EP1808576B1 - Turbine shaft for a steam turbine - Google Patents

Turbine shaft for a steam turbine Download PDF

Info

Publication number
EP1808576B1
EP1808576B1 EP06000534.5A EP06000534A EP1808576B1 EP 1808576 B1 EP1808576 B1 EP 1808576B1 EP 06000534 A EP06000534 A EP 06000534A EP 1808576 B1 EP1808576 B1 EP 1808576B1
Authority
EP
European Patent Office
Prior art keywords
shaft
turbine
steam
radius
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06000534.5A
Other languages
German (de)
French (fr)
Other versions
EP1808576A1 (en
Inventor
Torsten-Ulf Dr Kern
Christoph Dr Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06000534.5A priority Critical patent/EP1808576B1/en
Publication of EP1808576A1 publication Critical patent/EP1808576A1/en
Application granted granted Critical
Publication of EP1808576B1 publication Critical patent/EP1808576B1/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/431Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity

Definitions

  • the invention relates to a shaft for a steam turbine, wherein the shaft has a protective layer applied to at least part of the surface, wherein the protective layer is a lacquer and a method for producing a shaft having a surface and at least one corrugation notch.
  • Turbine shafts for turbomachinery are among the most thermally and mechanically stressed components. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term "turbomachinery". All these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure. In the turbomachine, the energy conversion is indirect and always takes the path over the kinetic energy of the fluid.
  • the example of a steam turbine can be tracked. The flow medium enters the steam turbine and initially flows through a ring of fixed vanes.
  • Steam turbines can be designed for different pressure ranges of the flow medium. So z.
  • high-pressure turbine parts medium-pressure turbine parts and low-pressure turbine parts known.
  • the steam flowing into a high-pressure turbine part can have temperatures of over 600 ° C and a pressure of over 300 bar.
  • the steam flowing into the low-pressure turbine part comparatively has a low temperature of around 40 ° C.
  • the turbine shafts used in low-pressure turbine parts are subject to a high cyclic vibration load due to continuous bending due to their own weight.
  • the fatigue strength of these turbine shafts is particularly due to the surrounding medium, especially the flow medium steam determined.
  • some areas of the turbine shaft in the so-called wet steam area are some areas of the turbine shaft in the so-called wet steam area.
  • the fatigue reduction of the turbine shaft by wet steam has hitherto been counteracted in that the turbine shaft has been designed to minimize the influence of wet steam.
  • Another known measure is to roughen points on the turbine shaft, which are particularly stressed by the wet steam in terms of corrosion.
  • the Rolieren leads to an increase in the fatigue strength at the critical point, without preventing the access of the medium moisture to the metallic surface. The effect is based on the introduction of residual compressive stresses, which reduce the operating voltages due to interference.
  • the Rolieren requires a not inconsiderable expense, which leads to high costs in the production of the turbine shaft.
  • the invention begins, whose task is to provide a shaft for a steam turbine, the fatigue strength reduction can be effectively countered by wet steam.
  • Another object of the invention is to provide a method for producing a surface having a surface and at least one wave notch, wherein the fatigue strength reduction is effectively counteracted by wet steam.
  • the task directed towards the shaft is achieved according to claim 1 by applying a protective layer to at least part of the surface, wherein the protective layer is a lacquer which is a high-temperature lacquer and is suitable for temperatures up to more than 600 ° C.
  • the invention is based on the idea that the influence of the wet steam can essentially be counteracted by an effective protective layer.
  • the places that are particularly burdened by the wet steam, ie the fatigue strength is greatly reduced by wet steam due to stress corrosion cracking, are applied to at least part of the surface with a protective layer.
  • the protective layer has the effect that the small droplets of wet steam roll off the paint surface without significantly damaging it.
  • the stress applied surface of the turbine shaft material is not affected by the presence of the wet steam, since it is precisely the surface due to the high voltage there has a significant impact on the fatigue strength of the entire turbine shaft.
  • a reduction in the fatigue strength due to the corrosive attack of droplets from the wet steam is effectively countered.
  • the invention is also based on the aspect that it does not appear necessary to provide the entire turbine shaft surface with the protective layer for cost reasons. Rather, the idea is based on treating the lacquer according to the invention with the lacquer only at the most heavily stressed areas where the fatigue strength would be reduced by wet steam.
  • the protective layer is applied to a wave notch. It has been shown that especially a shaft which has corrugations is loaded precisely at these points by wet steam as a result of stress corrosion cracking (SpRK). In particular, the fatigue strength at the wave notches is reduced by wet steam.
  • SpRK stress corrosion cracking
  • the wave notch is in this case arranged between a first region of the shaft with a first radius and a second region of the shaft with a second radius.
  • the first radius is different from the second radius.
  • the wave notch also has a notch radius.
  • a paint or a paint-like material is to be understood, which is used for targeted coating of individual local areas and its high protective effect, such.
  • the heat treatment is carried out in such a way that the base material is not affected in its strength.
  • the lacquer or lacquer-like material can be used up to temperatures of over 600 ° C and remains sufficiently elastic after firing on the turbine shaft. This makes it advantageous if a high-temperature varnish is used as the varnish and this is suitable at temperatures of more than 600.degree.
  • the object directed to the method is achieved according to claim 5 by a method for producing a surface having a surface and at least one corrugation notch, wherein on the corrugation notch, a paint is applied and then carried out a heat treatment.
  • the heat treatment comprises the following steps: heating to 430 ° C - 450 ° C, holding time 0.1h to 3h and cooling at 20 ° C - 80 ° C / h to 300 ° C.
  • the layer can be applied particularly effectively with the abovementioned temperature values and times.
  • the protective effect such as.
  • As the adhesion, density or chemical resistance is particularly high.
  • a low-pressure turbine section 1 is shown in a sectional view.
  • the low-pressure turbine part 1 has a turbine shaft 3 which is symmetrical about an axis of rotation 2.
  • the turbine shaft 3 has various radii that become larger toward the center 4 of the turbine shaft.
  • wheel discs 5 are applied on the turbine shaft 3 so-called wheel discs 5 are applied.
  • the wheel discs 5 are usually arranged by shrinking onto the turbine shaft 3.
  • the blades 6 are attached.
  • the rotor blades 6 are long and can be values of more than 1.20 m.
  • the inner housing 7 is formed.
  • the inner housing 7 carries the guide vanes 8. For clarity, only two guide vanes 8 are provided with the reference numeral 8.
  • Low-pressure steam flows into the low-pressure turbine section 1 through inflow channels, not shown, and flows in the flow channel 9 in the direction 10 and 11. The temperature and the pressure of the steam are thereby it can not be ruled out that it will "wet" the vapor and form droplets.
  • the shaft 3 is rotated by the energy conversion.
  • the low-pressure steam subsequently flows out of the outflow region 12 out of the steam turbine.
  • the low-pressure steam is in this case deflected in a diffuser housing 13 and led to a condenser, where the steam condenses to water.
  • the shaft 3 of a low pressure turbine part 1 is shown.
  • the low-pressure shaft 3 has different diameters in its longitudinal direction.
  • the turbine shaft 3 may be formed mirror-symmetrically to the mirror axis 14.
  • the turbine shaft does not necessarily have to be mirror-symmetrical to the mirror axis 14.
  • the different diameters d0, d1, d2, d3, d4 and d5 are different from each other.
  • the diameters d0 to d5 to the left of the mirror axis 14 are generally the same size as the diameters d5 to d0 on the right side of the mirror axis. However, this is not absolutely necessary, in particular, the diameters may be slightly different.
  • the turbine shaft 3 has a surface which, as it were, runs discontinuously.
  • a discontinuous transition Between a first region 16 of the shaft 3 with a radius d4 and a second region 17 of the shaft with a second radius d5 is a discontinuous transition, wherein between these two areas 16, 17 a wave notch 18 is formed.
  • a wave notch 18 In the FIG. 2 is the wave notch with a circle 19 for the sake of clarity better indicated.
  • the regions 16 and 17 with the radii d4 and d5 are given by way of example only.
  • wave scores occur wherever two different areas with two different radii are. Further examples would be the transition from the area with the diameter d1 to the area with the diameter d2 or the transition of the area with the diameter d3 to the area with the diameter d4. Nevertheless, in the FIG. 2 To make it clear at which points the turbine shaft is heavily loaded, in particular by the influence of the wet steam, the wave notches are indicated by circles 19.
  • the shaft 3 can be used for a turbomachine, in particular for a low-pressure turbine part 1. At least on a part of the surface 15, a protective layer 20 is applied.
  • the protective layer may be a paint or a material having elastic properties, such. B. rubber.
  • the protective layer When viewed in the shaft axis direction 21, the protective layer is mounted in an axial section, for example between 17 and 18, over the entire circumference of the shaft.
  • the wave notch has a notch radius 23 and thus provides a steady transition from the radius d4, for example, to the radius d5.
  • the course of the wave notch 18 need not necessarily correspond to a circle segment, but rather the term notch radius 23 should be understood to mean that the first area 16 and the second area 17, which have different radii d4 and d5 respectively, do not change into each other in a discontinuous manner, ie. H.
  • the wave radius d4 changes in the region 22 from the radius d4 to a different radius from d5.
  • lacquer is to be understood a lacquer or lacquer-like material, which can be used for the targeted coating of individual local areas and its high protective effect, eg. As adhesion, density, chemical resistance obtained by a subsequent heat treatment.
  • the heat treatment is carried out in such a way that the basic active substance in its strength is not affected.
  • the paint is protective up to over 600 ° and remains sufficiently elastic after firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Welle für eine Dampfturbine, wobei die Welle eine auf wenigstens einen Teil der Oberfläche aufgebrachte Schutzschicht aufweist, wobei die Schutzschicht ein Lack ist sowie ein Verfahren zur Herstellung einer eine Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle.The invention relates to a shaft for a steam turbine, wherein the shaft has a protective layer applied to at least part of the surface, wherein the protective layer is a lacquer and a method for producing a shaft having a surface and at least one corrugation notch.

Turbinenwellen für Strömungsmaschinen zählen zu den am stärksten thermisch und mechanisch belasteten Bauteilen. Unter der Sammelbezeichnung "Strömungsmaschinen" werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst. Allen diesen Maschinen ist gemeinsam, dass sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder umgekehrt einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen. In der Strömungsmaschine ist die Energieumsetzung indirekt und nimmt stets den Weg über die kinetische Energie des Fluids. Am Beispiel einer Dampfturbine lässt sich das verfolgen. Das Strömungsmedium tritt in die Dampfturbine ein und strömt zunächst durch einen Kranz feststehender Leitschaufeln. Dabei erhöht sich die Geschwindigkeit und damit die kinetische Energie des Strömungsmediums auf Kosten seines Druckes oder exakter seiner potentiellen Energie. Zugleich entsteht durch die Form der Leitschaufeln eine Geschwindigkeitskomponente in der Umfangsrichtung des Laufrades. Im Laufrad gibt das Fluid seine kinetische Energie an den Läufer ab, indem die Richtung und oft auch der Betrag der Geschwindigkeit beim Durchströmen der von den Laufschaufeln gebildeten Kanäle verändert wird. Die dabei entstehenden Kräfte treiben das Laufrad an. Mit vermindertem Energiegehalt tritt das Strömungsmedium aus der Dampfturbine aus.Turbine shafts for turbomachinery are among the most thermally and mechanically stressed components. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term "turbomachinery". All these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure. In the turbomachine, the energy conversion is indirect and always takes the path over the kinetic energy of the fluid. The example of a steam turbine can be tracked. The flow medium enters the steam turbine and initially flows through a ring of fixed vanes. This increases the speed and thus the kinetic energy of the flow medium at the expense of its pressure or more precisely its potential energy. At the same time created by the shape of the vanes, a velocity component in the circumferential direction of the impeller. In the impeller, the fluid releases its kinetic energy to the rotor by changing the direction and often the amount of velocity as it flows through the channels formed by the blades. The resulting forces drive the impeller. With reduced energy content, the flow medium exits the steam turbine.

Dampfturbinen können für verschiedene Druckbereiche des Strömungsmediums ausgebildet werden. So sind z. B. Hochdruck-Teilturbinen, Mitteldruckteilturbinen und Niederdruckteilturbinen bekannt. Der in eine Hochdruck-Teilturbine strömende Dampf kann Temperaturen von über 600°C und einen Druck von über 300 bar aufweisen. Der in die Niederdruckteilturbine strömende Dampf hat vergleichsweise eine niedrige Temperatur um 40°C.Steam turbines can be designed for different pressure ranges of the flow medium. So z. As high-pressure turbine parts, medium-pressure turbine parts and low-pressure turbine parts known. The steam flowing into a high-pressure turbine part can have temperatures of over 600 ° C and a pressure of over 300 bar. The steam flowing into the low-pressure turbine part comparatively has a low temperature of around 40 ° C.

Wird bei der weitergehenden Entspannung des Dampfes in der Niederdruckteilturbine die Grenzkurze zum Nassdampfgebiet unterschritten, so entsteht zunächst ein unterkühlter Dampf, dessen Temperatur unter der zum Dampfdruck gehörigen Sättigungstemperatur liegt. In diesem instabilen Zustand ist der Dampf noch rein gasförmig, denn wegen des Fehlens so genannter Kondensationskerne bilden sich zunächst keine Flüssigkeitströpfchen. Bei einer bestimmten Unterkühlung setzt jedoch eine spontane Kondensation ein, die so rasch abläuft, dass man von einem Kondensationsstoß spricht. Die Nebeltröpfchen, die sich dabei bilden, die Primärtröpfchen, sind sehr klein. Auch bei der weiteren Expansion wachsen sie durch die fortschreitende Kondensation kaum auf Durchmesser über etwa 0,2 µm an.If, during the further expansion of the steam in the low-pressure turbine section, the boundary lines to the wet steam zone are undershot, then initially a supercooled steam is produced whose temperature is below the saturation temperature associated with the vapor pressure. In this unstable state, the vapor is still purely gaseous, because due to the absence of so-called condensation nuclei initially no liquid droplets are formed. At a certain supercooling, however, sets a spontaneous condensation, which runs so fast that one speaks of a condensation impact. The mist droplets that form, the primary droplets, are very small. Even with the further expansion, they hardly grow to diameters above about 0.2 μm due to the progressing condensation.

Durch die Stromlinienkrümmung in der Beschaufelung wird ein Teil der Feuchtigkeit auszentrifugiert und sammelt sich in Form eines Wasserfilms oder einzelner Wassersträhnen auf den Hohlseiten der Leit- und Laufschaufeln. Von deren Hinterkante löst sich der Wasserfilm ab und bildet die größeren Sekundärtropfen mit Durchmessern bis zu etwa 400 µm. Noch größere Wasserteilchen sind in der Turbinenströmung nicht stabil, da sie wieder zerstäubt werden.Due to the streamline curvature in the blading part of the moisture is centrifuged out and collects in the form of a water film or individual strands of water on the hollow sides of the guide and moving blades. From the trailing edge of the water film separates and forms the larger secondary drops with diameters up to about 400 microns. Even larger water particles are not stable in the turbine flow since they are atomized again.

Die in Niederdruckteilturbinen eingesetzten Turbinenwellen sind einer hochzyklischen Schwingbelastung durch Umlaufbiegung in Folge Eigengewicht stark beansprucht. Die Dauerfestigkeit dieser Turbinenwellen wird besonders durch das Umgebungsmedium, insbesondere dem Strömungsmedium Dampf bestimmt. Dabei liegen einige Bereiche der Turbinenwelle im so genannten Nassdampfbereich.The turbine shafts used in low-pressure turbine parts are subject to a high cyclic vibration load due to continuous bending due to their own weight. The fatigue strength of these turbine shafts is particularly due to the surrounding medium, especially the flow medium steam determined. Here are some areas of the turbine shaft in the so-called wet steam area.

Außer der Wirkungsgradminimierung hat die Anwesenheit flüssigen Wassers noch eine andere nachteilige Wirkung. Die metallischen Werkstoffe können angegriffen werden. Die so genannte Tropfenschlagerosion kann an den Eintrittskanten der Laufschaufeln auftreten. Im Nachlauf der Leitschaufeln, wo die Dampfgeschwindigkeit wegen des Grenzschichteinflusses plan ist, werden die Wassertropfen nur mäßig beschleunigt. Ihre Relativgeschwindigkeit ist wegen der hohen Umfangsgeschwindigkeit von Endstufenschaufeln dennoch groß. Beim Aufprall auf die Laufschaufel kann es zu einem Materialabtrag kommen, und zwar dann, wenn die Tropfen Durchmesser in der Größenordnung von 50 bis 400 µm haben. Wesentlich kleinere Tropfen sind harmlos und größere kommen nicht vor.Besides minimizing efficiency, the presence of liquid water has another adverse effect. The metallic materials can be attacked. The so-called drop impact erosion can occur at the leading edges of the blades. In the wake of the vanes, where the steam velocity is flat due to the boundary layer influence, the water droplets are only moderately accelerated. Their relative speed is still high because of the high peripheral speed of the final stage blades. Upon impact with the blade, material removal may occur if the drops have diameters on the order of 50 to 400 μm. Much smaller drops are harmless and larger ones do not occur.

Der Einfluss des Nassdampfes, der zur Tropfenschlagerosion an den Eintrittskanten der Laufschaufeln führt, ist auch auf der Welle bemerkbar. Der Nassdampf führt zu einem starken Abfall der Dauerfestigkeit von Turbinenwellen. Schätzungen haben gezeigt, dass die Dauerfestigkeit um einen Faktor 3 absinken kann gegenüber einer Turbinenwelle, die als Umgebungsmedium Luft erfährt.The influence of wet steam, which leads to drop impact erosion at the leading edges of the blades, is also noticeable on the shaft. The wet steam leads to a strong decrease in the fatigue strength of turbine shafts. Estimates have shown that fatigue strength can decrease by a factor of 3 compared to a turbine shaft that experiences air as the ambient medium.

Der Dauerfestigkeitsreduzierung der Turbinenwelle durch Nassdampf wurde bislang dahingehend begegnet, dass die Turbinenwelle derart konstruiert wurde, dass der Einfluss von Nassdampf minimiert wird. Allerdings kann durch andere Konstruktionen das Problem der Dauerfestigkeitsreduzierung durch Nassdampf nicht gänzlich ausgeschlossen werden. Eine andere bekannte Maßnahme ist es, Stellen an der Turbinenwelle, die besonders durch den Nassdampf hinsichtlich Korrosion belastet werden, zu rolieren. Das Rolieren führt zu einer Erhöhung der Dauerfestigkeit an der kritischen Stelle, ohne den Zutritt des Mediums Nässe an die metallische Oberfläche zu verhindern. Der Effekt beruht auf der Einbringung von Druckeigenspannungen, die die Betriebsspannungen infolge Überlagerung reduzieren. Das Rolieren erfordert allerdings einen nicht zu vernachlässigenden Aufwand, der zu hohen Kosten bei der Herstellung der Turbinenwelle führt.The fatigue reduction of the turbine shaft by wet steam has hitherto been counteracted in that the turbine shaft has been designed to minimize the influence of wet steam. However, by other constructions, the problem of fatigue reduction by wet steam can not be completely excluded. Another known measure is to roughen points on the turbine shaft, which are particularly stressed by the wet steam in terms of corrosion. The Rolieren leads to an increase in the fatigue strength at the critical point, without preventing the access of the medium moisture to the metallic surface. The effect is based on the introduction of residual compressive stresses, which reduce the operating voltages due to interference. However, the Rolieren requires a not inconsiderable expense, which leads to high costs in the production of the turbine shaft.

In der JP 08 128302 A wird eine Turbinenwelle mit einem Schutzfilm offenbart.In the JP 08 128302 A a turbine shaft with a protective film is disclosed.

In der JP 07 279604 A wird eine Turbinenwelle mit einer Aluminiumschicht offenbart.In the JP 07 279604 A a turbine shaft with an aluminum layer is disclosed.

Wünschenswert wäre es, eine Möglichkeit zu finden, um den Einfluss von Nassdampf auf die Dauerfestigkeit von Turbinenwellen zu minimieren.It would be desirable to find a way to minimize the influence of wet steam on the fatigue strength of turbine shafts.

An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Welle für eine Dampfturbine anzugeben, deren Dauerfestigkeitsreduzierung durch Nassdampf wirksam begegnet werden kann. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle anzugeben, wobei die Dauerfestigkeitsreduzierung durch Nassdampf wirksam begegnet wird.At this point, the invention begins, whose task is to provide a shaft for a steam turbine, the fatigue strength reduction can be effectively countered by wet steam. Another object of the invention is to provide a method for producing a surface having a surface and at least one wave notch, wherein the fatigue strength reduction is effectively counteracted by wet steam.

Die auf die Welle hin gerichtete Aufgabe wird gemäß den Anspruch 1 gelöst, indem auf wenigstens einen Teil der Oberfläche eine Schutzschicht aufgebracht wird, wobei die Schutzschicht ein Lack ist, der ein Hochtemperaturlack ist und für Temperaturen bis über 600°C geeignet ist.The task directed towards the shaft is achieved according to claim 1 by applying a protective layer to at least part of the surface, wherein the protective layer is a lacquer which is a high-temperature lacquer and is suitable for temperatures up to more than 600 ° C.

Die Erfindung geht von dem Gedanken aus, dass dem Einfluss des Nassdampfes im Wesentlichen durch eine wirksame Schutzschicht begegnet werden kann. Die Stellen, die besonders durch den Nassdampf belastet werden, d. h. die Dauerfestigkeit wird durch Nassdampf infolge Spannungsrisskorrosion stark reduziert, werden auf wenigstens einen Teil der Oberfläche mit einer Schutzschicht beaufschlagt. Die Schutzschicht hat die Wirkung, dass die kleinen Tröpfchen des Nassdampfs an der Lackoberfläche abperlen, ohne diese dabei wesentlich zu beschädigen. In jedem Fall wird die spannungsbeaufschlagte Oberfläche des Turbinenwellen-Materials durch die Anwesenheit des Nassdampfes nicht beeinflusst, da gerade die Oberfläche aufgrund der hohen Spannung dort einen wesentlichen Einfluss auf die Dauerfestigkeit der gesamten Turbinenwelle ausübt. Dadurch ist eine Reduzierung der Dauerfestigkeit in Folge des korrosiven Angriffs von Tröpfchen aus dem Nassdampf wirksam begegnet.The invention is based on the idea that the influence of the wet steam can essentially be counteracted by an effective protective layer. The places that are particularly burdened by the wet steam, ie the fatigue strength is greatly reduced by wet steam due to stress corrosion cracking, are applied to at least part of the surface with a protective layer. The protective layer has the effect that the small droplets of wet steam roll off the paint surface without significantly damaging it. In any case, the stress applied surface of the turbine shaft material is not affected by the presence of the wet steam, since it is precisely the surface due to the high voltage there has a significant impact on the fatigue strength of the entire turbine shaft. As a result, a reduction in the fatigue strength due to the corrosive attack of droplets from the wet steam is effectively countered.

Vorteilhaft ist es, den Lack in Wellenachsrichtung gesehen in einem axialen Abschnitt über den gesamten Umfang anzubringen. Da die Turbinenwelle in der Regel mit hohen Drehzahlen, 50 Hz bzw. 60 Hz, betrieben wird, üben die Tröpfchen aus dem Nassdampf einen Einfluss auf den gesamten Umfang der Wellenoberfläche aus. Daher ist es von Vorteil, wenn die Welle über den gesamten Umfang hinweg mit diesem Lack versehen wird.It is advantageous to attach the paint in the shaft axis direction in an axial section over the entire circumference. Since the turbine shaft is usually operated at high speeds, 50 Hz or 60 Hz, the droplets from the wet steam exert an influence on the entire circumference of the shaft surface. Therefore, it is advantageous if the shaft is provided with this paint over the entire circumference.

Die Erfindung geht auch von dem Aspekt aus, dass es nicht notwendig erscheint, die gesamte Turbinenwellenoberfläche mit der Schutzschicht aus Kostengründen zu versehen. Vielmehr liegt der Gedanke zugrunde, lediglich an den höchstbeanspruchten Stellen, an denen die Dauerfestigkeit durch Nassdampf reduziert werden würde, mit dem Lack erfindungsgemäß zu behandeln.The invention is also based on the aspect that it does not appear necessary to provide the entire turbine shaft surface with the protective layer for cost reasons. Rather, the idea is based on treating the lacquer according to the invention with the lacquer only at the most heavily stressed areas where the fatigue strength would be reduced by wet steam.

Vorteilhafterweise wird die Schutzschicht an einer Wellenkerbe aufgebracht. Es hat sich gezeigt, dass besonders eine Welle, die Wellenkerben aufweist, genau an diesen Stellen durch Nassdampf infolge Spannungsrisskorrosion (SpRK) belastet wird. Insbesondere wird die Dauerfestigkeit an den Wellenkerben durch Nassdampf reduziert.Advantageously, the protective layer is applied to a wave notch. It has been shown that especially a shaft which has corrugations is loaded precisely at these points by wet steam as a result of stress corrosion cracking (SpRK). In particular, the fatigue strength at the wave notches is reduced by wet steam.

Die Wellenkerbe ist hierbei zwischen einem ersten Bereich der Welle mit einem ersten Radius und einem zweiten Bereich der Welle mit einem zweiten Radius angeordnet. Der erste Radius ist gegenüber dem zweiten Radius verschieden. Die Wellenkerbe weist darüber hinaus einen Kerbradius auf.The wave notch is in this case arranged between a first region of the shaft with a first radius and a second region of the shaft with a second radius. The first radius is different from the second radius. The wave notch also has a notch radius.

Unter einem Lack im Sinne dieser Erfindung ist ein Lack oder ein lackähnlicher Stoff zu verstehen, der zur gezielten Beschichtung einzelner lokaler Bereiche verwendet wird und seine hohe Schutzwirkung, wie z. B. die Haftfestigkeit, die Dichte und/oder chemische Beständigkeit durch eine anschließende Wärmebehandlung erhält. Die Wärmebehandlung erfolgt derartig, dass der Grundwerkstoff in seiner Festigkeit nicht beeinflusst wird. Der Lack oder lackähnliche Stoff ist bis zu Temperaturen von über 600°C einsetzbar und bleibt nach dem Einbrennen auf der Turbinenwelle ausreichend elastisch. Dadurch ist es vorteilhaft, wenn als Lack ein Hochtemperaturlack verwendet wird und dieser bei Temperaturen bis über 600°C geeignet ist.Under a paint in the context of this invention, a paint or a paint-like material is to be understood, which is used for targeted coating of individual local areas and its high protective effect, such. B. the adhesion, the density and / or chemical resistance obtained by a subsequent heat treatment. The heat treatment is carried out in such a way that the base material is not affected in its strength. The lacquer or lacquer-like material can be used up to temperatures of over 600 ° C and remains sufficiently elastic after firing on the turbine shaft. This makes it advantageous if a high-temperature varnish is used as the varnish and this is suitable at temperatures of more than 600.degree.

Die auf das Verfahren hin gerichtete Aufgabe wird gemäß den Anspruch 5 gelöst durch ein Verfahren zur Herstellung einer eine Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle, wobei auf die Wellenkerbe ein Lack aufgebracht wird und anschließend eine Wärmbehandlung erfolgt.The object directed to the method is achieved according to claim 5 by a method for producing a surface having a surface and at least one corrugation notch, wherein on the corrugation notch, a paint is applied and then carried out a heat treatment.

Die Vorteile des Verfahrens entsprechen den bei der Vorrichtung erwähnten Vorteilen. Daher wird an dieser Stelle zu den Ausführungen zur Welle verwiesen.The advantages of the method correspond to the advantages mentioned in the device. Therefore, reference is made at this point to the comments on the wave.

Insbesondere ist es vorteilhaft, wenn die Wärmebehandlung folgende Schritte umfasst: Erwärmen auf 430°C - 450°C, Haltezeit 0,1h bis 3h und ein Abkühlen mit 20°C - 80°C/h auf 300°C.In particular, it is advantageous if the heat treatment comprises the following steps: heating to 430 ° C - 450 ° C, holding time 0.1h to 3h and cooling at 20 ° C - 80 ° C / h to 300 ° C.

Die Erfinder haben erkannt, dass mit den vorgenannten Temperaturwerten und Zeiten die Schicht besonders wirksam aufgebracht werden kann. Insbesondere ist die Schutzwirkung, wie z. B. die Haftfestigkeit, die Dichte oder die chemische Beständigkeit besonders hoch.The inventors have recognized that the layer can be applied particularly effectively with the abovementioned temperature values and times. In particular, the protective effect, such as. As the adhesion, density or chemical resistance is particularly high.

Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnungen näher beschrieben. Dabei haben mit demselben Bezugszeichen versehene Komponenten die gleiche Funktionsweise.Embodiments of the invention are described below with reference to the drawings. In this case, provided with the same reference numerals components have the same operation.

Dabei zeigen:

Figur 1
eine Schnittdarstellung durch einen Teil einer Niederdruckteilturbine;
Figur 2
eine Seitenansicht einer Turbinenwelle;
Figur 3
eine Seitenansicht eines Teiles einer Welle mit Wellenkerbe.
Showing:
FIG. 1
a sectional view through a part of a low pressure turbine part;
FIG. 2
a side view of a turbine shaft;
FIG. 3
a side view of a part of a wave with wave notch.

In der Figur 1 ist eine Niederdruckteilturbine 1 in einer Schnittdarstellung gezeigt. Die Niederdruckteilturbine 1 weist um eine Rotationsachse 2 symmetrisch ausgebildete Turbinenwelle 3 auf. Die Turbinenwelle 3 weist verschiedene Radien auf, die zur Mitte 4 der Turbinenwelle hin größer werden. Auf die Turbinenwelle 3 sind so genannte Radscheiben 5 aufgebracht. Der Übersichtlichkeit wegen sind lediglich zwei Radscheiben 5 mit dem Bezugszeichen 5 versehen. Die Radscheiben 5 werden in der Regel durch Aufschrumpfen auf die Turbinenwelle 3 angeordnet. Auf die Radscheiben 5 werden die Laufschaufeln 6 angebracht. Besonders im Niederdruckteil einer Dampfturbine sind die Laufschaufeln 6 lang und können Werte von über 1,20 m betragen. Ebenfalls rotationssymmetrisch um die Rotationsachse 2 ist das Innengehäuse 7 ausgebildet. Das Innengehäuse 7 trägt die Leitschaufeln 8. Der Übersichtlichkeit wegen sind lediglich zwei Leitschaufeln 8 mit dem Bezugszeichen 8 versehen. Durch nicht näher dargestellte Einströmkanäle strömt Niederdruckdampf in die Niederdruckteilturbine 1 und strömt im Strömungskanal 9 in die Richtung 10 und 11. Die Temperatur und der Druck des Dampfes werden dabei gesenkt, wobei es nicht auszuschließen ist, dass dadurch der Dampf "nass" wird und Tröpfchen gebildet werden.In the FIG. 1 a low-pressure turbine section 1 is shown in a sectional view. The low-pressure turbine part 1 has a turbine shaft 3 which is symmetrical about an axis of rotation 2. The turbine shaft 3 has various radii that become larger toward the center 4 of the turbine shaft. On the turbine shaft 3 so-called wheel discs 5 are applied. For clarity, only two wheel discs 5 are provided with the reference numeral 5. The wheel discs 5 are usually arranged by shrinking onto the turbine shaft 3. On the wheel discs 5, the blades 6 are attached. Especially in the low-pressure part of a steam turbine, the rotor blades 6 are long and can be values of more than 1.20 m. Also rotationally symmetrical about the axis of rotation 2, the inner housing 7 is formed. The inner housing 7 carries the guide vanes 8. For clarity, only two guide vanes 8 are provided with the reference numeral 8. Low-pressure steam flows into the low-pressure turbine section 1 through inflow channels, not shown, and flows in the flow channel 9 in the direction 10 and 11. The temperature and the pressure of the steam are thereby it can not be ruled out that it will "wet" the vapor and form droplets.

Die Welle 3 wird durch die Energieumsetzung in Rotation versetzt. Der Niederdruckdampf strömt anschließend aus dem Abströmbereich 12 aus der Dampfturbine heraus. Der Niederdruckdampf wird hierbei in einem Diffusorgehäuse 13 umgelenkt und zu einem Kondensator geführt, wo der Dampf zu Wasser kondensiert.The shaft 3 is rotated by the energy conversion. The low-pressure steam subsequently flows out of the outflow region 12 out of the steam turbine. The low-pressure steam is in this case deflected in a diffuser housing 13 and led to a condenser, where the steam condenses to water.

In der Figur 2 ist die Welle 3 einer Niederdruckteilturbine 1 dargestellt. Die Niederdruckwelle 3 weist in ihrer Längsrichtung verschiedene Durchmesser auf. Dabei kann die Turbinenwelle 3 spiegelsymmetrisch zur Spiegelachse 14 ausgebildet sein. Allerdings muss die Turbinenwelle nicht zwingend spiegelsymmetrisch zur Spiegelachse 14 ausgebildet sein. Die verschiedenen Durchmesser d0, d1, d2, d3, d4 und d5 sind voneinander unterschiedlich. Die Durchmesser d0 bis d5 links der Spiegelachse 14 sind in der Regel gleich groß wie die Durchmesser d5 bis d0 auf der rechten Seite der Spiegelachse. Dies ist allerdings nicht zwingend erforderlich, insbesondere können die Durchmesser leicht unterschiedlich sein.In the FIG. 2 the shaft 3 of a low pressure turbine part 1 is shown. The low-pressure shaft 3 has different diameters in its longitudinal direction. In this case, the turbine shaft 3 may be formed mirror-symmetrically to the mirror axis 14. However, the turbine shaft does not necessarily have to be mirror-symmetrical to the mirror axis 14. The different diameters d0, d1, d2, d3, d4 and d5 are different from each other. The diameters d0 to d5 to the left of the mirror axis 14 are generally the same size as the diameters d5 to d0 on the right side of the mirror axis. However, this is not absolutely necessary, in particular, the diameters may be slightly different.

Die Turbinenwelle 3 weist dadurch eine Oberfläche auf, die sozusagen unstetig verläuft.As a result, the turbine shaft 3 has a surface which, as it were, runs discontinuously.

Zwischen einem ersten Bereich 16 der Welle 3 mit einem Radius d4 und einem zweiten Bereich 17 der Welle mit einem zweiten Radius d5 ist ein unstetiger Übergang, wobei zwischen diesen beiden Bereichen 16, 17 eine Wellenkerbe 18 ausgebildet ist. In der Figur 2 ist die Wellenkerbe mit einem Kreis 19 der Übersichtlichkeit wegen besser kenntlich gemacht.Between a first region 16 of the shaft 3 with a radius d4 and a second region 17 of the shaft with a second radius d5 is a discontinuous transition, wherein between these two areas 16, 17 a wave notch 18 is formed. In the FIG. 2 is the wave notch with a circle 19 for the sake of clarity better indicated.

Die Bereiche 16 und 17 mit den Radien d4 bzw. d5 sind lediglich beispielhaft aufgeführt. Wellenkerben treten selbstverständlich überall dort auf, wo zwei unterschiedliche Bereiche mit zwei unterschiedlichen Radien sind. Weitere Beispiele wäre der Übergang von dem Bereich mit dem Durchmesser d1 zu dem Bereich mit dem Durchmesser d2 oder der Übergang des Bereiches mit dem Durchmesser d3 zu dem Bereich mit dem Durchmesser d4. Um dennoch in der Figur 2 deutlich zu machen, an welchen Stellen die Turbinenwelle besonders durch den Einfluss des Nassdampfes stark belastet wird, sind durch Kreise 19 die Wellenkerben kenntlich gemacht.The regions 16 and 17 with the radii d4 and d5 are given by way of example only. Of course, wave scores occur wherever two different areas with two different radii are. Further examples would be the transition from the area with the diameter d1 to the area with the diameter d2 or the transition of the area with the diameter d3 to the area with the diameter d4. Nevertheless, in the FIG. 2 To make it clear at which points the turbine shaft is heavily loaded, in particular by the influence of the wet steam, the wave notches are indicated by circles 19.

Die Welle 3 ist für eine Strömungsmaschine, insbesondere für eine Niederdruckteilturbine 1 einsetzbar. Wenigstens auf einen Teil der Oberfläche 15 wird eine Schutzschicht 20 aufgebracht.The shaft 3 can be used for a turbomachine, in particular for a low-pressure turbine part 1. At least on a part of the surface 15, a protective layer 20 is applied.

Die Schutzschicht kann ein Lack sein oder aus einem Material mit elastischen Eigenschaften, wie z. B. Gummi bestehen.The protective layer may be a paint or a material having elastic properties, such. B. rubber.

In Wellenachsrichtung 21 gesehen ist die Schutzschicht in einem axialen Abschnitt, beispielsweise zwischen 17 und 18 über den gesamten Umfang der Welle angebracht.When viewed in the shaft axis direction 21, the protective layer is mounted in an axial section, for example between 17 and 18, over the entire circumference of the shaft.

Die Wellenkerbe weist einen Kerbradius 23 auf und stellt somit einen stetigen Übergang vom Radius d4 beispielsweise zum Radius d5. Der Verlauf der Wellenkerbe 18 muss nicht zwingend einem Kreissegment entsprechen, vielmehr soll der Begriff Kerbradius 23 dahin verstanden werden, dass der erste Bereich 16 und der zweite Bereich 17, die unterschiedliche Radien d4 bzw. d5 aufweisen, nicht unstetig ineinander übergehen, d. h. der Wellenradius d4 ändert sich im Bereich 22 vom Radius d4 zu einem unter Umständen von d5 unterschiedlichen Radius.The wave notch has a notch radius 23 and thus provides a steady transition from the radius d4, for example, to the radius d5. The course of the wave notch 18 need not necessarily correspond to a circle segment, but rather the term notch radius 23 should be understood to mean that the first area 16 and the second area 17, which have different radii d4 and d5 respectively, do not change into each other in a discontinuous manner, ie. H. The wave radius d4 changes in the region 22 from the radius d4 to a different radius from d5.

Unter Lack ist ein Lack oder lackähnlicher Stoff zu verstehen, der zur gezielten Beschichtung einzelner lokaler Bereiche verwendet werden kann und seine hohe Schutzwirkung, z. B. Haftfestigkeit, Dichte, chemische Beständigkeit durch eine anschließende Wärmebehandlung erhält. Die Wärmebehandlung erfolgt derartig, dass der Grundwirkstoff in seiner Festigkeit nicht beeinflusst wird. Der Lack ist bis über 600° schützend und bleibt nach dem Einbrennen ausreichend elastisch.By lacquer is to be understood a lacquer or lacquer-like material, which can be used for the targeted coating of individual local areas and its high protective effect, eg. As adhesion, density, chemical resistance obtained by a subsequent heat treatment. The heat treatment is carried out in such a way that the basic active substance in its strength is not affected. The paint is protective up to over 600 ° and remains sufficiently elastic after firing.

In einem Verfahren zum Herstellen einer Oberfläche und zumindest eine Wellenkerbe aufweisende Welle 3 weist die Wärmebehandlung folgende Schritte auf:

  • Erwärmen auf430°C - 450°C, Haltezeit 0,1h bis 3h und Abkühlen mit 20°C - 80°C/h auf 300°C.
In a method for producing a surface and at least one wave notch having shaft 3, the heat treatment comprises the following steps:
  • Heat to 430 ° C - 450 ° C, hold for 0.1h to 3h and cool at 20 ° C - 80 ° C / h to 300 ° C.

Claims (6)

  1. Shaft (3) for a steam turbine,
    wherein the shaft (3) has a protective layer (20) applied to at least part of the surface (15),
    wherein the protective layer (20) is a coating,
    characterized in that
    the coating (20) is a high-temperature coating and is suitable for temperatures up to and above 600°C.
  2. Shaft (3) according to Claim 1,
    wherein the protective layer (20) is applied over the entire circumference as seen in the shaft axial direction (21) in an axial section (16, 17, 22).
  3. Shaft (3) according to either of the preceding claims,
    wherein the shaft (3) has a shaft fillet (18) onto which the protective layer (20) is applied.
  4. Shaft (3) according to Claim 3,
    wherein the shaft fillet (18) is arranged between a first region (16) of the shaft (3) having a first radius (d4) and a second region (17) of the shaft (3) having a second radius (d5),
    wherein the first radius (d4) and the second radius (d5) are different, wherein the shaft fillet (18) has a fillet radius (23).
  5. Method for producing a shaft (3), according to one of Claims 1 to 4, having a surface (15) and at least one shaft fillet (18),
    characterized in that
    a coating (20) is applied to the shaft fillet (18), which is followed by a heat treatment.
  6. Method according to Claim 5,
    wherein the heat treatment comprises the following steps:
    heating to 430°C - 450°C, holding time 0.1h to 3h and cooling at 20°C/h - 80°C/h to 300°C.
EP06000534.5A 2006-01-11 2006-01-11 Turbine shaft for a steam turbine Ceased EP1808576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06000534.5A EP1808576B1 (en) 2006-01-11 2006-01-11 Turbine shaft for a steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06000534.5A EP1808576B1 (en) 2006-01-11 2006-01-11 Turbine shaft for a steam turbine

Publications (2)

Publication Number Publication Date
EP1808576A1 EP1808576A1 (en) 2007-07-18
EP1808576B1 true EP1808576B1 (en) 2015-12-30

Family

ID=36576020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06000534.5A Ceased EP1808576B1 (en) 2006-01-11 2006-01-11 Turbine shaft for a steam turbine

Country Status (1)

Country Link
EP (1) EP1808576B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215158A1 (en) * 2016-08-15 2018-02-15 Siemens Aktiengesellschaft Corrosion and erosion resistant protective coating system and compressor blade

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143884A1 (en) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Rotor disc for a turbomachine
US11293451B2 (en) * 2019-10-02 2022-04-05 Hamilton Sundstrand Corporation Coating for compressor outlet housing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116205A (en) * 1984-07-04 1986-01-24 Toshiba Corp Rotor for geothermal turbine
DE3521664A1 (en) * 1985-06-18 1986-12-18 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METHOD FOR FASTENING BLADES ON THE CIRCUMFERENCE OF THE ROTOR BODY OF A STEAM TURBINE
JPS63125581A (en) * 1986-11-17 1988-05-28 Mitsubishi Heavy Ind Ltd Method of preventing corrosion of alloy steel
JPH07279604A (en) * 1994-04-01 1995-10-27 Mitsubishi Heavy Ind Ltd Anti-corrosion method of radius processing part on disc base of steam turbine rotor
JPH08128302A (en) * 1994-11-01 1996-05-21 Mitsubishi Heavy Ind Ltd Geothermal turbine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215158A1 (en) * 2016-08-15 2018-02-15 Siemens Aktiengesellschaft Corrosion and erosion resistant protective coating system and compressor blade

Also Published As

Publication number Publication date
EP1808576A1 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
DE102012000376B4 (en) Axial or diagonal fan
EP3101231B1 (en) Device for cooling a wall of a component of a gas turbine
DE2856643A1 (en) LAMINATED WING BODY FOR TURBO MACHINES AND METHOD FOR THE PRODUCTION THEREOF
CH697922A2 (en) Air-cooled blade for a turbine.
DE102005055391A1 (en) Thermal barrier coating for the side surfaces of turbine blade platforms and application methods
EP2310636B1 (en) Method for operating a steam turbine
DE102009029587A1 (en) Rotor of a turbomachine
EP1808576B1 (en) Turbine shaft for a steam turbine
DE102019118549A1 (en) Engine component with modification area to influence crack propagation and manufacturing process
EP1456505A1 (en) Thermally loaded component
DE112015003695T5 (en) A steam turbine rotor blade, a method of manufacturing a steam turbine rotor blade, and a steam turbine
DE102006013139B4 (en) Steam turbine rotor and method of making a steam turbine rotor
EP2999854A1 (en) Turbine blade having heat sinks that have the shape of an aerofoil profile
DE102010031213A1 (en) Rotor of a turbomachine
AT512653B1 (en) Rotor and radially flowable turbine
EP1315886B1 (en) Turbo-machine and turbine blade
DE10390644B4 (en) Turbo compressor and method of operating a turbocompressor
WO2011151236A1 (en) Rotor blade with a protective layer for avoiding drop impingement erosion, and corresponding manufacturing method
DE102015221324A1 (en) Turbine rotor for a low-pressure turbine of a gas turbine system
EP3307989B1 (en) Gas turbine blade or compressor blade having anti-fretting coating in the blade root region and rotor
EP3274561B1 (en) Rotor blade for a gas turbine, manufacturing process and post production process
DE102006056820A1 (en) Seawater desalination plant comprises mechanical flow compressor made of radial carbon-fiber-reinforced wheel, a wheel-attachment and housing comprising wheels
DE102019126123A1 (en) Heat exchanger of a gas turbine engine of an aircraft
WO2019018866A1 (en) Split runner
WO2014009075A1 (en) Air-cooled turbine rotor blade for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070822

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014691

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160321

Year of fee payment: 11

Ref country code: IT

Payment date: 20160225

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160111

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160404

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014691

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014691

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111