EP1803184A1 - Line system for a supplying and/or discharging fluids for a fuel cell - Google Patents

Line system for a supplying and/or discharging fluids for a fuel cell

Info

Publication number
EP1803184A1
EP1803184A1 EP05810797A EP05810797A EP1803184A1 EP 1803184 A1 EP1803184 A1 EP 1803184A1 EP 05810797 A EP05810797 A EP 05810797A EP 05810797 A EP05810797 A EP 05810797A EP 1803184 A1 EP1803184 A1 EP 1803184A1
Authority
EP
European Patent Office
Prior art keywords
modules
secondary branches
pipes
module
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05810797A
Other languages
German (de)
French (fr)
Inventor
Marielle Marchand
Anna-Maria Morgante
Fahri Keretli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1803184A1 publication Critical patent/EP1803184A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a pipeline arrangement for supplying and / or discharging fluids necessary for the operation of a fuel cell module assembly, such an assembly being particularly suitable for mounting in a motor vehicle.
  • a fuel cell is capable of producing electricity from hydrogen or a hydrogen - rich gas and oxygen or an oxygen - rich gas, such as air.
  • the hydrogen required for the reaction in the fuel cell can be stored on board a motor vehicle or produced in the motor vehicle itself by means of a reformer device fed with hydrogenated fuel, such as gasoline, diesel, ethanol, etc.
  • This hydrogen or hydrogen-rich gas thus produced is fed through a supply line to the anode-side inlet of the fuel cell.
  • generally compressed air is supplied through a supply line to the cathode side inlet of the fuel cell.
  • a fuel cell used for traction of a motor vehicle generally comprises a plurality of identical modules, each module comprising a stack of elementary cells.
  • the power required to tow a motor vehicle is in fact several tens of kilowatts, which requires a large number of elementary cells to be stacked. get the desired power.
  • the mounting of several modules whose electrical output is generally connected in series has already been imagined in different ways.
  • US-A-5,480,738 discloses an arrangement of fuel cell modules in the form of two columns mounted side-by-side.
  • the supply of oxygen is via a main pipe arranged between the two columns and comprising for each column a bypass.
  • As regards the supply of hydrogen it is done for each column by a single pipe supplying in series the stacks of each of the columns.
  • US-A-6 1 10 612 describes a support structure for mounting four fuel cell modules as well as the supply and discharge of the various fluids necessary for the operation of all the modules.
  • the present invention aims to eliminate these difficulties and to allow the realization of a perfectly homogeneous distribution of fluids in a set of identical fuel cell modules, particularly in the case where such a set is mounted in a motor vehicle .
  • the present invention also aims to improve the operational safety of a set of several identical fuel cell modules.
  • the pipe arrangement allows the supply and / or discharge of fluids for a set of at least two identical fuel cell modules, in particular mounted in a motor vehicle.
  • Each module comprises a stack of elementary cells and inlet and outlet pipes for various fluids necessary for the operation of the fuel cell.
  • the inlet and outlet tubings are provided on at least one outer face of each module.
  • the supply and / or discharge lines of at least one of said fluids are connected to the corresponding tubes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module.
  • the symmetrical structure of the secondary branches makes it possible to ensure an identical flow rate for all the modules.
  • the lengths, the internal sections or diameters and the radii of curvature of the successive secondary branches are each equal for each respective module.
  • the speed and the pressure drops are equal each time and one obtains an identical supply and / or identical evacuation of all the modules regardless of the flow that flows.
  • the distribution of the fluids in all the identical modules of the set of modules can be perfectly homogeneous, guaranteeing optimal operation of the assembly. The safety of the operation of the assembly is also improved since the underfeeding risks of a specific module are discarded.
  • the electrical power delivered by each module can be identical, which simplifies the operation control.
  • the tubes connected to the different secondary branches are arranged on corresponding faces facing each other of the module assembly.
  • tubings connected to the different secondary branches are arranged on opposite corresponding faces of the set of modules.
  • At least the fluid supply pipes on the cathode and anode compartments of the modules are connected to the corresponding pipes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module. .
  • the pipes for supplying and / or discharging the heat transfer fluid ensuring the maintenance of the operating temperature of the modules are connected to the corresponding pipes of the set of modules by a single main pipe and one or several successive secondary branches of symmetrical structure for each respective module.
  • the identical modules may be arranged in different ways to form the aforementioned set of modules.
  • the identical modules are arranged in a substantially horizontal plane.
  • the faces of the modules carrying the pipes are then advantageously in substantially vertical planes, each single main pipe and its associated successive secondary branches being disposed substantially in a horizontal plane.
  • FIG. 1 is a perspective view of a fuel cell module comprising a stack of several elementary cells
  • FIGS. 2 to 5 schematically illustrate different arrangements of supply and / or discharge lines for a particular fluid in the case of a set of four identical fuel cell modules and in different configurations;
  • FIG. 6 is a schematic view similar to FIGS. 2 to 5 in the case of a configuration comprising eight identical fuel cell modules in an exemplary arrangement;
  • FIG. 7 is a perspective view schematically showing the layout of the arrangement of the different feed and / or discharge lines of a particular module forming part of a set of four fuel cell modules;
  • FIG 8 is a perspective view showing a practical embodiment of an arrangement of supply lines and / or evacuation of all the fluids necessary for operation a set of four identical fuel cell modules for a motor vehicle;
  • FIG 9 is a view similar to Figure 8 showing another arrangement in which the arrangement of symmetrical conduits is provided only for a portion of the fluids necessary for the operation of the set of four identical fuel cell modules.
  • the fuel cell module referenced as a whole comprises a stack of a plurality of elementary cells 21 (in practice, one hundred: only a portion has been shown in the figure). .
  • the stack constituting the module 20 has a front face 22 and an opposite face or rear face 23.
  • Various inlet and outlet pipes, referenced 24, can be arranged on the faces 22 and 23.
  • each of the faces 22, 23 has three inlet and / or outlet pipes 24. It will of course be understood that the number of inlet and / or outlet pipes on each face 22, 23 depends on the internal architecture of the module 20. It is the same for the arrangement of the tubes 24 on the faces 22 and 23.
  • a fuel cell module such as the module 20 illustrated in FIG.
  • the outlet tubings make it possible to recover excess anode and cathodic fluids which have not reacted in the module.
  • FIGS. 2 to 5 illustrate examples of arrangement of supply and / or discharge lines for one of the fluids, in the case of a set of four identical modules to the module 20 of FIG.
  • the four modules A, B, C and D are disposed substantially in a horizontal plane at the four corners of a square.
  • the fluid considered as an example may be hydrogen or oxygen, or the cooling fluid.
  • a main pipe C 1 brings the fluid from the front of the motor vehicle considered as the lower part of FIG. 2, towards the rear, and this up to a point M 1 located substantially at the center of symmetry of the four modules A, B, C and D.
  • the main pipe C 1 is divided into two secondary branches C 2 , one directed towards the modules A and B, the other towards the modules C and D, and this substantially equidistant from each other.
  • the two secondary branches C 2 extend from the branch point M 1 to one second branch point M 2 , where they divide again into two secondary branches C 3 .
  • Each of these branches C 3 is connected to an inlet pipe of one of the modules A, B, C and D.
  • the modules A and C are arranged in the same way with their rear face comprising the tubing input for the fluid considered.
  • Both modules B and D were rotated 180 ° with respect to the two modules A and C.
  • Their inlet manifold for the same fluid is thus directed forward.
  • the inlet manifolds of the different modules, for the fluid in question, are therefore facing each other.
  • the fluid being fed from the front by the main pipe C 1 it is understood that it is then distributed perfectly symmetrically to the four modules A, B, C and D. Indeed, the respective lengths of the two secondary branches C 2 , as well as the four secondary branches C 3 , are identical to each other. The fluid path for supplying each of the four modules is therefore of identical length.
  • the internal diameter of the secondary branches C 2 is half the internal diameter of the main pipe C 1 .
  • the internal diameter of the secondary branches C 3 is half the internal diameter of the secondary branches C 2 or, which amounts to the same, one quarter of the internal diameter of the main pipe C 1 .
  • Figure 2 also shows in dashed a variant in which the main pipe C, no longer from the front of the motor vehicle, but from the rear.
  • the main pipe C 1 leads to the branch point M, and is subdivided into secondary branches C 2 and C 3 for feeding the four identical modules.
  • FIG. 3 illustrates an arrangement of the four identical modules A, B, C and D identical to that of FIG. 2.
  • the evacuation of a fluid has been shown by a pipe also referenced C 1 and coming from from a central point M 1 to a branch with two secondary branches C 2 .
  • Two other branch points M 2 are at the place where the secondary branches C 3 coming from the outlet pipes of each of the four modules A, B, C and D meet in the secondary branch C 2 .
  • Figure 3 a variant, in which the exhaust pipe C 1 is directed towards the rear of the vehicle, has also been shown.
  • FIG. 4 illustrates the case where the inlet tubes of the different modules A, B, C and D for the fluid in question are no longer located opposite each other, but on the contrary on the opposite faces of the different modules.
  • the main pipe C 1 which comes from one side of the vehicle, leads to the branching point M 1 where it is subdivided into two secondary branches C 2 which come to two branching points M 2 respectively located the front and rear side of all four modules A, B, C and D in the axis of symmetry of the assembly.
  • the secondary branches C 3 are connected to the inlet pipes of the four respective modules.
  • the secondary branches have two bends referenced D 1 and D 2
  • each of the secondary branches C 3 has a bend referenced D 3 .
  • the section or the diameter of the secondary branches C 2 is half of the cross section or the internal diameter of the main pipe C 1
  • the cross section or the internal diameter of the secondary branches C 3 is equal to half of the section or internal diameter of the secondary branches C 2 .
  • the arrangement of the pipes C 1 , C 2 , C 3 is perfectly symmetrical with respect to the main pipe C, as was the case in the embodiments of FIGS. 2 and 3.
  • FIG. 4 also shows an arrangement in which the main pipe C 1 instead of coming from the left of FIG. 4 comes from the line of FIG. 4.
  • FIG. 5 illustrates an arrangement identical to that of FIG. 4, in which the pipe shown is an evacuation pipe, the fluid outlet tubes considered on the opposite external faces of the different modules A, B, C and D.
  • Figure 6 illustrates an assembly comprising eight identical fuel cell modules. Four modules A, B, C and D, arranged as was the case in the embodiments of the preceding figures, are arranged in the same horizontal plane and next to four identical modules E, F, G and H arranged in the same manner as the modules A, B, C and D.
  • the arrangement of the feed pipe for the fluid in question is perfectly symmetrical with respect to the main pipe C 1 , the lengths of each of the secondary branches being each time equal to the point of branching. next.
  • the same rule of decreasing the cross-section or internal diameter of the pipes is also applied, the secondary branch C 2 being of a section or a diameter half of the main pipe C 1 , the secondary branch C 3 being of one section or of an internal diameter half of the secondary branch C 2 and the secondary branch C 4 being of a diameter half of the secondary branch C 3 .
  • the radii of curvature are also maintained preferably identical to each curve.
  • Figure 6 shows in dashed a supply C 1 made from the rear of the vehicle.
  • FIG. 7 more precisely illustrates an arrangement of all supply and discharge lines for a fuel cell module such as module A of a set of four identical modules arranged substantially in a horizontal plane at the four corners. of a square.
  • FIG. 7 only the axis of the various supply and evacuation ducts for the module A is shown. It will of course be understood that similar ducts are provided for the other identical modules B, C and D.
  • the module A comprises, on its front face 22, an outlet pipe 2a for hydrogen not consumed in the anode part and an outlet pipe 4a for air not consumed at the cathode.
  • the rear face 23 of the module A has four tubes, namely a tube 1a for the entry of hydrogen into the anode compartment, a tube 3a for the entry of air into the tube. cathodic compartment, a pipe 5a for the inlet of the cooling fluid and a pipe 6a for the outlet of the cooling fluid.
  • the pipes 2a and 3a located respectively on the faces 22 and 23 are both located in an upper horizontal plane, noted P 3 .
  • the two tubul ures 5a, 6a on the face 23 are located in an intermediate horizontal plane, noted P 2 .
  • the two pipes 1a and 4a located respectively on the faces 23 and 22 are located in a lower horizontal plane, noted P 1 .
  • tubing 1a for the entry of hydrogen into the anodic part, the hydrogen is supplied by a main line C 1 1 to the point of branching M 1 , from which a secondary branch C 2 j goes to a point of branching M 2 j from which part in particular a secondary branch C 3 ,.
  • the inlet tube 1a of the module A is supplied with hydrogen by the successive pipes C 1 , C 2 1 and C 3 , the sections or diameters of which are in each case divided by two as explained above.
  • the tubes I b, 3b, 5b and 6b of the module B facing the corresponding tubes of the module A.
  • the tubing Ib is fed by a secondary branch C 3 1 directed towards the module B from the point of branching M 2 ,.
  • the modules C and D can be powered by a secondary branch C 2. , Which starts from the branch point M M.
  • outlet pipe 2a of the module A it appears that it is connected to the main pipe C 1 2 which comes from the left of the set of modules, which is divided into two secondary branches C 2 2 of which one goes around both sides of the module A to arrive at the point of branching M 2 2 from which a secondary branch C 3 2 is connected to the outlet pipe 2a.
  • the arrangement of the discharge pipe connected to the outlet pipe 4a is substantially identical to that of the pipes connected to the outlet pipe 2a. Indeed, the outlet pipe 4a is connected to the main pipe C 1 4 via the secondary branch
  • the supply lines of the inlet manifold 3a are arranged substantially in the same manner as the feed lines of the inlet manifold 1a. Indeed, the inlet pipe 3a is connected to the main pipe C 1 3 to a secondary pipe C 2 3 , itself connected to a secondary branch C 3 3 .
  • the evacuation pipe connected to the outlet pipe 6a comprises a main pipe C 1 6 which, after the junction point M 1 6 , divides into two secondary branches C 2 6 and then into two secondary branches C 3 6 .
  • the supply line connected to the inlet pipe 5a also comprises a main pipe C 1 5 which is subdivided into two secondary branches C 2 5 and then into two secondary branches C 3 5 .
  • main ducts C, ⁇ and C 1 3 respectively supplying the inlet ducts 1a and 3a are located on the front side of the vehicle, that is to say on the front face 22 of the module A.
  • two pipes are placed between the two modules A and C. They are generally one above the other in a vertical plane, respectively at the height of the planes P 3 and P 1 , the main pipe C 1 3 being above the main pipe C 1 ,.
  • the two discharge pipes C 1 2 and C 1 4 respectively connected to the outlet pipes 2a and 4a are, for their part, located on the left side of the figure. They are substantially in a vertical plane, the pipe C 1 2 being above the pipe C 1 4 respectively at the height of the planes P 3 and P 1 , that is to say the same planes as the tubes of exit 2a and 4a. They are also located substantially in an axis between modules A and B.
  • main pipes C, 5 and C 1 6 are both located on the rear side, that is to say on the side of the rear face 23 of the module A. They are located substantially in a vertical plane.
  • cooling fluid supply pipe C 1 5 passes from the first upper plane P 3 to the intermediate plane P 2 in which the inlet pipe 5a is located.
  • the secondary branch C 2 5 is inclined to pass from the plane P 3 to the plane P 2 .
  • FIG. 8 illustrates a practical embodiment incorporating the principles of FIG. 7, the arrangement being the same as in FIG.
  • FIG. 8 the four identical fuel cell modules A, B, C and D are completely shown, as well as the complete arrangement of the supply and discharge lines of the fluids in the same general arrangement as in FIG. 7.
  • the six main pipes are grouped in pairs, as was the case in Figure 7.
  • the two cathode conductors are arranged at the rear of the vehicle on the side of the faces 22 of the two modules A and C.
  • These two main ducts C 1 and C 1 3 are placed one above the other substantially in a plane. vertical in the interval between the two modules A and C.
  • the two main lines Cj 5 for the supply of cooling fluid and C 1 6 for the return of the cooling fluid open on the opposite side, that is to say on the front side of the vehicle or on the side of the faces 23 the two modules B and D.
  • These two main ducts are arranged substantially in a vertical plane and extend in the interval between the two modules B and D.
  • the two main pipes C 1 2 for the evacuation of hydrogen from the anode compartments, and C 1 4 for the air outlet coming from the cathode compartments, are arranged on the side of the two modules A and B .
  • the set of pipes and their associated secondary branches is designed symmetrically according to the invention.
  • the arrangement of the two secondary branches C 2 3 which start from the point of branching M 1 3 and are connected to the main pipe C 1 3 for the air supply cathode compartments of the four modules A, B, C and D.
  • the diameter of the secondary branches C 2 3 is half the internal diameter of the main pipe C 1 3 .
  • the secondary branches C 2 3 again separate into two secondary branches C 3 3 whose internal diameter is half the internal diameter of the secondary branches C 2 3 .
  • FIG. 9 illustrates a variant in which only a part of the fluids has a perfectly homogeneous distribution according to the invention. Apart from this difference, the structure of the arrangement of the supply and discharge lines is the same and the four identical modules A, B, C and D of the figure are found.
  • the structure and arrangement of the main and secondary branches for the supply and discharge of the coolant are the same as in figure 8.
  • the arrangement of the two main pipes C 1 is found. 5 for the supply of the cooling fluid and C 1 6 for the discharge of the cooling fluid on the front side of the vehicle, that is to say the front faces 23 of the two modules B and D.
  • the structure and arrangement of the main pipes C 1 3 for the air supply of the cathode compartments and C 1 for the supply of hydrogen to the anode compartments.
  • These main ducts are disposed on the rear side of the vehicle on the rear faces 22 of the two modules A and C, as was the case in FIG. 8. In contrast to FIG.
  • the main ducts C 1 2 for the evacuation of hydrogen not consumed by the anode compartments and C 1 4 for the air outlet of the cathode compartments are also arranged on the rear side of the vehicle, so that all the main pipes C 1 3 , C 1 2 , C 1 1 and C 1 4 are arranged in a vertical plane on the rear side of the vehicle, in the gap left free between the two identical modules A and C.
  • the arrangement of the main lines C 1 2 and C 1 4 as well as their secondary branches, is not totally symmetrical for the four modules A, B, C and D to the detriment of the homogeneity of the flow. This arrangement, however, has the advantage of better integration into the vehicle, given the layout of the various main lines of the rear side of the vehicle.
  • the main pipe C 1 4 and the main pipe C, 2 extend rectilinearly in the gap between the modules A and C, then in the gap between the modules B and D.
  • the secondary branches such as C 2 4 or C 2 2 , the diameter of which is equal to half the internal diameter of the corresponding main pipes C 1 4 and C 1 2 , allow the flow of air and hydrogen from the four modules from the pipes of respective outputs 2a, 2b, 2c, 2d and 4a, 4b, 4c, 4d of the four modules A, B, C and D.
  • these outlet pipes are on the rear faces 22 of the the rear of the vehicle for modules A and C, and front panels 23 on the front side of the vehicle for modules B and D.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention relates to a line system for supplying and/ or discharging fluids for an assembly of at least two identical fuel cell modules (A, B, C, D), in particular mounted on a motor vehicle, each of which comprises an elementary cell (21) stack and input and output pipes (1, 2, 3, 4, 5,) for different fluids required for operation of the fuel cell, wherein said pipes are arranged on at least one external surface of each module and the supply and/or discharge lines for at least one fluid are connected to the corresponding pipes of the module assembly by means of a single main line (C<SUB>1</SUB>) or several successive secondary branches (C<SUB>2</SUB>, C<SUB>3 </SUB>) of the symmetric structure of each module, respectively.

Description

Agencement de conduites d'alimentation et/ou d'évacuation de fluides pour pile à combustible. Arrangement of supply and / or fluid discharge lines for fuel cells.
La présente invention concerne un agencement de conduites pour l 'alimentation et/ou l 'évacuation des fluides nécessaires au fonctionnement d' un ensemble de modules de pile à combustible, un tel ensemble pouvant en particulier être monté dans un véhicul e automobile.The present invention relates to a pipeline arrangement for supplying and / or discharging fluids necessary for the operation of a fuel cell module assembly, such an assembly being particularly suitable for mounting in a motor vehicle.
Une pile à combustible est capable de produire de l 'électricité à partir d' hydrogène ou d'un gaz riche en hydrogène et d'oxygène ou d' un gaz riche en oxygène, tel que l 'air. L'hydrogène nécessaire à la réaction dans la pile à combustible peut être stocké à bord d' un véhicule automobile ou produit dans le véhicule automobile lui-même au moyen d' un dispositif reformeur alimenté en carburant hydrogéné, tel que de l 'essence, du gazole, de l 'éthanol, etc. Cet hydrogène ou ce gaz riche en hydrogène ainsi produit est amené par une conduite d'alimentation sur l 'entrée côté anodique de la pile à combustible. De la même manière, de l ' air, généralement comprimé, est amené par une conduite d'alimentation à l 'entrée du côté cathodique de la pile à combustible. De plus, il peut être nécessaire d'assurer un fonctionnement à température régulée de la pile à combustible, de sorte qu' un fluide caloporteur est également amené à circuler à l 'intérieur de la pile à combustible pour maintenir la température de fonctionnement à un niveau convenable. Une pile à combustible utilisée pour la traction d' un véhicule automobile comprend généralement une pluralité de modules identiques, chaque module comprenant un empilement de cellules élémentaires. La puissance nécessaire pour tracter un véhicule automobile est en effet de plusieurs dizaines de kilowatts, ce qui nécessite d'empiler un grand nombre de cellules élémentaires pour obtenir la puissance souhaitée. Pour des raisons mécaniques d'empilement ainsi que pour assurer un fonctionnement convenable, il est préférable cependant de limiter la taille de chaque module à un empilement d' une centaine de cellules au maximum. Le montage de plusieurs modules dont la sortie électrique est généralement connectée en série a déjà été imaginé de différentes manières. C' est ainsi que le brevet US-A-5 480 738 décrit une disposition de modules de pile à combustible sous la forme de deux colonnes montées côte-à-côte. L'alimentation en oxygène se fait par une conduite principale agencée entre les deux colonnes et comportant pour chaque colonne une dérivation. En ce qui concerne l' alimentation en hydrogène, elle se fait pour chaque colonne par une conduite unique alimentant en série les empilements de chacune des colonnes.A fuel cell is capable of producing electricity from hydrogen or a hydrogen - rich gas and oxygen or an oxygen - rich gas, such as air. The hydrogen required for the reaction in the fuel cell can be stored on board a motor vehicle or produced in the motor vehicle itself by means of a reformer device fed with hydrogenated fuel, such as gasoline, diesel, ethanol, etc. This hydrogen or hydrogen-rich gas thus produced is fed through a supply line to the anode-side inlet of the fuel cell. In the same manner, generally compressed air is supplied through a supply line to the cathode side inlet of the fuel cell. In addition, it may be necessary to provide controlled temperature operation of the fuel cell, so that a heat transfer fluid is also circulated within the fuel cell to maintain the operating temperature at a desired temperature. suitable level. A fuel cell used for traction of a motor vehicle generally comprises a plurality of identical modules, each module comprising a stack of elementary cells. The power required to tow a motor vehicle is in fact several tens of kilowatts, which requires a large number of elementary cells to be stacked. get the desired power. For mechanical reasons of stacking as well as to ensure a proper operation, it is preferable, however, to limit the size of each module to a stack of a maximum of one hundred cells. The mounting of several modules whose electrical output is generally connected in series has already been imagined in different ways. Thus, US-A-5,480,738 discloses an arrangement of fuel cell modules in the form of two columns mounted side-by-side. The supply of oxygen is via a main pipe arranged between the two columns and comprising for each column a bypass. As regards the supply of hydrogen, it is done for each column by a single pipe supplying in series the stacks of each of the columns.
Le brevet US-A-6 1 10 612 décrit quant à lui une structure de support permettant le montage de quatre modules de pile à combustible ainsi que l ' alimentation et l ' évacuation des différents fluides nécessaires au fonctionnement de l ' ensemble des modules.US-A-6 1 10 612 describes a support structure for mounting four fuel cell modules as well as the supply and discharge of the various fluids necessary for the operation of all the modules.
On constate néanmoins des difficultés lors du fonctionnement d' un ensemble de plusieurs modules identiques de pile à combustible agencés comme décrit dans les documents précités. En effet, les modules se trouvant en aval de l 'alimentation, que ce soit en oxygène ou en hydrogène, ou encore en fluide de refroidissement, ne sont pas alimentés d' une manière parfaitement identique à celle des modules situés du côté amont de l 'alimentation. Il en résulte l ' apparition de puissances différentes selon la position des différents modules dans l ' ensemble formant la pile à combustible.However, there are difficulties in operating a set of several identical fuel cell modules arranged as described in the aforementioned documents. Indeed, the modules downstream of the supply, whether in oxygen or hydrogen, or in cooling fluid, are not fed in a manner exactly identical to that of the modules located on the upstream side of the unit. 'food. This results in the appearance of different powers depending on the position of the different modules in the assembly forming the fuel cell.
La sécurité du fonctionnement n'est pas assurée, du fait de tel s risques de sous-alimentation d' un module situé en aval de l 'alimentation. Une telle sous-alimentation peut en effet provoquer un passage en tension négative des cellules du module en question, ce qui peut conduire, au bout d' un certain temps, à un auto-échauffement du module et à un risque de feu, voire d'explosion du module.The safety of operation is not ensured, because of such risks of undernourishment of a module located downstream of the power supply. Such undernourishment may indeed cause a Negative voltage passing of the cells of the module in question, which may lead, after a certain time, to self-heating of the module and to a risk of fire, or even explosion of the module.
La présente invention a pour objet d'éliminer ces difficultés et de permettre la réalisation d'une distribution parfaitement homogène des fluides dans un ensemble de modules identiques de pile à combustible, en particulier dans le cas où un tel ensemble est monté dans un véhicule automobile.The present invention aims to eliminate these difficulties and to allow the realization of a perfectly homogeneous distribution of fluids in a set of identical fuel cell modules, particularly in the case where such a set is mounted in a motor vehicle .
La présente invention a également pour objet d'améliorer la sécurité de fonctionnement d' un ensemble de plusieurs modules identiques de pile à combustible.The present invention also aims to improve the operational safety of a set of several identical fuel cell modules.
Dans un mode de réalisation, l'agencement de conduites permet l 'alimentation et/ou l 'évacuation de fluides pour un ensemble d'au moins deux modules identiques de pile à combustible, notamment monté dans un véhicule automobile. Chaque module comprend un empilement de cellules élémentaires et des tubulures d'entrée et de sortie pour différents fluides nécessaires au fonctionnement de la pile à combustible. Les tubulures d' entrée et de sortie sont di sposées sur au moins une face externe de chaque module. Les conduites d'alimentation et/ou d'évacuation d' au moins un desdits fluides sont reliées aux tubulures correspondantes de l 'ensemble des modules par une conduite principale unique et une ou plusieurs branches secondaires successives de structure symétrique pour chaque module respectif. La structure symétrique des branches secondaires permet d' assurer un débit d'écoulement identique pour tous les modules.In one embodiment, the pipe arrangement allows the supply and / or discharge of fluids for a set of at least two identical fuel cell modules, in particular mounted in a motor vehicle. Each module comprises a stack of elementary cells and inlet and outlet pipes for various fluids necessary for the operation of the fuel cell. The inlet and outlet tubings are provided on at least one outer face of each module. The supply and / or discharge lines of at least one of said fluids are connected to the corresponding tubes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module. The symmetrical structure of the secondary branches makes it possible to ensure an identical flow rate for all the modules.
De préférence, les longueurs, les sections ou les diamètres internes et les rayons de courbure des branches secondaires successives sont chaque fois égaux pour chaque module respectif. Ainsi la vitesse et les pertes de charge sont chaque fois égales et on obtient bien une alimentation identique et/ou une évacuation identique de tous les modules quelque soit le débit qui circule. La distribution des fluides dans tous les modules identiques de l ' ensemble de modules peut être parfaitement homogène, garantissant un fonctionnement optimal de l'ensemble. La sécurité du fonctionnement de l'ensemble s'en trouve également améliorée puisque les risques de sous alimentation d' un module spécifique sont écartés.Preferably, the lengths, the internal sections or diameters and the radii of curvature of the successive secondary branches are each equal for each respective module. Thus the speed and the pressure drops are equal each time and one obtains an identical supply and / or identical evacuation of all the modules regardless of the flow that flows. The distribution of the fluids in all the identical modules of the set of modules can be perfectly homogeneous, guaranteeing optimal operation of the assembly. The safety of the operation of the assembly is also improved since the underfeeding risks of a specific module are discarded.
La puissance électrique délivrée par chaque module peut être identique, ce qui simplifie la commande de fonctionnement.The electrical power delivered by each module can be identical, which simplifies the operation control.
Dans un mode de réalisation, les tubulures reliées aux différentes branches secondaires sont disposées sur des faces correspondantes se faisant face de l ' ensemble de modules.In one embodiment, the tubes connected to the different secondary branches are arranged on corresponding faces facing each other of the module assembly.
Dans un autre mode de réalisation, les tubulures reliées aux différentes branches secondaires sont disposées sur des faces correspondantes opposées de l ' ensemble de modules.In another embodiment, the tubings connected to the different secondary branches are arranged on opposite corresponding faces of the set of modules.
De préférence, au moins les conduites d'alimentation des fluides sur les compartiments cathodiques et anodiques des modules sont reliées aux tubulures correspondantes de l ' ensemble des modules par une conduite principale unique et une ou plusieurs branches secondaires successives de structure symétrique pour chaque module respectif.Preferably, at least the fluid supply pipes on the cathode and anode compartments of the modules are connected to the corresponding pipes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module. .
Dans un mode de réalisation avantageux, les conduites d'alimentation et/ou d'évacuation du fluide caloporteur assurant le maintien de la température de fonctionnement des modules sont reliées aux tubulures correspondantes de l 'ensemble des modules par une conduite principale unique et une ou plusieurs branches secondaires successives de structure symétrique pour chaque module respectif. Les modules identiques peuvent être disposés de différentes manières pour former l 'ensemble de modules précité. Dans un mode de réalisation préféré, particulièrement adapté à une installation sous l e plancher d'un véhicule automobile, les modules identiques sont disposés dans un plan sensiblement horizontal. Les faces des modules portant les tubulures se trouvent alors avantageusement dans des plans sensiblement verticaux, chaque conduite principale unique et ses branches secondaires successives associées étant disposées sensiblement dans un plan horizontal. L'invention sera mieux comprise à l 'étude de quelques modes de réali sation particuliers pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, sur lesquels :In an advantageous embodiment, the pipes for supplying and / or discharging the heat transfer fluid ensuring the maintenance of the operating temperature of the modules are connected to the corresponding pipes of the set of modules by a single main pipe and one or several successive secondary branches of symmetrical structure for each respective module. The identical modules may be arranged in different ways to form the aforementioned set of modules. In a preferred embodiment, particularly adapted to an installation under the floor of a motor vehicle, the identical modules are arranged in a substantially horizontal plane. The faces of the modules carrying the pipes are then advantageously in substantially vertical planes, each single main pipe and its associated successive secondary branches being disposed substantially in a horizontal plane. The invention will be better understood in the study of some particular embodiments made as non-limiting examples and illustrated by the appended drawings, in which:
-la figure 1 est une vue en perspective d ' un module de pile à combustible comprenant un empilement de plusieurs cellules élémentaires ;FIG. 1 is a perspective view of a fuel cell module comprising a stack of several elementary cells;
-les figures 2 à 5 illustrent schématiquement différents agencements de conduites d 'alimentation et/ou d'évacuation pour un fluide particulier dans le cas d' un ensemble de quatre modules identiques de pile à combustible et ce dans différentes configurations ; -la figure 6 est une vue schématique analogue aux figures 2 à 5 dans le cas d ' une configuration comportant huit modules de pile à combustible identiques dans un exemple de disposition ;FIGS. 2 to 5 schematically illustrate different arrangements of supply and / or discharge lines for a particular fluid in the case of a set of four identical fuel cell modules and in different configurations; FIG. 6 is a schematic view similar to FIGS. 2 to 5 in the case of a configuration comprising eight identical fuel cell modules in an exemplary arrangement;
-la figure 7 est une vue en perspective montrant schématiquement le tracé de l 'agencement des différentes conduites d'alimentation et/ou d ' évacuation d 'un module particulier faisant partie d'un ensemble de quatre modules de pile à combustible ;FIG. 7 is a perspective view schematically showing the layout of the arrangement of the different feed and / or discharge lines of a particular module forming part of a set of four fuel cell modules;
-la figure 8 est une vue en perspective montrant une réalisation pratique d'un agencement de conduites d'alimentation et/ou d 'évacuation de l 'ensemble des fluides nécessaires au fonctionnement d'un ensemble de quatre modules identiques de pile à combustible pour véhicule automobile ; etFIG 8 is a perspective view showing a practical embodiment of an arrangement of supply lines and / or evacuation of all the fluids necessary for operation a set of four identical fuel cell modules for a motor vehicle; and
-la figure 9 est une vue analogue à la figure 8 montrant une autre disposition dans laquelle l ' agencement de conduites symétriques est prévu seulement pour une partie des fluides nécessaires au fonctionnement de l'ensemble de quatre modules identiques de pile à combustible.FIG 9 is a view similar to Figure 8 showing another arrangement in which the arrangement of symmetrical conduits is provided only for a portion of the fluids necessary for the operation of the set of four identical fuel cell modules.
Tel qu'il est illustré sur la figure 1 , le module de pile à combustible référencé 20 dans son ensemble comprend un empilement d' une pluralité de cellules élémentaires 21 (en pratique, une centaine : une partie seulement a été représentée sur la figure). L'empilement constituant le module 20 présente une face avant 22 et une face opposée ou face arrière 23. Différentes tubulures d'entrée et de sortie, référencées 24, peuvent être disposées sur les faces 22 et 23. Dans l 'exemple illustré sur la figure, chacune des faces 22, 23 présente trois tubulures d' entrée et/ou de sortie 24. On comprendra bien entendu que le nombre des tubulures d'entrée et/ou de sortie sur chaque face 22, 23 dépend de l 'architecture interne du module 20. Il en est de même de la disposition des tubulures 24 sur les faces 22 et 23. Pour le fonctionnement d' un module de pile à combustible, tel que le module 20 illustré sur la figure 1 , il est nécessaire de prévoir une circulation de gaz riche en hydrogène sur le compartiment anodique, une circulation de gaz riche en oxygène, tel que de l'air, sur le compartiment cathodique et, afin de maintenir la température de fonctionnement à un niveau convenable, une circulation d' un fluide caloporteur pour le refroidissement du module. Il est donc nécessaire de prévoir six tubulures 24, respectivement :As illustrated in FIG. 1, the fuel cell module referenced as a whole comprises a stack of a plurality of elementary cells 21 (in practice, one hundred: only a portion has been shown in the figure). . The stack constituting the module 20 has a front face 22 and an opposite face or rear face 23. Various inlet and outlet pipes, referenced 24, can be arranged on the faces 22 and 23. In the example illustrated in FIG. figure, each of the faces 22, 23 has three inlet and / or outlet pipes 24. It will of course be understood that the number of inlet and / or outlet pipes on each face 22, 23 depends on the internal architecture of the module 20. It is the same for the arrangement of the tubes 24 on the faces 22 and 23. For the operation of a fuel cell module, such as the module 20 illustrated in FIG. 1, it is necessary to provide a circulation of hydrogen-rich gas on the anode compartment, a circulation of oxygen-rich gas, such as air, on the cathode compartment and, in order to maintain the operating temperature at a suitable level, a circulation of one caloporte fluid ur for cooling the module. It is therefore necessary to provide six tubings 24, respectively:
- pour l' entrée de l 'hydrogène sur l ' anode, pour la sortie de l 'hydrogène non consommé en provenance de l 'anode, pour l' entrée de l' air sur la cathode, pour la sortie de l 'air non consommé en provenance de la cathode,for the entry of hydrogen on the anode, for the exit of the unconsumed hydrogen from the anode, for the entry of air on the cathode, for the outlet of the non - consumed air from the cathode,
- pour l 'entrée du fluide de refroidissement, et pour la sortie du fluide de refroidissement.- for the inlet of the cooling fluid, and for the outlet of the cooling fluid.
Les tubulures de sortie permettent de récupérer les fluides anodiques et cathodiques en excès qui n' ont pas réagi dans le module. Comme indiqué précédemment, il est nécessaire d'associer plusieurs modules identiques, tels que le module 20, sous la forme d'un ensemble pour obtenir la puissance nécessaire, par exemple pour la traction d'un véhicule automobile.The outlet tubings make it possible to recover excess anode and cathodic fluids which have not reacted in the module. As indicated above, it is necessary to associate several identical modules, such as the module 20, in the form of an assembly to obtain the necessary power, for example for the traction of a motor vehicle.
Les figures 2 à 5 illustrent des exemples d'agencement de conduites d' alimentation et/ou d' évacuation pour l 'un des fluides, dan s le cas d' un ensemble de quatre modules identiques au module 20 de la figure 1.FIGS. 2 to 5 illustrate examples of arrangement of supply and / or discharge lines for one of the fluids, in the case of a set of four identical modules to the module 20 of FIG.
Sur la figure 2, les quatre modules A, B, C et D sont disposés sensiblement dans un plan horizontal aux quatre coins d'un carré. Le fluide considéré à titre d'exemple peut être l ' hydrogène ou l 'oxygène, ou encore le fluide de refroidissement. Dans l' exemple illustré sur la figure 2, une conduite principale C1 amène le fluide depuis l ' avant du véhicule automobile considéré comme la partie basse de la figure 2, en direction de l 'arrière, et ce jusqu'à un point M1 situé sensiblement au centre de symétrie des quatre modules A, B, C et D. Au point M1 , la conduite principale C1 se divise en deux branches secondaires C2, l ' une dirigée vers les modules A et B, l ' autre vers les modules C et D, et ce sensiblement à égale distance entre eux. Les deux branches secondaires C2 s'étendent du point d'embranchement M1 jusqu' à un deuxième point d'embranchement M2, où elles se divisent à nouveau en deux branches secondaires C3. Chacune de ces branches C3 est reliée à une tubulure d'entrée de l 'un des modules A, B, C et D. Dans cet exemple, les modules A et C sont disposés de la même manière avec leur face arrière comportant la tubulure d'entrée pour le fluide considéré. Les deux modules B et D ont subi une rotation de 180° par rapport aux deux modules A et C. Leur tubulure d'entrée pour le même fluide est donc dirigée vers l 'avant. Les tubulures d 'entrée des différents modules, pour le fluide considéré, se trouvent donc en regard les unes des autres.In Figure 2, the four modules A, B, C and D are disposed substantially in a horizontal plane at the four corners of a square. The fluid considered as an example may be hydrogen or oxygen, or the cooling fluid. In the example illustrated in FIG. 2, a main pipe C 1 brings the fluid from the front of the motor vehicle considered as the lower part of FIG. 2, towards the rear, and this up to a point M 1 located substantially at the center of symmetry of the four modules A, B, C and D. At the point M 1 , the main pipe C 1 is divided into two secondary branches C 2 , one directed towards the modules A and B, the other towards the modules C and D, and this substantially equidistant from each other. The two secondary branches C 2 extend from the branch point M 1 to one second branch point M 2 , where they divide again into two secondary branches C 3 . Each of these branches C 3 is connected to an inlet pipe of one of the modules A, B, C and D. In this example, the modules A and C are arranged in the same way with their rear face comprising the tubing input for the fluid considered. Both modules B and D were rotated 180 ° with respect to the two modules A and C. Their inlet manifold for the same fluid is thus directed forward. The inlet manifolds of the different modules, for the fluid in question, are therefore facing each other.
Le fluide étant amené depuis l 'avant par la conduite principale C1, on comprend qu'il est ensuite distribué de manière parfaitement symétrique aux quatre modules A, B, C et D. En effet, les longueurs respectives des deux branches secondaires C2, ainsi que les quatre branches secondaires C3, sont identiques les unes aux autres. Le trajet du fluide pour alimenter chacun des quatre modules est donc de longueur identique.The fluid being fed from the front by the main pipe C 1 , it is understood that it is then distributed perfectly symmetrically to the four modules A, B, C and D. Indeed, the respective lengths of the two secondary branches C 2 , as well as the four secondary branches C 3 , are identical to each other. The fluid path for supplying each of the four modules is therefore of identical length.
De façon à assurer une parfaite homogénéité de la di stribution du fluide, on prévoit en outre que le diamètre interne des branches secondaires C2 soit la moitié du diamètre interne de la conduite principale C1. De la même manière, le diamètre interne des branches secondaires C3 est la moitié du diamètre interne des branches secondaires C2 ou, ce qui revient au même, le quart du diamètre interne de la conduite principale C1. Grâce à cette disposition, on voit que les pertes de charge dans l 'écoulement du fluide sont exactement les mêmes pour chacun des quatre modules identiques. Si les conduites ne sont pas de section circulaire, les mêmes dispositions seront adoptées par les rapports des sections des différentes conduites et branches secondaires. On prend également de préférence la précaution de prévoir des rayons de courbure identiques à l 'endroit des points de raccordementIn order to ensure a perfect homogeneity of the di flibution of the fluid, it is furthermore provided that the internal diameter of the secondary branches C 2 is half the internal diameter of the main pipe C 1 . In the same way, the internal diameter of the secondary branches C 3 is half the internal diameter of the secondary branches C 2 or, which amounts to the same, one quarter of the internal diameter of the main pipe C 1 . With this arrangement, it can be seen that the pressure drops in the fluid flow are exactly the same for each of the four identical modules. If the pipes are not of circular section, the same provisions will be adopted by the reports of the sections of the different conduits and secondary branches. It is also preferably taken care to provide identical radii of curvature at the points of connection
Mi et M2, de façon, là encore, à assurer une vitesse d' écoulement et une perte de charge identiques pour l 'alimentation de chacun des quatre modules A, B, C et D.Mi and M 2 , so again to ensure identical flow velocity and pressure drop for feeding each of the four modules A, B, C and D.
La figure 2 illustre également en pointillés une variante dans laquelle la conduite principale C , provient non plus de l 'avant du véhicule automobile, mais de l 'arrière. Comme dans la variante précédente, la conduite principale C 1 aboutit au point de ramification M, et se subdivise en branches secondaires C2 et C3 pour l 'alimentation des quatre modules identiques.Figure 2 also shows in dashed a variant in which the main pipe C, no longer from the front of the motor vehicle, but from the rear. As in the previous variant, the main pipe C 1 leads to the branch point M, and is subdivided into secondary branches C 2 and C 3 for feeding the four identical modules.
Bien entendu, pour simplifier la figure, on n 'a représenté sur celle-ci que l 'alimentation de l 'un des fluides, telle que l ' hydrogène, l ' oxygène ou un fluide de refroidissement. On comprendra que l 'alimentation des autres fluides et/ou l 'évacuation de l'ensemble des fluides puisse être conçue d' une manière analogue.Of course, to simplify the figure, there is shown thereon that the supply of one of the fluids, such as hydrogen, oxygen or a cooling fluid. It will be understood that the supply of other fluids and / or the evacuation of all fluids can be designed in an analogous manner.
La figure 3 illustre une disposition des quatre modules identiques A, B, C et D identique à celle de la figure 2. Dans ce cas, cependant, on a montré l 'évacuation d 'un fluide par une conduite référencée également C1 et provenant d' un point central M1 à l 'endroit d'une ramification avec deux branches secondaires C2. Deux autres points de ramification M2 se trouvent à l ' endroit où les branches secondaires C3 provenant des tubulures de sortie de chacun des quatre modules A, B, C et D se rejoignent dans la branche secondaire C2. Sur la figure 3, une variante, dans laquelle la conduite d'évacuation C 1 est dirigée vers l 'arrière du véhicule, a également été représentée.FIG. 3 illustrates an arrangement of the four identical modules A, B, C and D identical to that of FIG. 2. In this case, however, the evacuation of a fluid has been shown by a pipe also referenced C 1 and coming from from a central point M 1 to a branch with two secondary branches C 2 . Two other branch points M 2 are at the place where the secondary branches C 3 coming from the outlet pipes of each of the four modules A, B, C and D meet in the secondary branch C 2 . In Figure 3, a variant, in which the exhaust pipe C 1 is directed towards the rear of the vehicle, has also been shown.
La figure 4 illustre le cas où les tubulures d'entrée des différents modules A, B, C et D pour le fluide considéré ne sont plus situées en regard les unes des autres, mais au contraire sur les faces opposées des différents modules. Dans ce cas, la conduite principale C1 , qui provient de l'un des côtés du véhicule, aboutit au point de ramification M1 où elle se subdivise en deux branches secondaires C2 qui viennent aboutir à deux points de ramification M2 situés respectivement du côté avant et arrière de l 'ensemble des quatre modules A, B, C et D dans l ' axe de symétrie de l ' ensemble. Depuis les points de ramification M2, les branches secondaires C3 sont reliées aux tubulures d'entrée des quatre modules respectifs. On notera que les branches secondaires présentent deux coudes référencés D1 et D2, tandis que chacune des branches secondaires C3 comporte un coude référencé D3.FIG. 4 illustrates the case where the inlet tubes of the different modules A, B, C and D for the fluid in question are no longer located opposite each other, but on the contrary on the opposite faces of the different modules. In this case, the main pipe C 1 , which comes from one side of the vehicle, leads to the branching point M 1 where it is subdivided into two secondary branches C 2 which come to two branching points M 2 respectively located the front and rear side of all four modules A, B, C and D in the axis of symmetry of the assembly. From the branching points M 2 , the secondary branches C 3 are connected to the inlet pipes of the four respective modules. It will be noted that the secondary branches have two bends referenced D 1 and D 2 , while each of the secondary branches C 3 has a bend referenced D 3 .
Comme précédemment, dans les exemples illustrés sur les figures 2 et 3, la section ou le diamètre des branches secondaires C2 est la moitié de la section ou du diamètre interne de la conduite principale C1 , tandis que la section ou le diamètre interne des branches secondaires C3 est égal à la moitié de la section ou du diamètre interne des branches secondaires C2. L'agencement des conduites C1 , C2, C3 est parfaitement symétrique par rapport à la conduite principale C, , comme c' était le cas dans les modes de réalisation des figures 2 et 3.As previously, in the examples illustrated in FIGS. 2 and 3, the section or the diameter of the secondary branches C 2 is half of the cross section or the internal diameter of the main pipe C 1 , while the cross section or the internal diameter of the secondary branches C 3 is equal to half of the section or internal diameter of the secondary branches C 2 . The arrangement of the pipes C 1 , C 2 , C 3 is perfectly symmetrical with respect to the main pipe C, as was the case in the embodiments of FIGS. 2 and 3.
L'alimentation en fluide par ces conduites d'alimentation, telle qu'illustrée sur la figure 4, est donc parfaitement homogène. Là encore, comme dans le mode de réalisation précédent, les rayons de courbure des différentes branches secondaires sont chaque fois identiques pour conserver la symétrie et donc l ' homogénéité de la distribution du fluide.The supply of fluid through these supply lines, as illustrated in Figure 4, is perfectly homogeneous. Again, as in the previous embodiment, the radii of curvature of the different secondary branches are each time identical to maintain the symmetry and thus the homogeneity of the distribution of the fluid.
On a représenté également en pointillés, sur la figure 4, une disposition dans laquelle la conduite principale C1 au lieu de provenir de la gauche de la figure 4 provient de la droite de la figure 4. La figure 5 illustre une disposition identique à celle de la figure 4, dans laquelle la conduite représentée est une conduite d'évacuation, les tubulures de sortie du fluide considéré se trouvant sur les faces externes opposées des différents modules A, B, C et D. La figure 6 illustre un ensemble comportant huit modules de pile à combustible identiques. Quatre modules A, B, C et D, disposés comme c' était le cas dans les modes de réalisation des figures précédentes, sont disposés dans le même plan horizontal et à côté de quatre modules identiques E, F, G et H disposés de la même manière que les modules A, B, C et D. Dans cet exemple, qui correspond sensiblement à celui de la figure 2, on a montré un agencement de conduite d'alimentation dans le cas où les tubulures d'entrée du fluide correspondant sont situées sur les faces en regard des différents modules. La conduite principale C1 amène le fluide considéré depuis l 'avant du véhicule jusqu'au point M1 où elle se sépare en deux branches secondaires C2 qui, après un coude D1 , arrive à un deuxième point de ramification M2 qui est situé sensiblement aux centres respectifs des deux groupes de quatre modules A, B, C, D d' une part, et E, F, G, H d'autre part. A partir de là, on retrouve une disposition analogue à celle de la figure 2, avec deux branches secondaires C3 jusqu'au point de ramification M3 d'où partent deux branches secondaires C4, qui sont chacune connectées à une tubulure d'entrée de l 'un des huit modules A a H.FIG. 4 also shows an arrangement in which the main pipe C 1 instead of coming from the left of FIG. 4 comes from the line of FIG. 4. FIG. 5 illustrates an arrangement identical to that of FIG. 4, in which the pipe shown is an evacuation pipe, the fluid outlet tubes considered on the opposite external faces of the different modules A, B, C and D. Figure 6 illustrates an assembly comprising eight identical fuel cell modules. Four modules A, B, C and D, arranged as was the case in the embodiments of the preceding figures, are arranged in the same horizontal plane and next to four identical modules E, F, G and H arranged in the same manner as the modules A, B, C and D. In this example, which corresponds substantially to that of Figure 2, there is shown a supply line arrangement in the case where the inlet tubes of the corresponding fluid are located on the opposite faces of the different modules. The main pipe C 1 brings the fluid considered from the front of the vehicle to the point M 1 where it separates into two secondary branches C 2 which, after a bend D 1 , reaches a second branch point M 2 which is located substantially at the respective centers of the two groups of four modules A, B, C, D on the one hand, and E, F, G, H on the other hand. From there, we find a similar arrangement to that of Figure 2, with two secondary branches C 3 to the point of branching M 3 from which two secondary branches C 4 , which are each connected to a tubing of input of one of the eight modules A to H.
Comme c'était le cas précédemment, l 'agencement de la conduite d'alimentation pour le fluide considéré est parfaitement symétrique par rapport à la conduite principale C1 , les longueurs de chacune des branches secondaires étant chaque fois égales jusqu' au point de ramification suivant. On applique également la même règle de diminution de la section ou du diamètre interne des conduites, la branche secondaire C2 étant d'une section ou d'un diamètre moitié de la conduite principale C1 , la branche secondaire C3 étant d'une section ou d'un diamètre interne moitié de la branche secondaire C2 et la branche secondaire C4 étant d' un diamètre moitié de la branche secondaire C3. Les rayons de courbure sont également maintenus de préférence identiques à chaque courbe.As was the case previously, the arrangement of the feed pipe for the fluid in question is perfectly symmetrical with respect to the main pipe C 1 , the lengths of each of the secondary branches being each time equal to the point of branching. next. The same rule of decreasing the cross-section or internal diameter of the pipes is also applied, the secondary branch C 2 being of a section or a diameter half of the main pipe C 1 , the secondary branch C 3 being of one section or of an internal diameter half of the secondary branch C 2 and the secondary branch C 4 being of a diameter half of the secondary branch C 3 . The radii of curvature are also maintained preferably identical to each curve.
De cette manière, comme dans les modes de réalisation précédents, on obtient une distribution parfaitement homogène du fluide sur les huit modules de pile à combustible identiques.In this way, as in the previous embodiments, a perfectly homogeneous fluid distribution is obtained on the eight identical fuel cell modules.
La figure 6 montre en pointillés une alimentation C 1 faite depuis l 'arrière du véhicule.Figure 6 shows in dashed a supply C 1 made from the rear of the vehicle.
La figure 7 illustre de manière plus précise un agencement de toutes les conduites d'alimentation et d'évacuation pour un module de pile à combustible tel que le module A d'un ensemble de quatre modules identiques disposés sensiblement dans un plan horizontal aux quatre coins d' un carré.FIG. 7 more precisely illustrates an arrangement of all supply and discharge lines for a fuel cell module such as module A of a set of four identical modules arranged substantially in a horizontal plane at the four corners. of a square.
Sur la figure 7, on n'a représenté que l 'axe des différentes conduites d'alimentation et d'évacuation pour le module A. On comprendra bien entendu que des conduites similaires sont prévues pour les autres modules identiques B, C et D.In FIG. 7, only the axis of the various supply and evacuation ducts for the module A is shown. It will of course be understood that similar ducts are provided for the other identical modules B, C and D.
Dans l 'exemple illustré, le module A comporte, sur sa face avant 22, une tubulure de sortie 2a pour l'hydrogène non consommé dans la partie anodique et une tubulure de sortie 4a pour l 'air non consommé à la cathode.In the illustrated example, the module A comprises, on its front face 22, an outlet pipe 2a for hydrogen not consumed in the anode part and an outlet pipe 4a for air not consumed at the cathode.
La face arrière 23 du module A présente quatre tubulures, à savoir une tubulure l a pour l ' entrée de l 'hydrogène dans le compartiment anodique, une tubulure 3a pour l 'entrée de l 'air dans le compartiment cathodique, une tubulure 5a pour l 'entrée du fluide de refroidissement et une tubulure 6a pour la sortie du fluide de refroidissement.The rear face 23 of the module A has four tubes, namely a tube 1a for the entry of hydrogen into the anode compartment, a tube 3a for the entry of air into the tube. cathodic compartment, a pipe 5a for the inlet of the cooling fluid and a pipe 6a for the outlet of the cooling fluid.
Dans l' exemple illustré, les tubulures 2a et 3a se trouvant respectivement sur les faces 22 et 23 sont toutes les deux situées dans un plan horizontal supérieur, noté P3. Les deux tubul ures 5a, 6a se trouvant sur la face 23 sont situées dans un plan horizontal intermédiaire, noté P2. Enfin, les deux tubulures l a et 4a situées respectivement sur les faces 23 et 22 sont situées dans un plan horizontal inférieur, noté P1.In the illustrated example, the pipes 2a and 3a located respectively on the faces 22 and 23 are both located in an upper horizontal plane, noted P 3 . The two tubul ures 5a, 6a on the face 23 are located in an intermediate horizontal plane, noted P 2 . Finally, the two pipes 1a and 4a located respectively on the faces 23 and 22 are located in a lower horizontal plane, noted P 1 .
Si l 'on considère tout d 'abord la tubulure l a pour l 'entrée de l 'hydrogène dans la partie anodique, l 'hydrogène est alimenté par une conduite principale C1 1 jusqu' au point de ramification M1 _, à partir duquel une branche secondaire C2 j va jusqu'à un point de ramification M2 j à partir duquel part notamment une branche secondaire C3 , . Il apparaît ainsi que la tubul ure d' entrée l a du module A est alimentée en hydrogène par les conduites successives C1 t , C2 1 et C3 , dont les sections ou les diamètres sont chaque fois divi sés par deux comme expliqué précédemment. On aperçoit également sur la figure, représentées en traits fins, les tubulures I b, 3b, 5b et 6b du module B qui font face aux tubulures correspondantes du module A. La tubulure Ib est alimentée par une branche secondaire C3 1 dirigée vers le module B à partir du point de ramification M2 ,. De la même manière, les modules C et D peuvent être alimentés par une branche secondaire C2., qui part du point de ramification MM.If we first consider tubing 1a for the entry of hydrogen into the anodic part, the hydrogen is supplied by a main line C 1 1 to the point of branching M 1 , from which a secondary branch C 2 j goes to a point of branching M 2 j from which part in particular a secondary branch C 3 ,. It thus appears that the inlet tube 1a of the module A is supplied with hydrogen by the successive pipes C 1 , C 2 1 and C 3 , the sections or diameters of which are in each case divided by two as explained above. Also shown in the figure, shown in fine lines, the tubes I b, 3b, 5b and 6b of the module B facing the corresponding tubes of the module A. The tubing Ib is fed by a secondary branch C 3 1 directed towards the module B from the point of branching M 2 ,. In the same way, the modules C and D can be powered by a secondary branch C 2. , Which starts from the branch point M M.
Si l 'on considère maintenant la tubulure de sortie 2a du module A, il apparaît que celle-ci est reliée à la conduite principale C1 2 qui provient de la gauche de l ' ensemble des modules, qui se divise en deux branches secondaires C2 2 dont l 'une fait le tour de deux côtés du module A pour arriver jusqu' au point de ramification M2 2 à partir duquel une branche secondaire C3 2 est reliée à la tubulure de sortie 2a.If we now consider the outlet pipe 2a of the module A, it appears that it is connected to the main pipe C 1 2 which comes from the left of the set of modules, which is divided into two secondary branches C 2 2 of which one goes around both sides of the module A to arrive at the point of branching M 2 2 from which a secondary branch C 3 2 is connected to the outlet pipe 2a.
La disposition de la conduite d'évacuation reliée à la tubulure de sortie 4a est sensiblement identique à celle des conduites reliées à la tubulure de sortie 2a. En effet, la tubulure de sortie 4a est reliée à la conduite principale C1 4 par l 'intermédiaire de la branche secondaireThe arrangement of the discharge pipe connected to the outlet pipe 4a is substantially identical to that of the pipes connected to the outlet pipe 2a. Indeed, the outlet pipe 4a is connected to the main pipe C 1 4 via the secondary branch
C2 4 et de la branche secondaire C3 4.C 2 4 and the secondary branch C 3 4 .
Les conduites d'alimentation de la tubulure d 'entrée 3a sont disposées sensiblement de la même manière que les conduites d' alimentation de la tubulure d'entrée l a. En effet, la tubulure d'entrée 3a est reliée à la conduite principale C1 3 à une conduite secondaire C2 3, elle-même reliée à une branche secondaire C3 3.The supply lines of the inlet manifold 3a are arranged substantially in the same manner as the feed lines of the inlet manifold 1a. Indeed, the inlet pipe 3a is connected to the main pipe C 1 3 to a secondary pipe C 2 3 , itself connected to a secondary branch C 3 3 .
La conduite d'évacuation reliée à la tubulure de sortie 6a comprend une conduite principale C1 6 qui, après le point de jonction M1 6, se divise en deux branches secondaires C2 6, puis en deux branches secondaires C3 6.The evacuation pipe connected to the outlet pipe 6a comprises a main pipe C 1 6 which, after the junction point M 1 6 , divides into two secondary branches C 2 6 and then into two secondary branches C 3 6 .
La conduite d'alimentation reliée à la tubulure d' entrée 5a comprend également une conduite principale C1 5 qui se subdivise en deux branches secondaires C2 5, puis en deux branches secondaires C3 5.The supply line connected to the inlet pipe 5a also comprises a main pipe C 1 5 which is subdivided into two secondary branches C 2 5 and then into two secondary branches C 3 5 .
On notera que les conduites principales C, Λ et C1 3 alimentant respectivement les tubulures d'entrée la et 3a se situent du côté avant du véhicule, c'est-à-dire du côté de la face avant 22 du module A. Ces deux tubulures sont placées entre les deux modules A et C. Elles se trouvent d'une manière générale l ' une au-dessus de l 'autre dans un plan vertical, respectivement à la hauteur des plans P3 et P1 , la conduite principale C1 3 étant au-dessus de la conduite principale C1 , .It will be noted that the main ducts C, Λ and C 1 3 respectively supplying the inlet ducts 1a and 3a are located on the front side of the vehicle, that is to say on the front face 22 of the module A. two pipes are placed between the two modules A and C. They are generally one above the other in a vertical plane, respectively at the height of the planes P 3 and P 1 , the main pipe C 1 3 being above the main pipe C 1 ,.
Les deux conduites d' évacuation C1 2 et C1 4 reliées respectivement aux tubulures de sortie 2a et 4a sont, quant à elles, situées du côté gauche par rapport à la figure. Elles se trouvent sensiblement dans un plan vertical, la conduite C1 2 étant au-dessus de la conduite C1 4 respectivement à la hauteur des plans P3 et P1 , c' est-à- dire les mêmes plans que les tubulures de sortie 2a et 4a. Elles sont également situées sensiblement dans un axe entre les modules A et B.The two discharge pipes C 1 2 and C 1 4 respectively connected to the outlet pipes 2a and 4a are, for their part, located on the left side of the figure. They are substantially in a vertical plane, the pipe C 1 2 being above the pipe C 1 4 respectively at the height of the planes P 3 and P 1 , that is to say the same planes as the tubes of exit 2a and 4a. They are also located substantially in an axis between modules A and B.
Enfin, les tubulures principales C, 5 et C1 6 sont toutes les deux situées du côté arrière, c 'est-à-dire du côté de la face arrière 23 du module A. Elles sont situées sensiblement dans un plan vertical.Finally, the main pipes C, 5 and C 1 6 are both located on the rear side, that is to say on the side of the rear face 23 of the module A. They are located substantially in a vertical plane.
On notera que la conduite d'alimentation en fluide de refroidissement C1 5 passe du premier plan supérieur P3 au plan intermédiaire P2 dans lequel se trouve la tubulure d'entrée 5a. A cet effet, la branche secondaire C2 5 est inclinée pour passer du plan P3 au plan P2.It will be noted that the cooling fluid supply pipe C 1 5 passes from the first upper plane P 3 to the intermediate plane P 2 in which the inlet pipe 5a is located. For this purpose, the secondary branch C 2 5 is inclined to pass from the plane P 3 to the plane P 2 .
La figure 8 illustre une réalisation pratique reprenant les principes de la figure 7, la disposition étant la même que sur la figureFIG. 8 illustrates a practical embodiment incorporating the principles of FIG. 7, the arrangement being the same as in FIG.
7.7.
Sur la figure 8, sont représentés complètement les quatre modules de pile à combustible identiques A, B, C et D, ainsi que l 'agencement complet des conduites d'alimentation et d'évacuation des fluides dans la même disposition générale que sur la figure 7. Les six conduites principales sont regroupées deux par deux, comme c'était le cas sur la figure 7. Les conduites principales C1 1 pour l'alimentation des compartiments anodiques en hydrogène et C1 3 pour l 'alimentation en air des compartiments cathodiques, sont disposées à l ' arrière du véhicule du côté des faces 22 des deux modules A et C. Ces deux conduites principales C1 , et C1 3 sont placées l ' une au-dessus de l 'autre, sensiblement dans un plan vertical dans l 'intervalle séparant les deux modules A et C. Les deux conduites principales Cj 5 pour l ' alimentation en fluide de refroidissement et C1 6 pour le retour du fluide de refroidissement, débouchent à l 'opposé, c'est-à-dire du côté avant du véhicule ou du côté des faces 23 des deux modules B et D. Ces deux conduites principales sont disposées sensiblement dans un plan vertical et s' étendent dans l 'intervalle entre les deux modules B et D.In FIG. 8, the four identical fuel cell modules A, B, C and D are completely shown, as well as the complete arrangement of the supply and discharge lines of the fluids in the same general arrangement as in FIG. 7. The six main pipes are grouped in pairs, as was the case in Figure 7. The main pipes C 1 1 for the supply of anode compartments in hydrogen and C 1 3 for air supply compartments The two cathode conductors are arranged at the rear of the vehicle on the side of the faces 22 of the two modules A and C. These two main ducts C 1 and C 1 3 are placed one above the other substantially in a plane. vertical in the interval between the two modules A and C. The two main lines Cj 5 for the supply of cooling fluid and C 1 6 for the return of the cooling fluid, open on the opposite side, that is to say on the front side of the vehicle or on the side of the faces 23 the two modules B and D. These two main ducts are arranged substantially in a vertical plane and extend in the interval between the two modules B and D.
Enfin, les deux conduites principales C1 2 pour l ' évacuation de l ' hydrogène en provenance des compartiments anodiques, et C1 4 pour la sortie d ' air en provenance des compartiments cathodiques, sont disposées sur le côté des deux modules A et B.Finally, the two main pipes C 1 2 for the evacuation of hydrogen from the anode compartments, and C 1 4 for the air outlet coming from the cathode compartments, are arranged on the side of the two modules A and B .
L'ensemble des conduites et de leurs branches secondaires associées, est conçu de façon symétrique conformément à l 'invention. C'est ainsi, par exemple, qu'on voit sur la figure 8 la disposition des deux branches secondaires C2 3 qui partent du point de ramification M1 3 et sont reliées à la conduite principale C1 3 pour l ' alimentation en air des compartiments cathodiques des quatre modules A, B, C et D. On voit sur la figure 8, que le diamètre des branches secondaires C2 3 est la moitié du diamètre interne de la conduite principale C1 3. Aux points de ramification M2 3, les branches secondaires C2 3 se séparent à nouveau en deux branches secondaires C3 3 dont le diamètre interne est la moitié du diamètre interne des branches secondaires C2 3.The set of pipes and their associated secondary branches, is designed symmetrically according to the invention. Thus, for example, we see in Figure 8 the arrangement of the two secondary branches C 2 3 which start from the point of branching M 1 3 and are connected to the main pipe C 1 3 for the air supply cathode compartments of the four modules A, B, C and D. It can be seen in FIG. 8 that the diameter of the secondary branches C 2 3 is half the internal diameter of the main pipe C 1 3 . At the branching points M 2 3 , the secondary branches C 2 3 again separate into two secondary branches C 3 3 whose internal diameter is half the internal diameter of the secondary branches C 2 3 .
On comprend de cette manière que l ' alimentation en air des compartiments cathodiques des quatre modules identiques A, B, C et D se fait sur les quatre tubulures d'entrée correspondantes 3a, 3b, 3c et 3d, de façon parfaitement homogène et identique, étant donné que la longueur des conduites est exactement la même pour les quatre modules A, B, C et D. De la même manière, compte tenu de Ia diminution symétrique des diamètres internes des différentes branches secondaires, les pertes de charge ainsi que la vitesse d 'écoulement de l'air d'alimentation sont les mêmes pour les quatre modules A, B, C et D. De plus, les rayons de courbure de chaque coude sont chaque fois identiques.In this way it is understood that the air supply of the cathode compartments of the four identical modules A, B, C and D is done on the four corresponding inlet tubes 3a, 3b, 3c and 3d, in a perfectly homogeneous and identical manner, since the length of the pipes is exactly the same for the four modules A, B, C and D. In the same way, taking into account the symmetrical reduction of the internal diameters of the different secondary branches, the pressure losses as well as the speed flow of the supply air are the same for the four modules A, B, C and D. In addition, the radii of curvature of each elbow are each identical.
Les mêmes résultats sont obtenus par les mêmes moyens pour l 'alimentation des autres fluides ainsi que leur évacuation.The same results are obtained by the same means for the supply of the other fluids as well as their evacuation.
La figure 9 illustre une variante dans laquelle une parti e seulement des fluides bénéficie d' une distribution parfaitement homogène selon l 'invention. A part cette différence, la structure de l 'agencement des conduites d' alimentation et d' évacuation est la même et l 'on retrouve les quatre modules identiques A, B, C et D de la figureFIG. 9 illustrates a variant in which only a part of the fluids has a perfectly homogeneous distribution according to the invention. Apart from this difference, the structure of the arrangement of the supply and discharge lines is the same and the four identical modules A, B, C and D of the figure are found.
8, agencés de la même manière.8, arranged in the same way.
La structure et la disposition des conduites principales et des branches secondaires pour l 'alimentation et l 'évacuation du fluide de refroidissement sont les mêmes que sur la figure 8. C'est ainsi que l 'on retrouve la disposition des deux conduites principales C1 5 pour l 'alimentation du fluide de refroidissement et C1 6 pour l 'évacuation du fluide de refroidissement du côté de l ' avant du véhicule, c'est-à-dire des faces avant 23 des deux modules B et D. De la même manière, on retrouve la structure et la disposition des conduites principales C1 3 pour l' alimentation en air des compartiments cathodiques et C1 , pour l 'alimentation en hydrogène des compartiments anodiques. Ces conduites principales sont disposées du côté arrière du véhicule du côté des faces arrière 22 des deux modules A et C, comme c'était le cas sur la figure 8. A la différence de la figure 8, cependant, les conduites principales C1 2 pour l 'évacuation de l 'hydrogène non consommé par les compartiments anodiques et C1 4 pour la sortie d' air des compartiments cathodiques, sont également disposées du côté arrière du véhicule, de sorte que toutes les conduites principales C1 3, C1 2, C1 1 et C1 4 sont disposées dans un plan vertical du côté arrière du véhicule, dans l 'intervalle laissé libre entre les deux modules identiques A et C. La disposition des conduites principales C1 2 et C1 4 ainsi que de leurs branches secondaires, n'est donc pas totalement symétrique pour les quatre modules A, B, C et D au détriment de l 'homogénéité de l 'écoulement. Cette disposition présente cependant l ' avantage d' une meilleure intégration dans le véhicule, compte tenu de la disposition des différentes conduites principales du côté arrière du véhicule. La conduite principale C1 4 et la conduite principale C, 2, s'étendent de manière rectiligne dans l 'intervalle entre les modules A et C, puis dans l ' intervalle entre les modules B et D. Les branches secondaires, telles que C2 4 ou C2 2 dont le diamètre est égal à la moitié du diamètre interne des conduites principales correspondantes C1 4 et C1 2, permettent l 'écoulement de l 'air et de l 'hydrogène provenant des quatre modules depuis les tubulures de sortie respectives 2a, 2b, 2c, 2d et 4a, 4b, 4c, 4d des quatre modules A, B, C et D. Compte tenu de la disposition des modules, ces tubulures de sortie se trouvent sur les faces arrière 22 du côté de l 'arrière du véhicule pour les modules A et C, et sur les faces avant 23 du côté de l ' avant du véhicule pour les modules B et D. The structure and arrangement of the main and secondary branches for the supply and discharge of the coolant are the same as in figure 8. Thus, the arrangement of the two main pipes C 1 is found. 5 for the supply of the cooling fluid and C 1 6 for the discharge of the cooling fluid on the front side of the vehicle, that is to say the front faces 23 of the two modules B and D. In the same way, we find the structure and arrangement of the main pipes C 1 3 for the air supply of the cathode compartments and C 1 , for the supply of hydrogen to the anode compartments. These main ducts are disposed on the rear side of the vehicle on the rear faces 22 of the two modules A and C, as was the case in FIG. 8. In contrast to FIG. 8, however, the main ducts C 1 2 for the evacuation of hydrogen not consumed by the anode compartments and C 1 4 for the air outlet of the cathode compartments, are also arranged on the rear side of the vehicle, so that all the main pipes C 1 3 , C 1 2 , C 1 1 and C 1 4 are arranged in a vertical plane on the rear side of the vehicle, in the gap left free between the two identical modules A and C. The arrangement of the main lines C 1 2 and C 1 4 as well as their secondary branches, is not totally symmetrical for the four modules A, B, C and D to the detriment of the homogeneity of the flow. This arrangement, however, has the advantage of better integration into the vehicle, given the layout of the various main lines of the rear side of the vehicle. The main pipe C 1 4 and the main pipe C, 2 extend rectilinearly in the gap between the modules A and C, then in the gap between the modules B and D. The secondary branches, such as C 2 4 or C 2 2 , the diameter of which is equal to half the internal diameter of the corresponding main pipes C 1 4 and C 1 2 , allow the flow of air and hydrogen from the four modules from the pipes of respective outputs 2a, 2b, 2c, 2d and 4a, 4b, 4c, 4d of the four modules A, B, C and D. Given the arrangement of the modules, these outlet pipes are on the rear faces 22 of the the rear of the vehicle for modules A and C, and front panels 23 on the front side of the vehicle for modules B and D.

Claims

REVENDICATIONS
1-Agencement de conduites d' alimentation et/ou d 'évacuation de fluides pour un ensemble d'au moins deux modules identiques (A, B, C, D) de pile à combustible, notamment monté dans un véhicule automobile, comprenant chacun un empilement de cellules élémentaires (21 ) et des tubulures d' entrée et de sortie ( 1 , 2, 3 , 4, 5, 6) pour différents fluides nécessaires au fonctionnement de la pile à combustible, lesdites tubulures étant disposées sur au moi ns une face externe de chaque module, caractérisé par le fait que les conduites d'alimentation et/ou d' évacuation d' au moins un desdits fluides sont reliées aux tubulures correspondantes de l 'ensemble des modules par une conduite principale unique (C1) et une ou plusieurs branches secondaires successives (C2, C3) de structure symétrique pour chaque module respectif. 2-Agencement de conduites selon la revendication 1 , caractérisé par le fait que les longueurs, les sections ou les diamètres internes et les rayons de courbure des branches secondaires successives sont chaque fois égaux pour chaque module respectif.1 - Arrangement of supply and / or fluid discharge lines for a set of at least two identical fuel cell modules (A, B, C, D), in particular mounted in a motor vehicle, each comprising a stacking of elementary cells (21) and inlet and outlet pipes (1, 2, 3, 4, 5, 6) for different fluids necessary for the operation of the fuel cell, said pipes being arranged on the ground external face of each module, characterized in that the supply and / or discharge lines of at least one of said fluids are connected to the corresponding tubes of the set of modules by a single main pipe (C 1 ) and one or more successive secondary branches (C 2 , C 3 ) of symmetrical structure for each respective module. 2-pipe arrangement according to claim 1, characterized in that the lengths, sections or internal diameters and the radii of curvature of successive secondary branches are each equal for each respective module.
3-Agencement de conduites selon les revendications 1 ou 2, caractérisé par le fait que les tubulures reliées aux différentes branches secondaires sont disposées sur des faces correspondantes se faisant face de l'ensemble de modules.3-pipe arrangement according to claims 1 or 2, characterized in that the pipes connected to the different secondary branches are arranged on corresponding faces facing the set of modules.
4-Agencement de conduites selon les revendications 1 ou 2, caractérisé par le fait que les tubulures reliées aux différentes branches secondaires sont disposées sur des faces correspondantes opposées de l 'ensemble de modules.4-pipe arrangement according to claims 1 or 2, characterized in that the tubings connected to the different secondary branches are arranged on opposite corresponding faces of the set of modules.
5-Agencement de conduites selon l ' une quelconque des revendications précédentes, caractérisé par le fait qu' au moins les conduites d' alimentation desdits fl uides sur les compartiments cathodiques et anodiques des modules sont reliées aux tubulures correspondantes de l 'ensemble des modules par une conduite principale unique et une ou plusieurs branches secondaires successives de structure symétrique pour chaque module respectif. 6-Agencement de conduites selon la revendication 5 , caractérisé par le fait que les conduites d'alimentation et/ou d'évacuation du fluide caloporteur assurant le maintien de la température de fonctionnement des modules sont reliées aux tubulures correspondantes de l 'ensemble des modules par une conduite principale unique et une ou plusieurs branches secondaires successives de structure symétrique pour chaque module respectif.5-pipe arrangement according to any one of the preceding claims, characterized in that at least the supply lines of said fluids on the compartments The cathodes and anodes of the modules are connected to the corresponding tubes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module. 6-pipeline arrangement according to claim 5, characterized in that the supply lines and / or heat transfer fluid supply ensuring the maintenance of the operating temperature of the modules are connected to the corresponding tubes of the set of modules by a single main pipe and one or more successive secondary branches of symmetrical structure for each respective module.
7-Agencement de conduites selon l 'une quelconque des revendications précédentes, caractérisé par le fait que les modules identiques sont disposés dans un plan sensiblement horizontal, les faces des modules portant les tubulures se trouvant dans des plans sensiblement verticaux, chaque conduite principale unique et ses branches secondaires successives associées étant disposées sensiblement dans un plan horizontal. 7-pipe arrangement according to any one of the preceding claims, characterized in that the identical modules are arranged in a substantially horizontal plane, the faces of the modules carrying the pipes being in substantially vertical planes, each single main pipe and its successive subsidiary branches being arranged substantially in a horizontal plane.
EP05810797A 2004-10-11 2005-10-07 Line system for a supplying and/or discharging fluids for a fuel cell Withdrawn EP1803184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410702A FR2876499B1 (en) 2004-10-11 2004-10-11 ARRANGEMENT FOR FLUID SUPPLY AND / OR FLOW SUPPLY PIPES FOR A FUEL CELL
PCT/FR2005/050833 WO2006040492A1 (en) 2004-10-11 2005-10-07 Line system for a supplying and/or discharging fluids for a fuel cell

Publications (1)

Publication Number Publication Date
EP1803184A1 true EP1803184A1 (en) 2007-07-04

Family

ID=34951148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810797A Withdrawn EP1803184A1 (en) 2004-10-11 2005-10-07 Line system for a supplying and/or discharging fluids for a fuel cell

Country Status (5)

Country Link
US (1) US20080096071A1 (en)
EP (1) EP1803184A1 (en)
JP (1) JP5100387B2 (en)
FR (1) FR2876499B1 (en)
WO (1) WO2006040492A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299836B2 (en) * 2007-02-01 2013-09-25 日産自動車株式会社 Fuel cell
JP6484499B2 (en) * 2015-05-08 2019-03-13 日本特殊陶業株式会社 Manufacturing method of fuel cell stack
JP2022026993A (en) * 2020-07-31 2022-02-10 株式会社東芝 Fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528387B2 (en) * 1999-08-26 2010-08-18 本田技研工業株式会社 Fuel cell system
DE10054050A1 (en) * 2000-10-31 2002-05-16 Siemens Ag Method for operating an HT-PEM fuel cell system and associated fuel cell system
JP2004134181A (en) * 2002-10-09 2004-04-30 Nissan Motor Co Ltd Fuel cell container structure
JP4630529B2 (en) * 2003-06-13 2011-02-09 本田技研工業株式会社 Fuel cell system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006040492A1 *

Also Published As

Publication number Publication date
FR2876499B1 (en) 2006-12-15
JP2008516386A (en) 2008-05-15
JP5100387B2 (en) 2012-12-19
WO2006040492A1 (en) 2006-04-20
US20080096071A1 (en) 2008-04-24
FR2876499A1 (en) 2006-04-14

Similar Documents

Publication Publication Date Title
MXPA04011192A (en) Method and apparatus for vaporizing fuel for a reformer fuel cell system.
CA2540326A1 (en) Fuel cell system and fuel cell automotive vehicle
CN102195051B (en) PEM fuel cell stack hydrogen distribution insert
EP1803184A1 (en) Line system for a supplying and/or discharging fluids for a fuel cell
CN102195053A (en) PEM fuel cell stack hydrogen distribution insert
EP1929565B1 (en) Plate for fuel cell
EP3170220B1 (en) Bipolar plate for an electrochemical reactor with a compact homogenisation zone and a low pressure differential
WO2014106597A1 (en) Fluid circulation system for an installation having multiple elementary energy storage modules
EP4095961A1 (en) Electrochemical system comprising a plurality of fuel cells electrically connected in series and supplied with air in parallel
WO2019063946A1 (en) Ventilation device for a motor vehicle heat exchange module with air guides for guiding the air flow passing through the air manifolds
EP1469543A2 (en) Process and arrangement for humidifying the oxygen-containing gas of a fuel cell with proton conducting membrane
EP4291764A1 (en) Combustion system with a tubular combustion chamber and an annular heat exchanger
US20030035987A1 (en) Fuel cell and method of operating the same
FR2997229A1 (en) IMPROVED FUEL CELL
FR3063077A1 (en) PROPYLENE GLYCOL FUEL PROCESSOR COMPONENT AND PROPYLENE GLYCOL FUEL PROCESSOR
FR2874129A1 (en) Fluid e.g. fuel, distributing system for e.g. fuel cell stack, has main inlet and outlet manifolds perforated with same number of holes, where inlet manifold has inner convergent section and outlet manifold has inner divergent section
EP1807897B1 (en) Fuel cell module, method for the production thereof and a unit comprises a number thereof
BE566555A (en)
EP1455405A2 (en) Fuel cell propulsion for motor vehicle
WO2024083502A1 (en) Fuel conditioning system and method for powering a turbomachine
FR3130952A3 (en) Heat exchanger with improved fluidic connections
EP1036297B1 (en) Air-liquid heat exchanger for motor vehicle hydraulic circuit
FR3071873B1 (en) TUBE VENTILATION DEVICE FOR A MOTOR VEHICLE HEAT EXCHANGE MODULE WITH AIR FLOW DISTRIBUTION PARTITIONS IN AIR COLLECTORS
FR3068774A1 (en) DEVICE FOR THERMALLY REGULATING AT LEAST ONE ELECTRICAL ENERGY STORAGE MEMBER
WO2024218062A1 (en) Stack for a fuel cell, and associated fuel cell and vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20121214