EP1779223A1 - Procede de reconnaissance de la trajectoire d'une pointe d'un corps sur un support - Google Patents

Procede de reconnaissance de la trajectoire d'une pointe d'un corps sur un support

Info

Publication number
EP1779223A1
EP1779223A1 EP05717528A EP05717528A EP1779223A1 EP 1779223 A1 EP1779223 A1 EP 1779223A1 EP 05717528 A EP05717528 A EP 05717528A EP 05717528 A EP05717528 A EP 05717528A EP 1779223 A1 EP1779223 A1 EP 1779223A1
Authority
EP
European Patent Office
Prior art keywords
support
trajectory
pen
tangential
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05717528A
Other languages
German (de)
English (en)
Inventor
Yanis Caritu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1779223A1 publication Critical patent/EP1779223A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • the invention relates to a method for recognizing the trajectory of a point of a body on a support, comprising the determination of an orientation angle of the body by processing measurement data supplied to a processing unit, by at least one angle sensor disposed in the body, the body comprising a force sensor measuring the reaction force of the tip of the body in contact with the support, the force sensor providing, almost continuously, to the data processing unit representative of the reaction force, the processing unit determining the orientation of the reaction force relative to the plane of the support from the measurement data of the angle sensor and the force sensor.
  • a trace written on a medium is transcribed on a computer screen via the pen.
  • a digital pen can recognize written symbols, such as characters and signatures.
  • a digital pen comprises several sensors, for example inertial sensors of accelerometer type and angle sensors, for example of magnetometers or gyrometers type, and, optionally, a reaction force detector of a tip of the pen in contact with the support, allowing to recognize if the pen is in contact with a writing support or not.
  • the acceleration of the tip of the pen on the writing medium is obtained by processing measurement data supplied by the sensors.
  • a double mathematical integration of a quantity as a function of acceleration then makes it possible to approximately determine the trajectory of the tip of the pen on the writing medium.
  • Data processing is carried out by a processing unit arranged, for example, in the pen.
  • the document US5548092 describes a method for viewing information written on a support by measuring the forces applied to the tip of a pen.
  • the pen has a sensor to measure the force of the pen tip on the holder. Additional sensors make it possible to measure the movements and the orientation of the pen relative to the support, even if the pen is not in contact with the support.
  • a force having the direction of the longitudinal axis of the pen has components oriented along two orthogonal axes arranged in a writing plane.
  • the forces measured in the reference frame of the pen are transformed into an absolute reference frame.
  • the document defines an angle of inclination of the pen relative to the gravitational axis and an azimuth angle relative to one of said orthogonal axes.
  • a friction force is represented by the sum of a static component and a dynamic component depending on the speed.
  • the static component is subtracted from the measured force to define a net force, which is by definition zero when the measured force is less than the product of the longitudinal force and the coefficient of static friction.
  • the time derivative of the quantity of movement is expressed as a function of the net force and the dynamic friction force.
  • the differential equation obtained is then solved to determine the speed and the position.
  • the components of the position and the speed of the tip of the pen in the plane of the support are calculated by integration, taking into account the corresponding components of the net force.
  • the document WO99 / 67652 describes a pen comprising force, acceleration and contact sensors integrated in a measurement device comprising an inertial mass coupled to the tip of the pen.
  • the pen includes a device for measuring the angles of inclination of the pen.
  • the measuring devices transmit measurement data to a control unit.
  • the measurement data is processed to determine the forces and accelerations applied to the pen.
  • a method of using the pen includes an initialization phase, a measurement phase and a data processing phase. The data makes it possible to determine whether the pen is in contact with a writing medium or not. If a contact is detected, the data is interpreted as forces. If there is no contact, the data is interpreted as accelerations.
  • the object of the invention is to simplify the recognition of the trajectory of a tip of a body on a support and to increase the precision of the trajectory recognition, in particular for the recognition of the trajectory of a tip of a pen on a writing medium, while simplifying the use of the pen.
  • this object is achieved by the appended claims and, in particular, by the fact that the processing unit determines a vector tangential to the trajectory by projection of the reaction force in the plane of the support, the trajectory being determined by at least one mathematical integration of a quantity function of the tangential vector to the trajectory.
  • Figure 1 shows a digital pen according to the prior art.
  • FIGS. 2 and 3 illustrate, in the form of functional block diagrams, two particular embodiments of a recognition method according to the invention. Description of particular embodiments
  • a pen 1 comprises an accelerometer 2, an angle sensor 3 and a force sensor 4 arranged in the housing 5 of the pen, in a front part of the pen 1.
  • the force sensor 4 is mechanically linked to the tip 6 of the pen and the accelerometer 2 is advantageously placed near the tip 6.
  • the angle sensor 3 can be constituted by a set of three gyrometers or, preferably, by a set of three magnetometers.
  • Electronic circuits, in particular an analog / digital converter 7, a processing unit 8 and a transmitter 9 or a transmitter / receiver, are also arranged in a rear part of the pen 1.
  • the data processing can be carried out by the processing 8 or by a remote station receiving the data via the transmitter 9.
  • the pen 1 makes it possible to write on any medium 10 without requiring additional equipment.
  • the angle ⁇ of the longitudinal axis L of the pen 1, that is to say the angle of inclination of the pen 1 is defined relative to the support plane 10.
  • the support is preferably , plan. However, a surface with small deformations can also be used.
  • the trajectory of the tip 6 of the pen 1 is determined from data S1 and S2 supplied to the processing unit 8 respectively by the angle sensor 3 and the force sensor 4.
  • the recognition process may include, before starting to write, a calibration step F1 of the orientation ⁇ 0 of the support 10.
  • the pen is placed at a predetermined angle relative to an axis perpendicular to the support, preferably perpendicular to the support 10, during the calibration step F1 and the angle sensor 3 thus provides the orientation angle ⁇ 0 of the support 10. If the orientation of the support 10 is modified by subsequently, the calibration must be updated. If the support 10 has several zones with different orientations, the calibration can be updated each time the tip 6 of the pen 1 changes zones.
  • the angle ⁇ of the pen 1 is estimated in relation to the orientation angle ⁇ 0 of the support 10, from the measurement data S1 of the angle sensor 3.
  • the data S2 is supplied to the processing unit 8 by the force sensor 4 almost continuously. They are representative of the reaction force of the tip 6 of the pen 1 in contact with the support 10.
  • the measurement is three-dimensional and proportional to the reaction force. Thus, one obtains information on the direction and the amplitude of the reaction force and not a simple contact detection.
  • the reaction force is measured in the reference frame of the pen 1.
  • the orientation of the reaction force relative to the plane of the support 10 is determined (F3) from the measurement data S1 of the angle sensor 3, more particularly at from the angle ⁇ , and from the measurement data S2 of the force sensor 4.
  • F3 the measurement data S1 of the angle sensor 3
  • the measurement data S2 of the force sensor 4 is obtained in the frame of reference of the support 10.
  • the reaction force is projected (F4) in the plane of the support 10, which eliminates the component perpendicular to the support 10 which corresponds to the contact pressure applied by the user, which is of no importance for determining the trajectory of the tip 6 of the pen 1.
  • the component in the plane of the support 10, result of the projection is due to the friction force of the tip 6 of the pen 1 on the support 10.
  • This friction force is antiparallel to the movement of the tip 6 of the pen 1 in the plane of the support 10 , tangential to the trajectory d e the tip 6 of the pen 1 on the support 10.
  • the processing unit 8 determines the trajectory of the tip 6 of the pen on the support 10.
  • the net force which is used for the calculation of the position and the speed of the tip of the pen, is equal to the sum of a quantity proportional to the speed (tangential to the trajectory) and of a magnitude proportional to the acceleration (not necessarily tangential).
  • the net force used in document US5548092 does not correspond to a vector tangential to the trajectory, insofar as it comprises an acceleration vector, which is not necessarily tangential to the trajectory.
  • the trajectory of the tip 6 of the pen 1 is determined from data S1, S2 and S3 supplied to the processing unit 8 respectively by the angle sensor 3 and the force sensor 4 and the accelerometer 2.
  • the processing of the data S3 of the accelerometer makes it possible to obtain better accuracy in determining the trajectory.
  • the measurement data supplied by the angle sensor 3 make it possible, in a known manner, to estimate (F6) the contribution G of gravity to the measurement of the accelerometer 2 and, then, to eliminate (F7) said contribution G of the data S3 supplied by the accelerometer 2, so as to obtain reduced data S4, a function of the acceleration of the movement only.
  • the reduced S4 data thus represent the acceleration of the movement at the location of the accelerometer 2 which is, a priori, different from the acceleration A of the tip 6 of the pen 1.
  • step F8 the acceleration A of the tip 6 of the pen 1
  • step F'2 the angle ⁇ of the pen 1 relative to the orientation angle ⁇ 0 of the support 10, from the measurement data S1 of the angle sensor 3, as well as the angular speed VA and the angular acceleration AA of the pen 1, respectively thanks to to the first and to the second derivative of the angle ⁇ with respect to time.
  • step F8 use is made of the laws of composition of the movements of conventional mechanics, taking into account the vector connecting the location of the accelerometer 2 and the tip 6 of the pen 1.
  • the acceleration A of the tip 6 of the pen 1 can then be projected (step F9) into the plane of the support 10, so as to obtain the acceleration â on the support 10 of the tip 6 of the pen 1.
  • the projection in the plane of the support 10 can therefore be calculated from data S1 and S3, supplied respectively by the angle sensor 3 and the accelerometer 2 and making it possible to determine the orientation angle ⁇ 0 of the support 10, the angle ⁇ of the pen 1 with respect to the angle of orientation ⁇ 0 and the acceleration A of the tip 6 of pen 1.
  • step F'4 we obtain, as in step F4, the vector ô tangential to the trajectory of the tip 6 of the pen 1, and, moreover, by normalization of the vector ô tangential, a unit vector û tangential to the trajectory of the tip 6 of the pen 1.
  • a step F10 the processing unit 8 determines the scalar product of the unit vector û and of the acceleration â of the tip 6 of the pen 1 on the support 10, which makes it possible to determine the component aT of the acceleration, tangential to the trajectory.
  • the trajectory is then determined by double mathematical integration F11 of the tangential component aT of the acceleration.
  • the component aT of the tangential acceleration to the trajectory can possibly be determined by scalar product of the unit vector û and the acceleration A of the tip 6 of the pen 1, without carrying out the projection F9 of the acceleration A of the tip 6 of the pen 1 in the plane of the support 10.
  • the projection step F9 makes it possible to obtain information on the curvature of the trajectory by means of the component of the acceleration perpendicular to the trajectory.
  • the joint use of the angle sensor 3 and the force sensor 4 makes it possible to correctly eliminate, from the measurement of the acceleration aT, the contributions of forces which are not related to the trajectory, for example gravity or pen 1 pressure perpendicular to the support.
  • the use of the method according to the invention allows, in particular, the efficient realization of recording and recognition of signatures. For example, one registers a plurality of signatures for each person using the pen 1 to determine an average signal for each person.
  • a processing typically consisting in minimizing the quadratic distance between a standardized signature measurement and the normalized mean signals recorded beforehand, makes it possible to recognize the signature with certainty.
  • the invention is not limited to methods for recognizing the trajectory of a pen tip.
  • the pen 1 can be replaced by any body comprising, for example, any actuator, for example an etching tip, the trajectory of which is determined during actuation.
  • the method also makes it possible to determine the trajectory of a measuring device, for example a feeler, comprising any sensor, for example a thermal, electrical or photometric sensor.
  • a physical measurement is carried out via a sensor associated with the body 1, simultaneously with the trajectory recognition, which makes it possible to establish a map of the physical quantity measured by correlation of the measurement with the determined trajectory.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Un capteur d'angle (3) permet de déterminer l'angle d'orientation (theta) du corps. Un capteur de force (4) mesure, de manière quasi-continue, la force de réaction de la pointe du corps en contact avec le support. L'orientation de la force de réaction par rapport au plan du support est déterminée à partir de données de mesure (S1, S2) desdits capteurs (3 et 4). Un vecteur (ô) tangentiel à la trajectoire est déterminé par projection (F4) de la force de réaction dans le plan du support. La trajectoire peut être déterminée par intégration mathématique (F5) du vecteur (ô) tangentiel ou par double intégration mathématique de l'accélération tangentielle. Celle-ci peut, par exemple, être déterminée par produit scalaire d'un vecteur unitaire tangentiel, obtenu par normalisation du vecteur (ô) tangentiel, et de données représentatives de l'accélération, fournies par un accéléromètre.

Description

Procédé de reconnaissance de la trajectoire d'une pointe d'un corps sur un support
Domaine technique de l'invention
L'invention concerne un procédé de reconnaissance de la trajectoire d'une pointe d'un corps sur un support, comportant la détermination d'un angle d'orientation du corps par traitement de données de mesure fournies, à une unité de traitement, par au moins un capteur d'angle disposé dans le corps, le corps comportant un capteur de force mesurant la force de réaction de la pointe du corps en contact avec le support, le capteur de force fournissant, de manière quasi-continue, à l'unité de traitement des données représentatives de la force de réaction, l'unité de traitement déterminant l'orientation de la force de réaction par rapport au plan du support à partir des données de mesure du capteur d'angle et du capteur de force.
Etat de la technique
Actuellement, les stylos numériques commercialisés nécessitent un support préparé ou une source de référence, permettant de reconnaître les mouvements de la pointe du stylo, par exemple des tables à numériser, des écrans particuliers, des sources à ultrasons, des sources électromagnétiques ou des papiers spéciaux, ce qui complique l'utilisation du stylo.
Une trace écrite sur un support est transcrite sur un écran d'ordinateur par l'intermédiaire du stylo. Typiquement, un stylo numérique permet de reconnaître les symboles écrits, par exemple les caractères et les signatures. Généralement, un stylo numérique comporte plusieurs capteurs, par exemple des capteurs inertiels de type accéléromètre et des capteurs d'angle, par exemple de type magnétomètres ou gyromètres, et, éventuellement, un détecteur de force de réaction d'une pointe du stylo en contact avec le support, permettant de reconnaître si le stylo est en contact avec un support d'écriture ou non. L'accélération de la pointe du stylo sur le support d'écriture est obtenue par traitement de données de mesure fournies par les capteurs. Une double intégration mathématique d'une grandeur fonction de l'accélération permet ensuite de déterminer approximativement la trajectoire de la pointe du stylo sur le support d'écriture. Les traitements de données sont effectués par une unité de traitement disposée, par exemple, dans le stylo.
Le document US5548092 décrit une méthode pour visualiser des informations écrites sur un support par mesure des forces appliquées à la pointe d'un stylo. Le stylo comporte un capteur pour mesurer la force de la pointe du stylo sur le support. Des capteurs supplémentaires permettent de mesurer les mouvements et l'orientation du stylo par rapport au support, même si le stylo n'est pas en contact avec le support. Une force ayant la direction de l'axe longitudinal du stylo comporte des composantes orientées le long de deux axes orthogonaux disposés dans un plan d'écriture. Les forces mesurées dans le référentiel du stylo sont transformées dans un référentiel absolu. Le document définit un angle d'inclinaison du stylo par rapport à l'axe gravitationnel et un angle d'azimut par rapport à l'un desdits axes orthogonaux. Une force de frottement est représentée par la somme d'une composante statique et d'une composante dynamique dépendant de la vitesse. La composante statique est soustraite de la force mesurée afin de définir une force nette, qui est par définition nulle lorsque la force mesurée est inférieure au produit de la force longitudinale et du coefficient de frottement statique. Puis, la dérivée temporelle de la quantité de mouvement est exprimée en fonction de la force nette et de la force de frottement dynamique. L'équation différentielle obtenue est ensuite résolue pour déterminer la vitesse et la position. Le calcul des composantes de la position et de la vitesse de la pointe du stylo dans le plan du support est réalisé, par intégration, en tenant compte des composantes correspondantes de la force nette.
De par la structure même du stylo décrit dans le document US5548092, l'angle d'azimut est supposé constant et le stylo comporte une arête empêchant l'utilisateur de faire tourner le stylo lors de l'écriture. Ceci implique que le stylo est figé dans la main. Cette hypothèse est très restrictive par rapport à la réalité.
Le document W099/67652 décrit un stylo comportant des capteurs de force, d'accélération et de contact intégrés dans un dispositif de mesure comportant une masse inertielle couplée à la pointe du stylo. De plus, le stylo comporte un dispositif de mesure des angles d'inclinaison du stylo. Les dispositifs de mesure transmettent des données de mesure à une unité de contrôle. Les données de mesure sont traitées pour déterminer les forces et accélérations appliquées au stylo. Un procédé d'utilisation du stylo comporte une phase d'initialisation, une phase de mesure et une phase de traitement de données. Les données permettent de déterminer si le stylo est en contact avec un support d'écriture ou non. Si un contact est détecté, les données sont interprétées comme des forces. S'il n'y a pas de contact, les données sont interprétées comme des accélérations. Objet de l'invention
L'invention a pour but de simplifier la reconnaissance de la trajectoire d'une pointe d'un corps sur un support et d'augmenter la précision de la reconnaissance de trajectoire, notamment pour la reconnaissance de la trajectoire d'une pointe d'un stylo sur un support d'écriture, tout en simplifiant l'utilisation du stylo.
Selon l'invention, ce but est atteint par les revendications annexées et, en particulier, par le fait que l'unité de traitement détermine un vecteur tangentiel à la trajectoire par projection de la force de réaction dans le plan du support, la trajectoire étant déterminée par au moins une intégration mathématique d'une grandeur fonction du vecteur tangentiel à la trajectoire.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
La figure 1 représente un stylo numérique selon l'art antérieur.
Les figures 2 et 3 illustrent, sous forme de schémas bloc fonctionnels, deux modes de réalisation particuliers d'un procédé de reconnaissance selon l'invention. Description de modes particuliers de réalisation
Sur la figure 1 , un stylo 1 comporte un accéléromètre 2, un capteur d'angle 3 et un capteur de force 4 disposés dans le boîtier 5 du stylo, dans une partie avant du stylo 1. Le capteur de force 4 est lié mécaniquement à la pointe 6 du stylo et l'accéléromètre 2 est avantageusement disposé près de la pointe 6. Le capteur d'angle 3 peut être constitué par un ensemble de trois gyromètres ou, de préférence, par un ensemble de trois magnétomètres. Des circuits électroniques, notamment un convertisseur 7 analogique/numérique, une unité de traitement 8 et un émetteur 9 ou un émetteur/récepteur, sont également disposés dans une partie arrière du stylo 1. Le traitement des données peut être effectué par l'unité de traitement 8 ou par une station à distance recevant les données par l'intermédiaire de l'émetteur 9. Le stylo 1 permet d'écrire sur un support 10 quelconque sans nécessiter d'équipement supplémentaire. Sur la figure 1 , l'angle θ de l'axe longitudinal L du stylo 1 , c'est-à-dire l'angle d'inclinaison du stylo 1 est défini par rapport au plan support 10. Le support est, de préférence, plan. Mais une surface avec des déformations faibles peut également être utilisable.
Dans un premier mode de réalisation simplifié, illustré sur la figure 2, la trajectoire de la pointe 6 du stylo 1 est déterminée à partir de données S1 et S2 fournies à l'unité de traitement 8 respectivement par le capteur d'angle 3 et le capteur de force 4. Le procédé de reconnaissance peut comporter, avant de commencer l'écriture, une étape d'étalonnage F1 de l'orientation Θ0 du support 10. Par exemple, le stylo est placé selon un angle prédéterminé par rapport à un axe perpendiculaire au support, de préférence, perpendiculairement au support 10, pendant l'étape d'étalonnage F1 et le capteur d'angle 3 fournit, ainsi, l'angle d'orientation Θ0 du support 10. Si l'orientation du support 10 est modifiée par la suite, l'étalonnage doit être mis à jour. Si le support 10 comporte plusieurs zones ayant des orientations différentes, l'étalonnage peut être mis à jour à chaque fois que la pointe 6 du stylo 1 change de zone.
Ensuite on effectue, de manière connue, dans une étape F2, l'estimation de l'angle θ du stylo 1 par rapport à l'angle d'orientation Θ0 du support 10, à partir des données S1 de mesure du capteur d'angle 3.
Les données S2 sont fournies à l'unité de traitement 8 par le capteur de force 4 de manière quasi-continue. Elles sont représentatives de la force de réaction de la pointe 6 du stylo 1 en contact avec le support 10. La mesure est tridimensionnelle et proportionnelle à la force de réaction. Ainsi, on obtient une information sur la direction et l'amplitude de la force de réaction et non une simple détection de contact. La force de réaction est mesurée dans le référentiel du stylo 1. L'orientation de la force de réaction par rapport au plan du support 10 est déterminée (F3) à partir des données S1 de mesure du capteur d'angle 3, plus particulièrement à partir de l'angle θ, et des données S2 de mesure du capteur de force 4. Ainsi, on obtient la force de réaction dans le référentiel du support 10. Ensuite, la force de réaction est projetée (F4) dans le plan du support 10, ce qui permet d'éliminer la composante perpendiculaire au support 10 qui correspond à la pression d'appui appliquée par l'utilisateur, qui est sans importance pour la détermination de la trajectoire de la pointe 6 du stylo 1. La composante dans le plan du support 10, résultat de la projection, est due à la force de frottement de la pointe 6 du stylo 1 sur le support 10. Cette force de frottement est antiparallèle au mouvement de la pointe 6 du stylo 1 dans le plan du support 10, tangentielle à la trajectoire de la pointe 6 du stylo 1 sur le support 10. On obtient, ainsi, un vecteur ô tangentiel à la trajectoire de la pointe 6 du stylo 1 , représentatif, de la direction de la vitesse de la pointe 6 dans le plan du support. Dans une étape F5, comportant une simple intégration mathématique du vecteur ô tangentiel, l'unité de traitement 8 détermine la trajectoire de la pointe 6 du stylo sur le support 10.
Il est à noter que selon le document US5548092, la force nette, qui est utilisée pour le calcul de la position et de la vitesse de la pointe du stylo, est égale à la somme d'une grandeur proportionnelle à la vitesse (tangentielle à la trajectoire) et d'une grandeur proportionnelle à l'accélération (pas forcément tangentielle). Ainsi, la force nette utilisée dans le document US5548092 ne correspond pas à un vecteur tangentiel à la trajectoire, dans la mesure où elle comporte un vecteur accélération, qui n'est pas forcément tangentiel à la trajectoire.
Dans un deuxième mode de réalisation, illustré sur la figure 3, la trajectoire de la pointe 6 du stylo 1 est déterminée à partir de données S1, S2 et S3 fournies à l'unité de traitement 8 respectivement par le capteur d'angle 3 et le capteur de force 4 et l'accéléromètre 2. Le traitement des données S3 de l'accéléromètre permet d'obtenir une meilleure précision de la détermination de la trajectoire.
L'accéléromètre 2 étant influencé par la gravitation, il est souhaitable d'éliminer la contribution de la gravité à la mesure. Les données de mesure fournies par le capteur d'angle 3 permettent, de manière connue, d'estimer (F6) la contribution G de la gravité à la mesure de l'accéléromètre 2 et, ensuite, d'éliminer (F7) ladite contribution G des données S3 fournies par l'accéléromètre 2, de manière à obtenir des données S4 réduites, fonction de l'accélération du mouvement uniquement.
Les données S4 réduites représentent ainsi l'accélération du mouvement à l'emplacement de l'accéléromètre 2 qui est, a priori, différente de l'accélération A de la pointe 6 du stylo 1. Pour déterminer dans une étape F8 l'accélération A de la pointe 6 du stylo 1 , on effectue, de manière connue, dans une étape F'2, l'estimation de l'angle θ du stylo 1 par rapport à l'angle d'orientation Θ0 du support 10, à partir des données S1 de mesure du capteur d'angle 3, ainsi que de la vitesse angulaire VA et de l'accélération angulaire AA du stylo 1 , respectivement grâce à la première et à la deuxième dérivée de l'angle θ par rapport au temps. Pour réaliser l'étape F8, on fait appel aux lois de composition des mouvements de la mécanique classique, en tenant compte du vecteur reliant l'emplacement de l'accéléromètre 2 et la pointe 6 du stylo 1.
L'accélération A de la pointe 6 du stylo 1 peut ensuite être projetée (étape F9) dans le plan du support 10, de manière à obtenir l'accélération â sur le support 10 de la pointe 6 du stylo 1. La projection dans le plan du support 10 peut donc être calculée à partir des données S1 et S3, fournies respectivement par le capteur d'angle 3 et l'accéléromètre 2 et permettant de déterminer l'angle d'orientation Θ0 du support 10, l'angle θ du stylo 1 par rapport à l'angle d'orientation Θ0 et l'accélération A de la pointe 6 du stylo 1.
Dans l'étape F'4 on obtient, comme dans l'étape F4, le vecteur ô tangentiel à la trajectoire de la pointe 6 du stylo 1 , et, de plus, par normalisation du vecteur ô tangentiel, un vecteur unitaire û tangentiel à la trajectoire de la pointe 6 du stylo 1.
Dans une étape F10, l'unité de traitement 8 détermine le produit scalaire du vecteur unitaire û et de l'accélération â de la pointe 6 du stylo 1 sur le support 10, ce qui permet de déterminer la composante aT de l'accélération, tangentielle à la trajectoire. La trajectoire est, ensuite, déterminée par double intégration mathématique F11 de la composante tangentielle aT de l'accélération. La composante aT de l'accélération tangentielle à la trajectoire peut éventuellement être déterminée par produit scalaire du vecteur unitaire û et de l'accélération A de la pointe 6 du stylo 1 , sans effectuer la projection F9 de l'accélération A de la pointe 6 du stylo 1 dans le plan du support 10. Cependant, l'étape de projection F9 permet de tirer des informations sur la courbure de la trajectoire par l'intermédiaire de la composante de l'accélération perpendiculaire à la trajectoire.
L'utilisation conjointe du capteur d'angle 3 et du capteur de force 4 permet d'éliminer correctement, de la mesure de l'accélération aT, les contributions de forces qui ne sont pas reliées à la trajectoire, par exemple la pesanteur ou la pression du stylo 1 perpendiculairement au support.
L'utilisation du procédé selon l'invention permet, en particulier, la réalisation efficace d'enregistrement et de reconnaissance de signatures. Par exemple, on, enregistre une pluralité de signatures pour chaque personne utilisant le stylo 1 pour déterminer un signal moyen pour chaque personne. Lorsque le stylo 1 fonctionne en un mode de reconnaissance de signature, un traitement, typiquement consistant à minimiser la distance quadratique entre une mesure de signature normalisée et les signaux moyens normalisés enregistrés préalablement, permet de reconnaître avec certitude la signature.
L'invention n'est pas limitée aux procédés de reconnaissance de trajectoire d'une pointe de stylo. Le stylo 1 peut être remplacé par un corps quelconque comportant, par exemple, un actionneur quelconque, par exemple une pointe de gravure, dont la trajectoire est déterminée pendant l'actionnement. Le procédé permet également de déterminer la trajectoire d'un dispositif de mesure, par exemple un palpeur, comportant un capteur quelconque, par exemple un capteur thermique, électrique ou photométrique. Ainsi, une mesure physique est effectuée par l'intermédiaire d'un capteur associé au corps 1 , simultanément à la reconnaissance de trajectoire, ce qui permet d'établir une cartographie de la grandeur physique mesurée par corrélation de la mesure avec la trajectoire déterminée.

Claims

Revendications
1. Procédé de reconnaissance de la trajectoire d'une pointe (6) d'un corps (1) sur un support (10), comportant la détermination d'un angle d'orientation (θ) du corps (1) par traitement (F2) de données (S1) de mesure fournies, à une unité de traitement (8), par au moins un capteur d'angle (3) disposé dans le corps (1), le corps (1) comportant un capteur de force (4) mesurant la force de réaction de la pointe (6) du corps (1) en contact avec le support (10), le capteur de force (4) fournissant, de manière quasi-continue, à l'unité de traitement (8) des données (S2) représentatives de la force de réaction, l'unité de traitement (8) déterminant (F3) l'orientation de la force de réaction par rapport au plan du support (10) à partir des données de mesure (S1 , S2) du capteur d'angle (3) et du capteur de force (4), procédé caractérisé en ce que l'unité de traitement (8) détermine un vecteur (ô) tangentiel à la trajectoire par projection (F4) de la force de réaction dans le plan du support (10), la trajectoire étant déterminée par au moins une intégration mathématique (F5, F11) d'une grandeur fonction du vecteur (ô) tangentiel à la trajectoire.
2. Procédé selon la revendication 1 , caractérisé en ce qu'il comporte l'intégration mathématique (F5) du vecteur (ô) tangentiel.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le support (10) est plan.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte une étape d'étalonnage (F1) de l'orientation (Θ0) du support (10).
5. Procédé selon la revendication 4, caractérisé en ce que le corps (1) est placé selon un angle prédéterminé par rapport à un axe perpendiculaire au support (10) pendant l'étape d'étalonnage (F1).
6. Procédé selon la revendication 5, caractérisé en ce que le corps (1) est placé perpendiculairement au support (10) pendant l'étape d'étalonnage (F1).
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte la détermination de l'accélération (A) de la pointe (6) par traitement (F8, F'2) de données (S1 , S3) de mesure fournies, à l'unité de traitement (8), par le capteur d'angle (3) et par au moins un accéléromètre (2), disposé dans le corps (1), l'unité de traitement (8) déterminant un vecteur unitaire (û) tangentiel à la trajectoire par normalisation (F'4) du vecteur (ô) tangentiel à la trajectoire et déterminant le produit scalaire (F10) de données (â) représentatives de l'accélération (A) et du vecteur unitaire (û), de manière à obtenir ladite grandeur, représentative de l'accélération tangentielle (aT) de la pointe (6) du corps (1), la trajectoire étant déterminée par double intégration mathématique (F11) de ladite grandeur.
8. Procédé selon la revendication 7, caractérisé en ce que l'unité de traitement (8) détermine la projection (F9) de l'accélération (A) dans le plan du support (10) en fonction des données (S3, S1) fournies par l'accéléromètre (2) et le capteur d'angle (3), de manière à fournir lesdites données (â) représentatives de l'accélération (A).
9. Procédé selon l'une des revendications 7 et 8, caractérisé en ce qu'il comporte une estimation (F6) de la contribution (G) de la gravité aux données de mesure fournies par l'accéléromètre (2) et l'élimination (F7) de ladite contribution (G) des données (S3) fournies par l'accéléromètre.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le corps comporte un capteur destiné à fournir la mesure d'une grandeur physique de manière à permettre d'établir une cartographie de ladite grandeur physique en fonction de la trajectoire mesurée.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le corps comporte un actionneur.
EP05717528A 2004-02-12 2005-02-01 Procede de reconnaissance de la trajectoire d'une pointe d'un corps sur un support Ceased EP1779223A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0401402A FR2866458B1 (fr) 2004-02-12 2004-02-12 Procede de reconnaissance de la trajectoire d'une pointe d'un corps sur un support
PCT/FR2005/000212 WO2005088434A1 (fr) 2004-02-12 2005-02-01 Procede de reconnaissance de la trajectoire d’une pointe d’un corps sur un support

Publications (1)

Publication Number Publication Date
EP1779223A1 true EP1779223A1 (fr) 2007-05-02

Family

ID=34803316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717528A Ceased EP1779223A1 (fr) 2004-02-12 2005-02-01 Procede de reconnaissance de la trajectoire d'une pointe d'un corps sur un support

Country Status (5)

Country Link
US (1) US20070267229A1 (fr)
EP (1) EP1779223A1 (fr)
JP (1) JP2007522572A (fr)
FR (1) FR2866458B1 (fr)
WO (1) WO2005088434A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881521B1 (fr) * 2005-02-03 2007-03-02 Commissariat Energie Atomique Dispositif et procede de mesure de forces de frottement
US20180143704A1 (en) * 2015-06-09 2018-05-24 Hewlett-Packard Development Company, L.P. Incident angle of a digital pen with respect to a computing device
CN108446036B (zh) * 2018-03-27 2021-10-01 京东方科技集团股份有限公司 智能书写设备和智能书写系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341155A (en) * 1990-11-02 1994-08-23 Xerox Corporation Method for correction of position location indicator for a large area display system
ES2102051T3 (es) * 1992-07-08 1997-07-16 Smart Pen Inc Aparato y metodo para formar una imagen de informacion escrita.
US5981883A (en) * 1992-07-08 1999-11-09 Lci Technology Group, N.V. Systems for imaging written information
US6081261A (en) * 1995-11-01 2000-06-27 Ricoh Corporation Manual entry interactive paper and electronic document handling and processing system
US5902968A (en) * 1996-02-20 1999-05-11 Ricoh Company, Ltd. Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
WO1999067652A1 (fr) * 1998-06-25 1999-12-29 Lci/Smartpen, N.V. Systemes et procedes de mesure de forces a l'aide de transducteurs electroniques
US6388655B1 (en) * 1999-11-08 2002-05-14 Wing-Keung Leung Method of touch control of an input device and such a device
US7009594B2 (en) * 2002-10-31 2006-03-07 Microsoft Corporation Universal computing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005088434A1 *

Also Published As

Publication number Publication date
US20070267229A1 (en) 2007-11-22
WO2005088434A1 (fr) 2005-09-22
JP2007522572A (ja) 2007-08-09
FR2866458B1 (fr) 2006-07-14
FR2866458A1 (fr) 2005-08-19

Similar Documents

Publication Publication Date Title
FR2897680A1 (fr) Dispositif de capture de mouvement et procede associe
EP2754012B1 (fr) Procede de controle d'un curseur par des mesures d'attitude d'un pointeur et pointeur mettant en oeuvre ledit procede
EP2718670B1 (fr) Procede d'estimation simplifie de l'orientation d'un objet et centrale d'attitude mettant en oeuvre un tel procede
EP2350565A1 (fr) Dispositif et procede de determination d'une caracteristique d'une trajectoire formee de positions successives d'un accelerometre triaxial lie de maniere solidaire a un element mobile
EP2495531B1 (fr) Procédé de mesure de la stabilité d'une ligne de visée et senseur stellaire correspondant
EP2923227A2 (fr) Procede de reconnaissance automatique d'un objet magnetique mobile
EP2304391A2 (fr) Dispositif optique et procede de mesure de rotation d'un objet
EP2904475A2 (fr) Anneau magnetique apte a etre fixe de façon amovible sur un crayon ou un effaceur
FR2988874A1 (fr) Procede de detection d'un point de contact entre une pointe d'un ustensile et un support d'ecriture
FR2985583A1 (fr) Dispositif de commande gestuelle d'un systeme, et procede associe
WO2005088434A1 (fr) Procede de reconnaissance de la trajectoire d’une pointe d’un corps sur un support
EP3230772B1 (fr) Procédé de localisation d'au moins un objet magnétique mobile, et système associé
FR2969779A1 (fr) Systeme de saisie d'elements graphiques
EP2746722B1 (fr) Procédé de détermination de l'inclinaison d'un objet
US7416128B2 (en) Methods and systems for determining the position of a hand-held object from the acceleration of the hand-held object
EP2268999A1 (fr) Systeme et procede de determination de parametres representatifs de l'orientation d'un solide en mouvement soumis a deux champs vectoriels
EP2577225B1 (fr) Dispositif et procede de determination d'une information de profondeur a partir d'un capteur optique susceptible d'etre en deplacement
EP3008547B1 (fr) Dispositif d'analyse de mouvement d'un element mobile et procede associe
EP3211370A1 (fr) Procede de filtrage des signaux issus d'un ensemble capteur comprenant au moins un capteur de mesure d'un champ physique vectoriel sensiblement constant dans le temps et l'espace dans un repere de reference
FR2971864A1 (fr) Equipement de realite virtuelle equipe d'un dispositif de contact et utilisation d'un tel dispositif dans un equipement de realite virtuelle
WO2019016473A1 (fr) Procédé d'estimation du mouvement d'un objet évoluant dans un environnement et un champ magnétique
FR2981149A1 (fr) Aeronef comprenant un senseur optique diurne et nocturne, et procede de mesure d'attitude associe
WO2023083879A1 (fr) Procede de navigation hybride inertielle/stellaire a indicateur de performance d'harmonisation
WO2017076789A1 (fr) Système et procédé de détection d'une application de pression en surface d'un objet par mesure de force
WO2002093465A1 (fr) Procede de commande d"un curseur, programme d"ordinateur pour sa mise en oeuvre et systeme de commande d"un curseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070510

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080129