EP1779385B1 - Verfahren und vorrichtung zum codieren und decodieren eines mehrkanaligen audiosignals unter verwendung von virtuelle-quelle-ortsinformationen - Google Patents

Verfahren und vorrichtung zum codieren und decodieren eines mehrkanaligen audiosignals unter verwendung von virtuelle-quelle-ortsinformationen Download PDF

Info

Publication number
EP1779385B1
EP1779385B1 EP05774399A EP05774399A EP1779385B1 EP 1779385 B1 EP1779385 B1 EP 1779385B1 EP 05774399 A EP05774399 A EP 05774399A EP 05774399 A EP05774399 A EP 05774399A EP 1779385 B1 EP1779385 B1 EP 1779385B1
Authority
EP
European Patent Office
Prior art keywords
audio signal
vector
channel
vsli
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05774399A
Other languages
English (en)
French (fr)
Other versions
EP1779385A4 (de
EP1779385A1 (de
Inventor
Jeong Il Seo
Han Gil Moon
Seung Kwon Information and Communication Beack
Kyeong Ok Kang
In Seon Jang
Koeng Mo Sung
Min Soo Hahn
Jin Woo Hong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Seoul National University Industry Foundation
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Seoul National University Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050061425A external-priority patent/KR100663729B1/ko
Application filed by Electronics and Telecommunications Research Institute ETRI, Seoul National University Industry Foundation filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of EP1779385A1 publication Critical patent/EP1779385A1/de
Publication of EP1779385A4 publication Critical patent/EP1779385A4/de
Application granted granted Critical
Publication of EP1779385B1 publication Critical patent/EP1779385B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems

Definitions

  • the present invention relates to a method and apparatus for encoding/decoding a multi-channel audio signal, and more particularly, to a method and apparatus for effectively encoding/decoding a multi-channel audio signal using Virtual Sound Location Information (VLSI).
  • VLSI Virtual Sound Location Information
  • Moving Picture Experts Group has performed research on compressing a multi-channel audio signal. Owing to the remarkable increase in multi-channel contents, increased demand for multi-channel contents, and increased need for a multi-channel audio services in a broadcasting communications environment, research on the multi-channel audio compression technology has been stepped up.
  • multi-channel audio compression technology such as MPEG-2 Backward Compatibility (BC), MPEG-2 Advanced Audio Coding (AAC), and MPEG-4 AAC
  • BC MPEG-2 Backward Compatibility
  • AAC MPEG-2 Advanced Audio Coding
  • MPEG-4 AAC MPEG-4 AAC
  • BCC is technology for effectively compressing a multi-channel audio signal that has been developed on a basis of the fact that people can acoustically perceive space due to a binaural effect. BCC is based on the fact that a pair of ears perceives a location of a specific sound source using interaural level differences and/or interaural time differences.
  • a multi-channel audio signal is downmixed to a monophonic or stereophonic signal and channel information is represented by binaural cue parameters such as Inter-channel Level Difference (ICLD) and Inter-channel Time Difference (ICTD).
  • ICLD Inter-channel Level Difference
  • ICTD Inter-channel Time Difference
  • Document WO 99/52326 discloses a spatial audio coding system, including an encoder and a decoder, operates at very low bit-rates and is useful for audio via the Internet.
  • the listener or listeners preferably are located within a predictable listening area, for example, users of a personal computer or television viewers.
  • An encoder produces a composite audio-information signal representing the soundfield to be reproduced and a directional vector or "steering control signal".
  • the composite audio-information signal has its frequency spectrum broken into a number of subbands, preferably commensurate with the critical bands of the human ear.
  • the steering control signal has a component relating to the dominant direction of the soundfield in each of the subbands. Because the system is based on the premise that only sound from a single diection is heard at any instant, decoder need not apply a signal to more than two sound transducers at any instant.
  • Document WO 03/090208 discloses a psycho-acoustically motivated, parametric representation of the spatial attributes of multichannel audio signals.
  • the parametric representation allows strong bitrate reductions in audio coders, since only one monaural signal has to be transmitted, combined with (quantized) parameters which describe the spatial properties of the signal.
  • the decoder can form the original amount of audio channels by applying the spatial parameters.
  • the present invention as defined by the independent claims 1, 10, 13, 22, 26 and 27, is directed to reproduction of a realistic audio signal by encoding/decoding a multi-channel audio signal using only a downmixed audio signal and a small amount of additional information.
  • the present invention is also directed to maximizing transmission efficiency by analyzing a per-channel sound source of a multi-channel audio signal, extracting a small amount of virtual source location information, and transmitting the extracted virtual source location information together with a downmixed audio signal.
  • FIG. 1 is a block diagram of an apparatus for encoding a multi-channel audio signal according to an exemplary embodiment of the present invention.
  • the multi-channel audio signal encoding apparatus includes a frame converter 100, a downmixer 110, an Advanced Audio Coding (AAC) encoder 120, a multiplexer 130, a quantizer 140, and a Virtual Source Location Information (VSLI) analyzer 150.
  • AAC Advanced Audio Coding
  • VSLI Virtual Source Location Information
  • the frame converter 100 frames the multi-channel audio signal, using a window function such as a sine window, to process the multi-channel audio signal in each block.
  • the downmixer 110 receives the framed multi-channel audio signal from the frame converter 100 and downmixes it into a monophonic signal or a stereophonic signal.
  • the AAC encoder 120 compresses the downmixed audio signal received from the downmixer 110, to generate an AAC encoded signal. It then transmits the AAC encoded signal to the multiplexer 130.
  • the VSLI analyzer 150 extracts Virtual Source Location Information (VSLI) from the framed audio signal.
  • the VSLI analyzer 150 may include a time-to-frequency converter 151, an Equivalent Rectangular Bandwidth (ERB) filter bank 152, an energy vector detector 153, and a location estimator 154.
  • ERP Equivalent Rectangular Bandwidth
  • the time-to-frequency converter 151 performs a plurality of Fast Fourier Transforms (FFTs) to convert the framed audio signal into a frequency domain signal.
  • the ERB filter bank 152 divides the converted frequency domain signal (spectrum) into per-band spectrums (for example, 20 bands).
  • FIG. 2 is a conceptual diagram of a time-to-frequency lattice using the ERB filter bank 152.
  • the energy vector extractor 153 estimates per-channel energy vectors from the corresponding per-band spectrum.
  • the location estimator 154 estimates virtual source location information (VSLI) using the per-channel energy vectors estimated by the energy vector extractor 153.
  • the VSLI may be represented using azimuth angles between the source location vectors and a center channel.
  • the VSLI estimated by the location estimator 154 can vary depending on whether the downmixed audio signal is monophonic or stereophonic.
  • FIG. 3 is a conceptual diagram illustrating the source location vectors estimated according to the present invention, in the case where the downmixed audio signal is monophonic.
  • the source location vectors estimated from the downmixed monophonic signal include a Left Half-plane Vector (LHV), a Right Half-plane Vector (RHV), a Left Subsequent Vector (LSV), a Right Subsequent Vector (RSV), and a Global Vector (GV).
  • LHV Left Half-plane Vector
  • RHV Right Half-plane Vector
  • LSV Left Subsequent Vector
  • RSV Right Subsequent Vector
  • GV Global Vector
  • FIG. 4 is a conceptual diagram illustrating the source location vectors estimated according to the present invention, in the case where the downmixed multi-channel audio signal is stereophonic.
  • the source location vectors estimated from the downmixed monophonic signal include the LHV, the RHV, the LSV, and the RSV, but not the GV.
  • the quantizer 140 quantizes the VSLI (azimuth angles) received from the VSLI analyzer 150 and transmits the quantized VSLI signal to the multiplexer 130.
  • the multiplexer 130 receives the AAC encoded signal from the AAC encoder 120 and the quantized VSLI signal from the quantizer 140 and multiplexes them to generate an encoded multi-channel audio signal (i.e., the AAC encoded signal +the VSLI signal).
  • FIG. 5 is a conceptual diagram illustrating a process of estimating the VSLI according to an exemplary embodiment of the present invention.
  • the input multi-channel audio signal is comprised of five channels including center (C), front left (L), front right (R), left subsequent (LS), and right subsequent (RS)
  • the input signal is converted into the frequency axis signal through the plurality of FFTs and divided into N number of frequency bands (BAND 1, BAND 2,..., and BAND N) in the ERB filter bank 152.
  • the per-channel energy vectors may be detected from the power of each of the five channels for each band (for example, C1 PWR, L1 PWR, R1 PWR, LS1 PWR, and RS1 PWR).
  • CPP Constant Power Panning
  • the source location vectors may be estimated from the detected per-channel energy vectors and the azimuth angles between the source location vectors and the center channel, which represent VSLI, may be estimated.
  • FIG. 6 to 9 illustrate detailed processes of estimating the VSLI according to the present invention.
  • the per-channel energy vectors estimated using the energy vector estimator are a center channel energy vector (C), a front left channel energy vector (L), a left subsequent channel energy vector (LS), a front right channel energy vector (R), and a right subsequent channel energy vector (RS).
  • the LHV is estimated using the front left channel energy vector (L) and the left subsequent channel energy vector (LS)
  • the RHV is estimated using the front right channel energy vector (R) and the right subsequent channel energy vector (RS) (Refer to FIG. 7 ).
  • the LSV and RSV may be estimated using the LHV, the RHV, and the center channel energy vector (C) (Refer to FIG. 8 ).
  • the gain of each channel can be calculated using only the LHV, RHV, LSV, and RSV.
  • the GV can be calculated using the LSV and RSV (Refer to FIG. 9 ).
  • the magnitude of the GV is set to the magnitude of the downmixed audio signal.
  • the source location vectors extracted using the above method may be expressed using the azimuth angles between themselves and the center channel.
  • FIG. 10 illustrates the azimuth angles of the source location vectors extracted by the processes shown in FIGS. 6 to 9 .
  • the VSLI may be expressed using five azimuth angles, which include a Left Half-plane vector angle (LHa), a Right Half-plane vector angle (RHa), a Left Subsequent vector angle (LSa), and a Right Subsequent vector angle (RSa), and further include a Global vector angle (Ga) in the case where the downmixed audio signal is monophonic. Since each value has a limited dynamic range, quantization can be performed using fewer bits than Inter-Channel Level Difference (ICLD).
  • ICLD Inter-Channel Level Difference
  • a linear quantization method in which quantization is performed in uniform intervals or a nonlinear quantization method in which quantization is performed in non-uniform intervals may be used.
  • ⁇ i,max represents the maximal variance level of each angle.
  • ⁇ 1,max 180° ⁇ 2,max and ⁇ 3,max equal 15° and ⁇ 4,max and ⁇ 5, max equal 55°.
  • a maximal variance interval of each angle magnitude is limited, and therefore more effective and higher resolution quantization can be provided.
  • the Ga has a generation frequency with a roughly symmetrical distribution centered on a center speaker.
  • the generation distribution has an average expectation value of 0°. Accordingly, for the Ga, a more effective quantization level can be obtained when quantization is performed using the nonlinear quantization method.
  • the nonlinear quantization method is performed in a general m-law scheme, and m value can be determined depending on a resolution of the quantization level. For example, when the resolution is low, a relatively large m value may be used (15 ⁇ ⁇ 255), and when the resolution is high, a smaller m value (0 ⁇ 5) may be used to perform the nonlinear quantization.
  • FIG. 11 is a block diagram illustrating an apparatus for decoding an encoded multi-channel audio signal according to an exemplary embodiment of the present invention.
  • the multi-channel audio signal decoding apparatus includes a signal distributor 1110, an AAC decoder 1120, a time-to-frequency converter 1130, an inverse quantizer 1140, a per-band channel gain distributor 1150, a multi-channel spectrum synthesizer 1160, and a frequency-to-time converter 1170.
  • the signal distributor 1110 separates the encoded multi-channel audio signal back into the AAC encoded signal and the VLSI encoded signal, respectively.
  • the AAC decoder 1120 converts the AAC encoded signal back into the downmixed audio signal (monophonic or stereophonic signal).
  • the converted downmixed audio signal can be used to produce monophonic or stereophonic sound.
  • the time-to-frequency converter 1130 converts the downmixed audio signal into a frequency axis signal and transmits it to the multi-channel spectrum synthesizer 1160.
  • the inverse quantizer 1140 receives the separated VSLI encoded signal from the signal distributor 1110 and produces per-band source location vector information from the received VSLI encoded signal.
  • the VSLI includes azimuth angle information (for example, LHa, RHa, LSa, RSa, and Ga in the case where the downmixed audio signal is monophonic), each of which represents the corresponding per-band source location vector.
  • the source location vector is produced from the VSLI.
  • the per-band channel gain distributor 1150 calculates the gain per channel using the per-band VSLI signal converted by the inverse quantizer 1140, and transmits the calculated gain to the multi-channel spectrum synthesizer 1160.
  • the multi-channel spectrum synthesizer 1160 receives a spectrum of the downmixed audio signal from the time-to-frequency converter 1130, separates the received spectrum into per-band spectrums using the ERB filter bank, and restores the spectrum of the multi-channel signal using per-band channel gains output from the per-band channel gain distributor 1150.
  • the frequency-to-time converter 1170 (for example, IFFF) converts the spectrum of the restored multi-channel signal into a time axis signal to generate the multi-channel audio signal.
  • FIG. 12 is a block diagram illustrating a process of calculating the per-channel gain of the downmixed audio signal using the VSLI according to an exemplary embodiment of the present invention.
  • the downmixed audio signal is monophonic is illustrated.
  • block 1210 is omitted.
  • magnitudes of the LSV and the RSV are calculated using the magnitude of the downmixed monophonic signal, which is the magnitude of the GV, and the angle (Ga) of the GV.
  • magnitudes of the LHV and the first gain of the center channel (C) are calculated using the magnitude and angle (LSa) of the LSV (Block 1220).
  • the gain of the center channel (C) is obtained by summing the first gain and the second gain calculated in the above process (block 1240).
  • gains of the front left channel (L) and the left subsequent channel (LS) are calculated using the magnitude of the LHV and the corresponding angle (LHa) (block 1250), and gains of the front right channel (R) and the right subsequent channel (RS) are calculated using the magnitude of the RHV and the corresponding angle (RHa) (block 1260). According to the above processes, the gains of all channels can be calculated.
  • a multi-channel audio signal can be more effectively encoded/decoded using virtual source location information, and more realistic audio signal reproduction in a multi-channel environment can be realized.

Claims (27)

  1. Vorrichtung zum Codieren eines Mehrkanal-Audiosignals, wobei die Vorrichtung umfasst:
    einen Rahmenumsetzer (100), um das Mehrkanal-Audiosignal in ein Rahmen-Audiosignal umzusetzen;
    Mittel (110) zum Heruntermischen des Rahmen-Audiosignals;
    Mittel (120) zum Codieren des heruntergemischten Audiosignals;
    eine Quellenortinformations-Schätzeinrichtung (150) zum Schätzen von Informationen (VSLI) bezüglich eines virtuellen Quellenorts aus dem Rahmen-Audiosignal;
    Mittel (140) zum Quantisieren der geschätzten VSLI; und
    Mittel (130) zum Multiplexieren des codierten Audiosignals und der quantisierten VSLI, um ein codiertes Mehrkanal-Audiosignal zu erzeugen;
    wobei:
    die VSLI einen Vektorwinkel der linken Halbebene (LHa), einen Vektorwinkel der rechten Halbebene (RHa), einen nachfolgenden linken Vektorwinkel (LSa), und einen nachfolgenden rechten Vektorwinkel (RSa) enthalten.
  2. Vorrichtung nach Anspruch 1, wobei die Herabmischungsmittel (110) dazu ausgelegt sind, das Rahmen-Audiosignal entweder als Mono- oder als Stereosignal herunterzumischen.
  3. Vorrichtung nach Anspruch 2, wobei dann, wenn das heruntergemischte Audiosignal das Monosignal ist, die Quellenortinformations-Schätzeinrichtung (150) einen Vektor der linken Halbebene (LHV), einen Vektor der rechten Halbebene (RHV), einen nachfolgenden linken Vektor (LSV), einen nachfolgenden rechten Vektor (RSV) und einen globalen Vektor (GV) schätzt.
  4. Vorrichtung nach Anspruch 2, wobei dann, wenn das heruntergemischte Audiosignal das Stereosignal ist, die Quellenortinformations-Schätzeinrichtung (150) einen Vektor der linken Halbebene (LHV), einen Vektor der rechten Halbebene (RHV), einen nachfolgenden linken Vektor (LSV) und einen nachfolgenden rechten Vektor (RSV) schätzt.
  5. Vorrichtung nach Anspruch 1, wobei die Quellenortinformations-Schätzeinrichtung (150) umfasst:
    einen Zeit/Frequenz-Umsetzer (151), um das Rahmen-Audiosignal in ein Spektrum umzusetzen;
    einen Separator (152), um Spektren pro Band zu separieren;
    einen Energievektor-Detektor (153), um Energievektoren pro Kanal aus dem entsprechenden Spektrum pro Band zu detektieren; und
    eine VSLI-Schätzeinrichtung (154), um die VSLI unter Verwendung des detektierten Energievektors pro Kanal, der durch den Energievektor-Detektor (153) detektiert wird, zu schätzen.
  6. Vorrichtung nach Anspruch 5, wobei der Zeit/Frequenz-Umsetzer (151) dazu ausgelegt ist, das Rahmen-Audiosignal in das Spektrum unter Verwendung mehrerer schneller Fourier-Transformationen (FFTs) umzusetzen.
  7. Vorrichtung nach Anspruch 5, wobei der Separator (152) dazu ausgelegt ist, das Spektrum unter Verwendung einer Filterbank für äquivalente Rechteckbandbreite (ERB-Filterbank) zu separieren.
  8. Vorrichtung nach Anspruch 5, wobei der detektierte Energievektor pro Kanal einen Energievektor (C) für den Mittelkanal, einen Energievektor (L) für den vorderen linken Kanal, einen Energievektor für den nachfolgenden linken Kanal (LS), einen Energievektor (R) für den vorderen rechten Kanal und einen Energievektor (RS) für den nachfolgenden rechten Kanal enthält.
  9. Vorrichtung nach Anspruch 1, wobei dann, wenn das heruntergemischte Audiosignal das Monosignal ist, die VSLI ferner einen globalen Vektorwinkel (Ga) enthalten.
  10. Vorrichtung zum Decodieren eines Mehrkanal-Audiosignals, wobei die Vorrichtung umfasst:
    Mittel, um das Mehrkanal-Audiosignal zu empfangen;
    einen Signalverteiler (1110), um das empfangene Mehrkanal-Audiosignal in ein codiertes heruntergemischtes Audiosignal und in ein Signal quantisierter Informationen (VSLI) bezüglich eines virtuellen Quellenortes zu separieren;
    Mittel (1120), um das codierte heruntergemischte Audiosignal zu decodieren;
    Mittel (1130), um das decodierte heruntergemischte Audiosignal in ein Frequenzachsensignal umzusetzen;
    eine VSLI-Extraktionseinrichtung (1140), um die VSLI pro Band aus dem quantisierten VSLI-Signal zu extrahieren;
    einen Kanalverstärkungsrechner (1150), um Kanalverstärkungen pro Band unter Verwendung der extrahierten VSLI pro Band zu berechnen;
    Mittel (1160), um ein Mehrkanal-Audiosignalspektrum unter Verwendung des umgesetzten Frequenzachsensignals und der berechneten Kanalverstärkungen pro Band zu synthetisieren; und
    Mittel (1170), um ein Mehrkanal-Audiosignal aus dem synthetisierten Mehrkanalspektrum zu erzeugen,
    wobei die VSLI pro Band einen Vektorwinkel der linken Halbebene (LHa), einen Vektorwinkel der rechten Halbebene (RHa), einen nachfolgenden linken Vektorwinkel (LSa) und einen nachfolgenden rechten Vektorwinkel (RSa) für jedes Band enthalten.
  11. Vorrichtung nach Anspruch 10, wobei die VSLI-Extraktionseinrichtung (1140) dazu ausgelegt ist, einen Vektor der linken Halbebene (LHV), einen Vektor der rechten Halbebene (RHV), einen nachfolgenden linken Vektor (LSV) und einen nachfolgenden rechten Vektor (RSV) zu erzeugen.
  12. Vorrichtung nach Anspruch 10, wobei dann, wenn das codierte heruntergemischte Signal das Monosignal ist und die VSLI ferner einen globalen Vektorwinkel (Ga) enthalten, ein globaler Vektor (GV) aus dem Ga erzeugt wird.
  13. Verfahren zum Codieren eines Mehrkanal-Audiosignals, das die folgenden Schritte umfasst:
    Umsetzen des Mehrkanal-Audiosignals in ein Rahmen-Audiosignal;
    Heruntermischen des Rahmen-Audiosignals;
    Codieren des heruntergemischten Audiosignals;
    Schätzen von VSLI aus dem Rahmen-Audiosignal;
    Quantisieren der geschätzten VSLI; und
    Multiplexieren des codierten heruntergemischten Audiosignals und der quantisierten VSLI, um ein codiertes Mehrkanal-Audiosignal zu erzeugen;
    wobei die VSLI einen Vektorwinkel der linken Halbebene (LHa), einen Vektorwinkel der rechten Halbebene (RHa), einen nachfolgenden linken Vektorwinkel (LSa) und einen nachfolgenden rechten Vektorwinkel (RSa) enthalten.
  14. Verfahren nach Anspruch 13, wobei das Rahmen-Audiosignal entweder in ein Monosignal oder in ein Stereosignal heruntergemischt wird.
  15. Verfahren nach Anspruch 14, wobei dann, wenn das heruntergemischte Audiosignal das Monosignal ist, die VSLI ferner einen Ga enthalten und ein Vektor der linken Halbebene (LHV), ein Vektor der rechten Halbebene (RHV), ein nachfolgender linker Vektor (LSV), ein nachfolgender rechter Vektor (RSV) und ein globaler Vektor (GV) aus den VSLI erzeugt werden.
  16. Verfahren nach Anspruch 14, wobei dann, wenn das heruntergemischte Audiosignal das Stereosignal ist, ein Vektor der linken Halbebene (LHV), ein Vektor der rechten Halbebene (RHV), ein nachfolgender linker Vektor (LSV) und ein nachfolgender rechter Vektor (RSV) aus den VSLI erzeugt werden.
  17. Verfahren nach Anspruch 13, wobei der Schritt des Schätzens der VSLI die folgenden Schritte umfasst:
    Umsetzen des Rahmen-Audiosignals in ein Spektrum;
    Separieren des Spektrums in Spektren pro Band;
    Detektieren von Energievektoren pro Kanal aus den Spektren pro Band; und
    Schätzen der VSLI unter Verwendung der detektierten Energievektoren pro Kanal.
  18. Verfahren nach Anspruch 17, wobei die detektierten Energievektoren pro Kanal einen Energievektor (C) des Mittelkanals, einen Energievektor (L) des vorderen linken Kanals, einen Energievektor (LS) des nachfolgenden linken Kanals, einen Energievektor (R) des vorderen rechten Kanals und einen Energievektor (RS) des nachfolgenden rechten Kanals enthalten.
  19. Verfahren nach Anspruch 17, wobei der Schritt des Schätzens der VSLI die folgenden Schritte umfasst:
    Schätzen eines LHV unter Verwendung des Energievektors (L) des vorderen linken Kanals und des Energievektors (LS) des nachfolgenden linken Kanals;
    Schätzen eines RHV unter Verwendung des Energievektors (R) des vorderen rechten Kanals und des Energievektors (RS) des nachfolgenden rechten Kanals;
    Schätzen eines LSV unter Verwendung des geschätzten LHV und des Energievektors (C) des Mittelkanals; und
    Schätzen eines RSV unter Verwendung des geschätzten RHV und des Energievektors (C) des Mittelkanals.
  20. Verfahren nach Anspruch 19, wobei dann, wenn das heruntergemischte Audiosignal das Monosignal ist, die geschätzten VSLI ferner einen GV enthalten und das Schätzen der VSLI ferner den Schritt des Schätzens des GV unter Verwendung des geschätzten LSV und des geschätzten RSV umfasst.
  21. Verfahren nach Anspruch 17, wobei dann, wenn das heruntergemischte Audiosignal das Monosignal ist, die Azimutwinkelinformationen ferner einen Ga enthalten.
  22. Verfahren zum Decodieren eines Mehrkanal-Audiosignals, das die folgenden Schritte umfasst:
    Empfangen des Mehrkanal-Audiosignals;
    Separieren des empfangenen Mehrkanal-Audiosignals in ein codiertes heruntergemischtes Audiosignal und ein Signal quantisierter VSLI;
    Decodieren des codierten heruntergemischten Audiosignals;
    Umsetzen des decodierten heruntergemischten Audiosignals in ein Frequenzachsensignal;
    Analysieren des Signals quantisierter VSLI und daraus Extrahieren von VSLI pro Band;
    Berechnen von Kanalverstärkungen pro Band aus den extrahierten VSLI pro Band;
    Synthetisieren eines Mehrkanal-Audiosignalspektrums unter Verwendung des umgesetzten Frequenzachsensignals und der berechneten Kanalverstärkungen pro Band; und
    Erzeugen eines Mehrkanal-Audiosignals aus dem synthetisierten Mehrkanalspektrum;
    wobei die VSLI pro Band einen Vektorwinkel der linken Halbebene (LHa), einen Vektorwinkel der rechten Halbebene (RHa), einen nachfolgenden linken Vektorwinkel (LSa) und einen nachfolgenden rechten Vektorwinkel (RSa) für jedes Band enthalten.
  23. Verfahren nach Anspruch 22, wobei aus den VSLI ein Vektor der linken Halbebene (LHV), ein Vektor der rechten Halbebene (RHV), ein nachfolgender linker Vektorwinkel (LSV) und ein nachfolgender rechter Vektor (RSV) erzeugt werden.
  24. Verfahren nach Anspruch 22, wobei dann, wenn das codierte heruntergemischte Audiosignal das Monosignal ist, die VSLI ferner einen globalen Vektorwinkel (Ga) enthalten und aus dem Ga ein globaler Vektor (GV) erzeugt wird.
  25. Verfahren nach Anspruch 23, wobei der Schritt des Berechnens der Kanalverstärkung für jedes Band die folgenden Schritte umfasst:
    Berechnen von Größen des LSV und des RSV unter Verwendung einer Größe des heruntergemischten Audiosignals;
    Berechnen einer ersten Verstärkung eines Mittelkanals (C) und einer Größe des LHV unter Verwendung der Größe des LSV und des LSa;
    Berechnen einer zweiten Verstärkung eines Mittelkanals (C) und einer Größe des RHV unter Verwendung der Größe des RSV und des RSa;
    Summieren der ersten und der zweiten Verstärkung des Mittelkanals (C), um eine Verstärkung des Mittelkanals (C) zu erzeugen;
    Berechnen von Verstärkungen eines vorderen linken Kanals (L) und eines nachfolgenden linken Kanals (LS) unter Verwendung der Größe des LHV und des LHa; und
    Berechnen von Verstärkungen eines vorderen rechten Kanals (R) und eines nachfolgenden rechten Kanals (RS) unter Verwendung der Größe des RHV und des RHa.
  26. Computerlesbares Aufzeichnungsmedium zum Speichern eines Computerprogramms, um das Verfahren zum Codieren eines Mehrkanal-Audiosignals nach einem der Ansprüche 13 bis 21 auszuführen.
  27. Computerlesbares Aufzeichnungsmedium zum Speichern eines Computerprogramms, um das Verfahren zum Decodieren eines Mehrkanal-Audiosignals nach einem der Ansprüche 22 bis 25 auszuführen.
EP05774399A 2004-07-09 2005-07-08 Verfahren und vorrichtung zum codieren und decodieren eines mehrkanaligen audiosignals unter verwendung von virtuelle-quelle-ortsinformationen Not-in-force EP1779385B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040053665 2004-07-09
KR20040081303 2004-10-12
KR1020050061425A KR100663729B1 (ko) 2004-07-09 2005-07-07 가상 음원 위치 정보를 이용한 멀티채널 오디오 신호부호화 및 복호화 방법 및 장치
PCT/KR2005/002213 WO2006006809A1 (en) 2004-07-09 2005-07-08 Method and apparatus for encoding and cecoding multi-channel audio signal using virtual source location information

Publications (3)

Publication Number Publication Date
EP1779385A1 EP1779385A1 (de) 2007-05-02
EP1779385A4 EP1779385A4 (de) 2007-07-25
EP1779385B1 true EP1779385B1 (de) 2010-09-22

Family

ID=35784122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05774399A Not-in-force EP1779385B1 (de) 2004-07-09 2005-07-08 Verfahren und vorrichtung zum codieren und decodieren eines mehrkanaligen audiosignals unter verwendung von virtuelle-quelle-ortsinformationen

Country Status (2)

Country Link
EP (1) EP1779385B1 (de)
WO (1) WO2006006809A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180067B2 (en) 2006-04-28 2012-05-15 Harman International Industries, Incorporated System for selectively extracting components of an audio input signal
US7876904B2 (en) * 2006-07-08 2011-01-25 Nokia Corporation Dynamic decoding of binaural audio signals
BRPI0719884B1 (pt) 2006-12-07 2020-10-27 Lg Eletronics Inc método, aparelho e mídia legível por computador para decodificar um sinal de áudio
US9372251B2 (en) 2009-10-05 2016-06-21 Harman International Industries, Incorporated System for spatial extraction of audio signals
EP2541547A1 (de) * 2011-06-30 2013-01-02 Thomson Licensing Verfahren und Vorrichtung zum Ändern der relativen Standorte von Schallobjekten innerhalb einer Higher-Order-Ambisonics-Wiedergabe
CN112185399A (zh) 2012-05-18 2021-01-05 杜比实验室特许公司 用于维持与参数音频编码器相关联的可逆动态范围控制信息的系统
US10844689B1 (en) 2019-12-19 2020-11-24 Saudi Arabian Oil Company Downhole ultrasonic actuator system for mitigating lost circulation
KR102340151B1 (ko) 2014-01-07 2021-12-17 하만인터내셔날인더스트리스인코포레이티드 신호 품질-기반 압축 오디오 신호 향상 및 보상
EP3579577A1 (de) 2016-03-15 2019-12-11 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Vorrichtung, verfahren und computerprogramm zur erzeugung einer schallfeldbeschreibung
EP3297298B1 (de) 2016-09-19 2020-05-06 A-Volute Verfahren zur reproduktion von räumlich verteilten geräuschen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128597A (en) * 1996-05-03 2000-10-03 Lsi Logic Corporation Audio decoder with a reconfigurable downmixing/windowing pipeline and method therefor
US5946352A (en) * 1997-05-02 1999-08-31 Texas Instruments Incorporated Method and apparatus for downmixing decoded data streams in the frequency domain prior to conversion to the time domain
US6016473A (en) 1998-04-07 2000-01-18 Dolby; Ray M. Low bit-rate spatial coding method and system
US7292901B2 (en) * 2002-06-24 2007-11-06 Agere Systems Inc. Hybrid multi-channel/cue coding/decoding of audio signals
US20030014243A1 (en) * 2001-07-09 2003-01-16 Lapicque Olivier D. System and method for virtual localization of audio signals
US8340302B2 (en) 2002-04-22 2012-12-25 Koninklijke Philips Electronics N.V. Parametric representation of spatial audio
SE0400997D0 (sv) * 2004-04-16 2004-04-16 Cooding Technologies Sweden Ab Efficient coding of multi-channel audio

Also Published As

Publication number Publication date
WO2006006809A1 (en) 2006-01-19
EP1779385A4 (de) 2007-07-25
EP1779385A1 (de) 2007-05-02

Similar Documents

Publication Publication Date Title
US7783495B2 (en) Method and apparatus for encoding and decoding multi-channel audio signal using virtual source location information
EP1779385B1 (de) Verfahren und vorrichtung zum codieren und decodieren eines mehrkanaligen audiosignals unter verwendung von virtuelle-quelle-ortsinformationen
EP2612322B1 (de) Verfahren und vorrichtung zur dekodierung eines mehrkanaltonsignals
KR101117336B1 (ko) 오디오 신호 부호화 장치 및 오디오 신호 복호화 장치
EP1881486B1 (de) Dekodiervorrichtung mit Dekorreliereinheit
US8332229B2 (en) Low complexity MPEG encoding for surround sound recordings
TWI404429B (zh) 用於將多頻道音訊信號編碼/解碼之方法與裝置
EP1393303B1 (de) Zwischenkanal-signalredundanzentfernung bei der wahrnehmungsbezogenen audiocodierung
US20070269063A1 (en) Spatial audio coding based on universal spatial cues
US8706508B2 (en) Audio decoding apparatus and audio decoding method performing weighted addition on signals
CN112567765B (zh) 空间音频捕获、传输和再现
EP4082010A1 (de) Kombinieren von räumlichen audioparametern
JP6686015B2 (ja) オーディオ信号のパラメトリック混合
Cheng et al. A spatial squeezing approach to ambisonic audio compression
US11096002B2 (en) Energy-ratio signalling and synthesis
JP2023500631A (ja) 方向メタデータを使用するマルチチャネルオーディオ符号化及び復号化
EP4315324A1 (de) Kombination räumlicher audioströme
WO2006011367A1 (ja) オーディオ信号符号化装置および復号化装置
CA3208666A1 (en) Transforming spatial audio parameters
CN116547749A (zh) 音频参数的量化
EP3948861A1 (de) Bestimmung der bedeutung von räumlichen audioparametern und zugehörige codierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

A4 Supplementary search report drawn up and despatched

Effective date: 20070621

RIC1 Information provided on ipc code assigned before grant

Ipc: G11B 20/10 20060101AFI20060216BHEP

Ipc: G10L 19/00 20060101ALI20070615BHEP

Ipc: H04S 3/00 20060101ALI20070615BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION

Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005023738

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100922

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005023738

Country of ref document: DE

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110708

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110708

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005023738

Country of ref document: DE

Representative=s name: PATENTANWAELTE BETTEN & RESCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R088

Ref document number: 602005023738

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005023738

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

Effective date: 20130717

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005023738

Country of ref document: DE

Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH IN, KR

Free format text: FORMER OWNERS: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, DAEJEON, KR; SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION, SEOUL/SOUL, KR

Effective date: 20130717

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005023738

Country of ref document: DE

Owner name: SNU R&DB FOUNDATION, KR

Free format text: FORMER OWNERS: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, DAEJEON, KR; SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION, SEOUL/SOUL, KR

Effective date: 20130717

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005023738

Country of ref document: DE

Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH IN, KR

Free format text: FORMER OWNER: ELECTRONICS AND TELECOMMUNICATI, SEOUL NATIONAL UNIVERSITY INDUS, , KR

Effective date: 20130717

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005023738

Country of ref document: DE

Representative=s name: PATENTANWAELTE BETTEN & RESCH, DE

Effective date: 20130717

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005023738

Country of ref document: DE

Owner name: SNU R&DB FOUNDATION, KR

Free format text: FORMER OWNER: ELECTRONICS AND TELECOMMUNICATI, SEOUL NATIONAL UNIVERSITY INDUS, , KR

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160614

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005023738

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201