs aufweisende und drehfest mit der Rotorwelle verbundene Nockenwelle 6 (Betätigungselement), ein mit der Nockenwelle 6 einerseits und mit dem Gaswechselventil 2 andererseits in Wirkverbindung stehender Schlepphebel 8 (Übertragungselement) zur Bewegungsübertragung der durch die Nocken 6a, 6b vorgegebenen Hubhöhe auf das Gaswechselventil 2 sowie ein, das Gaswechselventil 2 in Schließrichtung mit einer Federkraft beaufschlagendes und als Schließfeder ausgebildetes erstes Energiespeichermittel 10 und ein, über die Nockenwelle 6 und den Schlepphebel 8 das Gaswechselventil 2 mit einer Öffnungskraft beaufschlagendes und als Öffnungsfeder ausgebildetes zweites Energiespeichermittel 12. Für die genaue Wirkungsweise und mechanische Ausgestaltung der Drehaktuatorvorrichtung wird auf die DE 102 52 991 A1 verwiesen, die inhaltlich bezüglich des Drehaktuatoraufbaus in den Offenbarungsgehalt dieser Anmeldung mit einbezogen wird.Figure 1 shows the schematic representation of a rotary actuator for driving a gas exchange valve 2 of an internal combustion engine, not shown. The essential components of this device are, in particular designed as a servomotor electric motor 4 (drive means), one driven by this, preferably two cams 6a, 6b different hubs and rotationally fixed with the Rotor shaft connected camshaft 6 (actuator), one with the camshaft 6 on the one hand and with the gas exchange valve 2 on the other hand operatively connected rocker arm 8 (transmission element) for transmitting movement of the given by the cam 6a, 6b lifting height on the gas exchange valve 2 and a, the gas exchange valve 2 in Closing direction with a spring force acting on and designed as a closing spring first energy storage means 10 and, via the camshaft 6 and the drag lever 8, the gas exchange valve 2 with an opening force beaufschlagendes and designed as an opening spring second energy storage means 12. For the exact mode of action and mechanical design of the rotary actuator is on the DE 102 52 991 A1 referenced, which is included with respect content of the Drehaktuatoraufbaus in the disclosure of this application.

Um einen möglichst energiearmen Betrieb des Elektromotors 4, der über die Nockenwelle 6 das vorhandene Gaswechselventil 2 antreibt, zu gewährleisten, wird neben der optimalen Auslegung der einander entgegenwirkenden Federn (Schließfeder 10, Öffnungsfeder 12) und der idealen Positionierung von Dreh- und Anlenkpunkten in der Geometrie der Vorrichtung selbst, der Elektromotor 4 über eine Steuer- und Regeleinrichtung 20 (im Folgenden Regeleinrichtung genannt) gemäß einer Sollbahn, die das ideale Ausschwingverhalten des Feder-Masse-FederSystems abbildet geregelt. Insbesondere erfolgt diese Regelung durch Regelung des Rotorverlaufes des, das mindestens eine Betätigungselement 6, 6a, 6b antreibenden Elektromotors 4. Der ideale Wegverlauf des Rotors, der als Teil des Schwingungssystems mitschwingt, wird analog zum idealen Schwingungsverlauf des Gesamtsystems rechnerisch ermittelt und bildet die Sollbahn zur Regelung des Elektromotors 4. Zur Überwachung der Istposition des Rotors ist ein nicht dargestellter Wegsensor vorhanden, der ein Sensorsignal S an die Regelleinrichtung 20 oder eine andere Steuereinrichtung übermittelt. Der Elektromotor 4 wird derart durch die Regeleinrichtung 20 angesteuert, dass das zumindest eine Gaswechselventil 2 von einer ersten Ventilendlage E1, die beispielsweise der geschlossenen Ventilposition entspricht, in eine zweite Ventilendlage E2, E2', die beispielsweise einer teilweise (E2': Teilhub) oder maximal geöffneten (E2: Vollhub) Ventilposition entspricht, überführt wird und umgekehrt. Bei der Regelung des Elektromotors 4 wird der Rotor und damit das mit dem Rotor wirkverbundene Betätigungselement 6, 6a, 6b in seiner Position entsprechend gesteuert, so dass der Rotor bzw. das Betätigungselement 6, 6a, 6b analog zur Schließposition E1 des Gaswechselventils 2 eine Position im Wegebereich des Nockengrundkreises, z.B. im Wegebereich zwischen R1 und R1' einnehmen wird und analog zur zweiten Endlage E2, E2' eine Position im Wegebereich des Nockens 6a, 6b, z.B. im Wegebereich zwischen R2 und R2' einnehmen wird. Das System ist idealerweise so ausgelegt, dass das Betätigungselement 6, 6a, 6b bei Ausschluss (gezielte Nichtberücksichtigung) der Umgebungseinflüsse (insbesondere Reibung und Gasgegendruck) den Weg zwischen zwei Endpositionen R1 - R2 (Vollhub) oder R1' - R2' (Teilhub) ohne Einspeisung zusätzlicher Energie, also ohne aktiven Antrieb durch die Antriebseinrichtung 4, zurücklegt und somit nur bei den in der Praxis auftretenden Umgebungseinflüssen unterstützend eingreift. Das System ist vorzugsweise derart ausgebildet, dass es in den Maximalendlagen R1, R2 des Rotors (Schwingungsendlagen bei maximalem Schwingungshub) sich jeweils in einer metastabilen momentenneutralen Position befindet, in der sich die auftretenden Kräfte in einem Kräftegleichgewicht befinden und in der der Rotor ohne Aufbringung einer zusätzlichen Haltekraft gehalten ist.In order to ensure the lowest possible operation of the electric motor 4, which drives the existing gas exchange valve 2 via the camshaft 6, in addition to the optimal design of the counteracting springs (closing spring 10, opening spring 12) and the ideal positioning of rotation and articulation points in the Geometry of the device itself, the electric motor 4 via a control and regulating device 20 (hereinafter referred to as control device) according to a nominal path, which maps the ideal swing-out behavior of the spring-mass-spring system regulated. In particular, this control is done by controlling the rotor profile of the, at least one actuator 6, 6a, 6b driving electric motor 4. The ideal path of the rotor, which resonates as part of the vibration system is calculated analogously to the ideal waveform of the overall system and forms the desired path to Regulation of the electric motor 4. To monitor the actual position of the rotor, a non-illustrated displacement sensor is present, which transmits a sensor signal S to the control device 20 or another control device. The electric motor 4 is so by the Controlled control device 20 that the at least one gas exchange valve 2 from a first Ventilendlage E1, which corresponds for example to the closed valve position, in a second Ventilendlage E2, E2 ', for example, a partial (E2': partial stroke) or maximum open (E2: full stroke) Valve position corresponds, is transferred and vice versa. In the control of the electric motor 4, the rotor and thus the operatively connected to the rotor actuator 6, 6a, 6b controlled in position accordingly, so that the rotor or the actuator 6, 6a, 6b analogous to the closed position E1 of the gas exchange valve 2 a position in the range of travel of the cam base circle, eg in the directional range between R1 and R1 'occupy and analogous to the second end position E2, E2' a position in the direction of the cam 6a, 6b, eg in the path between R2 and R2 'occupy. The system is ideally designed so that the actuator 6, 6a, 6b in the exclusion (targeted disregard) of environmental influences (in particular friction and gas back pressure) the way between two end positions R1 - R2 (full stroke) or R1 '- R2' (partial stroke) without Infeed additional energy, ie without active drive by the drive device 4, travels and thus engages supportive only in the environmental conditions occurring in practice. The system is preferably designed such that it is in the maximum end positions R1, R2 of the rotor (vibration end positions at maximum vibration) each in a metastable torque neutral position in which the forces are in an equilibrium of forces and in which the rotor without applying a additional holding force is held.

Im Besonderen ist in der ersten metastabilen und momentenneutralen Position R1 (in Figur 1 dargestellt) das Gaswechselventil 2 geschlossen und somit die Schließfeder 10 unter Beibehaltung einer Rest-Vorspannung maximal entspannt, während die Öffnungsfeder 12 maximal vorgespannt ist. Die Kraft der vorgespannten Öffnungsfeder 12 wird über ein ortsfestes Abstützelement 6c der Nockenwelle 6 auf diese übertragen und ist in der Position R1 genau durch den Mittelpunkt der Nockenwelle 6 gerichtet und somit quasi neutralisiert. Auch die aufgrund der Rest-Vorspannung vorhandene Kraft der Schließfeder 10 wird in der beschriebenen Position neutralisiert, da diese über den Schlepphebel 8 ebenfalls in den Mittelpunkt der Nockenwelle 6 gerichtet ist.In particular, in the first metastable and torque-neutral position R1 (shown in Figure 1) the gas exchange valve 2 is closed and thus the closing spring 10 while maintaining a residual preload maximum relaxed, while the opening spring 12 is biased to the maximum. The force of the prestressed opening spring 12 is via a stationary Supporting member 6c of the camshaft 6 transmitted to this and is directed in the position R1 exactly through the center of the camshaft 6 and thus virtually neutralized. The existing due to the residual bias force of the closing spring 10 is neutralized in the described position, as this is also directed via the cam followers 8 in the center of the camshaft 6.

In der nicht dargestellten zweiten metastabilen und momentenneutralen Position R2 wäre das Gaswechselventil 2 mit seinem Maximalhub gemäß dem Hauptnocken 6b geöffnet und die um das Gaswechselventil 2 herum angeordnete Schließfeder 10 maximal vorgespannt, während die Öffnungsfeder 12 unter Beibehaltung einer Rest-Vorspannung maximal entspannt wäre. Die Anordnung der einzelnen Komponenten ist derart gewählt, dass wiederum die Kraft des maximal vorgespannten Federmittels (jetzt: Schließfeder 10) und des maximal entspannten Federmittels (jetzt: Öffnungsfeder 12) jeweils genau durch dem Mittelpunkt der Nockenwelle 6 gerichtet und somit in dieser Position quasi neutralisiert sind.In the second metastable and torque-neutral position R2, not shown, the gas exchange valve 2 would be opened with its maximum stroke according to the main cam 6b and the closing spring 10 arranged around the gas exchange valve 2 is biased to a maximum while the opening spring 12 would be maximally relaxed while maintaining a residual bias. The arrangement of the individual components is chosen such that again the force of the maximum prestressed spring means (now: closing spring 10) and the maximum relaxed spring means (now: opening spring 12) respectively directed through the center of the camshaft 6 and thus virtually neutralized in this position are.

Eine dritte, ebenfalls nicht dargestellte, stabile und momentenneutrale Position R0 ist dann vorhanden, wenn das System einen sogenannten abgefallen Zustand einnimmt, in dem die Nockenwelle 6 eine Position zwischen den beiden ersten metastabilen und momentenneutralen Positionen R1, R2 einnimmt. Aus der abgefallenen Position kann das System lediglich mittels einem hohen Energieaufwand wieder herausgebracht werden, in dem beispielsweise durch ein Anschwingen oder Hochschwingen der Rotors die Nockenwelle 6 wieder in eine der beiden ersten metastabilen momentenneutralen Positionen R1, R2 überführt wird oder die Nockenwelle 6 zumindest bis zu einem Teilhub angeschwungen wird, bei dem ein regulärer Betrieb der Drehaktuatorvorrichtung wieder möglich ist.A third, also not shown, stable and torque-neutral position R0 is present when the system assumes a so-called dropped state in which the camshaft 6 occupies a position between the two first metastable and torque-neutral positions R1, R2. From the fallen position, the system can be brought out again only by means of a high energy expenditure, in which, for example, by swinging or swinging the rotor, the camshaft 6 is again transferred to one of the first two metastable torque-neutral positions R1, R2 or the camshaft 6 at least up to a partial lift is swung, in which a regular operation of the rotary actuator device is possible again.

Analog zu den beschriebenen drei momentenneutralen Positionen R0, R1, R2 für den Betrieb der Vorrichtung mittels dem Hauptnocken 6b können weitere Positionen (nicht dargestellt) für einen sogenannten Minimalhubbetrieb bei Betätigung des zweiten Nocken 6a vorhanden sein. Für diese weiteren momentenneutralen Positionen gilt das gleiche, wie für die zuvor beschrieben momentenneutralen Positionen R0, R1, R2.Analogous to the described three torque-neutral positions R0, R1, R2 for the operation of the device by means of the main cam 6b further positions (not shown) for a so-called minimum stroke operation upon actuation of the second cam 6a may be present. The same applies for these further torque-neutral positions as for the previously described torque-neutral positions R0, R1, R2.

Bei dem berechneten idealen Ausschwingverhalten schwingt der Rotor also von einer Endposition E1, E1' in die andere Endposition E2, E2' allein aufgrund der in den Energiespeichermitteln 10, 12 gespeicherten Energie ohne Einspeisung einer zusätzlichen Energie, etwa durch den Elektromotor 4.In the case of the calculated ideal decay behavior, the rotor therefore oscillates from one end position E1, E1 'into the other end position E2, E2' solely on the basis of the energy stored in the energy storage means 10, 12 without the introduction of additional energy, for example by the electric motor 4.

In dem Fall, dass der Rotor im Teilhubbereich von einer ersten Endlage R1' zu einer korrespondierenden zweiten Endlage R2' schwingt (insbesondere bei hohen Drehzahlen der Brennkraftmaschine), wäre das ideale Ausschwingverhalten somit das eines Perpetuum mobile (unendliche gleichbleibende Schwingung).In the event that the rotor in Teilhubbereich from a first end position R1 'to a corresponding second end position R2' oscillates (especially at high engine speeds), the ideal decay would thus be that of a perpetual motion (infinite constant vibration).

Für den Fall, dass der Rotor im Vollhubbereich von einer ersten Endlage R1 zu einer korrespondierenden zweiten Endlage R2 schwingt (insbesondere im Leerlauf bzw. bei niedrigen Drehzahlen der Brennkraftmaschine), wäre er jeweils in den Endlagen R1, R2 in einer momentenneutralen Position gehalten und müsste aus dieser Position jeweils durch Einbringung einer impulsartigen Anstoßenergie (Motorimpuls) wieder veranlasst werden die nächste Schwingung in die andere Endlage vorzunehmen (daher metastabile momentenneutrale Position).In the event that the rotor in Vollhubbereich from a first end position R1 to a corresponding second end position R2 oscillates (especially at idle or at low speeds of the internal combustion engine), he would be held in the end positions R1, R2 in a moment-neutral position and would have From this position, each time by introducing a pulse-like impulse energy (motor impulse) again caused to make the next oscillation in the other end position (therefore metastable torque-neutral position).

Dadurch, dass die Sollbahnen für Vollhub und für Teilhub dem Ausschwingverhalten der Drehaktuatorvorrichtung ohne Reibungsverluste und ohne Gasgegendrücke entsprechen wird gewährleistet, dass die Regeleinrichtung 20 den Elektromotor 4 ausschließlich zum Ausgleich der in der Praxis stets vorhandenen Reibungsverluste und der auftretenden Gasgegendrücke ansteuert. Da Reibungsverluste hauptsächlich bei hohen Rotordrehzahlen auftreten, muss der Elektromotor 4 bei hohen Drehzahlen die größte Leistung abgegeben. Da dies mit dem energieoptimalen Betriebspunkt des Elektromotors 4 zusammenfällt, kann durch die Regelung anhand idealisierter Sollbahnen des zu betreibenden Aktuatorsystems ein energiesparsamer Betrieb des selben gewährleistet werden.Due to the fact that the nominal paths for full stroke and partial stroke correspond to the decay behavior of the rotary actuator device without frictional losses and without gas counterpressures it is ensured that the Control device 20 controls the electric motor 4 exclusively to compensate for the ever-present in practice friction losses and the occurring gas back pressures. Since friction losses occur mainly at high rotor speeds, the electric motor 4 must deliver the highest power at high speeds. Since this coincides with the energy-optimal operating point of the electric motor 4, an energy-saving operation of the same can be ensured by the scheme based on idealized set paths of the actuator system to be operated.

In den Figuren 2 und 3 sind jeweils in drei unterschiedlichen Diagrammen a-c die Zustandsgrößen Rotorwinkel, Rotorwinkelgeschwindigkeit und abgegebenes Drehmoment bzw. Stromaufnahme des Elektromotors für den Fall kleinerer Wegsensorfehler dargestellt, während die Figuren 4 und 5 analog zu den Figuren 2 und 3 die Zustandsgrößen für den Fall größerer Wegsensorfehler zeigen. In den Figuren 2-5 sind die Sollwerte bzw. die aufgrund der Sollbahn zu erwartenden Werte jeweils als ununterbrochene Linien und die sich aufgrund einer Abweichung einstellenden Istwerte als gestrichelte Linien dargestellt.In FIGS. 2 and 3, the state variables rotor angle, rotor angular velocity and output torque or current consumption of the electric motor are shown in three different diagrams ac in the case of smaller displacement sensor errors, while FIGS. 4 and 5 show the state variables for the sensor analogous to FIGS Case of larger sensor error show. In FIGS. 2-5, the setpoint values or the values to be expected on the basis of the setpoint path are in each case shown as uninterrupted lines and the actual values resulting from a deviation are shown as dashed lines.

Die Figuren 2a-c beschreiben den Fall, dass der Rotor des Elektromotors 4 aufgrund eines fehlerbehafteten Wegsensorsignals S (Fehler kleineren Ausmaßes - innerhalb eines vorbestimmten ersten Abweichungsbereichs bzw. unterhalb einer ersten Abweichungsschwelle) sich über die Sollendposition hinaus bewegt. Die Kalibrierung des Wegsensors erfolgt durch Auswertung der Zustandsgrößen des Elektromotors 4, vorzugsweise während der Schließphase PSchließ eines Gaswechselventils 2 . Dabei ist der durch die Sollbahn vorgegebene Rotorsollwert in seiner Endposition durch R2; R2' (bzw. den zugehörigen Rotorwinkel RW(R2); RW(R2')) vorgegeben, wobei die Endposition genau im Grenzpunkt zwischen Öffnungsphase PÖffnung und Schließphase PSchließ erreicht sein sollte. Aufgrund eines vorliegenden fehlerbehafteten Wegsensorsignals S, welches bei Erreichen der gewünschten Rotorendlage bei R2; R2' (Soll-Rotorendlage) der Regeleinrichtung 20 suggeriert, das die Endlage noch nicht erreicht ist, wird zum Wendezeitpunkt WP der Rotorbewegung die erwartete Maximalgeschwindigkeit überschritten (Vergleich von der sich aufgrund der Regelung einstellenden Istbahn IB für den Rotorwinkelverlauf mit der vorgegebenen Sollbahn SB anhand der der Rotorwinkel aufgrund der (fehlerhaften) und bereits vor dem Wendezeitpunkt WP im Zeitbereich B1 eine erhöhte Motorstromaufnahme (bzw. Momentenabgabe) verzeichnet (Figur 2c). In Abhängigkeit von der Höhe der Abweichung von zumindest einer der beiden Zustandsgrößen (Rotorwinkelgeschwindigkeit, Motorstromaufnahme bzw. abgegebenes Elektromotormoment) zu dem jeweiligen Sollwert der Zustandsgröße wird ein Korrekturwert zum Ausgleich des vorliegenden Fehlers ermittelt. Hierfür wird die zu korrigierende Sollbahn und/oder der zu korrigierende Wegsensor(wert) mit einem Korrekturfaktor (Multiplikation) und/oder einem offset (Addition) beaufschlagt.FIGS. 2a-c describe the case in which the rotor of the electric motor 4 moves beyond the setpoint end position due to a faulty path sensor signal S (smaller extent error - within a predetermined first deviation range or below a first deviation threshold, respectively). The calibration of the displacement sensor takes place by evaluation of the state variables of the electric motor 4, preferably during the closing phase P closing of a gas exchange valve 2. In this case, the specified by the desired path rotor target value in its end position by R2; R2 '(or the associated rotor angle RW (R2); RW (R2')) predetermined, the end position should be reached exactly at the boundary point between the opening phase P opening and closing phase P closing . Due to a present error-prone path sensor signal S, which upon reaching the desired rotor end position at R2; R2 '(target rotor end position) of the control device 20 suggests that the end position has not yet been reached, the expected maximum speed is exceeded at the time of rotation WP of the rotor movement (comparison of the actual path IB resulting from the control for the rotor angle profile with the predetermined desired path SB 2c) shows the rotor angle due to the (faulty) and already before the turning point WP in the time range B1 (Figure 2c) depending on the amount of deviation from at least one of the two state variables (rotor angular velocity, motor current consumption or For this purpose, the desired path to be corrected and / or the path sensor (value) to be corrected are subjected to a correction factor (multiplication) and / or an offset (addition) ,

Analog zu den Figuren 2a-c ist in den Figuren 3a-c der Fall beschrieben, dass der Rotor des Elektromotors 4 aufgrund eines fehlerbehafteten Wegsensorsignals S (Fehler kleineren Ausmaßes - innerhalb eines vorbestimmten ersten Abweichungsbereichs) nicht die gewünschte Sollendposition erreicht. Aufgrund eines vorliegenden fehlerbehafteten Wegsensorsignals S wird der Regeleinrichtung 20 suggeriert, dass bereits vor Erreichen der gewünschten Rotorendlage bei R2; R2' (Soll-Rotorendlage) diese bereits erreicht ist (Vergleich von der sich aufgrund der Regelung einstellenden Istbahn IB für den Rotorwinkelverlauf mit der vorgegebenen Sollbahn SB anhand der der Rotorwinkel aufgrund der (fehlerhaften) Wegsensorsignale eingeregelt wurde). Zum Wendezeitpunkt WP der Rotorbewegung wird die erwartete Maximalgeschwindigkeit demgemäß nicht erreicht (Figur 3b) und bereits vor dem Wendezeitpunkt WP wird eine erhöhte Motorstromaufnahme (bzw. Momentenabgabe) verzeichnet (Figur 3c). In Abhängigkeit von der Höhe der Abweichung von zumindest einer der beiden Zustandsgrößen (Rotorwinkelgeschwindigkeit, Motorstromaufnahme bzw. abgegebenes Elektromotormoment) zu dem jeweiligen Sollwert der Zustandsgröße wird auch hier ein Korrekturwert zum Ausgleich des vorliegenden Fehlers ermittelt. Hierfür wird die zu korrigierende Sollbahn und/oder der zu korrigierende Wegsensor(wert) mit einem Korrekturfaktor (Multiplikation) und/oder einem offset (Addition) beaufschlagt..
Demnach wird im Falle der Unterschreitung des vorgegebenen Sollwertes innerhalb des vorbestimmten Bereichs, die Veränderung der Sollbahn SB und/oder des Wegsensorsignals S derart vorgenommen, dass während eines späteren Arbeitsspiels ein erhöhter Maximalhub des Gaswechselventils 2 (im Vergleich zum erreichten Maximalhub bei fehlerhaften Wegsensorsignalen gemäß Istbahn IB) erreicht wird, und das für den Fall, einer Überschreitung des Sollwertes die Veränderung der Sollbahn SB und/oder des Wegsensorsignals S derart vorgenommen wird, dass während eines späteren Arbeitsspiels ein verringerter Maximalhub des Gaswechselventils 2 erreicht wird. Hierdurch erfolgt im wesentlichen eine gezielte Verschiebung der regelungstechnisch definierten Endanschläge (und somit eine Einstellung des Maximalhubs) für den Rotor des Elektromotors.
Analogous to FIGS. 2a-c, the case is described in FIGS. 3a-c in that the rotor of the electric motor 4 does not reach the desired setpoint end position due to a faulty displacement sensor signal S (minor error - within a predetermined first deviation range). Due to a present faulty displacement sensor signal S, the control device 20 is suggested that already before reaching the desired rotor end position at R2; R2 '(target rotor end position) has already been reached (comparison of the actual control path IB due to the control for the rotor angle profile with the predetermined desired path SB on the basis of which the rotor angle was adjusted due to the (erroneous) displacement sensor signals). At the turning point WP of the rotor movement, the expected maximum speed is accordingly not reached (FIG. 3b), and an increased motor current consumption (or torque output) is already recorded before the point of turn WP (FIG. 3c). Depending on the amount of deviation from at least One of the two state variables (rotor angular velocity, motor current consumption or emitted electric motor torque) to the respective setpoint value of the state variable, a correction value for compensating the present error is also determined here. For this purpose, the setpoint path to be corrected and / or the path sensor (value) to be corrected are subjected to a correction factor (multiplication) and / or an offset (addition).
Accordingly, in the case of falling below the predetermined setpoint within the predetermined range, the change of the setpoint path SB and / or the Wegsensorsignals S made such that during a later cycle increased maximum stroke of the gas exchange valve 2 (compared to the maximum stroke reached in faulty Wegsensorsignalen according to actual IB), and in the event that the target value is exceeded, the change in the setpoint path SB and / or the path sensor signal S is made such that a reduced maximum lift of the gas exchange valve 2 is achieved during a later work cycle. This essentially results in a targeted displacement of the control technology defined end stops (and thus an adjustment of the maximum stroke) for the rotor of the electric motor.

Bei einer größeren Abweichung (Wegsensorfehler größeren Ausmaßes - außerhalb eines vorbestimmten zweiten Abweichungsbereichs bzw. überschreiten einer zweiten Abweichungsschwelle) wird durch einen schnellen Eingriff unmittelbar gegengesteuert (Figur 4a-c, Figur 5a-c), indem mittels einem, der vorliegenden Abweichung zugeordneten Korrekturwert (Korrekturfaktor und/oder Offset) möglichst schon während des selben bzw. aktuellen Arbeistsspiels, spätestens aber im nächsten Arbeitsspiel des Rotors dieser anhand einer veränderten Sollbahn SB bzw. einem veränderten Wegsignal S eines neu kalibrierten Wegsensors geregelt wird. Hierbei wird infolge einer Abweichung zwischen der ermittelten Zustandsgröße und der Referenzgröße außerhalb eines vorbestimmten Bereichs eine Veränderung der Sollbahn SB und/oder des Wegsensorsignals S derart vorgenommen, dass der Rotor vorzugsweise noch im selben Arbeitsspiel anhand einer veränderten Sollbahn und/oder eines veränderten Wegsensorsignals geregelt wird und im folgenden Arbeitsspiel (ohne Mitteln der Messgrößen über mehrere Arbeitsspiele) der maximale Hub verschoben wird. Insbesondere wird im Falle der Unterschreitung des Sollwertes außerhalb des vorbestimmten Bereichs die Veränderung der Sollbahn SB und/oder des Wegsensorsignals S derart vorgenommen, dass während des selben Arbeitsspiels ein frühzeitiger Schließvorgang des Gaswechselventils 2 erreicht wird und im folgenden Arbeitsspiel (ohne Mitteln der Messgrößen über mehrere Arbeitsspiele) der maximale Hub erhöht und so ein späterer Schließzeitpunkt wieder eingestellt wird. Für den Fall, einer Überschreitung des Sollwertes außerhalb des vorbestimmten Bereichs erfolgt die Veränderung der Sollbahn SB und/oder des Wegsensorsignals S derart, dass während des selben Arbeitsspiels ein verzögerter Schließvorgang des Gaswechselventils 2 erreicht wird und im folgenden Arbeitsspiel (ohne Mitteln der Messgrößen über mehrere Arbeitsspiele) der maximale Hub reduziert und wieder ein früherer Schließzeitpunkt eingestellt wird. Hierdurch erfolgt im wesentlichen eine schnelle Verschiebung der Schließsteuerkante der vorgegebenen Sollbahn SB.In the case of a greater deviation (displacement sensor error of a greater extent-outside a predetermined second deviation range or exceeding a second deviation threshold), a rapid intervention immediately counteracts (FIG. 4a-c, FIG. 5a-c) by using a correction value associated with the present deviation (FIG. Correction factor and / or offset) as far as possible during the same or current work arcade, but at the latest in the next working cycle of the rotor this is controlled by means of a modified reference path SB or a modified path signal S of a newly calibrated displacement sensor. This is due to a deviation between the determined state variable and the reference size outside a predetermined Area a change in the desired trajectory SB and / or the displacement sensor signal S made such that the rotor is preferably still controlled in the same cycle on the basis of a modified desired trajectory and / or a modified Wegsensorsignals and in the following working cycle (without averages of the measured variables over several cycles) the maximum Hub is moved. In particular, in the case of falling below the setpoint outside the predetermined range, the change of the setpoint path SB and / or the Wegsensorsignals S made such that during the same cycle an early closing of the gas exchange valve 2 is achieved and in the following working cycle (without averaging the measured variables over several Working cycles), the maximum stroke is increased and so a later closing time is set again. In the event of exceeding the setpoint outside the predetermined range, the change of the setpoint path SB and / or the Wegsensorsignals S is such that during the same cycle a delayed closing operation of the gas exchange valve 2 is achieved and in the following working cycle (without averaging the measured variables over several Working cycles) the maximum stroke is reduced and a previous closing time is set again. As a result, there is essentially a rapid displacement of the closing control edge of the predetermined desired path SB.

Figur 6 zeigt den linearen Zusammenhang zwischen dem Signal S des Wegsensors (welches die Position des Rotors abbildet) und dem tatsächlich eingestellten Rotorwinkel RW des Elektromotors 4. Im fehlerfreien Idealfall stellt sich beispielsweise eine Kennlinie gemäß K1 mit Ursprung im Nullpunkt ein. Liegt nunmehr ein fehlerbehaftetes Wegsensorsignal S vor, stellt sich in der Regel eine Kennlinie/Gerade gemäß K2 oder K3 ein, die jeweils um einen Punkt auf der fehlerfreien Geraden verdreht ist. Wie bereits vorstehend erläutert kann durch rechnerische Korrektur- beispielsweise, durch Multiplikation mit einem Korrekturfaktor und Addition eines offset (allg.: Sensor_korrektur = Sensor_ist x Korrekturfaktor + offset) - jede fehlerbehaftete Kennlinie wieder in eine fehlerfreie Kennlinie überführt werden. Anhand der korrigierten Kennlinie kann der Wegsensor wieder fehlerfreie Signale an die Regeleinrichtung 20 liefern. Alternativ zur Korrektur der Wegsensorsignale S kann auch die Sollbahn SB für die Regelung des Rotors angepasst oder beide Korrekturmöglichkeiten zu Teilen durchgeführt werden.FIG. 6 shows the linear relationship between the signal S of the displacement sensor (which depicts the position of the rotor) and the actually set rotor angle RW of the electric motor 4. In a faultless ideal case, for example, a characteristic according to K1 originating at zero point arises. If there is now an erroneous displacement sensor signal S, as a rule, a characteristic curve / straight line according to K2 or K3 is established, which is in each case rotated by one point on the error-free straight line. As already explained above, by computational correction, for example, by multiplication with a correction factor and addition of an offset (in general: Sensor_korrektur = Sensor_act × correction factor + offset) - each faulty characteristic again be converted into a fault-free characteristic. Based on the corrected characteristic curve, the displacement sensor can again supply error-free signals to the control device 20. As an alternative to the correction of the displacement sensor signals S, the setpoint path SB can also be adapted for the control of the rotor, or both correction options for parts can be carried out.

Claims (10)

  1. A method for calibrating a positional sensor of a rotary actuator device for controlling a gas exchange valve of an internal combustion engine, wherein the rotary actuator device comprises:
    - a controllable electric motor (4) with an actuating element (6, 6a, 6b) for actuating the gas exchange valve (2),
    - two energy storage means (10, 12) acting in opposite drive directions on the gas exchange valve (2),
    - an open-loop and closed-loop control device (20), which controls the electric motor (4) with regard to its rotor angle according to a stored desired path (SB) in such a way that the rotor of the electric motor (4) is transferred from a first end position (R1; R1') into a second end position (R2; R2') and vice versa,
    - and a positional sensor for detecting the rotor position,
    characterised in that
    - at least one state variable of the electric motor (4) is determined,
    - the at least one state variable is compared with a reference variable, and
    - when there is a deviation between the variables to be compared, the stored desired path (SB) and/or the detected positional sensor signal (S) is changed as a function of the state variable.
  2. A method according to claim 1, characterised in that the rotor angle (RW) or a time derivation of the rotor angle (RW) and/or the current consumption or the feed voltage of the electric motor (4) is determined as the state variable for the electric motor (4).
  3. A method according to one or more of the preceding claims, characterised in that the adaptation of the desired path (SB) and/or the adaptation of the detected positional sensor signal (S) takes place by multiplication by a correction factor.
  4. A method according to one or more of the preceding claims, characterised in that the adaptation of the desired path (SB) and/or the adaptation of the detected positional sensor signal (S) takes place by addition of an offset value.
  5. A method according to one or more of the preceding claims, characterised in that the calibration of the positional sensor takes place during the closing process of the gas exchange valve (2) allocated to the positional sensor.
  6. A method according to one or more of the preceding claims, characterised in that when there is a deviation between the determined state variable and the reference variable outside a predetermined range, a change in the desired path (SB) and/or the positional sensor signal (S) takes place in such a way that the rotor in the directly following working cycle is regulated with the aid of a changed desired path and/or a changed positional sensor signal.
  7. A method according to claim 6, characterised in that if the desired value is fallen below outside the predetermined range, the change in the desired path (SB) and/or the positional sensor signal (S) takes place in such a way that during the same working cycle, a premature closing process of the gas exchange valve (2) is achieved, and in the case of an exceeding of the desired value outside the predetermined range, the change in the desired path (SB) and/or the positional sensor signal (S) takes place in such a way that, during the same working cycle, a delayed closing process of the gas exchange valve (2) is achieved.
  8. A method according to one or more of the preceding claims, characterised in that in the event of a deviation between the determined state variable and the reference variable inside a predetermined range, a change in the desired path (SB) and/or the positional sensor value takes place in such a way that the rotor is regulated after a plurality of working cycles with the aid of a changed desired path and/or a changed positional sensor signal.
  9. A method according to claim 8, characterised in that in the event of the desired value being fallen below inside the predetermined range, the change in the desired path (SB) and/or the positional sensor signal (S) takes place in such a way that during a later working cycle, an increased maximum lift of the gas exchange valve (2) is achieved and in that in the event of an exceeding of the desired value, the change in the desired path (SB) and/or the positional sensor signal (S) takes place in such a way that during a later working cycle, a reduced maximum lift of the gas exchange valve (2) is achieved.
  10. A method according to claim 8 or 9, characterised in that the determined state variable is averaged over the plurality of working cycles and a change in the desired path (SB) and/or the positional sensor signal is made on the basis of the averaged state variable.
EP05799743A 2004-11-12 2005-10-19 Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine Not-in-force EP1815110B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054759A DE102004054759B4 (en) 2004-11-12 2004-11-12 Method for calibrating a displacement sensor of a rotary actuator device for controlling a gas exchange valve of an internal combustion engine
PCT/EP2005/011222 WO2006050790A1 (en) 2004-11-12 2005-10-19 Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1815110A1 EP1815110A1 (en) 2007-08-08
EP1815110B1 true EP1815110B1 (en) 2008-02-06

Family

ID=35517670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05799743A Not-in-force EP1815110B1 (en) 2004-11-12 2005-10-19 Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine

Country Status (5)

Country Link
US (1) US7380433B2 (en)
EP (1) EP1815110B1 (en)
AT (1) ATE385539T1 (en)
DE (2) DE102004054759B4 (en)
WO (1) WO2006050790A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054776B3 (en) * 2004-11-12 2006-03-16 Bayerische Motoren Werke Ag Method for calibrating a displacement sensor of a rotary actuator device for controlling a gas exchange valve of an internal combustion engine
DE102009036061B3 (en) * 2009-08-04 2011-02-10 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
US8222760B2 (en) * 2010-06-29 2012-07-17 General Electric Company Method for controlling a proximity sensor of a wind turbine
JP5609509B2 (en) * 2010-10-04 2014-10-22 富士通株式会社 Instruction system, instruction method, and storage control device.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739840C2 (en) * 1997-09-11 2002-11-28 Daimler Chrysler Ag Method for controlling an electromagnetically actuated actuating device, in particular a valve for internal combustion engines
DE10140461A1 (en) * 2001-08-17 2003-02-27 Bayerische Motoren Werke Ag Rotary actuator device for stroke control of a gas exchange valve in the cylinder head of an internal combustion engine
JP4092917B2 (en) * 2002-01-21 2008-05-28 トヨタ自動車株式会社 Electromagnetically driven valve control device for internal combustion engine
US6659053B1 (en) * 2002-06-07 2003-12-09 Eaton Corporation Fully variable valve train
US6722326B1 (en) * 2002-10-14 2004-04-20 Ford Global Technologies, Llc Variable lift cylinder valve system for internal combustion engine
DE10252991A1 (en) * 2002-11-14 2004-05-27 Bayerische Motoren Werke Ag Tilting actuator system for inlet or exhaust valve in internal combustion engine has oscillating motor turning shaft with high-lift and low-lift cams engaging adjustable rocker pressing on valve stem
DE10318246A1 (en) * 2003-03-31 2004-11-11 Bayerische Motoren Werke Ag Controlling electromagnetic actuator armature in IC engine of vehicle, carrying out regulation taking into account change in direction of magnetic flux in armature achieved by reversing polarity of coils
MXPA05011345A (en) * 2003-04-26 2006-03-08 Camcon Ltd Electromagnetic valve actuator.

Also Published As

Publication number Publication date
DE502005002781D1 (en) 2008-03-20
ATE385539T1 (en) 2008-02-15
US20070208487A1 (en) 2007-09-06
DE102004054759A1 (en) 2006-05-24
US7380433B2 (en) 2008-06-03
WO2006050790A1 (en) 2006-05-18
EP1815110A1 (en) 2007-08-08
DE102004054759B4 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1815110B1 (en) Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine
WO2009121673A1 (en) Method for adapting actual injection quantities, injection device and internal combustion engine
WO2006050796A1 (en) Method for calibration of a positional sensor on a rotational actuator device for control of a gas exchange valve in an internal combustion engine
DE102008008893B4 (en) Method and system for adjusting a sensor for a variable valve mechanism
EP1812693B1 (en) Device and method for controlling the lift of an outlet gas exchange valve of an internal combustion engine
DE10307307B4 (en) Method for controlling an internal combustion engine
EP1272741B1 (en) Method for adjusting an actuator
EP1812692B1 (en) Device for controlling the lift of a gas exchange valve in an internal combustion engine
EP1608852B1 (en) Device for the variable actuation of gas exchange valves of internal combustion engines and method for operating said device
DE102004054740B4 (en) A method of detecting a fault in a displacement signal of a displacement sensor of a rotary actuator device
DE102018119458A1 (en) METHOD FOR IMPLEMENTING INTAKE CAM LIFT STATE TRANSITIONS
DE102004025152A1 (en) System and method for improving the response of a variable cam timing (VCT) at low cam torque frequency
WO2017174353A1 (en) Valve train and engine assembly
DE102004050817A1 (en) Phase averaging at high rotational speeds
DE102004054774B4 (en) Device for controlling the stroke course of a gas exchange valve of an internal combustion engine
DE19938749B4 (en) Method for determining the valve clearance
WO2012097895A2 (en) Valve control system
DE10244337B4 (en) Method for controlling the movement of an armature of an electromagnetic actuator
DE112019002971B4 (en) Control device and control method for a variable valve timing mechanism
DE19541927B4 (en) Method and device for controlling and / or regulating an internal combustion engine
EP1003957B1 (en) Method for adjusting a valve lift
DE102012008488B4 (en) Method for operating an internal combustion engine and corresponding internal combustion engine
WO2023046753A1 (en) Method for operating an internal combustion engine, and corresponding internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005002781

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080517

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

BERE Be: lapsed

Owner name: BAYERISCHE MOTORENWERKE A.G.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081019

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131028

Year of fee payment: 9

Ref country code: GB

Payment date: 20131031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141017

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002781

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503