EP1803148A1 - Method for producing submicron structures - Google Patents

Method for producing submicron structures

Info

Publication number
EP1803148A1
EP1803148A1 EP05804015A EP05804015A EP1803148A1 EP 1803148 A1 EP1803148 A1 EP 1803148A1 EP 05804015 A EP05804015 A EP 05804015A EP 05804015 A EP05804015 A EP 05804015A EP 1803148 A1 EP1803148 A1 EP 1803148A1
Authority
EP
European Patent Office
Prior art keywords
film
substrate
shadow mask
mask
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05804015A
Other languages
German (de)
French (fr)
Inventor
Rainer Adelung
Stefan Rehders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christian Albrechts Universitaet Kiel
Original Assignee
Christian Albrechts Universitaet Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian Albrechts Universitaet Kiel filed Critical Christian Albrechts Universitaet Kiel
Publication of EP1803148A1 publication Critical patent/EP1803148A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Definitions

  • the invention relates to the production of submicron structures, in particular of electronic components with dimensions ranging from a few nanometers to a few micrometers, which have sub-micron subcomponents (for example electrodes).
  • Such structures generally consist of a plurality of over- and / or juxtaposed accumulations of material on a substrate, the dimension of such accumulation being in at least one dimension in the submicron range, such as thin films, nanowires or quantum dots.
  • the materials from which the individual aggregates are formed vary from elemental metals to semiconductors and metal oxide ceramics to organic compounds, e.g. functional or chemically stable polymers.
  • Nanowires also: quantum wires
  • Such wires offer the possibility of producing highly sensitive sensors, catalytically active surfaces or optically transparent electrical conductors.
  • the article ADELUNG, R. et al. Nature Materials, Vol. 3, June 2004, p. 375-379 describes a relatively simple way of bringing a nanostructure, in particular a nanowire, onto a substrate, the latter following a microscopic preselection.
  • the substrate is first wet-chemically coated or by vapor deposition, e.g. with a brittle oxide film or a polymer, and then cracks are selectively generated in this layer, which extend to the substrate.
  • vapor deposition metal atoms are finally brought onto the substrate with the cracked film, wherein wire-shaped metal accumulations can form directly on the substrate only in the region of the cracks
  • wire-shaped metal accumulations can form directly on the substrate only in the region of the cracks
  • even more complex nanowire networks can be produced, eg a rectangular grid.
  • the article presented method is also suitable for the simultaneous use of multiple materials, for example for the production of alloy wires made of elemental metals.
  • the article presented method is also suitable for the simultaneous use of multiple materials, for example for the production of alloy wires made of elemental metals.
  • one wishes to create two metal wires extending parallel to one another and electrically insulated from one another they will have a distance of several 100 nanometers from each other in accordance with the structuring possibilities limited to the microscale.
  • US 4,525,919 provides a combination of epitaxial growth of the mask and selective etching to expose the substrate in a defined area. Such measures are complicated to control, time-consuming and thus hardly suitable for mass production.
  • a masking material is now used in which cracks can easily be caused, which only weakly haf ⁇ tet on the substrate and tends especially to form a tensile stress on the mask surface. This is the case, for example, when the individual particles of the mask layer at the interface with the substrate are forced to assume a greater distance from each other than in the volume of the mask material. The mask layer then contracts with increasing layer thickness, preferably at the surface, if permitted. However, this has the consequence that, in the event of cracking down to the substrate, forces arise in the masking film, which promote the partial winding of the film in the immediate vicinity of a crack.
  • a sufficiently thick film will detach from the crack and lift (delamination). This occurs at both opposite edges of the film along the crack, but remains limited to a near area around the crack, ie the film only rises locally.
  • Both the extent of delamination and the crack width can be controlled via the material parameters of the thin film, such as the film thickness, interfacial adhesion and stress.
  • a material can also be specifically influenced, for example by tempering or irradiation. Examples which may be mentioned are amorphous carbon or tem- pered photoresist (PMMA), which has become brittle.
  • FIG. 1 shows a sketch of the shadow mask produced according to the invention for the production of nanostructures
  • Fig. 2 shows the principle and a realized example of parallel nanowires (scanning electron micrograph);
  • nanoscale field effect transisitors nanoscale field effect transisitors
  • FIG. 5 illustrates an embodiment of the invention in which a) first the mask film is removed along defined lines and then b) a shadow mask analogous to FIG. 1 is created by cracking along the film curvature.
  • a relatively narrow passage opening is formed at some distance from the substrate over a much wider, exposed substrate surface. It is a particular advantage of the method that the rolling-up masking film binds contaminants to the substrate surface in general and lifts them off.
  • the "work surface" on which nanostructures are to be produced has to a certain extent the maximum cleanliness immediately after film detachment and has ideal dimensions in order to produce extremely sharp edge edges, since the mask is in the (sub) micrometer range above the Work surface is located.
  • Reference numeral 10 designates the cavity for structuring, reference numeral 12 the delaminated thin film, 14 the substrate.
  • the shadow mask formed by delamination allows the use of all known advantages of the shadow mask technique.
  • different materials can be introduced at variable angles in order to produce mixed substances or those having gradients in the composition.
  • the problem described above parallel, separated wires is treatable, as shown in FIG. 2.
  • Two materials A and B are successively placed on the work surface under substantially different entry angles and, if necessary, leave a gap uncovered.
  • the scanning electron micrograph shows a realization of two rather thick wires.
  • the underlying masking layer is usually much thicker than, for example, the material layers A and B, which are formed during nanowire formation.
  • the deposit can be additional
  • Reference numeral 16 denotes metal A, 18 metal B (nanowires).
  • control of the forces in the mask film is preferably to be designed in such a way that the force effect from the outside on the film can be controlled as desired and can take place without the additional input of material.
  • a simple possibility lies in the addition of magnetic particles to the masking material, which can be aligned in the applied film by an external magnetic field. If the opposite edges of the cracked film are e.g. repel magnetically, the shadow mask is opened further.
  • the mask material particles which exhibit high thermal expansion or shrinkage when energized or which exhibit a change in the extent of light emission e.g. the azobenzenes used in rewritable CDs. It may be expedient to arrange them in a masked manner and selectively in certain layers of the mask, in particular on the surface. If, for example, the mask surface expands under illumination in the first place, the opening width of the shadow mask decreases again.
  • nano-FET nanoscale field-effect transistor
  • FIG. 3 a shows substrate and masking film (here with crack and detachment) in side elevation and top view.
  • FIG. The top view reveals that the film extends only over a middle region of the substrate; two substrate edges have been left free by covering when applying the mask.
  • one of the previously left free substrate edges is covered with a temporary mask, and metal is projected at an angle through the shadow mask. ke brought to the substrate. The result is parallel, separate wires in the shadow space of the mask, each of which has electrical contact with one of the two metallized areas on the substrate edge. These contact surfaces act as leads to the nanowires, which can be bonded by conventional techniques.
  • Fig. 3 d) and e) show the large-area deposition of a semiconductor material 20 and the removal of the mask layer.
  • the substrate remains with the edge contacts, two nanowire metal electrodes ("source” and “drain”) and an intermediate semiconductor nanowire, as illustrated in FIG. 3 f).
  • the nano-FET is completed in FIG. 3 g) by first placing an insulator layer 22 and finally a metal layer 24 (not a nanowire) across the nanowire array.
  • the latter is the gate electrode, whose potential controls the charge carrier density in the semiconductor wire.
  • FIG. 4 shows yet another interesting variant of the production of sub-micron structures with shadow masks.
  • an ion beam By means of an ion beam, parts of the substrate are removed by sputtering, and trench-like structures are created.
  • ion bombardment can take place at defined angles and for defined periods of time in order to precisely control the morphology of the trenches.
  • the mask layer must be insensitive to the particle beam 26 (atoms, photons, electrons, etc.).
  • the present invention remedy this by teaching to systematically promote and exploit an already existing effect - namely the crack formation and detachment of films, which are often regarded as disturbing.
  • the order of these steps is immaterial to the result, as illustrated by FIG.
  • the mask is applied to an initially heated substrate (eg, silicon, 150 ° C.) and then quenched (eg by liquid nitrogen vapor deposition), bulges form along the weakest points in the film, the film being simultaneously detached from the substrate (FIG 5 a)).
  • a very brittle mask will already form cracks in the region of the smallest radii of curvature when the curvature is formed, that is to say on the curvature combs (FIG. 5 b)). Otherwise you can still convey the cracking even after the film detachment by additional tension.
  • the course of the bulges can, in principle, just like the course of tear patterns, be controlled by pre-structuring the mask on the microscale (see ADELUNG, R. et al., Nature materials, Vol. 3, June 2004, pp. 375-379 for examples).

Abstract

The invention relates to a method for producing submicron structures using a shadow mask, whereby a material charge and/or energy charge occurs through the openings of the shadow mask. Said method comprises the following steps: a film which is used as a shadow mask and which is made of a masking material is applied to the substrate, tears are produced in said film, said tears extending until the substrate, edge areas of the film arranged on the tears are detached thereby exposing the substrate and the material or the energy is applied to the exposed substrate by the tears, also above the exposed edge area of the shadow mask film.

Description

Verfahren zur Herstellung von Submikronstrukturen Process for the preparation of submicron structures
Die Erfindung betrifft die Herstellung von Submikronstrukturen, insbesondere von elek- Ironischen Bauelementen mit Abmessungen zwischen einigen Nanometern und wenigen Mikrometern, die Teilkomponenten in Submikrongröße aufweisen (z.B. Elektroden).The invention relates to the production of submicron structures, in particular of electronic components with dimensions ranging from a few nanometers to a few micrometers, which have sub-micron subcomponents (for example electrodes).
In dem Bestreben, integrierte Schaltungen und elektronische Bauelemente fortwährend zu verkleinern, wenden sich Forschung und Entwicklung mittlerweile den physikalisch klein- sten Mehrkomponentenstrukturen zu. Solche Strukturen bestehen ganz allgemein aus einer Mehrzahl über- und/oder nebeneinander angeordneter Materialansammlungen auf einem Substrat, wobei die Abmessung einer solchen Ansammlung in wenigstens einer Dimensi¬ on im Submikronbereich liegt, etwa Dünnschichten, Nanodrähte oder Quantumdots. Die Materialien, aus denen die einzelnen Ansammlungen gebildet werden, variieren von EIe- mentmetallen über Halbleiter und Metalloxidkeramiken bis hin zu organischen Verbin¬ dungen, z.B. funktionelle oder chemisch stabile Polymere.In an effort to reduce the size of integrated circuits and electronic components, research and development are now turning to the physically smallest multicomponent structures. Such structures generally consist of a plurality of over- and / or juxtaposed accumulations of material on a substrate, the dimension of such accumulation being in at least one dimension in the submicron range, such as thin films, nanowires or quantum dots. The materials from which the individual aggregates are formed vary from elemental metals to semiconductors and metal oxide ceramics to organic compounds, e.g. functional or chemically stable polymers.
Die präzise Anordnung von verschiedenen Materialkomponenten ist für Vorhersagbarkeit und Reproduzierbarkeit des Verhaltens einer Subrnikronstruktur wesentlich. Will man bei- spielsweise zwei elektrisch leitende Nanodrähte - eventuell aus verschiedenen Metallen - mit einem Abstand von wenigen 10 Nanometern zueinander parallel auf einem Substrat anordnen, um sodann ein drittes Material - z.B. ein Dielektrikum - zwischen diesen ein¬ zufügen, könnte schon die Fehlplatzierung von ein paar Hundert Metallatomen einen Kurzschluss ermöglichen und die aufwändig erzeugte Struktur unbrauchbar machen.The precise arrangement of different material components is essential for the predictability and reproducibility of the behavior of a subcrystalline structure. If, for example, two electrically conductive nanowires - possibly made of different metals - are to be arranged parallel to one another on a substrate at a distance of a few tens of nanometers, in order then to place a third material - e.g. a dielectric - ein¬ inflict between them, even the misplacement of a few hundred metal atoms could allow a short circuit and make the complex structure unusable.
Dabei ist bis heute sogar die definierte Anordnung eines einzelnen Nanodrahtes noch längst keine allgemein beherrschte Kunst. Typische Verfahren, die bisher zur Anwendung kommen, zeichnen sich durch extrem hohe Kosten aus, wie z.B. Elektronenstrahl- oder Photolithographie. Nanodrähte (auch: Quantendrähte) weisen typisch Längen von etlichen Mikrometern bei Durchmessern im Nanometerbereich auf. Solche Drähte bieten die Möglichkeit, hochemp¬ findliche Sensoren, katalytisch wirksame Oberflächen oder optisch transparente elektri¬ sche Leiter herzustellen.Even today, the defined arrangement of a single nanowire is far from being a generally dominated art. Typical processes that have been used so far are characterized by extremely high costs, such as electron beam or photolithography. Nanowires (also: quantum wires) typically have lengths of several microns with diameters in the nanometer range. Such wires offer the possibility of producing highly sensitive sensors, catalytically active surfaces or optically transparent electrical conductors.
Das Anordnen oder Ausrichten von Nanodrähten auf einem Substrat ist äußerst schwierig, da kaum geeignete Werkzeuge zur gezielten Manipulation von Nanoteilchen zur Verfü¬ gung stehen. Übliche Verfahren zur Mikrostrukturierung wie z.B. Röntgen-Lithographie scheitern bei Quantendrähten daran, dass die benötigten Strukturabmessungen deutlich kleiner als der Strahldurchmesser sind und das Licht nicht ohne weiteres fokussiert wer¬ den kann. Viele Verfahren zielen daher auf die Selbstorganisation von Metallatomen oder -Clustern auf dem Substrat ab, bei der sich die Drähte von selbst bilden. Dies ist allerdings meist nur unter sehr speziellen Bedingungen zu erreichen.Arranging or aligning nanowires on a substrate is extremely difficult, since hardly any suitable tools for the targeted manipulation of nanoparticles are available. Common methods of microstructuring such as e.g. In the case of quantum wires, X-ray lithography fails because the required structural dimensions are significantly smaller than the beam diameter and the light can not be focused without further ado. Many processes, therefore, aim at the self-assembly of metal atoms or clusters on the substrate where the wires self-assemble. However, this is usually only possible under very specific conditions.
Der Artikel ADELUNG, R. et al. nature materials, Vol. 3, June 2004, S. 375-379 be¬ schreibt einen relativ einfachen Weg, eine Nanostruktur, insbesondere einen Nanodraht, auf ein Substrat zu bringen, wobei dieser einer mikroskopischen Vorsixukturierung folgt. Dazu wird das Substrat zunächst nasschemisch oder durch Aufdampfen beschichtet, z.B. mit einem spröden Oxidfilm oder einem Polymer, und im Anschluss werden gezielt Risse in dieser Schicht erzeugt, die bis auf das Substrat reichen. Zum Beispiel mittels Dampf Abscheidung („Vapour Deposition") werden schließlich z.B. Metallatome auf das Substrat mit dem gerissenen Film gebracht, wobei sich nur im Bereich der Risse drahtförmige Me¬ tallansammlungen direkt auf dem Substrat ausbilden können. Gegebenenfalls kann der Film entfernt werden, so dass nur diese Nanodrähte zurück bleiben. Je nach vorgezeichne- ter Rissstruktur lassen sich so auch komplexere Nanodrahtnetzwerke herstellen, z.B. ein Rechteckgitternetz.The article ADELUNG, R. et al. Nature Materials, Vol. 3, June 2004, p. 375-379 describes a relatively simple way of bringing a nanostructure, in particular a nanowire, onto a substrate, the latter following a microscopic preselection. For this, the substrate is first wet-chemically coated or by vapor deposition, e.g. with a brittle oxide film or a polymer, and then cracks are selectively generated in this layer, which extend to the substrate. For example, by means of vapor deposition ("vapor deposition"), metal atoms are finally brought onto the substrate with the cracked film, wherein wire-shaped metal accumulations can form directly on the substrate only in the region of the cracks Depending on the prescribed crack structure, even more complex nanowire networks can be produced, eg a rectangular grid.
Das in dem o.g. Artikel vorgestellte Verfahren eignet sich zwar auch zur gleichzeitigen Verwendung mehrerer Materialien, beispielsweise zur Erzeugung von Legierungsdrähten aus Elementmetallen. Will man aber wie im obigen Beispiel zwei parallel verlaufende, voneinander elektrisch isolierte Metalldrähte schaffen, so werden diese entsprechend der auf die Mikroskala begrenzten Stnikturierungsmöglichkeiten etliche 100 Nanometer Ab¬ stand zueinander aufweisen.That in the og. Although the article presented method is also suitable for the simultaneous use of multiple materials, for example for the production of alloy wires made of elemental metals. However, if, as in the above example, one wishes to create two metal wires extending parallel to one another and electrically insulated from one another, they will have a distance of several 100 nanometers from each other in accordance with the structuring possibilities limited to the microscale.
Ein besserer Ansatz, mit Methoden der Mikrostrukturierung unmittelbar benachbarte Submikronstrukturen herzustellen, ist in der US 4 525 919 offenbart. Dabei wird das Sub- strat mit einer Schattenmaske versehen und unter einem Winkel gegen die Substratnorma¬ le mit Material besputtert. Die Schattenmaske wird durch eine Aussparung in einer das Substrat bedeckenden Maskierungsschicht realisiert, wobei der freiliegende Substratbe¬ reich zusätzlich von einer die erste Maskierungsschicht überlappenden zweiten Schicht abgeschattet wird. Die effektive Maskenöffnung ist somit kleiner als der freiliegende Sub¬ stratbereich. Materialeintrag unter einem Winkel kann nur zu einer teilweisen Bedeckung des Substrats führen. Ändert man den Winkel, werden andere Bereiche des „Schattenrau¬ mes" auf dem Substrat bedeckt. Insbesondere können so parallel verlaufende, separate Nanodrähte erzeugt werden.A better approach to fabricating directly adjacent submicron structures by microstructuring techniques is disclosed in US 4,525,919. In doing so, the sub- Strat provided with a shadow mask and sputtered at an angle against the Substratnorma¬ le with material. The shadow mask is realized by a recess in a masking layer covering the substrate, wherein the exposed substrate area is additionally shaded by a second layer overlapping the first masking layer. The effective mask opening is thus smaller than the exposed substrate area. Material entry at an angle can only result in partial coverage of the substrate. If the angle is changed, other areas of the "shadow space" on the substrate are covered, in particular so that parallel, separate nanowires can be produced.
Die Problematik dieses Verfahrens liegt allerdings in der erforderlichen Herstellung der Schattenmaske. Die US 4 525 919 sieht eine Kombination aus epitaktischem Wachstum der Maske und selektivem Ätzen zum Freilegen des Substrats in einem definierten Bereich vor. Derartige Maßnahmen sind kompliziert zu steuern, zeitintensiv und somit für eine Massenfertigung kaum geeignet.The problem of this method, however, lies in the required production of the shadow mask. US 4,525,919 provides a combination of epitaxial growth of the mask and selective etching to expose the substrate in a defined area. Such measures are complicated to control, time-consuming and thus hardly suitable for mass production.
Es ist deshalb Aufgabe der Erfindung, ein Verfahren anzugeben, mit dem sich Submikron- strukturen nach dem beschriebenen Konzept der Schattenmaske in einfacher Weise erzeu¬ gen lassen.It is therefore an object of the invention to specify a method with which submicron structures can be generated in a simple manner according to the described concept of the shadow mask.
Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Hauptanspruchs. Die Unteransprüche geben vorteilhafte Ausbildungen des Verfahrens an.The object is achieved by a method having the features of the main claim. The dependent claims indicate advantageous embodiments of the method.
Die Erfindung geht von dem in dem o.g. Artikel ausführlich beschriebenen Verfahren der kontrollierten Rissbildung aus, mit dem gezielt Schablonen („templates") für Nanodrähte erzeugt werden können. Insbesondere weist die Erfindung auch alle dort erläuterten Vor¬ teile auf.The invention proceeds from that in the o.g. In addition, the invention also has all the advantages explained there.
Als Fortentwicklung des Verfahrens in diesem Artikel wird nun ein Maskierungsmaterial verwendet, in dem sich leicht Risse hervorrufen lassen, das nur schwach am Substrat haf¬ tet und das vor allem zur Ausbildung einer Zugspannung an der Maskenoberfläche neigt. Dies ist etwa der Fall, wenn die einzelnen Partikel der Maskenschicht an der Grenzfläche zum Substrat gezwungen sind, zueinander einen größeren Abstand als im Volumen des Maskenmaterials einzunehmen. Die Maskenschicht zieht sich dann mit wachsender Schichtdicke bevorzugt an der Oberfläche zusammen, wenn ihr dies gestattet wird. Dies hat aber zur Folge, dass bei einer Rissbildung bis auf das Substrat Kräfte im Maskie¬ rungsfilm entstehen, die das teilweise Aufrollen des Filmes in unmittelbarer Nachbar¬ schaft eines Risses begünstigen. Ist die Haftung des Filmes am Substrat nicht zu hoch, wird sich ein ausreichend dicker Film ausgehend vom Riss ablösen und anheben (Delami- nierung). Dies geschieht an beiden gegenüberliegenden Filmkanten entlang des Risses, bleibt aber auf einen Nahbereich um den Riss begrenzt, d.h. der Film hebt sich nur lokal ab. Sowohl das Ausmaß der Delaminierung als auch die Rissbreite können über die Mate¬ rialparameter des Dünnfilmes kontrolliert werden, wie z.B. die Filmdicke, Grenzflächen¬ haftung und -Spannung. Hierzu kann ein Material auch gezielt beeinflusst werden, etwa durch Tempern oder Bestrahlung. Als Beispiele sind amorpher Kohlenstoff oder getem¬ perter - und dadurch brüchig gewordener - Photolack (PMMA) zu nennen.As a further development of the method in this article, a masking material is now used in which cracks can easily be caused, which only weakly haf¬ tet on the substrate and tends especially to form a tensile stress on the mask surface. This is the case, for example, when the individual particles of the mask layer at the interface with the substrate are forced to assume a greater distance from each other than in the volume of the mask material. The mask layer then contracts with increasing layer thickness, preferably at the surface, if permitted. However, this has the consequence that, in the event of cracking down to the substrate, forces arise in the masking film, which promote the partial winding of the film in the immediate vicinity of a crack. If the adhesion of the film to the substrate is not too high, a sufficiently thick film will detach from the crack and lift (delamination). This occurs at both opposite edges of the film along the crack, but remains limited to a near area around the crack, ie the film only rises locally. Both the extent of delamination and the crack width can be controlled via the material parameters of the thin film, such as the film thickness, interfacial adhesion and stress. For this purpose, a material can also be specifically influenced, for example by tempering or irradiation. Examples which may be mentioned are amorphous carbon or tem- pered photoresist (PMMA), which has become brittle.
Es wird erfindungsgemäß vorgeschlagen, die abgelösten Filmkanten nun als Öffnung einer Schattenmaske zu nutzen, durch die Material und/oder Energie ggf. unter einem Winkel auf das gerade freigelegte Substrat eingetragen werden kann.It is proposed according to the invention, to use the detached film edges now as an opening of a shadow mask, can be entered by the material and / or energy optionally at an angle to the just exposed substrate.
Die Erfindung wird im Folgenden näher erläutert und anhand eines Ausfuhrungsbeispiels verdeutlicht. Dazu dienen die folgenden Figuren:The invention will be explained in more detail below and illustrated with reference to an exemplary embodiment. The following figures serve this purpose:
Fig. 1 zeigt eine Skizze der erfindungsgemäß erzeugten Schattenmaske zur Herstel¬ lung von Nanostrukturen;FIG. 1 shows a sketch of the shadow mask produced according to the invention for the production of nanostructures; FIG.
Fig. 2 zeigt das Prinzip und ein realisiertes Beispiel für parallel verlaufende Nano- drähte (Rasterelektronenmikroskop-Aufnahme);Fig. 2 shows the principle and a realized example of parallel nanowires (scanning electron micrograph);
Fig. 3 stellt ein Fertigungskonzept für nanoskalige Feldeffekttransisitoren (nano-3 shows a production concept for nanoscale field effect transisitors (nano
FET) mit den Mitteln der Erfindung dar;FET) by the means of the invention;
Fig. 4 zeigt die Möglichkeit auf, mit Schattenmasken gezielt Material aus dem Substrat zu entfernen;4 shows the possibility of selectively removing material from the substrate using shadow masks;
Fig. 5 stellt eine Ausgestaltung der Erfindung dar, bei der a) zuerst der Maskenfilm entlang definierter Linien abgelöst wird und dann b) durch Rissbildung ent¬ lang der Filmwölbung eine Schattenmaske analog zu Fig. 1 entsteht. Die kontrollierte Rissbildung in der Maskierungsschicht mit anschließender Teilablösung der Schicht führt, wie Fig. 1 verdeutlicht, unmittelbar auf eine Schattenmaskierung des Substrats. Eine relativ schmale Durchlassöffhung wird in einigem Abstand zum Substrat über einer deutlich breiteren, freigelegten Substratfläche gebildet. Es ist dabei ein beson- derer Vorzug des Verfahrens, dass der sich aufrollende Maskierungsfilm Verunreinigun¬ gen an der Substratoberfläche i. a. bindet und mit abhebt. Die „Arbeitsfläche", auf der Na- nostrukturen erzeugt werden sollen, weist gewissermaßen die maximale Sauberkeit unmit¬ telbar nach der Filmablösung auf und hat ideale Abmessungen um äußerst scharfe Schat¬ tenkanten zu produzieren, da sich die Maske im (Sub)mikrometerbereich über der Arbeits- fläche befindet.FIG. 5 illustrates an embodiment of the invention in which a) first the mask film is removed along defined lines and then b) a shadow mask analogous to FIG. 1 is created by cracking along the film curvature. The controlled crack formation in the masking layer with subsequent partial detachment of the layer, as illustrated in FIG. 1, leads directly to shadow masking of the substrate. A relatively narrow passage opening is formed at some distance from the substrate over a much wider, exposed substrate surface. It is a particular advantage of the method that the rolling-up masking film binds contaminants to the substrate surface in general and lifts them off. The "work surface" on which nanostructures are to be produced has to a certain extent the maximum cleanliness immediately after film detachment and has ideal dimensions in order to produce extremely sharp edge edges, since the mask is in the (sub) micrometer range above the Work surface is located.
Bezugszeichen 10 bezeichnet den Hohlraum zur Struktureierung, Bezugszeichen 12 den delaminierten Dünnfilm, 14 das Substrat.Reference numeral 10 designates the cavity for structuring, reference numeral 12 the delaminated thin film, 14 the substrate.
Die durch Delaminierung gebildete Schattenmaske lässt die Nutzung aller bekannten Vor¬ teile der Schattenmaskentechnik zu. Insbesondere können gleichzeitig oder nacheinander verschiedene Materialen unter variablen Winkeln eingetragen werden, um Mischsubstan¬ zen oder solche mit Gradienten in der Zusammensetzung herzustellen. Auch das eingangs geschilderte Problem paralleler, separierter Drähte ist behandelbar, wie Fig. 2 zeigt. Zwei Materialien A und B werden nacheinander unter wesentlich verschiedenen Eintragswin¬ keln auf die Arbeitsfläche gebracht und lassen ggf. einen Zwischenraum unbedeckt. Die Rasterlektronenmikroskop-Aufnahme zeigt eine Realisierung zweier eher dicker Drähte.The shadow mask formed by delamination allows the use of all known advantages of the shadow mask technique. In particular, at the same time or in succession, different materials can be introduced at variable angles in order to produce mixed substances or those having gradients in the composition. The problem described above parallel, separated wires is treatable, as shown in FIG. 2. Two materials A and B are successively placed on the work surface under substantially different entry angles and, if necessary, leave a gap uncovered. The scanning electron micrograph shows a realization of two rather thick wires.
Es sollte darauf hingewiesen werden, dass in der schematischen Skizze der Fig. 2 zur Ver- deutlichung auf Maßstabstreue verzichtet wurde. Die unten liegende Maskierungsschicht ist normalerweise sehr viel dicker als etwa die Materialschichten A und B, die während der Nanodrahterzeugung entstehen. Gleichwohl kann sich die Ablagerung zusätzlichenIt should be pointed out that in the schematic sketch of FIG. 2 in order to clarify scale accuracy has been omitted. The underlying masking layer is usually much thicker than, for example, the material layers A and B, which are formed during nanowire formation. However, the deposit can be additional
Materials auf den bereits abgelösten Film dahingehend auswirken, dass sich die Kräfte imMaterial on the already detached film to the effect that the forces in the
Film ändern, die das Aufrollen bewirken. Neben der unabsichtlichen Änderung der Schat- tenmaskenöffnung, die man zu erwägen hat, bietet dieser Umstand natürlich auch dieChange the film that causes it to roll up. In addition to the unintentional change of the shadow mask opening, which one has to consider, this circumstance naturally also offers the
Möglichkeit, den Öffnungsdurchmesser in gewissen Grenzen zu kontrollieren.Possibility to control the opening diameter within certain limits.
Bezugszeichen 16 bezeichnet Metall A, 18 Metall B (Nanodrähte).Reference numeral 16 denotes metal A, 18 metal B (nanowires).
Ein Beispiel hierfür wäre etwa die zusätzliche Deponierung von Maskenmaterial auf dem bereits abgelösten Film, um die Öffnung nachträglich zu verändern. Die Kontrolle der Kräfte im Maskenfilm ist aber vorzugsweise so auszugestalten, dass die Krafteinwirkung von außen auf den Film beliebig steuerbar ist und ohne den zusätzlichen Eintrag von Material erfolgen kann.An example of this would be the additional deposit of masking material on the already detached film in order to change the opening afterwards. However, the control of the forces in the mask film is preferably to be designed in such a way that the force effect from the outside on the film can be controlled as desired and can take place without the additional input of material.
Eine einfache Möglichkeit liegt in der Beimengung magnetischer Partikel zum Maskie¬ rungsmaterial, die im aufgetragenen Film durch ein externes Magnetfeld ausgerichtet wer¬ den können. Wenn sich die gegenüberliegenden Kanten des gerissenen Filmes z.B. ma¬ gnetisch abstoßen, wird die Schattenmaske weiter geöffnet.A simple possibility lies in the addition of magnetic particles to the masking material, which can be aligned in the applied film by an external magnetic field. If the opposite edges of the cracked film are e.g. repel magnetically, the shadow mask is opened further.
Man kann dem Maskenmaterial ebenso Partikel hinzufügen, die bei Energiezufuhr hohe thermische Ausdehnung oder Schrumpfung aufweisen oder eine Ausdehnungsänderung durch Licht zeigen wie z.B. die in wieder beschreibbaren CDs verwendeten Azobenzole. Dabei kann es zweckmäßig sein, sie während der Maskierung flächig und selektiv in be- stimmten Schichten der Maske anzuordnen, insbesondere an der Oberfläche. Falls sich beispielsweise in erster Linie die Maskenoberfläche unter Beleuchtung ausdehnt, nimmt die Öffhungsbreite der Schattenmaske wieder ab.It is also possible to add to the mask material particles which exhibit high thermal expansion or shrinkage when energized or which exhibit a change in the extent of light emission, e.g. the azobenzenes used in rewritable CDs. It may be expedient to arrange them in a masked manner and selectively in certain layers of the mask, in particular on the surface. If, for example, the mask surface expands under illumination in the first place, the opening width of the shadow mask decreases again.
Es soll besonders betont werden, dass das hier vorgeschlagene Verfahren im Gegensatz zur Schattenmasken-Methode mit Epitaxie und Ätzung die interessante Möglichkeit bietet, die Öffnung der Schattenmaske weitestgehend wieder zu verschließen, da ja kein Material entfernt wird. Somit ist es prinzipiell möglich, sehr komplexe Nanostrukturen zu realisie¬ ren, etwa eine Reihe breiterer Drähte nebeneinander auf dem Substrat mit darauf angeord¬ neten schmaleren Kontakten.It should be emphasized that the method proposed here, in contrast to the shadow mask method with epitaxy and etching offers the interesting opportunity to close the opening of the shadow mask as far as possible, since no material is removed. Thus, it is possible in principle to realize very complex nanostructures, for example a row of wider wires next to one another on the substrate with narrower contacts arranged thereon.
Ein gutes Ausführungsbeispiel für eine komplexere Nanostruktur, die sich nach dem hier vorgestellten Verfahren leicht herstellen lässt, ist ein nanoskaliger Feldeffektransistor (na- no-FET). hi den Figuren 3 a) bis g) sind die einzelnen Fertigungsschritte skizziert:A good example for a more complex nanostructure, which can easily be produced by the method presented here, is a nanoscale field-effect transistor (nao-FET). The individual production steps are outlined in FIGS. 3 a) to g):
Fig. 3 a) zeigt Substrat und Maskierungsfilm (hier mit Riss und Ablösung) in Seitenan¬ sicht und Aufsicht. Die Aufsicht lässt erkennen, dass sich der Film nur über einen Mittel¬ bereich des Substrats erstreckt; zwei Substratränder sind frei geblieben durch Abdeckung beim Auftragen der Maske.FIG. 3 a) shows substrate and masking film (here with crack and detachment) in side elevation and top view. FIG. The top view reveals that the film extends only over a middle region of the substrate; two substrate edges have been left free by covering when applying the mask.
hi Fig. 3 b) und c) wird je einer der zuvor frei gebliebenen Substratränder mit einer tempo¬ rären Maske abgedeckt, und es wird Metall je unter einem Winkel durch die Schattenmas- ke auf das Substrat gebracht. Es entstehen parallele, separate Drähte im Schattenraum der Maske, von denen jeder zu einer der beiden metallisierten Flächen am Substratrand elek¬ trischen Kontakt hat. Diese Kontaktflächen fungieren als Zuleitungen zu den Nanodräh- ten, die mit konventioneller Technik gebondet werden können.In FIG. 3 b) and c), one of the previously left free substrate edges is covered with a temporary mask, and metal is projected at an angle through the shadow mask. ke brought to the substrate. The result is parallel, separate wires in the shadow space of the mask, each of which has electrical contact with one of the two metallized areas on the substrate edge. These contact surfaces act as leads to the nanowires, which can be bonded by conventional techniques.
Fig. 3 d) und e) zeigen das großflächige Aufbringen eines Halbleitermaterials 20 und das Entfernen der Maskenschicht. Zurück bleibt das Substrat mit den Randkontakten, zwei Nanodraht-Metallelektroden („Source" und „Drain") und einem dazwischen liegenden Halbleiter-Nanodraht, wie Fig. 3 f) verdeutlicht.Fig. 3 d) and e) show the large-area deposition of a semiconductor material 20 and the removal of the mask layer. The substrate remains with the edge contacts, two nanowire metal electrodes ("source" and "drain") and an intermediate semiconductor nanowire, as illustrated in FIG. 3 f).
Der nano-FET wird in Fig. 3 g) vervollständigt, indem quer über die Nanodrahtanordnung zunächst eine Isolatorschicht 22 und zuletzt eine Metallschicht 24 (kein Nanodraht) gelegt werden. Letztere ist die Gate-Elektrode, über deren Potenzial die Ladungsträgerdichte im Halbleiterdraht gesteuert wird.The nano-FET is completed in FIG. 3 g) by first placing an insulator layer 22 and finally a metal layer 24 (not a nanowire) across the nanowire array. The latter is the gate electrode, whose potential controls the charge carrier density in the semiconductor wire.
Schließlich zeigt Fig. 4 noch eine weitere interessante Variante der Herstellung von Sub- mikronstrukturen mit Schattenmasken auf. Mittels eines Ionenstrahls werden Teile des Substrats durch Sputtern herausgelöst, und es entstehen grabenartige Strukturen. Auch hier kann der Ionenbeschuss unter definierten Winkeln und für definierte Zeiträume erfol- gen, um die Morphologie der Gräben genau zu kontrollieren. Die Maskenschicht muss da¬ zu natürlich gegen den Partikelstrahl 26 (Atome; Photonen, Elektronen...) unempfindlich sein.Finally, FIG. 4 shows yet another interesting variant of the production of sub-micron structures with shadow masks. By means of an ion beam, parts of the substrate are removed by sputtering, and trench-like structures are created. Here, too, ion bombardment can take place at defined angles and for defined periods of time in order to precisely control the morphology of the trenches. Of course, the mask layer must be insensitive to the particle beam 26 (atoms, photons, electrons, etc.).
Das technologische Potenzial zur Erzeugung komplexer Submikronstrukturen mittels Schattenmasken ist anhand voran stehender Beispiele deutlich und dem Fachmann im großen und ganzen bekannt. Durch vielfältige Kombinationsmöglichkeiten aus Materiali¬ en, Grabenstrukturen und präzisen Kontaktierungen sind neben einem nano-FET noch vie¬ le andere Bauelemente an der Grenze zur atomaren Skala realisierbar.The technological potential for generating complex submicron structures by means of shadow masks is clear from the examples given above and generally known to the person skilled in the art. Due to the many possible combinations of materials, trench structures and precise contacts, many other components on the border to the atomic scale can be realized in addition to a nano-FET.
Der Fachmann weiß aber auch, dass angemessene Schattenmasken bislang nur mit erheb¬ lichem Aufwand und nicht ohne weiteres für Massenprodukte zur Verfügung gestellt wer¬ den können.However, the person skilled in the art also knows that appropriate shadow masks can hitherto only be made available with considerable expenditure and not readily for mass products.
Die vorliegende Erfindung schafft hier Abhilfe, indem sie lehrt, einen ohnehin vorhande- nen Effekt - nämlich die oft als störend angesehene Rissbildung und Ablösung von Fil¬ men — systematisch zu begünstigen und auszunutzen. Für die Realisierung des hier beschriebenen Verfahrens kommt es darauf an, dass ein Maskenfilm auf dem Substrat geschaffen wird, der sich lokal einreißen und ablösen lässt. Doch die Reihenfolge dieser Schritte ist für das Ergebnis unwesentlich, wie anhand von Fig. 5 verdeutlicht wird.The present invention remedy this by teaching to systematically promote and exploit an already existing effect - namely the crack formation and detachment of films, which are often regarded as disturbing. For the implementation of the method described here, it is important that a masking film is created on the substrate, which can tear and detach locally. However, the order of these steps is immaterial to the result, as illustrated by FIG.
Bringt man die Maske auf ein zunächst erwärmtes Substrat (z.B. Silizium, 150 0C) und schreckt man dieses hiernach ab (z.B. durch Flüssigstickstoffbedampfung), so bilden sich Auswölbungen entlang der schwächsten Stellen im Film, wobei der Film zugleich vom Substrat abgelöst wird (Fig. 5 a)). Eine sehr spröde Maske wird bereits bei der Ausbildung der Wölbungen Risse im Bereich der kleinsten Krümmungsradien ausbilden, also auf den Wölbungskämmen (Fig. 5 b)). Ansonsten kann man durch zusätzliche Zugspannung die Rissbildung auch nach der Filmablösung noch befördern.If the mask is applied to an initially heated substrate (eg, silicon, 150 ° C.) and then quenched (eg by liquid nitrogen vapor deposition), bulges form along the weakest points in the film, the film being simultaneously detached from the substrate (FIG 5 a)). A very brittle mask will already form cracks in the region of the smallest radii of curvature when the curvature is formed, that is to say on the curvature combs (FIG. 5 b)). Otherwise you can still convey the cracking even after the film detachment by additional tension.
Der Verlauf der Wölbungen kann prinzipiell genauso wie der Verlauf von Rissmustern durch eine Vorstrukturierung der Maske auf der Mikroskala (siehe ADELUNG, R. et al. nature materials, Vol. 3, June 2004, S. 375-379 für Beispiele) gesteuert werden. The course of the bulges can, in principle, just like the course of tear patterns, be controlled by pre-structuring the mask on the microscale (see ADELUNG, R. et al., Nature materials, Vol. 3, June 2004, pp. 375-379 for examples).

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Submikronstrukturen unter Nutzung einer Schat- tenmaske, wobei ein Materialeintrag und/oder Energieeintrag durch die Öffnungen der1. A method for the production of submicron structures using a shadow mask, wherein a material input and / or energy input through the openings of the
Schattenmaske erfolgt, mit den folgenden Schritten :Shadow mask is done, with the following steps:
Aufbringen eines als Schattenmaske dienenden Films aus Maskierungsmaterial auf das Substrat,Applying a shadow mask film of masking material to the substrate,
Erzeugen von Rissen in diesem Film, die bis auf das Substrat reichen,Creating cracks in this film that reach down to the substrate,
Ablösung von den Rissen eng benachbarten Randbereichen des Films unter Freile¬ gung des Substrats undDetachment from the cracks closely adjacent edge regions of the film under Freile¬ supply of the substrate and
Einbringen des Materials und/oder der Energie durch die Rissöffnungen auf das freiliegende Substrat auch unter die abgelösten Randbereiche des Schattenmasken¬ films.Introducing the material and / or the energy through the crack openings onto the exposed substrate even under the detached edge regions of the shadow mask film.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor dem Aufbringen des Films dem Maskierungsmaterial Partikel beigemengt werden, die ihre geometrische Form infolge eines Energieeintrags ändern können.2. The method according to claim 1, characterized in that before the application of the film, the masking material particles are added, which can change their geometric shape due to an energy input.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass Partikel mit einem durch Energieeintrag veränderlichen Volumen eingesetzt werden.3. The method according to claim 2, characterized in that particles are used with a variable by energy input volume.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Energie in Form von Licht in die Partikel eingetragen wird.4. The method according to any one of claims 2 or 3, characterized in that the energy is introduced in the form of light in the particles.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass magnetische Partikel dem Maskierungsmaterial beigemengt werden. 5. The method according to claim 1, characterized in that magnetic particles are added to the masking material.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnungsbreite der Schattenmaske während des Herstellens der Submikronstruk- tur gezielt verändert wird.6. The method according to any one of the preceding claims, characterized in that the opening width of the shadow mask is selectively changed during the manufacture of the submicron structure.
7. Verfahren nach einem der Ansprüche 1 bis 4 oder 6, dadurch gekennzeichnet, dass eine gesteuerte Beleuchtung des Filmes auf dem Substrat erfolgt.7. The method according to any one of claims 1 to 4 or 6, characterized in that a controlled illumination of the film takes place on the substrate.
8. Verfahren nach einem der Ansprüche 1, 5 oder 6, dadurch gekennzeichnet, dass ein gesteuertes Magnetfeld auf den Film im Bereich der Risse einwirkt. 8. The method according to any one of claims 1, 5 or 6, characterized in that a controlled magnetic field acts on the film in the region of the cracks.
EP05804015A 2004-10-22 2005-10-17 Method for producing submicron structures Withdrawn EP1803148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051662A DE102004051662B3 (en) 2004-10-22 2004-10-22 Process for the preparation of submicron structures
PCT/DE2005/001852 WO2006042519A1 (en) 2004-10-22 2005-10-17 Method for producing submicron structures

Publications (1)

Publication Number Publication Date
EP1803148A1 true EP1803148A1 (en) 2007-07-04

Family

ID=35811536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05804015A Withdrawn EP1803148A1 (en) 2004-10-22 2005-10-17 Method for producing submicron structures

Country Status (4)

Country Link
US (1) US7718349B2 (en)
EP (1) EP1803148A1 (en)
DE (1) DE102004051662B3 (en)
WO (1) WO2006042519A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056879A1 (en) * 2005-11-28 2007-05-31 Christian-Albrechts-Universität Zu Kiel Nano-connection producing method for use in industrial manufacturing process, involves covering defined area with strip, and producing crack pattern comprising crack lines by inducing stress in strip, such that nano-connections are formed
US7749784B2 (en) * 2005-12-30 2010-07-06 Ming-Nung Lin Fabricating method of single electron transistor (SET) by employing nano-lithographical technology in the semiconductor process
EP3366639A1 (en) 2017-02-28 2018-08-29 Evonik Degussa GmbH Method for producing structured coatings
KR102421575B1 (en) * 2017-12-01 2022-07-18 삼성디스플레이 주식회사 Organic light-emitting apparatus and the method for manufacturing of the organic light-emitting display apparatus
CN112047296B (en) * 2020-09-18 2022-07-29 南开大学 Method for realizing bidirectional atomic switch by thermal expansion of light-operated substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525919A (en) * 1982-06-16 1985-07-02 Raytheon Company Forming sub-micron electrodes by oblique deposition
RU2094902C1 (en) * 1994-02-11 1997-10-27 Институт физики полупроводников СО РАН Method for producing submicron and nanometer components of solid-state devices
AU3970401A (en) * 1999-11-29 2001-06-04 Trustees Of The University Of Pennsylvania, The Fabrication of nanometer size gaps on an electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006042519A1 *

Also Published As

Publication number Publication date
US7718349B2 (en) 2010-05-18
DE102004051662B3 (en) 2006-04-20
US20080090181A1 (en) 2008-04-17
WO2006042519A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
DE112016000691B4 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
EP2748107B1 (en) Method for producing and aligning nanowires and applications of such a method
DE60204476T2 (en) PROCESS FOR LOCALIZED GROWTH OF NANOROES AND METHOD FOR PRODUCING A SELF-ALIGNED CATHODE USING THE NANO-EEL GROWTH METHOD
DE102004036734A1 (en) Cost-effective organic solar cell and method of manufacture
EP2891194B1 (en) Process for producing a dielectric elastomer stack actuator
WO2006042519A1 (en) Method for producing submicron structures
EP1955364A1 (en) Method for producing a plurality of regularly arranged nanoconnections on a substrate
DE112004001881B4 (en) Process for the production of nanowires
EP3791408B1 (en) Method for producing an atom trap, and atom trap
WO2020221525A1 (en) Method for producing a 2d material, 2d material, and the uses thereof
WO2020207801A1 (en) Method for producing an ion trap
DE19619287C2 (en) Process for creating structures from nanoparticles
DE112010002623B4 (en) Method for providing an electrical connection to graphene
DE102008016613A1 (en) Method for producing an electrical component having at least one dielectric layer and an electrical component having at least one dielectric layer
WO2006053753A1 (en) Nanostructured carrier, method for the production thereof and use thereof
EP1656702B1 (en) Method for producing vertical nano-transistor
EP1759247B1 (en) Method for the electrostatic structuring of a substrate surface and raster probe lithography method
DE102004058765B4 (en) Electronic nanodevice with a tunnel structure and method of manufacture
DE10130218A1 (en) Device for patch clamping vesicles and method for their production
DE102006043386A1 (en) Electrical features improvement method for nano-electronic structure, involves arranging nanoelectronic structure between two electrodes, applying metallic salt solution on nanowires and nanotubes
DE102007056992B4 (en) Method for producing submicrometer structures on a pronounced topography
DE102007010462A1 (en) Method for manufacturing micro-mechanical micromechanical particle radiation source, involves fixing surface layer made of electrical semi-conducting or conducting material on surface of substrate
EP1364394B1 (en) Method for producing structures on the nanometric scale
DE112021007839T5 (en) METHOD FOR PERFORMING A MECHANICAL ADHESION TEST FOR THIN FILM INTERFACES
DE102004015069B9 (en) A method for generating a regular structure of matter building blocks and a structure comprising such a structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20091104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501