EP1790746A1 - Legierung, Schutzschicht und Bauteil - Google Patents

Legierung, Schutzschicht und Bauteil Download PDF

Info

Publication number
EP1790746A1
EP1790746A1 EP05025683A EP05025683A EP1790746A1 EP 1790746 A1 EP1790746 A1 EP 1790746A1 EP 05025683 A EP05025683 A EP 05025683A EP 05025683 A EP05025683 A EP 05025683A EP 1790746 A1 EP1790746 A1 EP 1790746A1
Authority
EP
European Patent Office
Prior art keywords
protective layer
component
rhenium
alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05025683A
Other languages
English (en)
French (fr)
Other versions
EP1790746B1 (de
Inventor
Werner Dr. Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE502005010521T priority Critical patent/DE502005010521D1/de
Priority to EP05025683A priority patent/EP1790746B1/de
Publication of EP1790746A1 publication Critical patent/EP1790746A1/de
Application granted granted Critical
Publication of EP1790746B1 publication Critical patent/EP1790746B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • Typical coatings of this kind are from the U.S. Patents 4,005,989 and 4,034,142 known.
  • the problem typically arises that increasing the proportions of elements such as aluminum and chromium, which can improve the resistance of a protective layer against oxidation and corrosion, leads to a deterioration of the ductility of the protective layer, so that mechanical failure, in particular formation of cracks, is expected in a gas turbine usually occurring mechanical stress.
  • the invention is u. a. based on the knowledge that the protective layer in the layer and in the transition region between protective layer and base material brittle rhenium precipitates shows.
  • these brittle phases which form increasingly with time and temperature, lead to pronounced longitudinal cracks in the layer as well as in the interface layer base material with subsequent detachment of the layer.
  • the brittleness of the rhenium precipitates increases as a result of the interaction with carbon, which can diffuse into the layer from the base material or diffuse into the layer during a heat treatment in the furnace through the surface. Oxidation of the rhenium phases further enhances the driving force for crack formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Bekannte Schutzschichten mit hohem Cr-Gehalt und zusätzlich ein Silizium bilden Sprödphasen aus, die unter dem Einfluss von Kohlenstoff während des Einsatzes zusätzlich verspröden. Die erfindungsgemäße Schutzschicht hat die Zusammensetzung 1,0% bis 3,5% Rhenium, 9% bis 11% Nickel, 22% bis 24% Chrom, 11,5% bis 12,5% Aluminium, 0,5% bis 0,7% Yttrium und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden 1.5% bis 3.5% Rhenium, Rest Kobalt.

Description

  • Die Erfindung betrifft eine Legierung gemäß Anspruch 1, eine Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen gemäß Anspruch 9 und ein Bauteil gemäß Anspruch 10.
  • Schutzschichten für metallische Bauteile, die deren Korrosionsbeständigkeit und/oder Oxidationsbeständigkeit erhöhen sollen, sind im Stand der Technik in großer Zahl bekannt. Die meisten dieser Schutzschichten sind unter dem Sammelnamen MCrAlY bekannt, wobei M für mindestens eines der Elemente aus der Gruppe umfassend Eisen, Kobalt und Nickel steht und weitere wesentliche Bestandteile Chrom, Aluminium und Yttrium sind.
  • Typische Beschichtungen dieser Art sind aus den US-Patenten 4,005,989 und 4,034,142 bekannt.
  • Die Bemühung um die Steigerung der Eintrittstemperaturen sowohl bei stationären Gasturbinen als auch bei Flugtriebwerken hat auf dem Fachgebiet der Gasturbinen eine große Bedeutung, da die Eintrittstemperaturen wichtige Bestimmungsgrößen für die mit Gasturbinen erzielbaren thermodynamischen Wirkungsgrade sind. Durch den Einsatz speziell entwickelter Legierungen als Grundwerkstoffe für thermisch hoch zu belastende Bauteile wie Leit- und Laufschaufeln, insbesondere durch den Einsatz einkristalliner Superlegierungen, sind Eintrittstemperaturen von deutlich über 1000°C möglich. Inzwischen erlaubt der Stand der Technik Eintrittstemperaturen von 950°C und mehr bei stationären Gasturbinen sowie 1100°C und mehr in Gasturbinen von Flugtriebwerken.
  • Beispiele zum Aufbau einer Turbinenschaufel mit einem einkristallinen Substrat, die seinerseits komplex aufgebaut sein kann, gehen hervor aus der WO 91/01433 A1 .
  • Während die physikalische Belastbarkeit der inzwischen entwickelten Grundwerkstoffe für die hoch belasteten Bauteile im Hinblick auf mögliche weitere Steigerungen der Eintrittstemperaturen weitgehend unproblematisch ist, muss zur Erzielung einer hinreichenden Beständigkeit gegen Oxidation und Korrosion auf Schutzschichten zurückgegriffen werden. Neben der hinreichenden chemischen Beständigkeit einer Schutzschicht unter den Angriffen, die von Rauchgasen bei Temperaturen in der Größenordnung von 1000°C zu erwarten sind, muss eine Schutzschicht auch genügend gute mechanische Eigenschaften, nicht zuletzt im Hinblick auf die mechanische Wechselwirkung zwischen der Schutzschicht und dem Grundwerkstoff, haben. Insbesondere muss die Schutzschicht hinreichend duktil sein, um eventuellen Verformungen des Grundwerkstoffes folgen zu können und nicht zu reißen, da auf diese Weise Angriffspunkte für Oxidation und Korrosion geschaffen würden. Hierbei kommt typischerweise das Problem auf, dass eine Erhöhung der Anteile von Elementen wie Aluminium und Chrom, die die Beständigkeit einer Schutzschicht gegen Oxidation und Korrosion verbessern können, zu einer Verschlechterung der Duktilität der Schutzschicht führt, so dass mit einem mechanischen Versagen, insbesondere der Bildung von Rissen, bei einer in einer Gasturbine üblicherweise auftretenden mechanischen Belastung zu rechnen ist.
  • Dementsprechend liegt der Erfindung die Aufgabe zugrunde, eine Legierung und eine Schutzschicht anzugeben, die eine gute Hochtemperaturbeständigkeit in Korrosion und Oxidation aufweist, eine gute Langzeitstabilität aufweist und die außerdem einer mechanischen Beanspruchung, die insbesondere in einer Gasturbine bei einer hohen Temperatur zu erwarten ist, besonders gut angepasst ist.
  • Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1 und eine Schutzschicht gemäß Anspruch 9.
  • Eine weitere Aufgabe der Erfindung besteht darin, ein Bauteil aufzuzeigen, das einen erhöhten Schutz gegen Korrosion und Oxidation aufweist.
  • Die Aufgabe wird ebenso gelöst durch ein Bauteil gemäß Anspruch 10, insbesondere ein Bauteil einer Gasturbine oder Dampfturbine, das zum Schutz gegen Korrosion und Oxidation bei hohen Temperaturen einer Schutzschicht der vorbeschriebenen Art aufweist.
  • In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander verknüpft werden können, um weitere Vorteile zu erzielen.
  • Der Erfindung liegt u. a. die Erkenntnis zugrunde, dass die Schutzschicht in der Schicht und in dem Übergangsbereich zwischen Schutzschicht und Grundwerkstoff spröde Rhenium-Ausscheidungen zeigt. Diese mit der Zeit und Temperatur im Einsatz sich verstärkt ausbildenden Sprödphasen führen im Betrieb zu stark ausgeprägten Längsrissen in der Schicht als auch im Interface Schicht-Grundwerkstoff mit anschließender Ablösung der Schicht. Durch die Wechselwirkung mit Kohlenstoff, der aus dem Grundwerkstoff in die Schicht hineindiffundieren kann oder während einer Wärmebehandlung im Ofen durch die Oberfläche in die Schicht hineindiffundiert, erhöht sich zusätzlich die Sprödigkeit der Rhenium-Ausscheidungen. Durch eine Oxidation der Rhenium-Phasen wird die Triebkraft zur Rissbildung noch verstärkt.
  • Wichtig ist dabei auch der Einfluss von Kobalt als Matrixmaterial, das die thermischen und mechanischen Eigenschaften bestimmt.
    Insbesondere bei der Verbrennung von verunreinigtem Schweröl ist die Verwendung der kobaltbasierte Legierung als Schutzschicht vorteilhaft.
  • Die Erfindung wird im Folgenden näher erläutert.
  • Es zeigen
  • Figur 1
    ein Schichtsystem mit einer Schutzschicht,
    Figur 2
    Zusammensetzungen von Superlegierungen,
    Figur 3
    eine Gasturbine,
    Figur 4
    eine Turbinenschaufel und
    Figur 5
    eine Brennkammer.
  • Erfindungsgemäß besteht eine Schutzschicht 7 (Fig. 1) zum Schutz eines Bauteils (Fig. 1) gegen Korrosion und Oxidation bei einer hohen Temperatur im Wesentlichen aus folgenden Elementen (Angabe der Anteile in wt%):
    • 22% bis 24% Chrom
    • 9% bis 11% Nickel
    • 11% bis 13% Aluminium
    • 1,5% bis 3,5% Rhenium
    • 0,5% bis 0,7% Yttrium und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
    Rest Kobalt sowie herstellungsbedingte Verunreinigungen (CoNiCrAlY).
  • Dabei wird die vorteilhafte Wirkung des Elementes Rhenium ausgenutzt unter Verhinderung der Sprödphasenbildung. Vorzugsweise weist die Legierung der Schutzschicht 7 kein Silizium auf.
    Die Legierung kann auch Ruthenium aufweisen. Insbesondere weist die Legierung keine weiteren Elemente auf.
  • Festzustellen ist, dass die Anteile der einzelnen Elemente besonders abgestimmt sind im Hinblick auf ihre Wirkungen, die in Zusammenhang mit dem Element Rhenium zu sehen sind. Wenn die Anteile so bemessen sind, dass sich keine Chrom-Rhenium-Ausscheidungen bilden, entstehen vorteilhafterweise keine Sprödphasen während des Einsatzes der Schutzschicht, so dass das Laufzeitverhalten verbessert und verlängert ist.
  • Dies geschieht nicht nur durch einen geringen Chromgehalt, sondern auch, unter Berücksichtigung des Einflusses von Aluminium auf die Phasenbildung, durch genaue Bemessung des Gehalts an Aluminium. Der kleine und enge Bereich von 9wt% bis 11wt% Nickel verbessert überraschend deutlich und überproportional die thermischen und mechanischen Eigenschaften der Schutzschicht 7.
  • In Wechselwirkung mit der Reduzierung der Sprödphasen, die sich besonders unter höheren mechanischen Eigenschaften negativ auswirken, werden durch die Verringerung der mechanischen Spannungen durch den ausgewählten Nickel-Gehalt die mechanischen Eigenschaften verbessert.
  • Die Schutzschicht 7 weist bei guter Korrosionsbeständigkeit eine besonders gute Beständigkeit gegen Oxidation auf und zeichnet sich auch durch besonders gute Duktilitätseigenschaften aus, so dass sie besonders qualifiziert ist für die Anwendung in einer Gasturbine bei einer weiteren Steigerung der Eintrittstemperatur. Während des Betriebs kommt es kaum zu einer Versprödung, da die Schicht kaum Chrom-Rhenium-Ausscheidungen aufweist, die im Laufe des Einsatzes verspröden.
  • Besonders günstig ist es dabei jeweils den Anteil von Chrom auf etwa 23wt%, von Aluminium auf etwa 12wt%, von Nickel auf etwa 10wt% und den Yttrium-Gehalt auf etwa 0,6wt% festzulegen. Gewisse Schwankungen ergeben sich aufgrund großindustrieller Herstellung, so dass auch Yttriumgehalte von 0,4wt% bis 0,5wt% bzw. 0,7wt% bis 0,8wt% verwendet werden und ebenfalls gute Eigenschaften zeigen.
  • Der Rheniumgehalt liegt vorzugsweise bei 2.5wt% bis 3.5wt%, insbesondere 3.0wt%. Ein vorteilhafter Rheniumgehalt liegt ebenso bei 1.5wt% bis 2.0wt%, insbesondere bei 1.8wt%. Ruthenium kann zusätzlich hinzugefügt werden oder das Rhenium teilweise oder vollständig ersetzen.
    Vorzugsweise wird kein Ruthenium verwendet.
  • Eine ebenso wichtige Rolle spielen die Spurenelemente im zu verspritzenden Pulver, die Ausscheidungen bilden und damit Versprödungen darstellen. Die Pulver werden beispielsweise durch Plasmaspritzen aufgebracht (APS, LPPS, VPS, ...). Andere Verfahren sind ebenso denkbar (PVD, CVD, Kaltgasspritzen).
  • Die Dicke der Schutzschicht 7 auf dem Bauteil 1 wird vorzugsweise auf einen Wert zwischen etwa 100 µm und 300 µm bemessen.
  • Die Schutzschicht 7 kann als overlay (Schutzschicht ist die äußere Schicht oder als Bondcoat (Schutzschicht ist eine Zwischenschicht) verwendet werden.
  • Auf diese Schutzschicht 7 als Bauteil können weitere Schichten, insbesondere keramische Wärmedämmschichten 10 aufgebracht werden.
  • Bei diesem Bauteil ist die Schutzschicht 7 vorteilhafterweise aufgetragen auf ein Substrat 4 aus einer Superlegierung auf Nickel- oder Kobaltbasis.
    Als Substrat kommt insbesondere folgende Zusammensetzung in Frage (Angaben in wt%) :
    • 0,1% bis 0,15% Kohlenstoff
    • 18% bis 22% Chrom
    • 18% bis 19% Kobalt
    • 0% bis 2% Wolfram
    • 0% bis 4% Molybdän
    • 0% bis 1,5% Tantal
    • 0% bis 1% Niob
    • 1% bis 3% Aluminium
    • 2% bis 4% Titan
    • 0% bis 0,75% Hafnium
    wahlweise geringe Anteile von Bor und/oder Zirkon, Rest Nickel.
  • Zusammensetzungen dieser Art sind als Gusslegierungen unter den Bezeichnungen GTD222, IN939, IN6203 und Udimet 500 bekannt.
    Weitere Alternativen für das Substrat 4 eines Bauteils 1 sind in Figur 2 aufgelistet.
  • Die Schutzschicht 7 eignet sich besonders zum Schutz eines Bauteils gegen Korrosion und Oxidation, während das Bauteil bei einer Materialtemperatur um etwa 950°C, bei Flugturbinen auch um etwa 1100°C, mit einem Rauchgas beaufschlagt wird.
  • Die Schutzschicht 7 gemäß der Erfindung ist damit besonders qualifiziert zum Schutz eines Bauteils einer Gasturbine 100, insbesondere einer Leitschaufel 120, Laufschaufel 130 oder anderen Komponente, die mit heißem Gas vor oder in der Turbine der Gasturbine beaufschlagt wird.
  • Figur 1 zeigt als Bauteil 1 ein Schichtsystem 1.
    Das Schichtsystem 1 besteht aus einem Substrat 4.
    Das Substrat 4 kann metallisch und/oder keramisch sein. Insbesondere bei Turbinenbauteilen, wie z.B. Turbinenlauf- 120 oder -leitschaufeln 130 (Fig. 3, 4), Hitzeschildelementen 155 (Fig. 5) sowie anderen Gehäuseteilen einer Dampf- oder Gasturbine 100 (Fig. 3), besteht das Substrat 4 aus einer nickel-, kobalt- oder eisenbasierten Superlegierung. Vorzugsweise werden nickelbasierte Superlegierungen verwendet.
  • Auf dem Substrat 4 ist die erfindungsgemäße Schutzschicht 7 vorhanden.
    Vorzugsweise wird diese Schutzschicht 7 durch LPPS (low pressure plasma spraying) aufgebracht.
    Diese kann als äußere Schicht (nicht dargestellt) oder Zwischenschicht (Fig. 1) verwendet werden.
    Im letzteren Fall ist auf der Schutzschicht 7 eine keramische Wärmedämmschicht 10 vorhanden.
  • Die Schutzschicht 7 kann auf neu hergestellte Bauteile und wiederaufgearbeitete Bauteile aus dem Refurbishment aufgebracht werden.
    Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 1 nach ihrem Einsatz gegebenenfalls von Schichten (Wärmedämmschicht) getrennt werden und Korrosions- und Oxidationsprodukte entfernt werden, beispielsweise durch eine Säurebehandlung (Säurestrippen). Gegebenenfalls müssen noch Risse repariert werden. Danach kann ein solches Bauteil wieder beschichtet werden, da das Substrat 4 sehr teuer ist.
  • Die Figur 3 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
    Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
    Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
    Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
    Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
    An dem Rotor 103 ahgekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
    Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
    Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
    Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierungen Teil der Offenbarung.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.
  • Die Figur 4 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
  • Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
  • Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
    Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
  • Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
    Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
    Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
  • Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierung Teil der Offenbarung.
  • Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
  • Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
    Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
    Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
    Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
    Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt; diese Schriften sind bzgl. des Erstarrungsverfahrens Teil der Offenbarung.
  • Ebenso können die Schaufeln 120, 130 erfindungsgemäße Schichten 7 gegen Korrosion oder Oxidation aufweisen.
    Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
    Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
    Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrA1X-Schicht.
  • Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.
  • Die Figur 5 zeigt eine Brennkammer 110 der Gasturbine 100. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
  • Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
  • Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
  • Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrA1X-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
    Diese Schutzschichten können ähnlich der Turbinenschaufeln sein.
  • Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
    Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Turbinenschaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155.

Claims (13)

  1. Legierung
    die folgende Elemente enthält
    (Angaben in wt%) :
    9% bis 11% Nickel (Ni)
    22% bis 24% Chrom (Cr)
    11% bis 13% Aluminium (A1)
    1,5% bis 3,5% Rhenium (Re)
    0,5% bis 0,7% Yttrium (Y) und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium (Sc) und die Elemente der Seltenen Erden,
    Rest Kobalt (Co).
  2. Legierung nach Anspruch 1,
    enthaltend (in wt%):
    10% Nickel.
  3. Legierung nach Anspruch 1 oder 2,
    enthaltend (in wt%):
    23% Chrom.
  4. Legierung nach Anspruch 1, 2 oder 3,
    enthaltend (in wt%):
    12% Aluminium.
  5. Legierung nach Anspruch 1, 2, 3 oder 4,
    enthaltend (in wt%):
    0,6% Yttrium und/oder ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden.
  6. Legierung nach Anspruch 1, 2, 3, 4 oder 5,
    enthaltend 2.5wt% bis 3.5wt% Rhenium,
    insbesondere 3wt% Rhenium.
  7. Legierung nach Anspruch 1, 2, 3, 4 oder 5,
    enthaltend 1.5wt% bis 2wt% Rhenium,
    insbesondere 1.8wt% Rhenium.
  8. Legierung nach Anspruch 1,
    bestehend aus Kobalt, Nickel, Chrom, Aluminium, Rhenium und Yttrium.
  9. Schutzschicht zum Schutz eines Bauteils (1, 120, 130, 138, 155) gegen Korrosion und/oder Oxidation,
    insbesondere bei hohen Temperaturen,
    die die Zusammensetzung der Legierung gemäß einem oder mehreren der Ansprüchen 1 bis 8 aufweist.
  10. Bauteil,
    insbesondere ein Bauteil (1, 120, 130, 138, 155) einer Gasturbine (100),
    das zum Schutz gegen Korrosion und Oxidation bei hohen Temperaturen eine Schutzschicht (7) nach Anspruch 9 aufweist.
  11. Bauteil nach Anspruch 10,
    bei dem auf der Schutzschicht (7) eine Wärmedämmschicht (10) aufgebracht ist.
  12. Bauteil nach Anspruch 10 oder 11,
    bei dem ein Substrat (4) des Bauteils (1, 120, 130, 138, 155) nickelbasiert ist.
  13. Bauteil nach Anspruch 10 oder 11,
    bei dem ein Substrat (4) des Bauteils (1, 120, 130, 138, 155) kobaltbasiert ist.
EP05025683A 2005-11-24 2005-11-24 Legierung, Schutzschicht und Bauteil Not-in-force EP1790746B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502005010521T DE502005010521D1 (de) 2005-11-24 2005-11-24 Legierung, Schutzschicht und Bauteil
EP05025683A EP1790746B1 (de) 2005-11-24 2005-11-24 Legierung, Schutzschicht und Bauteil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05025683A EP1790746B1 (de) 2005-11-24 2005-11-24 Legierung, Schutzschicht und Bauteil

Publications (2)

Publication Number Publication Date
EP1790746A1 true EP1790746A1 (de) 2007-05-30
EP1790746B1 EP1790746B1 (de) 2010-11-10

Family

ID=36088294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05025683A Not-in-force EP1790746B1 (de) 2005-11-24 2005-11-24 Legierung, Schutzschicht und Bauteil

Country Status (2)

Country Link
EP (1) EP1790746B1 (de)
DE (1) DE502005010521D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037622A1 (de) * 2009-08-14 2011-02-24 Technische Universität Carolo-Wilhelmina Zu Braunschweig Legierung für mechanisch höchst belastete Bauteile
EP2813591A1 (de) * 2013-06-11 2014-12-17 General Electric Company Kobaltlegierungszusammensetzung und Komponente

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005989A (en) 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US4034142A (en) 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
WO1991001433A1 (en) 1989-07-25 1991-02-07 Allied-Signal Inc. Dual alloy turbine blade
EP0412397A1 (de) * 1989-08-10 1991-02-13 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0652299A1 (de) * 1993-11-08 1995-05-10 ROLLS-ROYCE plc Beschichtungszusammensetzung mit gutem Korrosions- und Oxydationsschutz
WO1996012049A1 (de) * 1994-10-14 1996-04-25 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1998045491A1 (en) * 1997-04-08 1998-10-15 Allison Engine Company, Inc. Cobalt-base composition and method for diffusion braze repair of superalloy articles
EP0892090A1 (de) 1997-02-24 1999-01-20 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
WO1999002745A1 (en) * 1997-07-10 1999-01-21 Turbocoating S.P.A. Alloy for corrosion-resistant coatings or surface coatings
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
WO2001072455A1 (en) * 2000-03-27 2001-10-04 Sulzer Metco (Us) Inc. Superalloy hvof powders with improved high temperature oxidation, corrosion and creep resistance
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1380672A1 (de) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Hochoxidationsbeständige Komponente
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034142A (en) 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
US4005989A (en) 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
WO1991001433A1 (en) 1989-07-25 1991-02-07 Allied-Signal Inc. Dual alloy turbine blade
EP0412397A1 (de) * 1989-08-10 1991-02-13 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0652299A1 (de) * 1993-11-08 1995-05-10 ROLLS-ROYCE plc Beschichtungszusammensetzung mit gutem Korrosions- und Oxydationsschutz
WO1996012049A1 (de) * 1994-10-14 1996-04-25 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (de) 1997-02-24 1999-01-20 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
WO1998045491A1 (en) * 1997-04-08 1998-10-15 Allison Engine Company, Inc. Cobalt-base composition and method for diffusion braze repair of superalloy articles
WO1999002745A1 (en) * 1997-07-10 1999-01-21 Turbocoating S.P.A. Alloy for corrosion-resistant coatings or surface coatings
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
WO2001072455A1 (en) * 2000-03-27 2001-10-04 Sulzer Metco (Us) Inc. Superalloy hvof powders with improved high temperature oxidation, corrosion and creep resistance
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1380672A1 (de) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Hochoxidationsbeständige Komponente

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037622A1 (de) * 2009-08-14 2011-02-24 Technische Universität Carolo-Wilhelmina Zu Braunschweig Legierung für mechanisch höchst belastete Bauteile
DE102009037622B4 (de) * 2009-08-14 2013-08-01 Technische Universität Carolo-Wilhelmina Zu Braunschweig Legierung für mechanisch höchst belastete Bauteile
EP2813591A1 (de) * 2013-06-11 2014-12-17 General Electric Company Kobaltlegierungszusammensetzung und Komponente

Also Published As

Publication number Publication date
DE502005010521D1 (de) 2010-12-23
EP1790746B1 (de) 2010-11-10

Similar Documents

Publication Publication Date Title
EP2458025B1 (de) Legierung, Schutzschicht und Bauteil
EP2612949B1 (de) Legierung, Schutzschicht und Bauteil
EP1834004A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und oxidation bei hohen temperaturen und bauteil
EP1798299B1 (de) Legierung, Schutzschicht und Bauteil
EP1806418A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP1790743A1 (de) Legierung, Schutzschicht und Bauteil
EP1854899A1 (de) Legierung, Schutzschicht und Bauteil
EP2710167B1 (de) Legierung, schutzschicht und bauteil
EP2474413A1 (de) Legierung, Schutzschicht und Bauteil
EP2699713B1 (de) Schichtsystem mit zweilagiger metallischer schicht
EP2661370B1 (de) Legierung, schutzschicht und bauteil
EP2611949B1 (de) Nickel basis legierung, schutzschicht und bauteil
EP1790746B1 (de) Legierung, Schutzschicht und Bauteil
EP2756107B1 (de) Legierung, schutzschicht und bauteil
EP1806419B1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP1818419A1 (de) Legierung, Schutzschicht und Bauteil
EP1798300A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen und Bauteil
EP2345748A1 (de) Legierung, Schutzschicht und Bauteil
EP2354260A1 (de) Legierung, Schutzschicht und Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005010521

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101111

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010521

Country of ref document: DE

Effective date: 20110811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131119

Year of fee payment: 9

Ref country code: GB

Payment date: 20131111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140120

Year of fee payment: 9

Ref country code: CH

Payment date: 20140206

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010521

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124