EP1808576B1 - Turbine shaft for a steam turbine - Google Patents
Turbine shaft for a steam turbine Download PDFInfo
- Publication number
- EP1808576B1 EP1808576B1 EP06000534.5A EP06000534A EP1808576B1 EP 1808576 B1 EP1808576 B1 EP 1808576B1 EP 06000534 A EP06000534 A EP 06000534A EP 1808576 B1 EP1808576 B1 EP 1808576B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- turbine
- steam
- radius
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000011241 protective layer Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000004922 lacquer Substances 0.000 description 8
- 239000003973 paint Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 5
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 244000059549 Borneo rubber Species 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/31—Application in turbines in steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/40—Organic materials
- F05D2300/43—Synthetic polymers, e.g. plastics; Rubber
- F05D2300/431—Rubber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/501—Elasticity
Definitions
- the invention relates to a shaft for a steam turbine, wherein the shaft has a protective layer applied to at least part of the surface, wherein the protective layer is a lacquer and a method for producing a shaft having a surface and at least one corrugation notch.
- Turbine shafts for turbomachinery are among the most thermally and mechanically stressed components. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term "turbomachinery". All these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure. In the turbomachine, the energy conversion is indirect and always takes the path over the kinetic energy of the fluid.
- the example of a steam turbine can be tracked. The flow medium enters the steam turbine and initially flows through a ring of fixed vanes.
- Steam turbines can be designed for different pressure ranges of the flow medium. So z.
- high-pressure turbine parts medium-pressure turbine parts and low-pressure turbine parts known.
- the steam flowing into a high-pressure turbine part can have temperatures of over 600 ° C and a pressure of over 300 bar.
- the steam flowing into the low-pressure turbine part comparatively has a low temperature of around 40 ° C.
- the turbine shafts used in low-pressure turbine parts are subject to a high cyclic vibration load due to continuous bending due to their own weight.
- the fatigue strength of these turbine shafts is particularly due to the surrounding medium, especially the flow medium steam determined.
- some areas of the turbine shaft in the so-called wet steam area are some areas of the turbine shaft in the so-called wet steam area.
- the fatigue reduction of the turbine shaft by wet steam has hitherto been counteracted in that the turbine shaft has been designed to minimize the influence of wet steam.
- Another known measure is to roughen points on the turbine shaft, which are particularly stressed by the wet steam in terms of corrosion.
- the Rolieren leads to an increase in the fatigue strength at the critical point, without preventing the access of the medium moisture to the metallic surface. The effect is based on the introduction of residual compressive stresses, which reduce the operating voltages due to interference.
- the Rolieren requires a not inconsiderable expense, which leads to high costs in the production of the turbine shaft.
- the invention begins, whose task is to provide a shaft for a steam turbine, the fatigue strength reduction can be effectively countered by wet steam.
- Another object of the invention is to provide a method for producing a surface having a surface and at least one wave notch, wherein the fatigue strength reduction is effectively counteracted by wet steam.
- the task directed towards the shaft is achieved according to claim 1 by applying a protective layer to at least part of the surface, wherein the protective layer is a lacquer which is a high-temperature lacquer and is suitable for temperatures up to more than 600 ° C.
- the invention is based on the idea that the influence of the wet steam can essentially be counteracted by an effective protective layer.
- the places that are particularly burdened by the wet steam, ie the fatigue strength is greatly reduced by wet steam due to stress corrosion cracking, are applied to at least part of the surface with a protective layer.
- the protective layer has the effect that the small droplets of wet steam roll off the paint surface without significantly damaging it.
- the stress applied surface of the turbine shaft material is not affected by the presence of the wet steam, since it is precisely the surface due to the high voltage there has a significant impact on the fatigue strength of the entire turbine shaft.
- a reduction in the fatigue strength due to the corrosive attack of droplets from the wet steam is effectively countered.
- the invention is also based on the aspect that it does not appear necessary to provide the entire turbine shaft surface with the protective layer for cost reasons. Rather, the idea is based on treating the lacquer according to the invention with the lacquer only at the most heavily stressed areas where the fatigue strength would be reduced by wet steam.
- the protective layer is applied to a wave notch. It has been shown that especially a shaft which has corrugations is loaded precisely at these points by wet steam as a result of stress corrosion cracking (SpRK). In particular, the fatigue strength at the wave notches is reduced by wet steam.
- SpRK stress corrosion cracking
- the wave notch is in this case arranged between a first region of the shaft with a first radius and a second region of the shaft with a second radius.
- the first radius is different from the second radius.
- the wave notch also has a notch radius.
- a paint or a paint-like material is to be understood, which is used for targeted coating of individual local areas and its high protective effect, such.
- the heat treatment is carried out in such a way that the base material is not affected in its strength.
- the lacquer or lacquer-like material can be used up to temperatures of over 600 ° C and remains sufficiently elastic after firing on the turbine shaft. This makes it advantageous if a high-temperature varnish is used as the varnish and this is suitable at temperatures of more than 600.degree.
- the object directed to the method is achieved according to claim 5 by a method for producing a surface having a surface and at least one corrugation notch, wherein on the corrugation notch, a paint is applied and then carried out a heat treatment.
- the heat treatment comprises the following steps: heating to 430 ° C - 450 ° C, holding time 0.1h to 3h and cooling at 20 ° C - 80 ° C / h to 300 ° C.
- the layer can be applied particularly effectively with the abovementioned temperature values and times.
- the protective effect such as.
- As the adhesion, density or chemical resistance is particularly high.
- a low-pressure turbine section 1 is shown in a sectional view.
- the low-pressure turbine part 1 has a turbine shaft 3 which is symmetrical about an axis of rotation 2.
- the turbine shaft 3 has various radii that become larger toward the center 4 of the turbine shaft.
- wheel discs 5 are applied on the turbine shaft 3 so-called wheel discs 5 are applied.
- the wheel discs 5 are usually arranged by shrinking onto the turbine shaft 3.
- the blades 6 are attached.
- the rotor blades 6 are long and can be values of more than 1.20 m.
- the inner housing 7 is formed.
- the inner housing 7 carries the guide vanes 8. For clarity, only two guide vanes 8 are provided with the reference numeral 8.
- Low-pressure steam flows into the low-pressure turbine section 1 through inflow channels, not shown, and flows in the flow channel 9 in the direction 10 and 11. The temperature and the pressure of the steam are thereby it can not be ruled out that it will "wet" the vapor and form droplets.
- the shaft 3 is rotated by the energy conversion.
- the low-pressure steam subsequently flows out of the outflow region 12 out of the steam turbine.
- the low-pressure steam is in this case deflected in a diffuser housing 13 and led to a condenser, where the steam condenses to water.
- the shaft 3 of a low pressure turbine part 1 is shown.
- the low-pressure shaft 3 has different diameters in its longitudinal direction.
- the turbine shaft 3 may be formed mirror-symmetrically to the mirror axis 14.
- the turbine shaft does not necessarily have to be mirror-symmetrical to the mirror axis 14.
- the different diameters d0, d1, d2, d3, d4 and d5 are different from each other.
- the diameters d0 to d5 to the left of the mirror axis 14 are generally the same size as the diameters d5 to d0 on the right side of the mirror axis. However, this is not absolutely necessary, in particular, the diameters may be slightly different.
- the turbine shaft 3 has a surface which, as it were, runs discontinuously.
- a discontinuous transition Between a first region 16 of the shaft 3 with a radius d4 and a second region 17 of the shaft with a second radius d5 is a discontinuous transition, wherein between these two areas 16, 17 a wave notch 18 is formed.
- a wave notch 18 In the FIG. 2 is the wave notch with a circle 19 for the sake of clarity better indicated.
- the regions 16 and 17 with the radii d4 and d5 are given by way of example only.
- wave scores occur wherever two different areas with two different radii are. Further examples would be the transition from the area with the diameter d1 to the area with the diameter d2 or the transition of the area with the diameter d3 to the area with the diameter d4. Nevertheless, in the FIG. 2 To make it clear at which points the turbine shaft is heavily loaded, in particular by the influence of the wet steam, the wave notches are indicated by circles 19.
- the shaft 3 can be used for a turbomachine, in particular for a low-pressure turbine part 1. At least on a part of the surface 15, a protective layer 20 is applied.
- the protective layer may be a paint or a material having elastic properties, such. B. rubber.
- the protective layer When viewed in the shaft axis direction 21, the protective layer is mounted in an axial section, for example between 17 and 18, over the entire circumference of the shaft.
- the wave notch has a notch radius 23 and thus provides a steady transition from the radius d4, for example, to the radius d5.
- the course of the wave notch 18 need not necessarily correspond to a circle segment, but rather the term notch radius 23 should be understood to mean that the first area 16 and the second area 17, which have different radii d4 and d5 respectively, do not change into each other in a discontinuous manner, ie. H.
- the wave radius d4 changes in the region 22 from the radius d4 to a different radius from d5.
- lacquer is to be understood a lacquer or lacquer-like material, which can be used for the targeted coating of individual local areas and its high protective effect, eg. As adhesion, density, chemical resistance obtained by a subsequent heat treatment.
- the heat treatment is carried out in such a way that the basic active substance in its strength is not affected.
- the paint is protective up to over 600 ° and remains sufficiently elastic after firing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft eine Welle für eine Dampfturbine, wobei die Welle eine auf wenigstens einen Teil der Oberfläche aufgebrachte Schutzschicht aufweist, wobei die Schutzschicht ein Lack ist sowie ein Verfahren zur Herstellung einer eine Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle.The invention relates to a shaft for a steam turbine, wherein the shaft has a protective layer applied to at least part of the surface, wherein the protective layer is a lacquer and a method for producing a shaft having a surface and at least one corrugation notch.
Turbinenwellen für Strömungsmaschinen zählen zu den am stärksten thermisch und mechanisch belasteten Bauteilen. Unter der Sammelbezeichnung "Strömungsmaschinen" werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst. Allen diesen Maschinen ist gemeinsam, dass sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder umgekehrt einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen. In der Strömungsmaschine ist die Energieumsetzung indirekt und nimmt stets den Weg über die kinetische Energie des Fluids. Am Beispiel einer Dampfturbine lässt sich das verfolgen. Das Strömungsmedium tritt in die Dampfturbine ein und strömt zunächst durch einen Kranz feststehender Leitschaufeln. Dabei erhöht sich die Geschwindigkeit und damit die kinetische Energie des Strömungsmediums auf Kosten seines Druckes oder exakter seiner potentiellen Energie. Zugleich entsteht durch die Form der Leitschaufeln eine Geschwindigkeitskomponente in der Umfangsrichtung des Laufrades. Im Laufrad gibt das Fluid seine kinetische Energie an den Läufer ab, indem die Richtung und oft auch der Betrag der Geschwindigkeit beim Durchströmen der von den Laufschaufeln gebildeten Kanäle verändert wird. Die dabei entstehenden Kräfte treiben das Laufrad an. Mit vermindertem Energiegehalt tritt das Strömungsmedium aus der Dampfturbine aus.Turbine shafts for turbomachinery are among the most thermally and mechanically stressed components. Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors as well as propellers are summarized under the collective term "turbomachinery". All these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure. In the turbomachine, the energy conversion is indirect and always takes the path over the kinetic energy of the fluid. The example of a steam turbine can be tracked. The flow medium enters the steam turbine and initially flows through a ring of fixed vanes. This increases the speed and thus the kinetic energy of the flow medium at the expense of its pressure or more precisely its potential energy. At the same time created by the shape of the vanes, a velocity component in the circumferential direction of the impeller. In the impeller, the fluid releases its kinetic energy to the rotor by changing the direction and often the amount of velocity as it flows through the channels formed by the blades. The resulting forces drive the impeller. With reduced energy content, the flow medium exits the steam turbine.
Dampfturbinen können für verschiedene Druckbereiche des Strömungsmediums ausgebildet werden. So sind z. B. Hochdruck-Teilturbinen, Mitteldruckteilturbinen und Niederdruckteilturbinen bekannt. Der in eine Hochdruck-Teilturbine strömende Dampf kann Temperaturen von über 600°C und einen Druck von über 300 bar aufweisen. Der in die Niederdruckteilturbine strömende Dampf hat vergleichsweise eine niedrige Temperatur um 40°C.Steam turbines can be designed for different pressure ranges of the flow medium. So z. As high-pressure turbine parts, medium-pressure turbine parts and low-pressure turbine parts known. The steam flowing into a high-pressure turbine part can have temperatures of over 600 ° C and a pressure of over 300 bar. The steam flowing into the low-pressure turbine part comparatively has a low temperature of around 40 ° C.
Wird bei der weitergehenden Entspannung des Dampfes in der Niederdruckteilturbine die Grenzkurze zum Nassdampfgebiet unterschritten, so entsteht zunächst ein unterkühlter Dampf, dessen Temperatur unter der zum Dampfdruck gehörigen Sättigungstemperatur liegt. In diesem instabilen Zustand ist der Dampf noch rein gasförmig, denn wegen des Fehlens so genannter Kondensationskerne bilden sich zunächst keine Flüssigkeitströpfchen. Bei einer bestimmten Unterkühlung setzt jedoch eine spontane Kondensation ein, die so rasch abläuft, dass man von einem Kondensationsstoß spricht. Die Nebeltröpfchen, die sich dabei bilden, die Primärtröpfchen, sind sehr klein. Auch bei der weiteren Expansion wachsen sie durch die fortschreitende Kondensation kaum auf Durchmesser über etwa 0,2 µm an.If, during the further expansion of the steam in the low-pressure turbine section, the boundary lines to the wet steam zone are undershot, then initially a supercooled steam is produced whose temperature is below the saturation temperature associated with the vapor pressure. In this unstable state, the vapor is still purely gaseous, because due to the absence of so-called condensation nuclei initially no liquid droplets are formed. At a certain supercooling, however, sets a spontaneous condensation, which runs so fast that one speaks of a condensation impact. The mist droplets that form, the primary droplets, are very small. Even with the further expansion, they hardly grow to diameters above about 0.2 μm due to the progressing condensation.
Durch die Stromlinienkrümmung in der Beschaufelung wird ein Teil der Feuchtigkeit auszentrifugiert und sammelt sich in Form eines Wasserfilms oder einzelner Wassersträhnen auf den Hohlseiten der Leit- und Laufschaufeln. Von deren Hinterkante löst sich der Wasserfilm ab und bildet die größeren Sekundärtropfen mit Durchmessern bis zu etwa 400 µm. Noch größere Wasserteilchen sind in der Turbinenströmung nicht stabil, da sie wieder zerstäubt werden.Due to the streamline curvature in the blading part of the moisture is centrifuged out and collects in the form of a water film or individual strands of water on the hollow sides of the guide and moving blades. From the trailing edge of the water film separates and forms the larger secondary drops with diameters up to about 400 microns. Even larger water particles are not stable in the turbine flow since they are atomized again.
Die in Niederdruckteilturbinen eingesetzten Turbinenwellen sind einer hochzyklischen Schwingbelastung durch Umlaufbiegung in Folge Eigengewicht stark beansprucht. Die Dauerfestigkeit dieser Turbinenwellen wird besonders durch das Umgebungsmedium, insbesondere dem Strömungsmedium Dampf bestimmt. Dabei liegen einige Bereiche der Turbinenwelle im so genannten Nassdampfbereich.The turbine shafts used in low-pressure turbine parts are subject to a high cyclic vibration load due to continuous bending due to their own weight. The fatigue strength of these turbine shafts is particularly due to the surrounding medium, especially the flow medium steam determined. Here are some areas of the turbine shaft in the so-called wet steam area.
Außer der Wirkungsgradminimierung hat die Anwesenheit flüssigen Wassers noch eine andere nachteilige Wirkung. Die metallischen Werkstoffe können angegriffen werden. Die so genannte Tropfenschlagerosion kann an den Eintrittskanten der Laufschaufeln auftreten. Im Nachlauf der Leitschaufeln, wo die Dampfgeschwindigkeit wegen des Grenzschichteinflusses plan ist, werden die Wassertropfen nur mäßig beschleunigt. Ihre Relativgeschwindigkeit ist wegen der hohen Umfangsgeschwindigkeit von Endstufenschaufeln dennoch groß. Beim Aufprall auf die Laufschaufel kann es zu einem Materialabtrag kommen, und zwar dann, wenn die Tropfen Durchmesser in der Größenordnung von 50 bis 400 µm haben. Wesentlich kleinere Tropfen sind harmlos und größere kommen nicht vor.Besides minimizing efficiency, the presence of liquid water has another adverse effect. The metallic materials can be attacked. The so-called drop impact erosion can occur at the leading edges of the blades. In the wake of the vanes, where the steam velocity is flat due to the boundary layer influence, the water droplets are only moderately accelerated. Their relative speed is still high because of the high peripheral speed of the final stage blades. Upon impact with the blade, material removal may occur if the drops have diameters on the order of 50 to 400 μm. Much smaller drops are harmless and larger ones do not occur.
Der Einfluss des Nassdampfes, der zur Tropfenschlagerosion an den Eintrittskanten der Laufschaufeln führt, ist auch auf der Welle bemerkbar. Der Nassdampf führt zu einem starken Abfall der Dauerfestigkeit von Turbinenwellen. Schätzungen haben gezeigt, dass die Dauerfestigkeit um einen Faktor 3 absinken kann gegenüber einer Turbinenwelle, die als Umgebungsmedium Luft erfährt.The influence of wet steam, which leads to drop impact erosion at the leading edges of the blades, is also noticeable on the shaft. The wet steam leads to a strong decrease in the fatigue strength of turbine shafts. Estimates have shown that fatigue strength can decrease by a factor of 3 compared to a turbine shaft that experiences air as the ambient medium.
Der Dauerfestigkeitsreduzierung der Turbinenwelle durch Nassdampf wurde bislang dahingehend begegnet, dass die Turbinenwelle derart konstruiert wurde, dass der Einfluss von Nassdampf minimiert wird. Allerdings kann durch andere Konstruktionen das Problem der Dauerfestigkeitsreduzierung durch Nassdampf nicht gänzlich ausgeschlossen werden. Eine andere bekannte Maßnahme ist es, Stellen an der Turbinenwelle, die besonders durch den Nassdampf hinsichtlich Korrosion belastet werden, zu rolieren. Das Rolieren führt zu einer Erhöhung der Dauerfestigkeit an der kritischen Stelle, ohne den Zutritt des Mediums Nässe an die metallische Oberfläche zu verhindern. Der Effekt beruht auf der Einbringung von Druckeigenspannungen, die die Betriebsspannungen infolge Überlagerung reduzieren. Das Rolieren erfordert allerdings einen nicht zu vernachlässigenden Aufwand, der zu hohen Kosten bei der Herstellung der Turbinenwelle führt.The fatigue reduction of the turbine shaft by wet steam has hitherto been counteracted in that the turbine shaft has been designed to minimize the influence of wet steam. However, by other constructions, the problem of fatigue reduction by wet steam can not be completely excluded. Another known measure is to roughen points on the turbine shaft, which are particularly stressed by the wet steam in terms of corrosion. The Rolieren leads to an increase in the fatigue strength at the critical point, without preventing the access of the medium moisture to the metallic surface. The effect is based on the introduction of residual compressive stresses, which reduce the operating voltages due to interference. However, the Rolieren requires a not inconsiderable expense, which leads to high costs in the production of the turbine shaft.
In der
In der
Wünschenswert wäre es, eine Möglichkeit zu finden, um den Einfluss von Nassdampf auf die Dauerfestigkeit von Turbinenwellen zu minimieren.It would be desirable to find a way to minimize the influence of wet steam on the fatigue strength of turbine shafts.
An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Welle für eine Dampfturbine anzugeben, deren Dauerfestigkeitsreduzierung durch Nassdampf wirksam begegnet werden kann. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle anzugeben, wobei die Dauerfestigkeitsreduzierung durch Nassdampf wirksam begegnet wird.At this point, the invention begins, whose task is to provide a shaft for a steam turbine, the fatigue strength reduction can be effectively countered by wet steam. Another object of the invention is to provide a method for producing a surface having a surface and at least one wave notch, wherein the fatigue strength reduction is effectively counteracted by wet steam.
Die auf die Welle hin gerichtete Aufgabe wird gemäß den Anspruch 1 gelöst, indem auf wenigstens einen Teil der Oberfläche eine Schutzschicht aufgebracht wird, wobei die Schutzschicht ein Lack ist, der ein Hochtemperaturlack ist und für Temperaturen bis über 600°C geeignet ist.The task directed towards the shaft is achieved according to claim 1 by applying a protective layer to at least part of the surface, wherein the protective layer is a lacquer which is a high-temperature lacquer and is suitable for temperatures up to more than 600 ° C.
Die Erfindung geht von dem Gedanken aus, dass dem Einfluss des Nassdampfes im Wesentlichen durch eine wirksame Schutzschicht begegnet werden kann. Die Stellen, die besonders durch den Nassdampf belastet werden, d. h. die Dauerfestigkeit wird durch Nassdampf infolge Spannungsrisskorrosion stark reduziert, werden auf wenigstens einen Teil der Oberfläche mit einer Schutzschicht beaufschlagt. Die Schutzschicht hat die Wirkung, dass die kleinen Tröpfchen des Nassdampfs an der Lackoberfläche abperlen, ohne diese dabei wesentlich zu beschädigen. In jedem Fall wird die spannungsbeaufschlagte Oberfläche des Turbinenwellen-Materials durch die Anwesenheit des Nassdampfes nicht beeinflusst, da gerade die Oberfläche aufgrund der hohen Spannung dort einen wesentlichen Einfluss auf die Dauerfestigkeit der gesamten Turbinenwelle ausübt. Dadurch ist eine Reduzierung der Dauerfestigkeit in Folge des korrosiven Angriffs von Tröpfchen aus dem Nassdampf wirksam begegnet.The invention is based on the idea that the influence of the wet steam can essentially be counteracted by an effective protective layer. The places that are particularly burdened by the wet steam, ie the fatigue strength is greatly reduced by wet steam due to stress corrosion cracking, are applied to at least part of the surface with a protective layer. The protective layer has the effect that the small droplets of wet steam roll off the paint surface without significantly damaging it. In any case, the stress applied surface of the turbine shaft material is not affected by the presence of the wet steam, since it is precisely the surface due to the high voltage there has a significant impact on the fatigue strength of the entire turbine shaft. As a result, a reduction in the fatigue strength due to the corrosive attack of droplets from the wet steam is effectively countered.
Vorteilhaft ist es, den Lack in Wellenachsrichtung gesehen in einem axialen Abschnitt über den gesamten Umfang anzubringen. Da die Turbinenwelle in der Regel mit hohen Drehzahlen, 50 Hz bzw. 60 Hz, betrieben wird, üben die Tröpfchen aus dem Nassdampf einen Einfluss auf den gesamten Umfang der Wellenoberfläche aus. Daher ist es von Vorteil, wenn die Welle über den gesamten Umfang hinweg mit diesem Lack versehen wird.It is advantageous to attach the paint in the shaft axis direction in an axial section over the entire circumference. Since the turbine shaft is usually operated at high speeds, 50 Hz or 60 Hz, the droplets from the wet steam exert an influence on the entire circumference of the shaft surface. Therefore, it is advantageous if the shaft is provided with this paint over the entire circumference.
Die Erfindung geht auch von dem Aspekt aus, dass es nicht notwendig erscheint, die gesamte Turbinenwellenoberfläche mit der Schutzschicht aus Kostengründen zu versehen. Vielmehr liegt der Gedanke zugrunde, lediglich an den höchstbeanspruchten Stellen, an denen die Dauerfestigkeit durch Nassdampf reduziert werden würde, mit dem Lack erfindungsgemäß zu behandeln.The invention is also based on the aspect that it does not appear necessary to provide the entire turbine shaft surface with the protective layer for cost reasons. Rather, the idea is based on treating the lacquer according to the invention with the lacquer only at the most heavily stressed areas where the fatigue strength would be reduced by wet steam.
Vorteilhafterweise wird die Schutzschicht an einer Wellenkerbe aufgebracht. Es hat sich gezeigt, dass besonders eine Welle, die Wellenkerben aufweist, genau an diesen Stellen durch Nassdampf infolge Spannungsrisskorrosion (SpRK) belastet wird. Insbesondere wird die Dauerfestigkeit an den Wellenkerben durch Nassdampf reduziert.Advantageously, the protective layer is applied to a wave notch. It has been shown that especially a shaft which has corrugations is loaded precisely at these points by wet steam as a result of stress corrosion cracking (SpRK). In particular, the fatigue strength at the wave notches is reduced by wet steam.
Die Wellenkerbe ist hierbei zwischen einem ersten Bereich der Welle mit einem ersten Radius und einem zweiten Bereich der Welle mit einem zweiten Radius angeordnet. Der erste Radius ist gegenüber dem zweiten Radius verschieden. Die Wellenkerbe weist darüber hinaus einen Kerbradius auf.The wave notch is in this case arranged between a first region of the shaft with a first radius and a second region of the shaft with a second radius. The first radius is different from the second radius. The wave notch also has a notch radius.
Unter einem Lack im Sinne dieser Erfindung ist ein Lack oder ein lackähnlicher Stoff zu verstehen, der zur gezielten Beschichtung einzelner lokaler Bereiche verwendet wird und seine hohe Schutzwirkung, wie z. B. die Haftfestigkeit, die Dichte und/oder chemische Beständigkeit durch eine anschließende Wärmebehandlung erhält. Die Wärmebehandlung erfolgt derartig, dass der Grundwerkstoff in seiner Festigkeit nicht beeinflusst wird. Der Lack oder lackähnliche Stoff ist bis zu Temperaturen von über 600°C einsetzbar und bleibt nach dem Einbrennen auf der Turbinenwelle ausreichend elastisch. Dadurch ist es vorteilhaft, wenn als Lack ein Hochtemperaturlack verwendet wird und dieser bei Temperaturen bis über 600°C geeignet ist.Under a paint in the context of this invention, a paint or a paint-like material is to be understood, which is used for targeted coating of individual local areas and its high protective effect, such. B. the adhesion, the density and / or chemical resistance obtained by a subsequent heat treatment. The heat treatment is carried out in such a way that the base material is not affected in its strength. The lacquer or lacquer-like material can be used up to temperatures of over 600 ° C and remains sufficiently elastic after firing on the turbine shaft. This makes it advantageous if a high-temperature varnish is used as the varnish and this is suitable at temperatures of more than 600.degree.
Die auf das Verfahren hin gerichtete Aufgabe wird gemäß den Anspruch 5 gelöst durch ein Verfahren zur Herstellung einer eine Oberfläche und zumindest eine Wellenkerbe aufweisenden Welle, wobei auf die Wellenkerbe ein Lack aufgebracht wird und anschließend eine Wärmbehandlung erfolgt.The object directed to the method is achieved according to
Die Vorteile des Verfahrens entsprechen den bei der Vorrichtung erwähnten Vorteilen. Daher wird an dieser Stelle zu den Ausführungen zur Welle verwiesen.The advantages of the method correspond to the advantages mentioned in the device. Therefore, reference is made at this point to the comments on the wave.
Insbesondere ist es vorteilhaft, wenn die Wärmebehandlung folgende Schritte umfasst: Erwärmen auf 430°C - 450°C, Haltezeit 0,1h bis 3h und ein Abkühlen mit 20°C - 80°C/h auf 300°C.In particular, it is advantageous if the heat treatment comprises the following steps: heating to 430 ° C - 450 ° C, holding time 0.1h to 3h and cooling at 20 ° C - 80 ° C / h to 300 ° C.
Die Erfinder haben erkannt, dass mit den vorgenannten Temperaturwerten und Zeiten die Schicht besonders wirksam aufgebracht werden kann. Insbesondere ist die Schutzwirkung, wie z. B. die Haftfestigkeit, die Dichte oder die chemische Beständigkeit besonders hoch.The inventors have recognized that the layer can be applied particularly effectively with the abovementioned temperature values and times. In particular, the protective effect, such as. As the adhesion, density or chemical resistance is particularly high.
Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnungen näher beschrieben. Dabei haben mit demselben Bezugszeichen versehene Komponenten die gleiche Funktionsweise.Embodiments of the invention are described below with reference to the drawings. In this case, provided with the same reference numerals components have the same operation.
Dabei zeigen:
- Figur 1
- eine Schnittdarstellung durch einen Teil einer Niederdruckteilturbine;
Figur 2- eine Seitenansicht einer Turbinenwelle;
Figur 3- eine Seitenansicht eines Teiles einer Welle mit Wellenkerbe.
- FIG. 1
- a sectional view through a part of a low pressure turbine part;
- FIG. 2
- a side view of a turbine shaft;
- FIG. 3
- a side view of a part of a wave with wave notch.
In der
Die Welle 3 wird durch die Energieumsetzung in Rotation versetzt. Der Niederdruckdampf strömt anschließend aus dem Abströmbereich 12 aus der Dampfturbine heraus. Der Niederdruckdampf wird hierbei in einem Diffusorgehäuse 13 umgelenkt und zu einem Kondensator geführt, wo der Dampf zu Wasser kondensiert.The
In der
Die Turbinenwelle 3 weist dadurch eine Oberfläche auf, die sozusagen unstetig verläuft.As a result, the
Zwischen einem ersten Bereich 16 der Welle 3 mit einem Radius d4 und einem zweiten Bereich 17 der Welle mit einem zweiten Radius d5 ist ein unstetiger Übergang, wobei zwischen diesen beiden Bereichen 16, 17 eine Wellenkerbe 18 ausgebildet ist. In der
Die Bereiche 16 und 17 mit den Radien d4 bzw. d5 sind lediglich beispielhaft aufgeführt. Wellenkerben treten selbstverständlich überall dort auf, wo zwei unterschiedliche Bereiche mit zwei unterschiedlichen Radien sind. Weitere Beispiele wäre der Übergang von dem Bereich mit dem Durchmesser d1 zu dem Bereich mit dem Durchmesser d2 oder der Übergang des Bereiches mit dem Durchmesser d3 zu dem Bereich mit dem Durchmesser d4. Um dennoch in der
Die Welle 3 ist für eine Strömungsmaschine, insbesondere für eine Niederdruckteilturbine 1 einsetzbar. Wenigstens auf einen Teil der Oberfläche 15 wird eine Schutzschicht 20 aufgebracht.The
Die Schutzschicht kann ein Lack sein oder aus einem Material mit elastischen Eigenschaften, wie z. B. Gummi bestehen.The protective layer may be a paint or a material having elastic properties, such. B. rubber.
In Wellenachsrichtung 21 gesehen ist die Schutzschicht in einem axialen Abschnitt, beispielsweise zwischen 17 und 18 über den gesamten Umfang der Welle angebracht.When viewed in the
Die Wellenkerbe weist einen Kerbradius 23 auf und stellt somit einen stetigen Übergang vom Radius d4 beispielsweise zum Radius d5. Der Verlauf der Wellenkerbe 18 muss nicht zwingend einem Kreissegment entsprechen, vielmehr soll der Begriff Kerbradius 23 dahin verstanden werden, dass der erste Bereich 16 und der zweite Bereich 17, die unterschiedliche Radien d4 bzw. d5 aufweisen, nicht unstetig ineinander übergehen, d. h. der Wellenradius d4 ändert sich im Bereich 22 vom Radius d4 zu einem unter Umständen von d5 unterschiedlichen Radius.The wave notch has a
Unter Lack ist ein Lack oder lackähnlicher Stoff zu verstehen, der zur gezielten Beschichtung einzelner lokaler Bereiche verwendet werden kann und seine hohe Schutzwirkung, z. B. Haftfestigkeit, Dichte, chemische Beständigkeit durch eine anschließende Wärmebehandlung erhält. Die Wärmebehandlung erfolgt derartig, dass der Grundwirkstoff in seiner Festigkeit nicht beeinflusst wird. Der Lack ist bis über 600° schützend und bleibt nach dem Einbrennen ausreichend elastisch.By lacquer is to be understood a lacquer or lacquer-like material, which can be used for the targeted coating of individual local areas and its high protective effect, eg. As adhesion, density, chemical resistance obtained by a subsequent heat treatment. The heat treatment is carried out in such a way that the basic active substance in its strength is not affected. The paint is protective up to over 600 ° and remains sufficiently elastic after firing.
In einem Verfahren zum Herstellen einer Oberfläche und zumindest eine Wellenkerbe aufweisende Welle 3 weist die Wärmebehandlung folgende Schritte auf:
- Erwärmen auf430°C - 450°C, Haltezeit 0,1h bis 3h und
Abkühlen mit 20°C - 80°C/h auf 300°C.
- Heat to 430 ° C - 450 ° C, hold for 0.1h to 3h and cool at 20 ° C - 80 ° C / h to 300 ° C.
Claims (6)
- Shaft (3) for a steam turbine,
wherein the shaft (3) has a protective layer (20) applied to at least part of the surface (15),
wherein the protective layer (20) is a coating,
characterized in that
the coating (20) is a high-temperature coating and is suitable for temperatures up to and above 600°C. - Shaft (3) according to Claim 1,
wherein the protective layer (20) is applied over the entire circumference as seen in the shaft axial direction (21) in an axial section (16, 17, 22). - Shaft (3) according to either of the preceding claims,
wherein the shaft (3) has a shaft fillet (18) onto which the protective layer (20) is applied. - Shaft (3) according to Claim 3,
wherein the shaft fillet (18) is arranged between a first region (16) of the shaft (3) having a first radius (d4) and a second region (17) of the shaft (3) having a second radius (d5),
wherein the first radius (d4) and the second radius (d5) are different, wherein the shaft fillet (18) has a fillet radius (23). - Method for producing a shaft (3), according to one of Claims 1 to 4, having a surface (15) and at least one shaft fillet (18),
characterized in that
a coating (20) is applied to the shaft fillet (18), which is followed by a heat treatment. - Method according to Claim 5,
wherein the heat treatment comprises the following steps:heating to 430°C - 450°C, holding time 0.1h to 3h and cooling at 20°C/h - 80°C/h to 300°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06000534.5A EP1808576B1 (en) | 2006-01-11 | 2006-01-11 | Turbine shaft for a steam turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06000534.5A EP1808576B1 (en) | 2006-01-11 | 2006-01-11 | Turbine shaft for a steam turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1808576A1 EP1808576A1 (en) | 2007-07-18 |
EP1808576B1 true EP1808576B1 (en) | 2015-12-30 |
Family
ID=36576020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06000534.5A Ceased EP1808576B1 (en) | 2006-01-11 | 2006-01-11 | Turbine shaft for a steam turbine |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1808576B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016215158A1 (en) * | 2016-08-15 | 2018-02-15 | Siemens Aktiengesellschaft | Corrosion and erosion resistant protective coating system and compressor blade |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2143884A1 (en) * | 2008-07-11 | 2010-01-13 | Siemens Aktiengesellschaft | Rotor disc for a turbomachine |
US11293451B2 (en) * | 2019-10-02 | 2022-04-05 | Hamilton Sundstrand Corporation | Coating for compressor outlet housing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6116205A (en) * | 1984-07-04 | 1986-01-24 | Toshiba Corp | Rotor for geothermal turbine |
DE3521664A1 (en) * | 1985-06-18 | 1986-12-18 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | METHOD FOR FASTENING BLADES ON THE CIRCUMFERENCE OF THE ROTOR BODY OF A STEAM TURBINE |
JPS63125581A (en) * | 1986-11-17 | 1988-05-28 | Mitsubishi Heavy Ind Ltd | Method of preventing corrosion of alloy steel |
JPH07279604A (en) * | 1994-04-01 | 1995-10-27 | Mitsubishi Heavy Ind Ltd | Anti-corrosion method of radius processing part on disc base of steam turbine rotor |
JPH08128302A (en) * | 1994-11-01 | 1996-05-21 | Mitsubishi Heavy Ind Ltd | Geothermal turbine rotor |
-
2006
- 2006-01-11 EP EP06000534.5A patent/EP1808576B1/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016215158A1 (en) * | 2016-08-15 | 2018-02-15 | Siemens Aktiengesellschaft | Corrosion and erosion resistant protective coating system and compressor blade |
Also Published As
Publication number | Publication date |
---|---|
EP1808576A1 (en) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012000376B4 (en) | Axial or diagonal fan | |
EP3101231B1 (en) | Device for cooling a wall of a component of a gas turbine | |
DE2856643A1 (en) | LAMINATED WING BODY FOR TURBO MACHINES AND METHOD FOR THE PRODUCTION THEREOF | |
CH697922A2 (en) | Air-cooled blade for a turbine. | |
DE102005055391A1 (en) | Thermal barrier coating for the side surfaces of turbine blade platforms and application methods | |
EP2310636B1 (en) | Method for operating a steam turbine | |
DE102009029587A1 (en) | Rotor of a turbomachine | |
EP1808576B1 (en) | Turbine shaft for a steam turbine | |
DE102019118549A1 (en) | Engine component with modification area to influence crack propagation and manufacturing process | |
EP1456505A1 (en) | Thermally loaded component | |
DE112015003695T5 (en) | A steam turbine rotor blade, a method of manufacturing a steam turbine rotor blade, and a steam turbine | |
DE102006013139B4 (en) | Steam turbine rotor and method of making a steam turbine rotor | |
EP2999854A1 (en) | Turbine blade having heat sinks that have the shape of an aerofoil profile | |
DE102010031213A1 (en) | Rotor of a turbomachine | |
AT512653B1 (en) | Rotor and radially flowable turbine | |
EP1315886B1 (en) | Turbo-machine and turbine blade | |
DE10390644B4 (en) | Turbo compressor and method of operating a turbocompressor | |
WO2011151236A1 (en) | Rotor blade with a protective layer for avoiding drop impingement erosion, and corresponding manufacturing method | |
DE102015221324A1 (en) | Turbine rotor for a low-pressure turbine of a gas turbine system | |
EP3307989B1 (en) | Gas turbine blade or compressor blade having anti-fretting coating in the blade root region and rotor | |
EP3274561B1 (en) | Rotor blade for a gas turbine, manufacturing process and post production process | |
DE102006056820A1 (en) | Seawater desalination plant comprises mechanical flow compressor made of radial carbon-fiber-reinforced wheel, a wheel-attachment and housing comprising wheels | |
DE102019126123A1 (en) | Heat exchanger of a gas turbine engine of an aircraft | |
WO2019018866A1 (en) | Split runner | |
WO2014009075A1 (en) | Air-cooled turbine rotor blade for a gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070822 |
|
AKX | Designation fees paid |
Designated state(s): CH DE GB IT LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150709 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006014691 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160321 Year of fee payment: 11 Ref country code: IT Payment date: 20160225 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160111 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160404 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006014691 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161003 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006014691 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170111 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170111 |