EP1805415A2 - Cross flow wind turbine - Google Patents

Cross flow wind turbine

Info

Publication number
EP1805415A2
EP1805415A2 EP05786941A EP05786941A EP1805415A2 EP 1805415 A2 EP1805415 A2 EP 1805415A2 EP 05786941 A EP05786941 A EP 05786941A EP 05786941 A EP05786941 A EP 05786941A EP 1805415 A2 EP1805415 A2 EP 1805415A2
Authority
EP
European Patent Office
Prior art keywords
turbine
blades
aerofoil
rotation
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05786941A
Other languages
German (de)
French (fr)
Inventor
Gordon Proven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proven Energy Ltd
Original Assignee
Proven Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0420243A external-priority patent/GB0420243D0/en
Priority claimed from GB0420242A external-priority patent/GB0420242D0/en
Application filed by Proven Energy Ltd filed Critical Proven Energy Ltd
Publication of EP1805415A2 publication Critical patent/EP1805415A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/311Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/78Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by aerodynamic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a turbine and in particular, but not exclusively to a turbine of the form where the operating fluid moves substantially across the axis of rotation of the machine.
  • HAWTs horizontal axis wind turbines
  • HAWTs have a rotor shaft and a generator mounted atop such towers, with (usually) three large turbine blades designed to convert a perpendicular airflow into rotational motion.
  • the rotation of the rotor shaft generates electricity by means of the generator.
  • Such turbines have high tip speed ratios, high efficiency and low torque ripple which increases reliability.
  • the turbine itself will most often be positioned upwind of the tower. For a change in wind direction from, say, NE to SW, this would require a 180° rotation of the turbine to resume.
  • Some small turbines make use of a wind vane to align the turbine with the wind.
  • Other large turbines have wind direction sensors and motors to rotate the turbines automatically and optimise efficiency.
  • Savonius type wind turbines operate on a vertical axis, but are generally less efficient than lift producing turbines .
  • Savonius type wind turbines are similar to anemometers, being that they have two or three scoops arranged to catch the wind. The main benefit of such turbines is that they require little maintenance, and are much cheaper than similarly sized HAWTs. Additionally, there is no need to direct the turbine as they can operate with any cross flowing wind.
  • Savonius turbines are inefficient as there is always a surface which is subject to some amount of drag. Hence Savonius turbines are known as drag type systems.
  • Darrieus wind turbines also known as "eggbeater” turbines
  • eggbeater are another example of vertical axis turbines.
  • the generator which may be bulky and/or heavy
  • the generator can be located at the base of the turbine or on the ground.
  • Savonius type wind turbines there is no requirement to point Darrieus wind turbines into the wind. This is particularly advantageous for situations where the turbine is located in built up areas where nearby buildings cause increased wind turbulence.
  • HAWTs have no tips or ends, and therefore there is no tip noise, turbulence or drag on blade ends. Additionally, the troposkien shape that the blades naturally assume mean that there is no bending force on the rope or ropes therein, only tensile forces distributed along the length of the rope(s) .
  • UK Patent Application 2,216,606 A in the name Jeronimidis et al discloses blades for use with turbines with a horizontal or vertical axis of rotation.
  • the blades exhibit an anisotropy which causes them to bend or stretch as the rotational speed increases.
  • the bending and/or stretching affect the rotational speed of the blades as the angle of attack is changed and the load on the blades is altered.
  • US Patent 4,500,257 discloses a braking system for a vertical axis wind turbine in which a block is slidably located on a blade. A solenoid releases the block at a desired time and the block moves up the blade towards its outermost point under centripetal force. The reduced aerodynamic efficiency reduces the rotational speed.
  • French Patent Application 2 583 823 shows a vertical axis wind turbine which has a drum or disk brake to implement a mechanical braking system when the rotation of the turbine reaches a threshold speed.
  • Drag devices have been proposed to limit rotational speeds in horizontal and vertical axis turbines. Drag devices can be unreliable, and need to be maintained. Mechanical brakes are cumbersome and result in wear and tear on the system. Such methods of limiting rotation may also impact on the smoothness of power output from the turbine.
  • An object of this invention is to provide aerodynamic limiting of the upper rotational speed of a turbine.
  • a further object of this invention is to provide aerodynamic limiting of the upper rotational speed of a turbine by twisting.
  • a cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to said axis at or near each end of the one or more blades wherein said one or more blades are provided with a degree of torsional flexibility such that they are twistable about a longitudinal blade axis to reduce the aerodynamic efficiency of the one or more blades to control the rotational speed of the turbine.
  • Twisting the one or more aerofoil blades out of optimal lift conditions limits the speed of rotation of the turbine by reducing forward driving forces and increasing drag forces.
  • the one or more blades are provided with a rotatable connector to allow the blade to twist about the longitudinal blade axis.
  • the rotatable connector couples the one or more aerofoil blades to the central axis at one end of the blade.
  • the rotatable connector couples the one or more aerofoil blades to the central axis at both ends of the one or more blades.
  • the rotatable connector is positioned a distance along the longitudinal axis of the one or more aerofoil blades to couple two sections of the one or more aerofoil blades.
  • rotation of the rotatable connector is driven by tension in the one or more blades caused by centripetal force.
  • the rotatable connector is provided with a rotation inhibiting means that prevents rotation below a predetermined centripetal force threshold.
  • the rotation inhibiting means comprises a torsion spring wound against a rotation stop which holds the one or more blades in place.
  • the rotation inhibiting means comprises one or more springs fixed at a helical angle to the central axis of rotation and to the one or more blades at the other end.
  • the rotation inhibiting means comprises two triangular sections of stiff material with flexible links therebetween, said links forming a Z shape.
  • the one or more aerofoil blades are configured to twist in a predetermined direction when a tension threshold is reached.
  • the one or more aerofoil blades are configured to twist in a first direction to feather turbine rotation.
  • the one or more aerofoil blades are configured to twist in a second direction to stall turbine rotation.
  • rotation of the rotatable connector is driven by an actuator.
  • the actuator operates at a predetermined threshold of central axis rotational velocity.
  • the actuator is powered.
  • the actuator is manually controllable.
  • the actuator is automatically controllable.
  • the torsional flexibility of the one or more aerofoil blades are set at a predetermined level.
  • the torsional flexibility of the one or more blades can be engineered such that the degree of twist causes a proportional degree of twist at the mid-point between the ends of the one or more blades .
  • said level is set such that substantially 180° of twist at one end of the one or more blades causes substantially 90° of at the mid-point between the ends.
  • said level is set such that substantially 180° of twist at one end of the one or more blades causes 8 120° of twist at the mid-point between the ends.
  • said level is set such that substantially 1 180° of twist at one end of the one or more blades causes 2 60° of twist at the mid-point between the ends.
  • the speed of rotation of the turbine will be 5 controlled by a lesser rotation at the one or more blade 6 ends as any rotation will affect the aerodynamic 7 properties of the one or more blades and increase drag.
  • the one or more 1 blade ends will return to their original position for 2 optimum blade aerodynamics.
  • the one or more aerofoil blades are capable of adopting a troposkien shape during rotation about the central axis .
  • the one or more aerofoil blades comprise one or more flexible ropes enclosed by an aerofoil shaped profile.
  • the aerofoil shaped profile contains a packing material to mechanically fix the aerofoil shaped profile to the one or more ropes .
  • the cross flow turbine further comprises connection means provided at an end of the one or more blades which is releasably connectable to the central axis such that when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level the one or more blades are released.
  • This feature provides the present invention with a fail safe mechanism operable in extreme weather conditions.
  • the one or more aerofoil blades are flexible.
  • the connection means is releasably connectable by means of a clamp.
  • the cross flow turbine comprises a plurality of aerofoil blades each of which are releasably connectable and wherein release of all blades occurs upon reaching said predetermined speed of rotation threshold.
  • said blades are released substantially simultaneously.
  • a single mechanism is used to release all of the blades.
  • a cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to the central axis at or near each end of the one or more blades by connection means wherein the connection means provided at one end of the one or more blades is releasably connectable and is released when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level.
  • This feature provides the present invention with a fail safe mechanism operable in extreme weather conditions.
  • the one or more aerofoil blades are flexible.
  • connection means is releasably connectable by means of a clamp.
  • the cross flow turbine comprises a plurality of aerofoil blades each of which are releasably connectable and wherein release of all blades occurs upon reaching said predetermined speed of rotation threshold.
  • said blades are released substantially simultaneously.
  • a single mechanism is used to release all of the blades.
  • Fig. 1 shows a view of a twist type turbine perpendicular to the axis of turbine rotation
  • Fig. 2 shows a view along the axis of turbine rotation
  • Fig. 3 shows a representation of a rotatable end fixing for a blade
  • Fig. 4 shows a representation of a hub twisting configuration
  • Fig. 5 shows the hub twisting configuration in more detail
  • Fig. 6 shows a representation of an alternative hub twisting configuration
  • Fig. 7 shows the alternative hub twisting configuration in more detail
  • Fig. 8 shows a representation of a twisting mechanism located at both ends (hubs) of the blade
  • Fig. 9 shows a representation of a twisting mechanism located at the centre of the blade
  • Figs. 10 (a) to (f) show cross-sectional representations of proposed blade configurations
  • Fig. 11 shows a view of a release type turbine perpendicular to the axis of turbine rotation
  • Fig. 12 shows a view along the axis of turbine rotation
  • Fig. 13 shows a representation of a releasable end fixing for a blade.
  • the embodiments that will be discussed herein are intended to twist turbine blades out of optimum lift conditions, incorporating either stall or feathering conditions.
  • the aim is to limit the rotational speed of the turbine, for example in high wind conditions. Twisting of the blades may occur naturally at a particular centripetal force corresponding to perhaps a maximum desired rotational speed.
  • Twisting to stall involves twisting in such a direction as to increase the angle of attack sufficiently to induce aerodynamic stall.
  • Twisting to feather involves twisting in the opposite direction, inducing feathering by decreasing the angle of attack. Stalling may cause excessive vibration of the blades to occur. Feathering does not produce such vibration problems, however a much larger degree of twist is required.
  • FIG. 1 As shown in Fig. 1 three aerofoil blades 2 are fixed at each end to hubs (4 and 5) mounted on a rotating shaft 3.
  • the shaft will normally be mounted in bearings not shown and connected to a driven load such as an electrical generator.
  • Each aerofoil blade 2 is made to be strong in tension but semi flexible in bending.
  • each blade is held firmly at one hub 4 end.
  • the other end of the blade is held in a rotating section 1.
  • the rotation is induced by tension force in the blade due to centripetal forces on the blade as it rotates.
  • the rotating section may be adjusted so that no rotation occurs until a threshold force is reached so that the blade stays in its preset (as shown) start up position until this point.
  • a short length of ball screw 6 is attached to the blade end 7.
  • the matching recirculating ball nut 8 is attached to the hub.
  • a torsion spring 9 is axially aligned along the ball screw 6 axis and attached at one end to the hub 5 and at the other end to the blade end 7.
  • the torsion spring 9 is wound against a rotation stop which holds the blade end in the normal angular position and is wound up enough to prevent the ball screw 6 turning until the design rpm has been reached for speed control to start. When this speed is exceeded the ball screw 6 turns as the tension on the blade 2 creates enough force along the helical slope of the screw 6 to overcome the torsion spring 9 preload.
  • the blade 2 comprises 2 ropes (10 and 11) , which run the length of the blade 2.
  • One rope 10 is bolted to the hub 5 so as to provide a fixed pivot point.
  • the other rope 11 is connected to a spring 12 or other damper such that when the threshold speed is exceeded, similarly to the abovementioned example, the spring tension is overcome and the blade 2 is able to twist, with the bolted rope 10 acting as a pivot for said twisting.
  • rotational mechanism is a short spiral arrangement of spring lengths at the end of the blades such that each individual spring section is fixed at a helical angle to the hub at one end and the blade at the other end, all forming a circularly displaced group.
  • tension is applied by the blade centripetal force the extension of the springs produces a rotational effect on the blade.
  • rotational mechanism is an arrangement of two triangular sections of stiff material with flexible links between arranged such that the axis of the links form a Z shape.
  • Each of the three link sections is folded in opposition to the adjacent such that when one end link of the "Z" is attached to the blade and the other end link of the "Z” is attached to the hub, when the blade is moved away from the hub the folds open and the blade rotates with respect to the hub.
  • the spring retaining force can be by a separate attached spring or by making the links themselves of a spring material.
  • Figures 8 and 9 show different ways in which the rotatable connector twisting mechanism may be deployed.
  • Figure 8 shows the rotatable connector located at both hubs (4 and 5) .
  • Figure 9 shows an alternative configuration where the rotatable connector is located at the midpoint 13 of the blade 2. Twisting at the midpoint 13 of the blade 2 may serve to reduce the extent of displacement required when compared to twisting at the hubs (4 and 5) . Any of the twisting mechanisms herein discussed may be suitable for locating at either hub, or indeed at the midpoint of the blades.
  • FIG 10 shows various configurations of blade that may be adopted, (a) shows a blade consisting of a single rope 14 inserted in an aerofoil shaped cross- section rubber body 15. (b) comprises a double rope 16 for added tensile strength. Such a blade may also be used with the twisting mechanism of Figures 6 and 7. Multiple ropes or wires 17 may also be used for tensile strength and also to control the extent and conformity of the twist. Similarly, a double loop rope 18 might offer increased tensile strength while still be suitable for the twist mechanism employed in Figures 4 and 5. 2 double loop ropes 19 offers an analogous configuration for the embodiment of Figures 6 and 7. A yet further alternative embodiment utilises a hollow body 20 with a filler 21.
  • the hollow body is preferably of a fibre material to carry tensile loads, e.g. in the troposkien shape during operation.
  • the cross-section may be varied towards the hubs in order to smooth out the variation in forward thrust depending on position along the axis of rotation.
  • FIG. 11 An embodiment of the present invention which incorporates means for releasing one or more blades is illustrated in Figure 11.
  • This embodiment of the invention provides a fail safe mechanism and will prevent rotation of the turbine in extremely high winds.
  • This mechanism can be incorporated in a turbine containing means for twisting the blade in accordance with the present invention.
  • Three aerofoil blades 102 are fixed at each end to hubs (104 and 105) mounted on a rotating shaft (103) .
  • the shaft will normally be mounted in bearings (not shown) and connected to a driven load such as an electrical generator.
  • Each aerofoil blade is made to be strong in tension but semi flexible in bending.
  • Each blade is held firmly at one end to hub 104.
  • the other end of the blade is held in a releasing clamp 101.
  • Blade release from the clamp is induced by tension force in the blade due to centripetal forces on the blade as it rotates. This is calibrated to occur if other speed limiting systems such as generator loading have failed and emergency overspeed protection is needed.
  • a releasing mechanism is to hold the blade ends in a slot which keeps them in the correct orientation. All the blades are prevented from pulling out of the slot by a loop of wire or cord of known breaking strength which is looped in turn through a hole or pin in each blade. If the rotational speed of the turbine reaches overspeed condition the loop breaks and all the blades are released from the slots.
  • a releasing mechanism is to hold all the releasable blade ends in a slot formed by the gap between two hub sections.
  • Each blade has a "detent" at its end that engages with a protrusion in one hub "half" to hold it in position.
  • the force to keep the blades engaged is provided by a common spring or weight acting substantially along the axis of the turbine shaft.
  • the moving hub half is able to rock slightly to apply equal force to all blade clamps. If the blade centripetal tension increases enough to pull the blade from one node of the clamp the resulting void allows the clamp to tilt and release the other blades.
  • twist-type turbine and the release-type turbine would provide a solution with inherent speed limiting means and an emergency means for stopping the turbine if a threshold release speed was reached.
  • the present invention provides many advantages suitable for domestic implementation of turbines. Turbulent airflows, such as are common in domestic environs, may be harnessed by vertical axis turbines . Additionally, the safety aspects of the invention, namely the velocity limiting system and the emergency release that can be effected by the release system, make the invention advantageous over HAWTs for domestic use. There is also the significant advantage of reduced vibration compared to small scale HAWTs and previous Darrieus-type turbines.
  • the invention has been exemplified by application to wind turbines. It is proposed that the invention could be employed in other fluid mediums such as water. Additionally, the twisting mechanism may be implemented by motors or any other suitable control device.

Abstract

A cross flow turbine having one or more aerofoil blades (2) rotatably mounted about a central axis (3) and connected to said axis at or near each end of the one or more blades. The blades have a degree of torsional flexibility that make them twistable about the longitudinal blade axis to reduce the aerodynamic efficiency of the blades to control the rotational speed of the turbine. The twist of the blades can be actively controlled by means of a spring (12), other mechanical actuator or motor.

Description

Cross Flow Twist Turbine
The invention relates to a turbine and in particular, but not exclusively to a turbine of the form where the operating fluid moves substantially across the axis of rotation of the machine.
Wind turbines, and in particular horizontal axis wind turbines (HAWTs) are commonly used to harness the kinetic energy of wind to produce electricity. HAWTs can be seen in many places across the country, mounted on large towers to catch the faster winds that blow at such heights.
HAWTs have a rotor shaft and a generator mounted atop such towers, with (usually) three large turbine blades designed to convert a perpendicular airflow into rotational motion. The rotation of the rotor shaft generates electricity by means of the generator. Such turbines have high tip speed ratios, high efficiency and low torque ripple which increases reliability. As the towers on which the HAWTs are mounted generate turbulence, the turbine itself will most often be positioned upwind of the tower. For a change in wind direction from, say, NE to SW, this would require a 180° rotation of the turbine to resume. Some small turbines make use of a wind vane to align the turbine with the wind. Other large turbines have wind direction sensors and motors to rotate the turbines automatically and optimise efficiency.
One drawback of realigning a turbine by rotation is that gyroscopic forces act on the blades as they rotate and the whole turbine turns. This causes twisting forces to be exerted on the turbine which can result in fatigue and eventually damage to components of the turbine.
Savonius type wind turbines operate on a vertical axis, but are generally less efficient than lift producing turbines . Savonius type wind turbines are similar to anemometers, being that they have two or three scoops arranged to catch the wind. The main benefit of such turbines is that they require little maintenance, and are much cheaper than similarly sized HAWTs. Additionally, there is no need to direct the turbine as they can operate with any cross flowing wind. However, Savonius turbines are inefficient as there is always a surface which is subject to some amount of drag. Hence Savonius turbines are known as drag type systems.
Darrieus wind turbines (also known as "eggbeater" turbines) are another example of vertical axis turbines. One of the benefits of vertical axis turbines is that the generator (which may be bulky and/or heavy) can be located at the base of the turbine or on the ground. As with Savonius type wind turbines, there is no requirement to point Darrieus wind turbines into the wind. This is particularly advantageous for situations where the turbine is located in built up areas where nearby buildings cause increased wind turbulence.
Other advantages over HAWTs are that the blades have no tips or ends, and therefore there is no tip noise, turbulence or drag on blade ends. Additionally, the troposkien shape that the blades naturally assume mean that there is no bending force on the rope or ropes therein, only tensile forces distributed along the length of the rope(s) .
Darrieus wind turbine devices have been in existence since 1931. In that time very few significant advances have been made on the initial design. Commercially exploitable Darrieus turbines have been difficult to produce for a number of reasons.
In general, they are low efficiency, which significantly limits their potential applications and their commercial viability. Also, large thrust loadings on the main bearings of such turbines means that bearing selection is critical.
The long blades of Darrieus turbines have many natural frequencies of vibration which must be avoided during operation. Some turbines have two or three rotational speeds that must be gone through quickly to reach operating speed. Several modes may fall within the operational band and thus a control system should be used to avoid these modes.
When this type of machine is used in a variable speed fluid such as atmospheric wind flows there can be a problem controlling the rotational speed in high wind conditions. This is particularly problematic in efficient "lifting" type machines, such as HAWTs or Darrieus type turbines, where destructive rotational speeds can be reached.
Therefore, another important consideration is that the rotational speed of the turbine must be limited in high wind conditions and various attempts have been made to do so.
UK Patent Application 2,216,606 A in the name Jeronimidis et al discloses blades for use with turbines with a horizontal or vertical axis of rotation. The blades exhibit an anisotropy which causes them to bend or stretch as the rotational speed increases. The bending and/or stretching affect the rotational speed of the blades as the angle of attack is changed and the load on the blades is altered.
US Patent 4,500,257 discloses a braking system for a vertical axis wind turbine in which a block is slidably located on a blade. A solenoid releases the block at a desired time and the block moves up the blade towards its outermost point under centripetal force. The reduced aerodynamic efficiency reduces the rotational speed. French Patent Application 2 583 823 shows a vertical axis wind turbine which has a drum or disk brake to implement a mechanical braking system when the rotation of the turbine reaches a threshold speed.
Such drag devices and mechanical brakes have been proposed to limit rotational speeds in horizontal and vertical axis turbines. Drag devices can be unreliable, and need to be maintained. Mechanical brakes are cumbersome and result in wear and tear on the system. Such methods of limiting rotation may also impact on the smoothness of power output from the turbine.
An object of this invention is to provide aerodynamic limiting of the upper rotational speed of a turbine.
A further object of this invention is to provide aerodynamic limiting of the upper rotational speed of a turbine by twisting.
In accordance with a first aspect of the invention there is provided a cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to said axis at or near each end of the one or more blades wherein said one or more blades are provided with a degree of torsional flexibility such that they are twistable about a longitudinal blade axis to reduce the aerodynamic efficiency of the one or more blades to control the rotational speed of the turbine.
Twisting the one or more aerofoil blades out of optimal lift conditions limits the speed of rotation of the turbine by reducing forward driving forces and increasing drag forces.
Preferably, the one or more blades are provided with a rotatable connector to allow the blade to twist about the longitudinal blade axis.
Preferably, the rotatable connector couples the one or more aerofoil blades to the central axis at one end of the blade.
Optionally, the rotatable connector couples the one or more aerofoil blades to the central axis at both ends of the one or more blades.
Optionally, the rotatable connector is positioned a distance along the longitudinal axis of the one or more aerofoil blades to couple two sections of the one or more aerofoil blades.
Optionally, rotation of the rotatable connector is driven by tension in the one or more blades caused by centripetal force.
Preferably, the rotatable connector is provided with a rotation inhibiting means that prevents rotation below a predetermined centripetal force threshold.
Preferably, the rotation inhibiting means comprises a torsion spring wound against a rotation stop which holds the one or more blades in place. Optionally, the rotation inhibiting means comprises one or more springs fixed at a helical angle to the central axis of rotation and to the one or more blades at the other end.
Optionally, the rotation inhibiting means comprises two triangular sections of stiff material with flexible links therebetween, said links forming a Z shape.
Preferably, the one or more aerofoil blades are configured to twist in a predetermined direction when a tension threshold is reached.
Preferably, the one or more aerofoil blades are configured to twist in a first direction to feather turbine rotation.
Optionally, the one or more aerofoil blades are configured to twist in a second direction to stall turbine rotation.
Optionally, rotation of the rotatable connector is driven by an actuator.
Preferably, the actuator operates at a predetermined threshold of central axis rotational velocity.
Preferably, the actuator is powered.
Preferably, the actuator is manually controllable.
Optionally, the actuator is automatically controllable. Preferably, the torsional flexibility of the one or more aerofoil blades are set at a predetermined level.
Preferably, the torsional flexibility of the one or more blades can be engineered such that the degree of twist causes a proportional degree of twist at the mid-point between the ends of the one or more blades .
Preferably, said level is set such that substantially 180° of twist at one end of the one or more blades causes substantially 90° of at the mid-point between the ends.
This will effectively stop the driving force on the one or more blades.
6 Optionally, said level is set such that substantially 180° of twist at one end of the one or more blades causes 8 120° of twist at the mid-point between the ends. 9 0 Optionally, said level is set such that substantially 1 180° of twist at one end of the one or more blades causes 2 60° of twist at the mid-point between the ends. 3 4 Typically, the speed of rotation of the turbine will be 5 controlled by a lesser rotation at the one or more blade 6 ends as any rotation will affect the aerodynamic 7 properties of the one or more blades and increase drag. Q O 9 Once the speed of rotation of the turbine had reduced to 0 or below an acceptable operating level, the one or more 1 blade ends will return to their original position for 2 optimum blade aerodynamics. 3 Preferably, the one or more aerofoil blades are capable of adopting a troposkien shape during rotation about the central axis .
Preferably, the one or more aerofoil blades comprise one or more flexible ropes enclosed by an aerofoil shaped profile.
Preferably, the aerofoil shaped profile contains a packing material to mechanically fix the aerofoil shaped profile to the one or more ropes .
Preferably, the cross flow turbine further comprises connection means provided at an end of the one or more blades which is releasably connectable to the central axis such that when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level the one or more blades are released.
By releasing one end of the one or more aerofoil blades to fly out, the forward driving force of the one or more blades is reduced.
Excess tension in the one or more blades due to centripetal forces caused by excess rotational speed can cause the one or more blade ends to be released.
This feature provides the present invention with a fail safe mechanism operable in extreme weather conditions.
Preferably, the one or more aerofoil blades are flexible. Preferably, the connection means is releasably connectable by means of a clamp.
Preferably, the cross flow turbine comprises a plurality of aerofoil blades each of which are releasably connectable and wherein release of all blades occurs upon reaching said predetermined speed of rotation threshold.
Preferably, said blades are released substantially simultaneously.
Preferably, a single mechanism is used to release all of the blades.
When the blade ends are released they swing out under centripetal forces. The resulting increase in diameter produces an increase in angular inertia which immediately slows the turbine. Further slowing then occurs due to the adverse aerodynamic geometry of the blades when held at one end only.
In accordance with a second aspect of the invention there is provided a cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to the central axis at or near each end of the one or more blades by connection means wherein the connection means provided at one end of the one or more blades is releasably connectable and is released when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level. By releasing one end of one or more aerofoil blades to fly out, the forward driving force of the one or more blades is reduced.
Excess tension in the one or more blades due to centripetal forces caused by excess rotational speed can cause the one or more blade ends to be released.
This feature provides the present invention with a fail safe mechanism operable in extreme weather conditions.
Preferably, the one or more aerofoil blades are flexible.
Preferably, the connection means is releasably connectable by means of a clamp.
Preferably, the cross flow turbine comprises a plurality of aerofoil blades each of which are releasably connectable and wherein release of all blades occurs upon reaching said predetermined speed of rotation threshold.
Preferably, said blades are released substantially simultaneously.
Preferably, a single mechanism is used to release all of the blades.
When the blade ends are released they swing out under centripetal forces. The resulting increase in diameter produces an increase in angular inertia which immediately slows the turbine. Further slowing then occurs due to the adverse aerodynamic geometry of the blades when held at one end only. The invention will now be described by way of example only with reference to the accompanying drawings in which:
Fig. 1 shows a view of a twist type turbine perpendicular to the axis of turbine rotation;
Fig. 2 shows a view along the axis of turbine rotation;
Fig. 3 (Detail A) shows a representation of a rotatable end fixing for a blade;
Fig. 4 shows a representation of a hub twisting configuration;
Fig. 5 shows the hub twisting configuration in more detail;
Fig. 6 shows a representation of an alternative hub twisting configuration;
Fig. 7 shows the alternative hub twisting configuration in more detail;
Fig. 8 shows a representation of a twisting mechanism located at both ends (hubs) of the blade;
Fig. 9 shows a representation of a twisting mechanism located at the centre of the blade;
Figs. 10 (a) to (f) show cross-sectional representations of proposed blade configurations; Fig. 11 shows a view of a release type turbine perpendicular to the axis of turbine rotation;
Fig. 12 shows a view along the axis of turbine rotation; and
Fig. 13 (Detail A) shows a representation of a releasable end fixing for a blade.
The embodiments that will be discussed herein are intended to twist turbine blades out of optimum lift conditions, incorporating either stall or feathering conditions. The aim is to limit the rotational speed of the turbine, for example in high wind conditions. Twisting of the blades may occur naturally at a particular centripetal force corresponding to perhaps a maximum desired rotational speed.
Twisting to stall involves twisting in such a direction as to increase the angle of attack sufficiently to induce aerodynamic stall. Twisting to feather involves twisting in the opposite direction, inducing feathering by decreasing the angle of attack. Stalling may cause excessive vibration of the blades to occur. Feathering does not produce such vibration problems, however a much larger degree of twist is required.
As shown in Fig. 1 three aerofoil blades 2 are fixed at each end to hubs (4 and 5) mounted on a rotating shaft 3. The shaft will normally be mounted in bearings not shown and connected to a driven load such as an electrical generator. Each aerofoil blade 2 is made to be strong in tension but semi flexible in bending.
In this example each blade is held firmly at one hub 4 end. The other end of the blade is held in a rotating section 1. In this example the rotation is induced by tension force in the blade due to centripetal forces on the blade as it rotates. The rotating section may be adjusted so that no rotation occurs until a threshold force is reached so that the blade stays in its preset (as shown) start up position until this point.
An example of one form of rotatable connector will be described, with reference to Figures 4 and 5. A short length of ball screw 6 is attached to the blade end 7. The matching recirculating ball nut 8 is attached to the hub. A torsion spring 9 is axially aligned along the ball screw 6 axis and attached at one end to the hub 5 and at the other end to the blade end 7. The torsion spring 9 is wound against a rotation stop which holds the blade end in the normal angular position and is wound up enough to prevent the ball screw 6 turning until the design rpm has been reached for speed control to start. When this speed is exceeded the ball screw 6 turns as the tension on the blade 2 creates enough force along the helical slope of the screw 6 to overcome the torsion spring 9 preload. As the blade 2 is twisted by this action the net forward aerodynamic forces on the blade 2 are reduced preventing further increase in rpm. Preferably all three blade ends act in this way to preserve balance. Another example of the rotatable connector is illustrated in Figures 6 and 7. The blade 2 comprises 2 ropes (10 and 11) , which run the length of the blade 2. One rope 10 is bolted to the hub 5 so as to provide a fixed pivot point. The other rope 11 is connected to a spring 12 or other damper such that when the threshold speed is exceeded, similarly to the abovementioned example, the spring tension is overcome and the blade 2 is able to twist, with the bolted rope 10 acting as a pivot for said twisting.
The decision on which side is bolted and which side is connected to the spring will depend on whether a stalling or a feathering effect is desired.
Another example of the rotational mechanism is a short spiral arrangement of spring lengths at the end of the blades such that each individual spring section is fixed at a helical angle to the hub at one end and the blade at the other end, all forming a circularly displaced group. When tension is applied by the blade centripetal force the extension of the springs produces a rotational effect on the blade.
Another example of the rotational mechanism is an arrangement of two triangular sections of stiff material with flexible links between arranged such that the axis of the links form a Z shape. Each of the three link sections is folded in opposition to the adjacent such that when one end link of the "Z" is attached to the blade and the other end link of the "Z" is attached to the hub, when the blade is moved away from the hub the folds open and the blade rotates with respect to the hub. The spring retaining force can be by a separate attached spring or by making the links themselves of a spring material.
Figures 8 and 9 show different ways in which the rotatable connector twisting mechanism may be deployed. Figure 8 shows the rotatable connector located at both hubs (4 and 5) . Figure 9 shows an alternative configuration where the rotatable connector is located at the midpoint 13 of the blade 2. Twisting at the midpoint 13 of the blade 2 may serve to reduce the extent of displacement required when compared to twisting at the hubs (4 and 5) . Any of the twisting mechanisms herein discussed may be suitable for locating at either hub, or indeed at the midpoint of the blades.
Figure 10, (a) to (f), show various configurations of blade that may be adopted, (a) shows a blade consisting of a single rope 14 inserted in an aerofoil shaped cross- section rubber body 15. (b) comprises a double rope 16 for added tensile strength. Such a blade may also be used with the twisting mechanism of Figures 6 and 7. Multiple ropes or wires 17 may also be used for tensile strength and also to control the extent and conformity of the twist. Similarly, a double loop rope 18 might offer increased tensile strength while still be suitable for the twist mechanism employed in Figures 4 and 5. 2 double loop ropes 19 offers an analogous configuration for the embodiment of Figures 6 and 7. A yet further alternative embodiment utilises a hollow body 20 with a filler 21. The hollow body is preferably of a fibre material to carry tensile loads, e.g. in the troposkien shape during operation. The cross-section may be varied towards the hubs in order to smooth out the variation in forward thrust depending on position along the axis of rotation.
An embodiment of the present invention which incorporates means for releasing one or more blades is illustrated in Figure 11. This embodiment of the invention provides a fail safe mechanism and will prevent rotation of the turbine in extremely high winds. This mechanism can be incorporated in a turbine containing means for twisting the blade in accordance with the present invention. Three aerofoil blades 102 are fixed at each end to hubs (104 and 105) mounted on a rotating shaft (103) . The shaft will normally be mounted in bearings (not shown) and connected to a driven load such as an electrical generator.
Each aerofoil blade is made to be strong in tension but semi flexible in bending.
Each blade is held firmly at one end to hub 104. The other end of the blade is held in a releasing clamp 101. Blade release from the clamp is induced by tension force in the blade due to centripetal forces on the blade as it rotates. This is calibrated to occur if other speed limiting systems such as generator loading have failed and emergency overspeed protection is needed.
To maintain rotational balance in the turbine all the clamps are linked such that when one releases all the others are released. One example of a releasing mechanism is to hold the blade ends in a slot which keeps them in the correct orientation. All the blades are prevented from pulling out of the slot by a loop of wire or cord of known breaking strength which is looped in turn through a hole or pin in each blade. If the rotational speed of the turbine reaches overspeed condition the loop breaks and all the blades are released from the slots.
Another example of a releasing mechanism is to hold all the releasable blade ends in a slot formed by the gap between two hub sections. Each blade has a "detent" at its end that engages with a protrusion in one hub "half" to hold it in position. The force to keep the blades engaged is provided by a common spring or weight acting substantially along the axis of the turbine shaft. The moving hub half is able to rock slightly to apply equal force to all blade clamps. If the blade centripetal tension increases enough to pull the blade from one node of the clamp the resulting void allows the clamp to tilt and release the other blades.
It is clearly advantageous to release all the blades simultaneously.
It is envisaged that a combination of the twist-type turbine and the release-type turbine would provide a solution with inherent speed limiting means and an emergency means for stopping the turbine if a threshold release speed was reached.
The present invention provides many advantages suitable for domestic implementation of turbines. Turbulent airflows, such as are common in domestic environs, may be harnessed by vertical axis turbines . Additionally, the safety aspects of the invention, namely the velocity limiting system and the emergency release that can be effected by the release system, make the invention advantageous over HAWTs for domestic use. There is also the significant advantage of reduced vibration compared to small scale HAWTs and previous Darrieus-type turbines.
Improvements and modifications may be incorporated herein without deviating from the scope of the invention. For example, the invention has been exemplified by application to wind turbines. It is proposed that the invention could be employed in other fluid mediums such as water. Additionally, the twisting mechanism may be implemented by motors or any other suitable control device.

Claims

CLAIMS :
1. A cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to said axis at or near each end of the one or more blades wherein said one or more blades are provided with a degree of torsional flexibility such that they are twistable about a longitudinal blade axis to reduce the aerodynamic efficiency of the one or more blades to control the rotational speed of the turbine.
2. A turbine as claimed in claim 1 wherein, the one or more blades are provided with a rotatable connector to allow the one or more aerofoil blades to twist about the longitudinal blade axis.
3. A turbine as claimed in claim 2 wherein, the rotatable connector couples the one or more aerofoil blades to the central axis at one end of the one or more blades.
4. A turbine as claimed in claim 2 wherein, the rotatable connector couples the one or more aerofoil blades to the central axis at both ends of the one or more blades.
5. A turbine as claimed in claims 2 to 4 wherein, the rotatable connector is positioned a distance along the longitudinal axis of the one or more aerofoil blades to couple two sections of the one or more aerofoil blades.
6. A turbine as claimed in any preceding claim wherein, rotation of the one or more aerofoil blades is driven by tension in the one or more blades caused by centripetal force.
7. A turbine as claimed in any of claims 2 to 6 wherein, rotation of the rotatable connector is driven by tension in the one or more blades caused by centripetal force.
8. A turbine as claimed in any of claims 2 to 7 wherein the rotatable connector is provided with a rotation inhibiting means that prevents rotation below a predetermined centripetal force threshold.
9. A turbine as claimed in claim 8 wherein, the rotation inhibiting means comprises a torsion spring wound against a rotation stop which holds the one or more blades in place.
10. A turbine as claimed in claim 8 wherein, the rotation inhibiting means comprises one or more springs fixed at a helical angle to the central axis of rotation and to the one or more blades at the other end.
11. A turbine as claimed in claim 8 wherein, the rotation inhibiting means comprises two triangular sections of stiff material with flexible links therebetween, said links forming a Z shape.
12. A turbine as claimed in any preceding claim wherein, the one or more aerofoil blades are configured to twist in a predetermined direction when a tension threshold is reached.
13. A turbine as claimed in any preceding claim wherein, the one or more aerofoil blades are configured to twist in a first direction to feather turbine rotation.
14. A turbine as claimed in any preceding claim wherein, the one or more aerofoil blades are configured to twist in a second direction to stall turbine rotation.
15. A turbine as claimed in any of claims 2 to 14 wherein, rotation of the rotatable connector is driven by an actuator.
16. A turbine as claimed in claim 15 wherein, the actuator operates at a predetermined threshold of central axis rotational velocity.
17. A turbine as claimed in claim 15 or claim 16 wherein, the actuator is powered.
18. A turbine as claimed in any of claims 15 to 17 wherein, the actuator is manually controllable.
19. A turbine as claimed in any of claims 15 to 18 wherein, the actuator is automatically controllable.
20. A turbine as claimed in any preceding claim wherein, the torsional flexibility of the one or more aerofoil blades are set at a predetermined level.
21. A turbine as claimed in any preceding claim wherein, the one or more aerofoil blades are capable of adopting a troposkien shape during rotation about the central axis.
22. A turbine as claimed in any preceding claim wherein the one or more aerofoil blades comprise one or more flexible ropes enclosed by an aerofoil shaped profile.
23. A turbine as claimed in claim 22 wherein, the aerofoil shaped profile contains a packing material to mechanically fix the aerofoil shaped profile to the one or more ropes .
24. A turbine as claimed in any preceding claim further comprising connection means provided at an end of the one or more blades which are releasably connectable to the central axis such that when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level the one or more blades are released.
25. A turbine as claimed in claim 24 wherein, the connection means is releasably connectable by means of a clamp.
26. A cross flow turbine comprising: one or more aerofoil blades rotatably mounted about a central axis and connected to the central axis at or near each end of the one or more blades by connection means wherein the connection means provided at one end of the one or more blades is releasably connectable and is released when speed of rotation of the turbine about the central axis increases to or over a predetermined threshold level.
27. A turbine as claimed in claim 26 wherein releasing one end of the one or more aerofoil blades causes the forward driving force of the one or more blades to be reduced.
28. A turbine as claimed in claim 26 or 27 wherein excess tension in the one or more blades due to centripetal forces caused by excess rotational speed causes the one or more blade ends to be released.
29. A turbine as claimed in any of claims 26 to 28 wherein the one or more aerofoil blades are flexible.
30. A turbine as claimed in any of claims 26 to 29 wherein the connection means is releasably connectable by means of a clamp.
31. A turbine as claimed in any of claims 26 to 30 wherein each of the one or more aerofoil blades are releasably connectable and wherein release of the one or more blades occurs upon reaching said predetermined speed of rotation threshold.
32. A turbine as claimed in any of claims 26 to 31 wherein the one or more blades are released substantially simultaneously.
33. A turbine as claimed in any of claims 26 to 32 wherein a single mechanism is used to release all of the one or more blades.
34. A turbine as claimed in any of claims 26 to 33 wherein when the one or more blades are released they swing out under centripetal forces.
35. A turbine as claimed in claim 34 wherein release of the one or more blades immediately slows the turbine.
36. A turbine as claimed in claim 35 wherein further slowing then occurs due to the adverse aerodynamic geometry of the one or more blades when held at one end only.
EP05786941A 2004-09-13 2005-09-13 Cross flow wind turbine Withdrawn EP1805415A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0420243A GB0420243D0 (en) 2004-09-13 2004-09-13 Cross flow twist turbine
GB0420242A GB0420242D0 (en) 2004-09-13 2004-09-13 Cross flow release turbine
PCT/GB2005/003517 WO2006030190A2 (en) 2004-09-13 2005-09-13 Cross flow wind turbine

Publications (1)

Publication Number Publication Date
EP1805415A2 true EP1805415A2 (en) 2007-07-11

Family

ID=35432492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05786941A Withdrawn EP1805415A2 (en) 2004-09-13 2005-09-13 Cross flow wind turbine

Country Status (6)

Country Link
US (1) US20080075595A1 (en)
EP (1) EP1805415A2 (en)
AU (1) AU2005283996A1 (en)
CA (1) CA2580094A1 (en)
GB (1) GB2431698B (en)
WO (1) WO2006030190A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896609B2 (en) * 2006-08-09 2011-03-01 Sri Vawt, Inc. Vertical axis wind turbine system
US20090261595A1 (en) * 2008-04-17 2009-10-22 Hao-Wei Poo Apparatus for generating electric power using wind energy
US20110150652A1 (en) * 2009-12-22 2011-06-23 Lucid Energy Technologies, Llp Turbine assemblies
GR1007431B (en) * 2010-01-08 2011-10-12 Μυρων Ιωαννη Νουρης Vertical-shaft wind generator having blades for the suspension of excessive velocity
PT105445B (en) * 2010-12-22 2013-06-11 Univ Da Beira Interior ADJUSTABLE SHAPES OF VERTICAL ROTOR TURBINES
FR2985787A1 (en) * 2012-01-16 2013-07-19 Sarl Eolie ROTOR DARK OF DARRIEUS GIVILE AND CURVED
US10167732B2 (en) 2015-04-24 2019-01-01 Hamilton Sundstrand Corporation Passive overspeed controlled turbo pump assembly
US9441615B1 (en) * 2015-05-22 2016-09-13 BitFury Group Horizontal axis troposkein tensioned blade fluid turbine
US10804768B2 (en) 2016-12-15 2020-10-13 West Virginia University Wind turbine having releasable vanes
US10844835B2 (en) * 2017-06-30 2020-11-24 National Research Council Of Canada Offset perpendicular axis turbine
EP3460235B8 (en) * 2018-01-25 2022-12-28 ABC Franchise International B.V. Vertical axis wind turbine and pitch regulation mechanism for a vertical axis wind turbine
WO2021165548A2 (en) * 2020-02-22 2021-08-26 Hypnagogia Ug A vertical axis wind turbine and method for operating such a wind turbine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299537A (en) * 1979-06-19 1981-11-10 Evans Frederick C Interlinked variable-pitch blades for windmills and turbines
US4293274A (en) * 1979-09-24 1981-10-06 Gilman Frederick C Vertical axis wind turbine for generating usable energy
US4422825A (en) * 1980-04-29 1983-12-27 Boswell Fred A Controlled wind motor
US4483657A (en) * 1982-09-29 1984-11-20 Kaiser Heinz W Wind turbine rotor assembly
IT1176791B (en) * 1984-09-25 1987-08-18 Tema Spa VERTICAL AXIS WIND MOTOR WITH FLEXIBLE BLADES
US4808074A (en) * 1987-04-10 1989-02-28 Canadian Patents And Development Limited-Societe Canadienne Des Breyets Et D'exploitation Limitee Vertical axis wind turbines
WO1989009336A1 (en) * 1988-03-23 1989-10-05 George Jeronimidis Improvements in or relating to structures containing anisotropic material
FR2768187B1 (en) * 1997-09-10 2000-01-14 Gerard Tirreau HELICOIDAL WIND TURBINE WITH VERTICAL ROTATION AXIS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006030190A3 *

Also Published As

Publication number Publication date
WO2006030190A3 (en) 2006-06-15
AU2005283996A1 (en) 2006-03-23
US20080075595A1 (en) 2008-03-27
WO2006030190A2 (en) 2006-03-23
GB0703442D0 (en) 2007-04-04
GB2431698A (en) 2007-05-02
WO2006030190A8 (en) 2006-08-10
GB2431698B (en) 2009-11-11
CA2580094A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US20080075595A1 (en) Cross Flow Twist Turbine
US6979175B2 (en) Downstream wind turbine
EP1649163B1 (en) Vertical-axis wind turbine
US4310284A (en) Automatically controlled wind propeller and tower shadow eliminator
US5405246A (en) Vertical-axis wind turbine with a twisted blade configuration
US8672631B2 (en) Articulated wind turbine blades
US20100266407A1 (en) Wind Turbine with Sail Extensions
US4784568A (en) Wind turbine system using a vertical axis savonius-type rotor
US9581132B2 (en) Wind turbine having flow-aligned blades
EP2577054B1 (en) Wind turbine with a centrifugal force driven adjustable pitch angle and blades retained by cables
EP3055556A1 (en) Hinged vortex generator for excess wind load reduction on wind turbine
US20130108458A1 (en) Vertical axis wind turbine with soft airfoil sails
WO2010150670A1 (en) Rotation blade-type vertical axis wind turbine
JP4982733B2 (en) Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism
CN112384692B (en) Wind turbine with blades hinged in an intermediate position
GB1599653A (en) Form of windmill
AU2008222708B2 (en) Hubless windmill
CN101048591B (en) Cross flow wind turbine
WO2010056599A1 (en) Vertical axis wind turbine blade
JP2023524843A (en) Turbine with secondary rotor
CN112272737B (en) Wind turbine with hinged blade having hinge position between inner and outer tips of the blade
KR20130031818A (en) Vertical-axis wind rotor
JP4533991B1 (en) Small propeller windmill
US20220307473A1 (en) Wind turbine comprising a drag device
RU2136959C1 (en) Windmill electric generating unit using pneumatically controlled power transmission

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070413

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111112