EP1799886A1 - Indium nitride layer production - Google Patents

Indium nitride layer production

Info

Publication number
EP1799886A1
EP1799886A1 EP05802711A EP05802711A EP1799886A1 EP 1799886 A1 EP1799886 A1 EP 1799886A1 EP 05802711 A EP05802711 A EP 05802711A EP 05802711 A EP05802711 A EP 05802711A EP 1799886 A1 EP1799886 A1 EP 1799886A1
Authority
EP
European Patent Office
Prior art keywords
alloy
layer
inn
column
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05802711A
Other languages
German (de)
French (fr)
Inventor
Bernard Gil
Olivier Gérard Serge BRIOT
Sandra Ruffenach
Bénédicte 81 rue Marius Carrieu MALEYRE
Thierry Joseph Roland Cloitre
Roger-Louis Aulombard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Montpellier 2 Sciences et Techniques
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Montpellier 2 Sciences et Techniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Montpellier 2 Sciences et Techniques filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1799886A1 publication Critical patent/EP1799886A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types

Definitions

  • the present invention relates to the production of indium nitride (InN).
  • InN indium nitride
  • the indium nitride InN has remained little known and little used, because of its difficulty of manufacture. Recently, new efforts have been made to improve the manufacture of this material and to specify its physical properties. Fundamental features, such as gap energy, have been completely revised, and the potential of this material for electronic components has been confirmed.
  • LEDs diodes
  • LDs laser diodes
  • the emission and detection spectrum of diodes (LEDs) and laser diodes (LDs) could be extended to the infrared (for telecommunications, analysis, imagery, ...); in electronics, transistors working at higher temperature and at higher power could be found, thus giving microwave devices (for communication, radars, ).
  • the current InN realization utilizes crystal growth techniques, such as vapor phase epitaxy from organometallics
  • InN by MOVPE on a GaN substrate tends not to be uniformly on the surface, but inhomogeneously so as to cause island-like InN gatherings (see, for example, O.Briot et al., in Applied Physics Letters 83, 14 (2003) 2919).
  • InN nucleation layers have been tested, confining defects (such as dislocations) and having a better quality surface for the subsequent growth of a useful InN layer (see, for example, the article by Y. Saito, in Jpn J. Appl Phys., Part 2 40, L91 (1991)).
  • AIN nucleation layers on which InN layers have been epitaxially grown have been tested (see, for example, the article by H. Lu et al., In Appl Phys Letter 79, 1489 (2001)).
  • GaN and InN nucleation layers formed at low temperatures have been tested (see, for example, the article by M. Higashiwaki and T. Matsui, in Jpn J. Appl Phys., Part 241, L540 (2002). ).
  • a first object of the invention is to provide an InN layer of crystalline quality superior to that which exists in the state of the art, especially with fewer internal crystallographic defects such as dislocations.
  • a second object of the invention is to find a substrate with crystalline growth of InN which makes it possible to obtain a layer of InN having a quality conform to that which said first goal wants to achieve.
  • a third object of the invention is that this substrate contains very little or no oxygen, in order to simplify chemical etching treatments that can be implemented during the production of the substrate and / or the InN layer.
  • the present invention attempts to improve the situation by proposing, in a first aspect, a structure for an application in electronics, optics or optoelectronics, comprising an alloy layer of at least one atomic element of the column. II of the periodic table, and / or of at least one atomic element of column IV of the periodic table, and of N 2 (this alloy then being denoted II-IV-N 2 ), characterized in that it comprises in addition, a layer of InN.
  • the InN layer is on the II-IV-N2 alloy layer
  • the structure further comprises, under the alloy II-IV-N 2 , a support structure made of AlN, GaN, SiC or Si,
  • the structure further comprises, under this support structure, a crystalline support substrate,
  • the layer of M-IV-N 2 has a thickness sufficient to be a buffer layer between the support structure and the InN layer, and in particular by confining crystallographic defects within it,
  • alloy II - IV - N 2 is chosen from the following possible combinations: (Mg 1 Ca 1 Zn 1 Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 ,
  • the invention proposes a process for producing an indium nitride layer, characterized in that comprises a step of crystalline growth of an InN layer on an alloy layer of at least one atomic element of column II, and / or of at least one atomic element of column IV and N 2 (this alloy being then denoted H-IV-N 2 ).
  • Other possible characteristics of this process are:
  • the growth of InN is carried out at a temperature of less than or equal to approximately 700 ° C.
  • the process further comprises a preliminary step of crystalline growth of the H-IV-N 2 layer on a support structure made of AlN, GaN, SiC or Si,
  • the process furthermore comprises an initial crystalline growth step of this support structure on a support substrate made of crystalline material,
  • a crystalline growth is chosen from the following techniques: MOVPE and MBE.
  • the invention provides a wafer comprising an upper layer made of an alloy of at least one atomic element of column II of the periodic table, and / or of at least one atomic element of column IV of the periodic classification, and N 2 (the alloy then being denoted H-IV-N 2 ), characterized in that this upper layer has a sufficient thickness to form a buffer layer.
  • an alloy of at least one atomic element of column II of the periodic table and / or of at least one atomic element of column IV of the periodic classification
  • N 2 the alloy then being denoted H-IV-N 2
  • alloy II - IV - N 2 is chosen from the following possible combinations: (Mg, Ca, Zn, Cd) - (C, Si, Ge, Sn, Pb) - N 2 ; the thickness of the upper layer is between about 0.1 micrometer and 5 micrometers;
  • the wafer further comprises, under the H-IV-N 2 alloy, a support structure made of AlN, GaN, SiC or Si;
  • the wafer further comprises, under the support structure, a crystalline support substrate.
  • the invention proposes a use of a wafer comprising in its upper part an alloy of at least one atomic element of column II of the periodic table, and / or at least one atomic element of the column IV of the Periodic Table, and N 2 (the alloy then being denoted H-IV-N 2 ) as a substrate for the crystal growth of InN.
  • the structure according to the invention is intended for applications in optics, optoelectronics or microelectronics.
  • the structure according to the invention comprises a layer of InN and an alloy consisting of at least one element of family II, and / or of at least one element of family IV and N 2 , this alloy then being denoted H -IV-N 2 .
  • the structure according to the invention comprises a layer of InN directly on an H-IV-N 2 alloy.
  • the H-IV-N 2 alloy then forms a substrate or pseudo-substrate for the growth of InN.
  • the alloy II - IV - N 2 is chosen from the various alloys obtained by the set of possible combinations: (Mg, Ca, Zn, Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 .
  • the Applicant has determined that a layer of InN deposited on an H-IV-N 2 alloy had a crystalline quality, and physical, electronic properties very significantly improved compared to the state of the art (see in particular the experience results later). This result may be due to the fact that the materials U-IV-N 2 are materials that are close to InN, and therefore have similar physical properties.
  • a determining criterion for the choice of a substrate is its mesh parameter, which makes it possible to predict a "mesh mismatch" with the epitaxial layer (expressed in percent), the choice of an H-IV-N alloy substrate. 2 therefore seems particularly judicious, given the proximity of their respective mesh parameters with that of TInN.
  • InN has about 9% of mismatch with ZnSiN 2 , and about 10% with ZnGeN 2 .
  • the H-IV-N 2 alloys have good mechanical compatibility with IMnN during changes in thermal conditions.
  • the Applicant has further found, during thermogravimetric measurements, that ZnSiN 2 retains its mechanical and crystallographic strength at 700 ° C.
  • the epitaxy of InN being carried out at a temperature conventionally lower than about 700 ° C.
  • the alloys H-IV-N 2 are therefore stable substrates.
  • H-IV-N 2 alloys having little or no oxygen, chemical etching treatments can be implemented (at the time of achieving the desired structure, for example in the context of a smoothing or a surface cleaning) fearing significantly less wear or deterioration of the devices used with devices used on oxygen-containing materials (which are harder to work).
  • the material II-IV-N 2 itself being deposited by epitaxy on another substrate we will speak here of "pseudo-substrates" for the deposition of indium nitride, and materials and structures associated with indium nitride.
  • these alloys H-IV-N 2 , ZnSiN 2 and ZnGeN 2 have been studied in practice and it turns out that their mesh parameters are close to that of GaN. It has therefore been envisaged to form electronic devices based on these two materials, by depositing them either on GaN or on sapphire.
  • the H-IV-N 2 alloy is preferably in the form of a layer 2 produced by crystalline growth on a wafer 3 made of crystalline material thus forming a support.
  • this wafer 3 may be massive (“bulk”) and made of a material such as sapphire (Al 2 Oa), Si (111) or SiC.
  • this wafer 3 may be composed of a support substrate 3a made of crystalline material and a support layer 3b, the support substrate possibly being, for example, sapphire or SiC, and the support layer 3b of the GaN of AIN, SiC, or Si (111) previously epitaxially on the support substrate.
  • the epitaxial surface of the wafer 3 can be worked so as to improve its physical properties for the crystal growth of the H-IV-N 2 alloy.
  • One or more of the following techniques may be implemented: polishing, chemical etching, or other techniques known to those skilled in the art.
  • H-IV-N 2 can be done by multiple epitaxial techniques such as MOVPE or MBE.
  • MOVPE is often used more for easier industrialization, and applies well to compounds of the type (Zn 1 Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 .
  • MBE is more suitable for the development of materials containing Mg and Ca, the latter species having no easy-to-use precursors of MOVPE.
  • MOVPE the technique commonly used is to promote chemical reactions between the precursors of the elements of the alloy (II, IV and
  • the precursors of the element II conventionally employed are dimethylzinc (DMZn) or diethylzinc
  • TMSn tetramethyltin
  • TMPb 1 TEPb tetramethylplomb
  • the precursor of N 2 conventionally used is ammonia (NH 3 ) or a source of nitrogen.
  • Growth is at temperatures typically below about 1100 ° C.
  • It may be particularly epitaxial at temperatures between about 450 0 C and about 800 0 C.
  • a total pressure of between about 20 mbar and atmospheric pressure can be used.
  • the molar flow ratios between the total elements II and IV and the ammonia are commonly between 1500 and 50000.
  • the layer 2 of II-IV-N 2 constituting the pseudo-substrate I 5 InN has a thickness up to several microns, and particularly a thickness between about 0.1 and about 5 microns, more preferably from about 1 to about 5 ⁇ m, more particularly between about 2 and about 5 ⁇ m, more particularly between about 3 and about 5 ⁇ m.
  • the interface between the layer 2 in H-IV-N 2 and the underlying wafer 3 conventionally comprising a concentration of crystalline defects may be important, and whose presence is mainly related to the differences in mesh that may exist between the two materials in the presence, these defects will then gradually decrease in thickness.
  • the layer 2 in H-IV-N 2 thus has a buffer layer function between the wafer 3 and the InN layer to be formed, since it does not only adapt a mesh parameter to that of I 1 InN, but it also confines defects within it.
  • the Applicant has succeeded in obtaining very smooth surfaces of alloys H-IV-N 2 of good quality, having a roughness which can be around 20-30 ⁇ RMS.
  • Such a layer 2 of H-IV-N 2 alloy is therefore epitaxied on a wafer 3 forming an initial substrate.
  • a layer 1 of InN is grown on the H-IV-N 2 alloy.
  • MOVPE or MBE can be used for this purpose.
  • InN epitaxy by MOVPE it is possible, for example, to use as precursors trimethyl of indium (for IMnN) and ammonia (for nitrogen), it is preferable to carry out the reactions in the atmosphere. inert, such as an atmosphere of N 2 .
  • inert such as an atmosphere of N 2 .
  • MBE it will be possible, for example, to use a solid source in solid indium, and a gaseous source such as nitrogen (N 2 ) or ammonia (NH 3 ) whose molecules will be dissociated for example by radiofrequency in plasma.
  • the growth temperature may be less than or equal to about 700 ° C., preferably between about 400 ° C. and about 650 ° C. It is also rather lower than that used for the manufacture of the pseudo ⁇ substrate 10, which allows not to degrade the latter: materials II-IV-N 2 are thus thermally compatible with the growth of indium nitride.
  • an X-ray diffraction spectrum shows the different peaks for a layer of InN epitaxially grown at about 550 ° C. on a pseudo-substrate comprising a layer 2 made of ZnSiN 2 .
  • the X axis represents the angular deviation of the incident X-ray beam following diffraction on the structure 20 (here constituted of the pseudo-substrate 10 and the InN layer 1), and the Y axis shows the intensity electromagnetic collected. It is found that the peak bound to the InN layer is thin (about 400 arc dry) and finer than the diffraction peak of the pseudo-substrate. This demonstrates in particular that the low mismatch between the pseudo-substrate and InN promotes a quality epitaxy. It should be noted that the ZnSiN 2 line is much wider than that of I 1 InN, in particular because of its lower crystalline quality.
  • the width of the line (diffracted x-ray) of the InN layer produced according to the invention is 2 to 3 times less wide than the lines of the prior art.
  • the layer 1 of InN and / or the layer 2 can be appropriately doped with H-IV-N 2 in order to achieve desired electronic properties.
  • the InN layer 1 can be doped with silicon.
  • one can dope with gallium layer 2 in H-IV-N 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The invention relates to a structure usable in electronic, optical or optoelectronic engineering which comprises a substantially crystalline layer made of an alloy consisting of at least one element of the column II of the periodic elements system and/ or at least one element of the column IV of the periodic elements system and of N<sub

Description

Réalisation d'une couche de nitrure d'indium Realization of a layer of indium nitride
La présente invention a trait à la réalisation de nitrure d'indium (InN). Les; nitrures semiconducteurs (InN, GaN, AIN) ont fait l'objet de très nombreuses études ces dix dernières années. Des composants électroniques très performants ont en effet été réalisés, industrialisés et commercialisés, à base de ces matériaux.The present invention relates to the production of indium nitride (InN). The ; Semiconductor nitrides (InN, GaN, AlN) have been the subject of many studies over the last decade. High-performance electronic components have been made, industrialized and marketed, based on these materials.
Le nitrure d'indium InN, quant à lui, est resté peu connu et peu utilisé, du fait de sa difficulté de fabrication. Récemment, de nouveaux efforts ont été faits pour améliorer la fabrication de ce matériau et préciser ses propriétés physiques. Des caractéristiques fondamentales, telles que l'énergie de bande interdite (« gap »), ont été complètement revues, et les potentialités de ce matériau en matière de composants électroniques se sont confirmées. Ainsi, par exemple, en optique et en optoélectronique, le spectre d'émission et de détection de diodes (LEDs) et de diodes lasers (LDs) a pu être étendu à l'infrarouge (pour les télécommunications, l'analyse, l'imagerie, ...) ; en électronique, des transistors travaillant à plus haute température et à plus haute puissance ont pu être trouvés, donnant ainsi des dispositifs hyperfréquences (pour la communication, les radars, ...).The indium nitride InN, meanwhile, has remained little known and little used, because of its difficulty of manufacture. Recently, new efforts have been made to improve the manufacture of this material and to specify its physical properties. Fundamental features, such as gap energy, have been completely revised, and the potential of this material for electronic components has been confirmed. Thus, for example, in optics and optoelectronics, the emission and detection spectrum of diodes (LEDs) and laser diodes (LDs) could be extended to the infrared (for telecommunications, analysis, imagery, ...); in electronics, transistors working at higher temperature and at higher power could be found, thus giving microwave devices (for communication, radars, ...).
La réalisation actuelle de InN utilise des techniques de croissance cristalline, telles que l'épitaxie en phase vapeur à partir d'organométalliquesThe current InN realization utilizes crystal growth techniques, such as vapor phase epitaxy from organometallics
(« MOVPE » de l'acronyme anglo-saxon « MetalOrganic Vapor Phase("MOVPE" of the acronym "MetalOrganic Vapor Phase
Epitaxy ») et l'épitaxie par jet moléculaire (« MBE » de l'acronyme anglo-saxon « Molecular Beam Epitaxy »).Epitaxy ") and molecular beam epitaxy (" MBE ").
Une difficulté réside dans le choix du support cristallin pour réaliser de telles croissances cristallines, celui-ci devant avoir des paramètres physiques suffisamment proches du matériau à déposer, notamment en ce qui concerne la structure cristalline et les paramètres de maille. On peut ainsi utiliser un substrat de GaN. Cependant, un dépôt deOne difficulty lies in the choice of the crystalline support for producing such crystalline growths, the latter having to have physical parameters sufficiently close to the material to be deposited, in particular as regards the crystalline structure and the mesh parameters. It is thus possible to use a GaN substrate. However, a deposit of
InN par MOVPE sur un substrat de GaN, a tendance à ne pas se faire uniformément sur la surface, mais de façon inhomogène de sorte à provoquer des rassemblements de InN en îlots (voir par exemple l'article O.Briot et al., dans Applied Physics Letters 83,14 (2003) 2919).InN by MOVPE on a GaN substrate, tends not to be uniformly on the surface, but inhomogeneously so as to cause island-like InN gatherings (see, for example, O.Briot et al., in Applied Physics Letters 83, 14 (2003) 2919).
On peut aussi utiliser un substrat de saphir (AI2O3 sous forme hexagonale). On obtient dans ce cas un dépôt de InN plus uniforme. Néanmoins, la différence de paramètre de maille entre la couche d'InN et le substrat de saphir est de l'ordre de 25%, ce qui est encore bien trop grand pour obtenir une couche d'InN de qualité cristalline satisfaisante, la présence de contraintes et défauts internes détériorant ses propriétés électroniques. Ont aussi été testés des pseudo-substrats, à savoir des plaquettes comprenant un substrat support cristallin sur lequel a été épitaxiée une couche tampon, cette dernière servant de substrat à la croissance de InN.It is also possible to use a sapphire substrate (AI 2 O 3 in hexagonal form). In this case, a more uniform InN deposit is obtained. Nevertheless, the difference in mesh parameter between the InN layer and the sapphire substrate is of the order of 25%, which is still much too great to obtain a satisfactory crystalline InN layer, the presence of internal stresses and defects deteriorating its electronic properties. Pseudo-substrates have also been tested, namely platelets comprising a crystalline support substrate on which a buffer layer has been epitaxially grown, the latter serving as a substrate for the growth of InN.
Ont ainsi été testées des couches de nucléation en InN confinant les défauts (tels que des dislocations) et présentant une surface de meilleure qualité pour la croissance ultérieure d'une couche utile de InN (voir par exemple l'article de Y. Saito, dans Jpn. J. Appl. Phys., Part 2 40, L91 (1991)). Ont ainsi été testées des couches de nucléation en AIN sur lesquelles ont été épitaxiées des couches de InN (voir par exemple l'article de H. Lu et al., dans Appl. Phys. Letter 79, 1489 (2001)). Ont ainsi été testées des couches de nucléation en GaN et en InN formées à basses températures (voir par exemple l'article de M. Higashiwaki et T. Matsui, dans Jpn. J. Appl. Phys., Part 241 , L540 (2002)).Thus, InN nucleation layers have been tested, confining defects (such as dislocations) and having a better quality surface for the subsequent growth of a useful InN layer (see, for example, the article by Y. Saito, in Jpn J. Appl Phys., Part 2 40, L91 (1991)). AIN nucleation layers on which InN layers have been epitaxially grown have been tested (see, for example, the article by H. Lu et al., In Appl Phys Letter 79, 1489 (2001)). Thus, GaN and InN nucleation layers formed at low temperatures have been tested (see, for example, the article by M. Higashiwaki and T. Matsui, in Jpn J. Appl Phys., Part 241, L540 (2002). ).
Ces techniques utilisant des pseudo-substrats ou des couches de nucléation peuvent rester longues, complexes et coûteuses à mettre en œuvre.These techniques using pseudo-substrates or nucleation layers can remain long, complex and expensive to implement.
D'autre part, elles ne donnent pas encore de résultats optimaux quant à la structure de la couche de InN finalement obtenue, des défauts et contraintes y subsistant notamment.On the other hand, they do not yet give optimal results as to the structure of the InN layer finally obtained, including defects and constraints.
Un premier but de l'invention est de réaliser une couche de InN de qualité cristalline supérieure à ce qui existe dans l'état de la technique, notamment avec moins de défauts cristallographiques internes tels que des dislocations.A first object of the invention is to provide an InN layer of crystalline quality superior to that which exists in the state of the art, especially with fewer internal crystallographic defects such as dislocations.
Un deuxième but de l'invention est de trouver un substrat à la croissance cristalline d'InN qui permette d'obtenir une couche d'InN ayant une qualité conforme à celle que ledit premier but veut atteindre.A second object of the invention is to find a substrate with crystalline growth of InN which makes it possible to obtain a layer of InN having a quality conform to that which said first goal wants to achieve.
Un troisième but de l'invention est que ce substrat contienne très peu ou pas d'oxygène, afin de simplifier des traitements de gravure chimique pouvant être mis en oeuvre lors de la réalisation du substrat et/ou de la couche d'InN. La présente invention tente d'améliorer la situation en proposant, selon un premier aspect, une structure pour une application dans l'électronique, l'optique ou l'optoélectronique, comprenant une couche en alliage d'au moins un élément atomique de la colonne II de la classification périodique, et/ou d'au moins un élément atomique de la colonne IV de la classification périodique, et de N2 (cet alliage étant alors noté II-IV-N2), caractérisée en ce qu'elle comprend en outre une couche de InN.A third object of the invention is that this substrate contains very little or no oxygen, in order to simplify chemical etching treatments that can be implemented during the production of the substrate and / or the InN layer. The present invention attempts to improve the situation by proposing, in a first aspect, a structure for an application in electronics, optics or optoelectronics, comprising an alloy layer of at least one atomic element of the column. II of the periodic table, and / or of at least one atomic element of column IV of the periodic table, and of N 2 (this alloy then being denoted II-IV-N 2 ), characterized in that it comprises in addition, a layer of InN.
D'autres caractéristiques possibles de cette structure sont :Other possible characteristics of this structure are:
- la couche de InN est sur la couche en alliage II-IV-N2,the InN layer is on the II-IV-N2 alloy layer,
- la structure comporte en outre, sous l'alliage II-IV-N2, une structure support en AIN, en GaN, en SiC ou en Si,the structure further comprises, under the alloy II-IV-N 2 , a support structure made of AlN, GaN, SiC or Si,
- la structure comporte en outre, sous cette structure support, un substrat support cristallin,the structure further comprises, under this support structure, a crystalline support substrate,
- la couche de M-IV-N2 a une épaisseur suffisante pour être une couche tampon entre la structure support et la couche de InN, et notamment en confinant des défauts cristallographiques en son sein,the layer of M-IV-N 2 has a thickness sufficient to be a buffer layer between the support structure and the InN layer, and in particular by confining crystallographic defects within it,
- la formule de l'alliage II - IV - N2 est choisie parmi les combinaisons possibles suivantes : (Mg1Ca1Zn1Cd) - (C1Si1Ge1Sn1Pb) - N2,the formula of alloy II - IV - N 2 is chosen from the following possible combinations: (Mg 1 Ca 1 Zn 1 Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 ,
- l'alliage H-IV-N2 et/ou l'alliage InN comprend en outre au moins un élément dopant, Selon un deuxième aspect, l'invention propose un procédé de réalisation d'une couche de nitrure d'indium, caractérisé en ce qu'il comprend une étape de croissance cristalline d'une couche en InN sur une couche en alliage d'au moins un élément atomique de la colonne II, et/ou d'au moins un élément atomique de la colonne IV et de N2 (cet alliage étant alors noté H-IV-N2). D'autres caractéristiques possibles de ce procédé sont :the alloy H-IV-N 2 and / or the alloy InN further comprises at least one doping element. According to a second aspect, the invention proposes a process for producing an indium nitride layer, characterized in that comprises a step of crystalline growth of an InN layer on an alloy layer of at least one atomic element of column II, and / or of at least one atomic element of column IV and N 2 (this alloy being then denoted H-IV-N 2 ). Other possible characteristics of this process are:
- la croissance de InN est réalisée à une température inférieure ou égale à environ 7000C,the growth of InN is carried out at a temperature of less than or equal to approximately 700 ° C.,
- le procédé comprend en outre une étape préalable de croissance cristalline de là couche en H-IV-N2 sur une structure support en AIN, en GaN, en SiC ou en Si,the process further comprises a preliminary step of crystalline growth of the H-IV-N 2 layer on a support structure made of AlN, GaN, SiC or Si,
- le procédé comprend en outre une étape initiale de croissance cristalline de cette structure support sur un substrat support en matériau cristallin,the process furthermore comprises an initial crystalline growth step of this support structure on a support substrate made of crystalline material,
- une croissance cristalline est choisie parmi les techniques suivantes : MOVPE et MBE.a crystalline growth is chosen from the following techniques: MOVPE and MBE.
Selon un troisième aspect, l'invention propose une plaquette comprenant une couche supérieure en un alliage d'au moins un élément atomique de la colonne II de la classification périodique, et/ou d'au moins un élément atomique de la colonne IV de la classification périodique, et de N2 (l'alliage étant alors noté H-IV-N2), caractérisée en ce que cette couche supérieure a une épaisseur suffisante pour constituer une couche tampon. D'autres caractéristiques possibles de cette plaquette sont :According to a third aspect, the invention provides a wafer comprising an upper layer made of an alloy of at least one atomic element of column II of the periodic table, and / or of at least one atomic element of column IV of the periodic classification, and N 2 (the alloy then being denoted H-IV-N 2 ), characterized in that this upper layer has a sufficient thickness to form a buffer layer. Other possible characteristics of this plate are:
- la formule de l'alliage II - IV - N2 est choisie parmi les combinaisons possibles suivantes : (Mg,Ca,Zn,Cd) - (C,Si,Ge,Sn,Pb) - N2 ; - l'épaisseur de la couche supérieure est comprise entre environ 0,1 micromètre et 5 micromètres ;the formula of alloy II - IV - N 2 is chosen from the following possible combinations: (Mg, Ca, Zn, Cd) - (C, Si, Ge, Sn, Pb) - N 2 ; the thickness of the upper layer is between about 0.1 micrometer and 5 micrometers;
- la plaquette comporte en outre, sous l'alliage H-IV-N2, une structure support en AIN, en GaN, en SiC, ou en Si ;the wafer further comprises, under the H-IV-N 2 alloy, a support structure made of AlN, GaN, SiC or Si;
- la plaquette comporte en outre, sous la structure support, un substrat support cristallin. Selon un quatrième aspect, l'invention propose une utilisation d'une plaquette comportant dans sa partie supérieure un alliage d'au moins un élément atomique de la colonne II de la classification périodique, et/ou d'au moins un élément atomique de la colonne IV de la classification périodique, et de N2 (l'alliage étant alors noté H-IV-N2) comme substrat à la croissance cristalline de InN.the wafer further comprises, under the support structure, a crystalline support substrate. According to a fourth aspect, the invention proposes a use of a wafer comprising in its upper part an alloy of at least one atomic element of column II of the periodic table, and / or at least one atomic element of the column IV of the Periodic Table, and N 2 (the alloy then being denoted H-IV-N 2 ) as a substrate for the crystal growth of InN.
La structure selon l'invention est destinée à des applications dans l'optique, l'optoélectronique ou la microélectronique.The structure according to the invention is intended for applications in optics, optoelectronics or microelectronics.
La structure selon l'invention comprend une couche de InN et un alliage constitué d'au moins un élément de la famille II, et/ou d'au moins un élément de la famille IV et de N2, cet alliage étant alors noté H-IV-N2.The structure according to the invention comprises a layer of InN and an alloy consisting of at least one element of family II, and / or of at least one element of family IV and N 2 , this alloy then being denoted H -IV-N 2 .
Préférentiellement, la structure selon l'invention comprend une couche de InN directement sur un alliage H-IV-N2. L'alliage H-IV-N2 forme alors un substrat ou pseudo-substrat à la croissance de InN. L'alliage II - IV - N2 est choisi parmi les différents alliages obtenus par le jeu des combinaisons possibles suivantes : (Mg,Ca,Zn,Cd) - (C1Si1Ge1Sn1Pb) - N2.Preferably, the structure according to the invention comprises a layer of InN directly on an H-IV-N 2 alloy. The H-IV-N 2 alloy then forms a substrate or pseudo-substrate for the growth of InN. The alloy II - IV - N 2 is chosen from the various alloys obtained by the set of possible combinations: (Mg, Ca, Zn, Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 .
Récemment, quelques rares équipes se sont intéressées à une nouvelle classe de matériaux nitrures, formés de tels alliages ternaires du type H-IV-N2. Dans ces études, il est question de tirer parti des propriétés semiconductrices et électroniques de ZnSiN2 et ZnGeN2. Les matériaux ZnSiN2 et ZnGeN2 sont ici destinés à constituer les composants électroniques ou optoélectroniques. On pourra notamment se référer aux documents US 6284 395 et US 6 121 639. L'invention utilise ces matériaux H-IV-N2 non pas en tant que couche active, pour ses propriétés électroniques propres, mais en tant que substrat pour la croissance de couches ou structures à base de nitrure d'indium.Recently, a few teams have been interested in a new class of nitride materials, formed from such ternary alloys of the H-IV-N 2 type . In these studies, it is a question of taking advantage of the semiconducting and electronic properties of ZnSiN 2 and ZnGeN 2 . The materials ZnSiN 2 and ZnGeN 2 are here intended to constitute the electronic or optoelectronic components. In particular, reference may be made to US Pat. No. 6,284,395 and US Pat. No. 6,121,639. The invention uses these materials H-IV-N 2 not as an active layer, for its own electronic properties, but as a substrate for growth. layers or structures based on indium nitride.
En effet, la Demanderesse a déterminé qu'une couche de InN déposée sur un alliage H-IV-N2 avait une qualité cristalline, et des propriétés physiques, électroniques très nettement améliorées par rapport à l'état de la technique (voir notamment les résultats d'expérience plus loin). Ce résultat peut être dû au fait que les matériaux U-IV-N2 sont des matériaux voisins de InN, et possédant donc des propriétés physiques voisines.Indeed, the Applicant has determined that a layer of InN deposited on an H-IV-N 2 alloy had a crystalline quality, and physical, electronic properties very significantly improved compared to the state of the art (see in particular the experience results later). This result may be due to the fact that the materials U-IV-N 2 are materials that are close to InN, and therefore have similar physical properties.
La Demanderesse a en particulier observé que les paramètres de maille des deux matériaux sont assez proches: les paramètres de maille deThe Applicant has in particular observed that the mesh parameters of the two materials are fairly close: the mesh parameters of
InN hexagonal sont de l'ordre de a = 3,54 Â et de c = 5,71 Â (voir en particulier la figure 15 de « lndium nitride (InN) : a review on growth, characterization, and properties » de A. G. Bhuiyan et al., Journal of AppliedInN hexagonal are of the order of a = 3.54 Å and c = 5.71 Å (see in particular figure 15 of "lndium nitride (InN): a review on growth, characterization, and properties" by AG Bhuiyan et al., Journal of Applied
Physics, vol. 94, 5 (2003)). Les paramètres de maille des alliages H-IV-N2 sont assez mal connus, et sont plutôt calculés par des simulations, telles que celles faites par C. Suh et K. Rajan dans « Combinatorial design of semiconductor chemistry for bandgap engineering : virtual combinatorial expérimentation » (Applied Surface Science 223 (2004) 148-158).Physics, vol. 94, 5 (2003)). The mesh parameters of the H-IV-N 2 alloys are rather poorly known, and are rather calculated by simulations, such as those made by C. Suh and K. Rajan in "Combinatorial design of semiconductor chemistry for bandgap engineering: virtual combinatorial experimentation "(Applied Surface Science 223 (2004) 148-158).
Un critère déterminant pour le choix d'un substrat étant son paramètre de maille, qui permet de prévoir un « désaccord de maille » avec la couche à épitaxier (exprimé en pourcent), le choix d'un substrat en alliage H-IV-N2 paraît donc particulièrement judicieux, étant donné la proximité de leurs paramètres de maille respectifs avec celui de TInN.A determining criterion for the choice of a substrate is its mesh parameter, which makes it possible to predict a "mesh mismatch" with the epitaxial layer (expressed in percent), the choice of an H-IV-N alloy substrate. 2 therefore seems particularly judicious, given the proximity of their respective mesh parameters with that of TInN.
On peut ainsi constater que InN a environ 9% de désaccord de maille avec ZnSiN2, et environ 10% avec ZnGeN2.It can thus be seen that InN has about 9% of mismatch with ZnSiN 2 , and about 10% with ZnGeN 2 .
Ces désaccords de maille sont égaux ou inférieurs à ceux connus dans l'état de la technique.These mesh discrepancies are equal to or lower than those known in the state of the art.
D'autre part, les alliages H-IV-N2 ont une bonne compatibilité mécanique avec IMnN lors de changements de conditions thermiques. La Demanderesse a en outre constaté, lors de mesures de thermogravimétrie, que le ZnSiN2 conservait sa tenue mécanique et cristallographique à 7000C. Or, l'épitaxie de InN étant réalisée à une température classiquement inférieure à environ 7000C, les alliages H-IV- N2 sont donc des substrats stables. Les alliages H-IV-N2 possédant peu ou pas d'oxygène, des traitements chimiques de gravure pourront être mis en œuvre (lors de la réalisation de la structure souhaitée, dans le cadre par exemple d'un lissage ou d'un nettoyage superficiel) en craignant sensiblement moins l'usure ou la détérioration des appareils utilisés qu'avec des appareils utilisés sur matériaux contenant de l'oxygène (qui sont plus durs à travailler).On the other hand, the H-IV-N 2 alloys have good mechanical compatibility with IMnN during changes in thermal conditions. The Applicant has further found, during thermogravimetric measurements, that ZnSiN 2 retains its mechanical and crystallographic strength at 700 ° C. However, the epitaxy of InN being carried out at a temperature conventionally lower than about 700 ° C., the alloys H-IV-N 2 are therefore stable substrates. H-IV-N 2 alloys having little or no oxygen, chemical etching treatments can be implemented (at the time of achieving the desired structure, for example in the context of a smoothing or a surface cleaning) fearing significantly less wear or deterioration of the devices used with devices used on oxygen-containing materials (which are harder to work).
Le matériau II-IV-N2 étant lui-même déposé par épitaxie sur un autre substrat, on parlera ici de « pseudo-substrats » pour le dépôt de nitrure d'indium, et des matériaux et structures associées au nitrure d'indium. Parmi ces alliages H-IV-N2, ZnSiN2 et ZnGeN2 ont été étudiés en pratique et il s'avère que leurs paramètres de maille sont proches de celui du GaN. Il a donc été envisagé de former des dispositifs électroniques à base de ces deux matériaux, en les déposant soit sur GaN, soit sur saphir.The material II-IV-N 2 itself being deposited by epitaxy on another substrate, we will speak here of "pseudo-substrates" for the deposition of indium nitride, and materials and structures associated with indium nitride. Among these alloys H-IV-N 2 , ZnSiN 2 and ZnGeN 2 have been studied in practice and it turns out that their mesh parameters are close to that of GaN. It has therefore been envisaged to form electronic devices based on these two materials, by depositing them either on GaN or on sapphire.
En référence à la figure 1 ou 2, l'alliage H-IV-N2 se présente préférentiellement sous la forme d'une couche 2 réalisée par croissance cristalline sur une plaquette 3 en matériau cristallin formant ainsi support.With reference to FIG. 1 or 2, the H-IV-N 2 alloy is preferably in the form of a layer 2 produced by crystalline growth on a wafer 3 made of crystalline material thus forming a support.
En référence à la figure 1 , cette plaquette 3 peut être massive (« bulk ») et constituée d'un matériau tel du saphir (AI2Oa), du Si(111 ) ou du SiC.With reference to FIG. 1, this wafer 3 may be massive ("bulk") and made of a material such as sapphire (Al 2 Oa), Si (111) or SiC.
En référence à la figure 2, cette plaquette 3 peut être composée d'un substrat support 3a en matériau cristallin et d'une couche support 3b, le substrat support pouvant être par exemple du saphir ou du SiC et la couche support 3b du GaN de l'AIN, du SiC, ou du Si (111) préalablement épitaxie sur le substrat support.With reference to FIG. 2, this wafer 3 may be composed of a support substrate 3a made of crystalline material and a support layer 3b, the support substrate possibly being, for example, sapphire or SiC, and the support layer 3b of the GaN of AIN, SiC, or Si (111) previously epitaxially on the support substrate.
La surface d'épitaxie de la plaquette 3 peut être travaillée de sorte à améliorer ses propriétés physiques pour la croissance cristalline de l'alliage H-IV-N2. On pourra mettre en œuvre une ou plusieurs des techniques suivantes : polissage, gravure chimique, ou d'autres techniques connues de l'homme du métier.The epitaxial surface of the wafer 3 can be worked so as to improve its physical properties for the crystal growth of the H-IV-N 2 alloy. One or more of the following techniques may be implemented: polishing, chemical etching, or other techniques known to those skilled in the art.
Par exemple, dans le cas où la plaquette 3 est en saphir, on pourra nettoyer la surface avec des solutions de gravure, telle que du H2SO4 .Η3PO4 (3 :1) autour de 80°C, puis rincer Ia surface à l'eau dé-ionisée. Le dépôt de H-IV-N2 peut se faire par de multiples techniques d'épitaxie telles que Ia MOVPE ou la MBE.For example, in the case where the wafer 3 is sapphire, we can clean the surface with etching solutions, such as H 2 SO 4 .3PO 4 (3: 1) around 80 ° C, and then rinse the surface with de-ionized water. The deposition of H-IV-N 2 can be done by multiple epitaxial techniques such as MOVPE or MBE.
La MOVPE est souvent plus utilisée pour des questions d'industrialisation plus aisée, et s'applique bien aux composés du type (Zn1Cd) - (C1Si1Ge1Sn1Pb) - N2.MOVPE is often used more for easier industrialization, and applies well to compounds of the type (Zn 1 Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 .
La MBE se prête plutôt mieux à l'élaboration des matériaux contenant du Mg et du Ca, ces dernières espèces ne disposant pas de précurseurs faciles à utiliser en MOVPE.MBE is more suitable for the development of materials containing Mg and Ca, the latter species having no easy-to-use precursors of MOVPE.
En MOVPE, la technique communément employée est de favoriser les réactions chimiques entre les précurseurs des éléments de l'alliage (II, IV etIn MOVPE, the technique commonly used is to promote chemical reactions between the precursors of the elements of the alloy (II, IV and
N2), en surface de la plaquette 3. Les précurseurs de l'élément II classiquement employés sont le diméthylzinc (DMZn) ou le diéthylzincN 2 ), on the surface of the wafer 3. The precursors of the element II conventionally employed are dimethylzinc (DMZn) or diethylzinc
(DEZn) pour obtenir du Zn, le diméthylcadmium (DMCd) pour obtenir du(DEZn) to obtain Zn, dimethylcadmium (DMCd) to obtain
Cd, le tetraméthylétain (TMSn) pour obtenir du Sn et les tétraéthyl et tetraméthylplomb (TMPb1 TEPb) pour obtenir du plomb. Les précurseurs de l'élément IV classiquement employés sont le silane (SiH4) et le germaneCd, tetramethyltin (TMSn) to obtain Sn and tetraethyl and tetramethylplomb (TMPb 1 TEPb) to obtain lead. The precursors of element IV conventionally employed are silane (SiH 4 ) and germane
(GeH4) pour obtenir respectivement du Si et du Ge. Le précurseur de N2 classiquement employé est l'ammoniac (NH3) ou une source d'azote.(GeH 4 ) to obtain respectively Si and Ge. The precursor of N 2 conventionally used is ammonia (NH 3 ) or a source of nitrogen.
La croissance se fait à des températures classiquement inférieures à environ 11000C.Growth is at temperatures typically below about 1100 ° C.
On pourra particulièrement épitaxier à des températures comprises entre environ 4500C et environ 8000C.It may be particularly epitaxial at temperatures between about 450 0 C and about 800 0 C.
On pourra utiliser une pression totale comprise entre environ 20 mbar et la pression atmosphérique. Les rapports de débits molaires entre le total des éléments II et IV et l'ammoniac sont communément compris entre 1500 et 50000.A total pressure of between about 20 mbar and atmospheric pressure can be used. The molar flow ratios between the total elements II and IV and the ammonia are commonly between 1500 and 50000.
Dans le cas de l'utilisation d'une MBE pour la croissance de la couche 2, le calcium (Ca) et le magnésium (Mg) sont utilisés sous forme de source solide. L'azote est apporté par l'utilisation d'un flux d'ammoniac ou bien par un plasma d'azote. La couche 2 de II-IV-N2 constituant le pseudo-substrat de I5InN a une épaisseur pouvant atteindre plusieurs microns, et particulièrement une épaisseur comprise entre environ 0,1 et environ 5 μm, plus particulièrement entre environ 1 et environ 5 μm, plus particulièrement entre environ 2 et environ 5 μm, plus particulièrement entre environ 3 et environ 5 μm.In the case of the use of an MBE for the growth of layer 2, calcium (Ca) and magnesium (Mg) are used as a solid source. Nitrogen is provided by the use of an ammonia stream or by a nitrogen plasma. The layer 2 of II-IV-N 2 constituting the pseudo-substrate I 5 InN has a thickness up to several microns, and particularly a thickness between about 0.1 and about 5 microns, more preferably from about 1 to about 5 μm, more particularly between about 2 and about 5 μm, more particularly between about 3 and about 5 μm.
Il est souhaitable d'atteindre une épaisseur suffisante pour que la surface libre de la couche 2 possède une qualité cristalline satisfaisante pour y réaliser par la suite une couche de InN de qualité. En effet, l'interface entre la couche 2 en H-IV-N2 et la plaquette 3 sous-jacente comprenant classiquement une concentration de défauts cristallins pouvant être importante, et dont la présence est principalement liée aux écarts de maille pouvant exister entre les deux matériaux en présence, ces défauts vont alors diminuer graduellement dans l'épaisseur. La couche 2 en H-IV-N2 a donc ici une fonction de couche tampon entre la plaquette 3 et la couche de InN à former, puisqu'elle n'adapte pas seulement un paramètre de maille à celui de I1InN, mais elle confine aussi des défauts en son sein.It is desirable to achieve a sufficient thickness so that the free surface of the layer 2 has a satisfactory crystalline quality to subsequently produce a layer of quality InN thereafter. Indeed, the interface between the layer 2 in H-IV-N 2 and the underlying wafer 3 conventionally comprising a concentration of crystalline defects may be important, and whose presence is mainly related to the differences in mesh that may exist between the two materials in the presence, these defects will then gradually decrease in thickness. The layer 2 in H-IV-N 2 thus has a buffer layer function between the wafer 3 and the InN layer to be formed, since it does not only adapt a mesh parameter to that of I 1 InN, but it also confines defects within it.
Dans un cas de figure particulier, on pourra mettre en œuvre des traitements spécifiques (tels que des traitements thermiques et/ou chimiques particuliers) pour faire en sorte de confiner les défauts uniquement au voisinage de l'interface avec la plaquette 3.In a particular case, it will be possible to implement specific treatments (such as special thermal and / or chemical treatments) to make sure to confine the defects only in the vicinity of the interface with the wafer 3.
On pourra par exemple réaliser une nitruration superficielle d'une plaquette 3 en saphir, puis un dépôt à basse température (typiquement environ 400° C) de ZnSiN2 sur une faible épaisseur, et enfin un traitement à plus haute température de re-cristallisation (c'est-à-dire supérieure à environ 4000C, de préférence entre 4000C et 7000C), avant de réaliser un second dépôt de ZnSiN2 pour réaliser la couche 2 finale. Les principaux défauts cristallins dans la couche 2 seront alors confinés dans la première épaisseur déposée.It is possible, for example, to perform a surface nitriding of a sapphire wafer 3, then a low temperature (typically about 400 ° C.) deposition of ZnSiN 2 over a small thickness, and finally a treatment at a higher temperature of re-crystallization ( that is to say greater than about 400 0 C, preferably between 400 0 C and 700 0 C), before making a second deposition of ZnSiN 2 to achieve the final layer 2. The main crystalline defects in layer 2 will then be confined to the first deposited thickness.
En employant les techniques selon l'invention, la Demanderesse a réussi à obtenir des surfaces d'alliages H-IV-N2 très lisses et de bonne qualité, ayant une rugosité pouvant se situer autour de 20-30 Â RMS. Une telle couche 2 d'alliage H-IV-N2 est donc épitaxiée sur une plaquette 3 formant un substrat initial.By employing the techniques according to the invention, the Applicant has succeeded in obtaining very smooth surfaces of alloys H-IV-N 2 of good quality, having a roughness which can be around 20-30 Â RMS. Such a layer 2 of H-IV-N 2 alloy is therefore epitaxied on a wafer 3 forming an initial substrate.
Une fois le pseudo-substrat 10 formé par l'une ou l'autre des techniques précédemment présentées, on fait croître une couche 1 de InN, en référence à la figure 3, sur l'alliage H-IV-N2.Once the pseudo-substrate 10 has been formed by one or the other of the previously presented techniques, a layer 1 of InN, with reference to FIG. 3, is grown on the H-IV-N 2 alloy.
On pourra préalablement au dépôt réaliser un traitement chimique et/ou mécanique, telle qu'une gravure et/ou un polissage, approprié pour nettoyer et lisser suffisamment la surface pour que celle-ci puisse être prête pour épitaxie par MOVPE ou MBE. La MOVPE ou la MBE peut être employée à cet effet.It may be prior to deposition perform a chemical and / or mechanical treatment, such as etching and / or polishing, suitable for cleaning and sufficiently smooth the surface so that it can be prepared for epitaxy by MOVPE or MBE. MOVPE or MBE can be used for this purpose.
Dans le cas de l'épitaxie d'InN par MOVPE, on pourra par exemple utiliser comme précurseurs du triméthyle d'Indium (pour IMnN) et de l'ammoniac (pour l'azote), il est préférable de réaliser les réactions en atmosphère inerte, telle qu'une atmosphère de N2. Dans le cas de l'épitaxie d'InN par MBE, on pourra par exemple utiliser une source solide en Indium massif, et une source gazeuse telle que l'azote (N2) ou que l'ammoniac (NH3) dont les molécules seront dissociées par exemple par radiofréquence en plasma.In the case of InN epitaxy by MOVPE, it is possible, for example, to use as precursors trimethyl of indium (for IMnN) and ammonia (for nitrogen), it is preferable to carry out the reactions in the atmosphere. inert, such as an atmosphere of N 2 . In the case of InN epitaxy by MBE, it will be possible, for example, to use a solid source in solid indium, and a gaseous source such as nitrogen (N 2 ) or ammonia (NH 3 ) whose molecules will be dissociated for example by radiofrequency in plasma.
La température de croissance peut être inférieure ou égale à environ 7000C, de préférence entre environ 4000C et environ 6500C. Elle est d'ailleurs plutôt inférieure à celle employée pour la fabrication du pseudo¬ substrat 10, ce qui permet de ne pas dégrader ce dernier : les matériaux II- IV-N2 sont ainsi thermiquement compatibles avec la croissance de nitrure d'indium. En référence à la figure 4, un spectre de diffraction X montre les différents pics pour une couche d'InN épitaxiée à environ 55O0C sur un pseudo-substrat 10 comprenant une couche 2 en ZnSiN2. L'axe des X représente la déviation angulaire du faisceau de rayon X incident suite à la diffraction sur la structure 20 (constituée ici du pseudo-substrat 10 et de la couche 1 de InN), et l'axe des Y montre l'intensité électromagnétique recueillie. On constate que le pic lié à la couche d'InN est fin (environ 400 arc sec) et plus fin que le pic de diffraction du pseudo-substrat. Ceci démontre notamment que le faible désaccord de maille entre le pseudo-substrat et InN favorise une épitaxie de qualité. On notera que la raie du ZnSiN2 est beaucoup plus large que celle de I1InN, du fait notamment de sa plus faible qualité cristalline.The growth temperature may be less than or equal to about 700 ° C., preferably between about 400 ° C. and about 650 ° C. It is also rather lower than that used for the manufacture of the pseudo¬ substrate 10, which allows not to degrade the latter: materials II-IV-N 2 are thus thermally compatible with the growth of indium nitride. With reference to FIG. 4, an X-ray diffraction spectrum shows the different peaks for a layer of InN epitaxially grown at about 550 ° C. on a pseudo-substrate comprising a layer 2 made of ZnSiN 2 . The X axis represents the angular deviation of the incident X-ray beam following diffraction on the structure 20 (here constituted of the pseudo-substrate 10 and the InN layer 1), and the Y axis shows the intensity electromagnetic collected. It is found that the peak bound to the InN layer is thin (about 400 arc dry) and finer than the diffraction peak of the pseudo-substrate. This demonstrates in particular that the low mismatch between the pseudo-substrate and InN promotes a quality epitaxy. It should be noted that the ZnSiN 2 line is much wider than that of I 1 InN, in particular because of its lower crystalline quality.
La largeur de la raie (de rayon X diffracté) de la couche d'InN réalisée selon l'invention est de 2 à 3 fois moins large que les raies de l'art antérieur.The width of the line (diffracted x-ray) of the InN layer produced according to the invention is 2 to 3 times less wide than the lines of the prior art.
Cela démontre que les propriétés, notamment électroniques, de la couche 1 d'InN réalisée selon l'invention sont considérablement améliorées en regard des propriétés des couches d'InN de l'art antérieur.This demonstrates that the properties, in particular electronic properties, of the InN layer 1 produced according to the invention are considerably improved with regard to the properties of the InN layers of the prior art.
En outre, selon l'invention, on pourra doper de façon appropriée la couche 1 d'InN et/ou la couche 2 en H-IV-N2 pour atteindre des propriétés électroniques souhaitées. Par exemple, on pourra doper avec du silicium la couche 1 d'InN. Par exemple, on pourra doper avec du gallium la couche 2 en H-IV-N2. In addition, according to the invention, the layer 1 of InN and / or the layer 2 can be appropriately doped with H-IV-N 2 in order to achieve desired electronic properties. For example, the InN layer 1 can be doped with silicon. For example, one can dope with gallium layer 2 in H-IV-N 2 .

Claims

REVENDICATIONS
1. Structure pour une application dans l'électronique, l'optique ou l'optoélectronique, comprenant une couche (2) en alliage d'au moins un élément atomique de la colonne II de la classification périodique, et/ou d'au moins un élément atomique de la colonne IV de la classification périodique, et de N2 (cet alliage étant alors noté H-IV-N2), caractérisée en ce qu'elle comprend en outre une couche (1) de InN.A structure for an application in electronics, optics or optoelectronics, comprising an alloy layer (2) of at least one atomic element of column II of the periodic table, and / or at least one an atomic element of column IV of the periodic table, and N 2 (this alloy then being denoted H-IV-N 2 ), characterized in that it further comprises a layer (1) of InN.
2. Structure selon la revendication précédente, caractérisée en ce que la couche (1) de InN est sur la couche (2) en alliage H-IV-N2.2. Structure according to the preceding claim, characterized in that the layer (1) of InN is on the layer (2) alloy H-IV-N 2 .
3. Structure selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte en outre, sous l'alliage H-IV-N2, une structure support (3, 3b) en AIN, en GaN, en SiC, ou en Si.3. Structure according to one of the preceding claims, characterized in that it further comprises, under the alloy H-IV-N 2 , a support structure (3, 3b) AlN, GaN, SiC, or in Si.
4. Structure selon la revendication précédente, caractérisée en ce qu'elle comporte en outre, sous la structure support (3fc>), un substrat support (3a) cristallin.4. Structure according to the preceding claim, characterized in that it further comprises, under the support structure (3fc>), a substrate support (3a) crystalline.
5. Structure selon l'une des deux revendications précédentes, caractérisée en ce que la couche (2) d'alliage H-IV-N2 a une épaisseur suffisante pour être une couche tampon entre la structure support (3, 3b) et la couche (1) de InN, et notamment en confinant des défauts cristallographiques en son sein.5. Structure according to one of the two preceding claims, characterized in that the layer (2) of alloy H-IV-N 2 has a thickness sufficient to be a buffer layer between the support structure (3, 3b) and the layer (1) of InN, and in particular by confining crystallographic defects within it.
6. Structure selon l'une des revendications précédentes, caractérisée en ce que la formule de l'alliage II - IV - N2 est choisie parmi les combinaisons possibles suivantes : (Mg,Ca,Zn,Cd) - (C,Si,Ge,Sn,Pb) - N2. 6. Structure according to one of the preceding claims, characterized in that the formula of the alloy II - IV - N 2 is selected from the following possible combinations: (Mg, Ca, Zn, Cd) - (C, Si, Ge, Sn, Pb) - N 2 .
7. Structure selon l'une des revendications précédentes, caractérisée en ce que l'alliage N— IV— Na et/ou l'alliage InN comprend en outre au moins un élément dopant.7. Structure according to one of the preceding claims, characterized in that the N-IV-Na alloy and / or InN alloy further comprises at least one doping element.
8. Procédé de réalisation d'une couche de nitrure d'indium atomique, caractérisé en ce qu'il comprend une étape de croissance cristalline d'une couche (1) en InN sur une couche (2) en alliage d'au moins un élément atomique de la colonne II, et/ou d'au moins un élément de la colonne IV et de N2 (cet alliage étant alors noté H-IV-N2).8. Process for producing an atomic indium nitride layer, characterized in that it comprises a step of crystalline growth of a layer (1) made of InN on an alloy layer (2) of at least one atomic element of column II, and / or at least one element of column IV and N 2 (this alloy then being denoted H-IV-N 2 ).
9. Procédé selon la revendication précédente, caractérisé en ce que la croissance de InN est réalisée à une température inférieure ou égale à environ 7000C, et en particulier entre environ 4000C et environ 65O0C.9. Method according to the preceding claim, characterized in that the growth of InN is carried out at a temperature less than or equal to about 700 0 C, and in particular between about 400 0 C and about 65O 0 C.
10. Procédé selon la revendication précédente, caractérisé en ce qu'il comprend en outre une étape préalable de croissance cristalline de la couche (2) en alliage H-IV-N2 sur une structure support (3, 3b) en AIN, en GaN, en SiC, ou en Si.10. Method according to the preceding claim, characterized in that it further comprises a preliminary step of crystalline growth of the layer (2) alloy H-IV-N 2 on a support structure (3, 3b) in AlN, in GaN, SiC, or Si.
11. Procédé selon la revendication précédente, caractérisé en ce qu'il comprend en outre une étape initiale de croissance cristalline de la structure support (3b) sur un substrat support (3a) en matériau cristallin.11. Method according to the preceding claim, characterized in that it further comprises an initial step of crystalline growth of the support structure (3b) on a support substrate (3a) of crystalline material.
12. Procédé selon la revendication précédente, caractérisé en ce qu'une croissance cristalline est choisie parmi les techniques suivantes : MOVPE et12. Method according to the preceding claim, characterized in that a crystalline growth is selected from the following techniques: MOVPE and
MBE.MBE.
13. Plaquette (10) destinée à servir de substrat à la croissance d'une couche d'InN, la plaquette (10) comprenant une couche supérieure (2) en un alliage d'au moins un élément atomique de la colonne Ii de la classification périodique, et/ou d'au moins un élément atomique de la colonne IV de la classification périodique, et de N2 (l'alliage étant alors noté , H-IV-N2), caractérisée en ce que cette couche supérieure a une épaisseur suffisante pour constituer une couche tampon.13. A wafer (10) for providing a substrate for the growth of an InN layer, the wafer (10) comprising an upper layer (2) of an alloy of at least one atomic element of the column Ii of the periodic classification, and / or at least one atomic element of the column IV of the Periodic Table, and N 2 (the alloy then being noted, H-IV-N 2 ), characterized in that this upper layer has a sufficient thickness to form a buffer layer.
14. Plaquette (10) selon la revendication précédente, caractérisée en ce que la formule de l'alliage II - IV - N2 est choisie parmi les combinaisons possibles suivantes : (Mg, Ca1Zn, Cd) - (C1Si1Ge1Sn1Pb) - N2.14. Plate (10) according to the preceding claim, characterized in that the formula of the alloy II - IV - N 2 is selected from the following possible combinations: (Mg, Ca 1 Zn, Cd) - (C 1 Si 1 Ge 1 Sn 1 Pb) - N 2 .
15. Plaquette (10) selon l'une des deux revendications précédentes, caractérisée en ce que l'épaisseur de la couche supérieure (2) est comprise entre environ 0,1 micromètre et 5 micromètres.15. Plate (10) according to one of the two preceding claims, characterized in that the thickness of the upper layer (2) is between about 0.1 micrometer and 5 micrometers.
16. Plaquette (10) selon l'une des trois revendications précédentes, caractérisée en ce qu'elle comporte en outre, sous l'alliage N-IV-N2, une structure support (3, 3b) en AIN1 en GaN1 en SiC1 ou en Si.16. Plate (10) according to one of the three preceding claims, characterized in that it further comprises, under the alloy N-IV-N 2 , a support structure (3, 3b) AIN 1 GaN 1 in SiC 1 or Si.
17. Plaquette (10) selon la revendication précédente, caractérisée en ce qu'elle comporte en outre, sous la structure support (3b), un substrat support (3a) cristallin.17. Plate (10) according to the preceding claim, characterized in that it further comprises, under the support structure (3b), a crystalline support substrate (3a).
18. Utilisation d'une plaquette (10) comportant dans sa partie supérieure un alliage d'au moins un élément de la colonne II de la classification périodique, et/ou au moins un élément de la colonne IV de la classification périodique, et de N2 (l'alliage étant alors noté N-IV-N2) comme substrat à la croissance cristalline de InN. 18. Use of a wafer (10) having in its upper part an alloy of at least one element of column II of the Periodic Table, and / or at least one element of column IV of the Periodic Table, and N 2 (the alloy then being denoted N-IV-N 2 ) as a substrate for the crystalline growth of InN.
EP05802711A 2004-09-16 2005-09-14 Indium nitride layer production Withdrawn EP1799886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0409813A FR2875333B1 (en) 2004-09-16 2004-09-16 MAKING AN INDIUM NITRIDE LAYER
PCT/FR2005/002275 WO2006032756A1 (en) 2004-09-16 2005-09-14 Indium nitride layer production

Publications (1)

Publication Number Publication Date
EP1799886A1 true EP1799886A1 (en) 2007-06-27

Family

ID=34949869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05802711A Withdrawn EP1799886A1 (en) 2004-09-16 2005-09-14 Indium nitride layer production

Country Status (5)

Country Link
US (1) US7696533B2 (en)
EP (1) EP1799886A1 (en)
JP (1) JP2008513327A (en)
FR (1) FR2875333B1 (en)
WO (1) WO2006032756A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932608B1 (en) * 2008-06-13 2011-04-22 Centre Nat Rech Scient METHOD FOR GROWING NITRIDE OF ELEMENTS OF GROUP III.
US20120204957A1 (en) * 2011-02-10 2012-08-16 David Nicholls METHOD FOR GROWING AlInGaN LAYER
US10707082B2 (en) * 2011-07-06 2020-07-07 Asm International N.V. Methods for depositing thin films comprising indium nitride by atomic layer deposition
JP6485858B2 (en) * 2015-02-24 2019-03-20 国立研究開発法人物質・材料研究機構 Highly crystalline compound of β-NaFeO 2 type structure containing Zn atom, Sn atom and N atom, its production method, and its use
US20220367748A1 (en) * 2019-10-09 2022-11-17 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor structure, nitride semiconductor device, and method for fabricating the device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284395B1 (en) * 1997-03-05 2001-09-04 Corning Applied Technologies Corp. Nitride based semiconductors and devices
US6121639A (en) * 1998-08-20 2000-09-19 Xerox Corporation Optoelectronic devices based on ZnGeN2 integrated with group III-V nitrides
EP0996173B1 (en) * 1998-10-23 2015-12-30 Xerox Corporation Semiconductor structures including polycrystalline GaN layers and method of manufacturing
US6306739B1 (en) * 1999-04-27 2001-10-23 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for depositing thin films of group III nitrides and other films and devices made therefrom
JP2001308017A (en) * 2000-04-24 2001-11-02 Sony Corp Method for manufacturing p-type iii-v nitride compound semiconductor, and method for manufacturing semiconductor element
JP2002338399A (en) * 2001-05-22 2002-11-27 Hitachi Cable Ltd Method of producing nitride compound semiconductor crystal, nitride compound semiconductor crystal, and semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006032756A1 *

Also Published As

Publication number Publication date
FR2875333B1 (en) 2006-12-15
WO2006032756A1 (en) 2006-03-30
JP2008513327A (en) 2008-05-01
US20070269965A1 (en) 2007-11-22
FR2875333A1 (en) 2006-03-17
US7696533B2 (en) 2010-04-13

Similar Documents

Publication Publication Date Title
CA2411606C (en) Preparation method of a coating of gallium nitride
EP1791170B1 (en) Method of manufacturing a substrate, in particular for optics, electronics or optoelectronics, and substrate obtained through said method
FR2840731A1 (en) Monocrystalline semiconductor substrate manufacturing method for laser diode, involves forming nucleation layer that acts as barrier for diffusion of thermally dissociated elements from gallium arsenide intermediate support
EP2997605B1 (en) Optoelectronic device and method of manufacturing the same
FR2997558A1 (en) OPTOELECTRIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
WO2005031045A2 (en) Method of producing self-supporting substrates comprising iii-nitrides by means of heteroepitaxy on a sacrificial layer
EP3014665B1 (en) Optoelectronic device with improved reflectivity and method of manufacturing the same
FR2929445A1 (en) PROCESS FOR PRODUCING A GALLIUM NITRIDE LAYER OR GALLIUM NITRIDE AND ALUMINUM
EP1799886A1 (en) Indium nitride layer production
EP3840072A1 (en) Method for manufacturing a layer of textured aluminium nitride
EP2939277B1 (en) Optoelectronic device having micro-rods or nanorods
FR2960562A1 (en) MONOCRYSTAL TEXTURE
FR2853141A1 (en) Semiconductor device comprises monocrystalline diboride substrate, semiconductor stopper layer and nitride semiconductor layer, for light emitting and receiving and other electronic devices
FR2787919A1 (en) Nitride growth substrate, especially for hetero epitaxial deposition of gallium nitride useful in optoelectronic devices, produced by bonding compliant thin films of growth and support substrates and thinning the growth substrate
KR20090081693A (en) Gallium nitride semiconductor and method for manufacturing the same
FR3011380A1 (en) OPTOELECTRONIC DEVICE WITH LIGHT EMITTING DIODES
EP1476898A1 (en) Method for production of a layer of silicon carbide or a nitride of a group iii element on a suitable substrate
WO2022008836A1 (en) Semiconductor substrate with nitrided interface layer
FR2921200A1 (en) EPITAXIC MONOLITHIC SEMICONDUCTOR HETEROSTRUCTURES AND PROCESS FOR THEIR MANUFACTURE
FR3068994A1 (en) PROCESS FOR MAKING A CRYSTALLINE LAYER IN A III-N COMPOUND BY EPITAXIA VAN DER WAALS FROM GRAPHENE
EP3900016A1 (en) N-co-doped semiconductor substrate
WO2020127603A1 (en) Semiconductor substrate with n-doped intermediate layer
FR2649537A1 (en) Integrated optoelectronic device including a light-emitting diode
FR3048002A1 (en) PROCESS FOR OBTAINING ON A CRYSTALLINE SUBSTRATE A SEMICOPOLY NITRIDE LAYER
FR2971620A1 (en) Fabricating epitaxial layer on semiconductor substrate in the fabrication of e.g. Schottky diode, by providing substrate, forming epitaxial layer in contact with seed layer epitaxy process, and adjusting lattice parameters of layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401