EP1778239B1 - Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome - Google Patents
Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome Download PDFInfo
- Publication number
- EP1778239B1 EP1778239B1 EP05762145.0A EP05762145A EP1778239B1 EP 1778239 B1 EP1778239 B1 EP 1778239B1 EP 05762145 A EP05762145 A EP 05762145A EP 1778239 B1 EP1778239 B1 EP 1778239B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- a3rag
- syndrome
- sjogren
- adenosine
- meca
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 208000021386 Sjogren Syndrome Diseases 0.000 title claims description 43
- 208000003556 Dry Eye Syndromes Diseases 0.000 title claims description 19
- 206010013774 Dry eye Diseases 0.000 title claims description 19
- 238000011282 treatment Methods 0.000 title claims description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims description 12
- 208000035475 disorder Diseases 0.000 title claims description 9
- 239000002593 adenosine A3 receptor agonist Substances 0.000 title description 3
- HUJXGQILHAUCCV-MOROJQBDSA-N 3-iodobenzyl-5'-N-methylcarboxamidoadenosine Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NC)O[C@H]1N1C2=NC=NC(NCC=3C=C(I)C=CC=3)=C2N=C1 HUJXGQILHAUCCV-MOROJQBDSA-N 0.000 claims description 21
- 208000024891 symptom Diseases 0.000 claims description 20
- 229940122614 Adenosine receptor agonist Drugs 0.000 claims description 17
- 239000003379 purinergic P1 receptor agonist Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- IPSYPUKKXMNCNQ-PFHKOEEOSA-N (2s,3s,4r,5r)-5-[2-chloro-6-[(3-iodophenyl)methylamino]purin-9-yl]-3,4-dihydroxy-n-methyloxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NC)O[C@H]1N1C2=NC(Cl)=NC(NCC=3C=C(I)C=CC=3)=C2N=C1 IPSYPUKKXMNCNQ-PFHKOEEOSA-N 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 7
- XTPOZVLRZZIEBW-SCFUHWHPSA-N (2r,3r,4s,5r)-2-[6-[2-(4-aminophenyl)ethylamino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C1=CC(N)=CC=C1CCNC1=NC=NC2=C1N=CN2[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XTPOZVLRZZIEBW-SCFUHWHPSA-N 0.000 claims description 5
- 208000008784 apnea Diseases 0.000 claims description 5
- MWEQTWJABOLLOS-UHFFFAOYSA-L disodium;[[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;trihydrate Chemical compound O.O.O.[Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP([O-])(=O)OP(O)([O-])=O)C(O)C1O MWEQTWJABOLLOS-UHFFFAOYSA-L 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 101150046889 ADORA3 gene Proteins 0.000 claims description 4
- 208000003251 Pruritus Diseases 0.000 claims description 4
- 230000007803 itching Effects 0.000 claims description 4
- 230000035807 sensation Effects 0.000 claims description 4
- 206010010716 Conjunctival erosion Diseases 0.000 claims description 3
- 206010011013 Corneal erosion Diseases 0.000 claims description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 3
- 229930187593 rose bengal Natural products 0.000 claims description 3
- 229940081623 rose bengal Drugs 0.000 claims description 3
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 claims description 3
- 230000000699 topical effect Effects 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 2
- LDYMCRRFCMRFKB-MOROJQBDSA-N (2s,3s,4r,5r)-5-[6-[(4-aminophenyl)methylamino]purin-9-yl]-3,4-dihydroxy-n-methyloxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NC)O[C@H]1N1C2=NC=NC(NCC=3C=CC(N)=CC=3)=C2N=C1 LDYMCRRFCMRFKB-MOROJQBDSA-N 0.000 claims 2
- 208000032023 Signs and Symptoms Diseases 0.000 claims 2
- AZJPTIGZZTZIDR-UHFFFAOYSA-L rose bengal Chemical compound [K+].[K+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 AZJPTIGZZTZIDR-UHFFFAOYSA-L 0.000 claims 2
- 241000282414 Homo sapiens Species 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 11
- 206010039073 rheumatoid arthritis Diseases 0.000 description 11
- 241000700159 Rattus Species 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000036470 plasma concentration Effects 0.000 description 7
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 108050000203 Adenosine receptors Proteins 0.000 description 4
- 102000009346 Adenosine receptors Human genes 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 208000025747 Rheumatic disease Diseases 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 3
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010028740 Nasal dryness Diseases 0.000 description 2
- 206010047791 Vulvovaginal dryness Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 102000030621 adenylate cyclase Human genes 0.000 description 2
- 108060000200 adenylate cyclase Proteins 0.000 description 2
- 239000003098 androgen Substances 0.000 description 2
- 239000003435 antirheumatic agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 206010013781 dry mouth Diseases 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000000552 rheumatic effect Effects 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 235000019615 sensations Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 1
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- 101150007969 ADORA1 gene Proteins 0.000 description 1
- 241000220479 Acacia Species 0.000 description 1
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 1
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 1
- 108010060261 Adenosine A3 Receptor Proteins 0.000 description 1
- 102000008161 Adenosine A3 Receptor Human genes 0.000 description 1
- 229940122216 Adenosine A3 receptor agonist Drugs 0.000 description 1
- 101150051188 Adora2a gene Proteins 0.000 description 1
- 101150078577 Adora2b gene Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 101000783645 Homo sapiens Adenosine receptor A3 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 206010043087 Tachyphylaxis Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000607 artificial tear Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- CQCUZORMKRFLAX-UHFFFAOYSA-N azane;barium(2+) Chemical class N.[Ba+2] CQCUZORMKRFLAX-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OJGDCBLYJGHCIH-UHFFFAOYSA-N bromhexine Chemical compound C1CCCCC1N(C)CC1=CC(Br)=CC(Br)=C1N OJGDCBLYJGHCIH-UHFFFAOYSA-N 0.000 description 1
- 229960003870 bromhexine Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- WDDPHFBMKLOVOX-AYQXTPAHSA-N clofarabine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F WDDPHFBMKLOVOX-AYQXTPAHSA-N 0.000 description 1
- 229960000928 clofarabine Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 102000046278 human ADORA3 Human genes 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Chemical class 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 108010000947 protamine zinc Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 206010044325 trachoma Diseases 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- This invention relates to compounds for use in the treatment of Sjogren's syndrome.
- the preocular tear film plays an essential role in the maintenance of corneal integrity, the protection against microbial challenge and the preservation of visual acuity. These functions, in turn, are critically dependent upon the stability, tonicity and/or composition of the tear film structure, which includes an underlying mucin foundation, a substantial, middle aqueous component and an overlying lipid layer. Alteration, deficiency or absence of the tear film may lead to intractable desiccation of the corneal epithelium, ulceration and perforation of the cornea, an increased incidence of infectious disease, and ultimately, severe visual impairment and blindness.
- KCS keratoconjunctivitis sicca
- Sjogren's syndrome is an autoimmune disorder in which immune cells attack and destroy the glands that produce tears and saliva. Sjogren's syndrome is also associated with lupus, scleroderma, polymyositis and rheumatic disorders such as rheumatoid arthritis. Sjogren's syndrome that results from a rheumatic condition is classified as secondary Sjogren's syndrome. The hallmark symptoms of the disorder are dry mouth and dry eyes. In addition, Sjogren's syndrome may cause skin, nose, and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain. The ophthalmologic clinical symptoms of Sjogren syndrome are, for example, foreign body sensation, burning, and itching.
- Nonsteroidal anti-inflammatory drugs may be used to treat musculoskeletal symptoms.
- corticosteroids or immunosuppressive drugs may be prescribed.
- systemic androgen treatment might provide a potential therapy for Sjogren's syndrome and its associated defects.
- systemic androgen therapy is inappropriate for the treatment of the multiple immune dysfunctions in Sjogren's syndrome.
- Secondary Sjogren syndrome is a chronic, autoimmune disorder that can be found in a number of other disorders including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus, scleroderma and other rheumatic disorders. It is characterized mainly by signs of ocular dryness (keratoconjuctivis sicca), dry mouth and other vascular and muscolosceletal manifestations. This disorder is incurable and treatments are focused in the relief of symptoms. Up to 20% of Rheumatoid Arthritis patients have either clinical or subclinical manifestations of secondary Sjogren syndrome.
- Adenosine receptors are classified into four major classes: A1, A2a, A2b and A3.
- A3 adenosine receptors belong to the family of the G i -protein associated cell surface receptors. Receptor activation leads to its internalization and the subsequent inhibition of adenylyl cyclase activity, cAMP formation and protein kinase A (PKA) expression, resulting in the initiation of various signalling pathways (1,2) .
- PKA contains a catalytic subunit PKAc which dissociates from the parent molecule upon activation with cAMP.
- WO 2004/029025 discloses methods and compositions for the treatment of autoimmune disorders using clofarabine.
- the present invention is based on the surprising finding that administration of an A3 adenosine receptor agonist (A3RAg) to a human subject alleviated symptoms of Sjogren's syndrome.
- A3RAg A3 adenosine receptor agonist
- the invention provides an A3RAg for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) aden
- the invention provides a pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg as specified in the claims and a pharmaceutically acceptable carrier.
- the invention provides use of an A3RAg for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-io
- the A3RAg may be administered topically, for example to the eye or skin. In another preferred embodiment, the A3RAg is administered orally.
- Sjogren's syndrome refers in the context of the present invention to the autoimmune disorder that causes KCS, in which immune cells attack and destroy the glands that produce tears and saliva.
- the term refers to the disorder classified as secondary Sjogren's syndrome.
- the secondary Sjogren's syndrome results from a rheumatic condition.
- Symptoms of the disorder may include eye, mouth, skin, nose and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain.
- means to treat or prevent the ophthalmologic clinical symptom and sign in dry eye including Sjogren syndrome are provided.
- the ophthalmologic clinical symptom in Sjogren syndrome includes but is not limited to foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome includes but is not limited to corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
- treatment in the context of the present invention refer to any improvement in the clinical symptoms of the disease, as well as any improvement in the well being of the patients. For example, an improvement may be manifested by a decrease in dry eye symptoms.
- adenosine A3 receptor agonist in the context of the present invention refers to any molecule capable of specifically binding to the adenosine A3 receptor (“A3R”), thereby fully or partially activating said receptor.
- A3RAg is thus a molecule that exerts its prime effect through the binding and activation of the A3R. This means that at the doses it is being administered it essentially binds to and activates only the A3R.
- an A3RAg has a binding affinity (K i ) to the human adenosine A3 receptor in the range of less than 100 nM, typically less than 50 nM, preferably less than 20 nM, more preferably less than 10 nM and ideally less than 5 nM.
- K i binding affinity
- Particularly preferred are A3RAgs that have a K i to the human A3R of less than 2 nM and desirably less than 1 nM.
- A3RAgs can also interact with and activate other receptors with lower affinities (namely a higher Ki).
- a molecule will be considered an A3RAg in the context of the invention (namely a molecule that exerts its prime effect through the binding and activation A3R) if its affinity to the A3R is at least 3 times (i.e. its Ki to the A3R is at least 3 times lower), preferably 10 times, desirably 20 times and most preferably at least 50 times larger than the affinity to any other of the adenosine receptors (i.e. A1, A2a and A2b).
- the affinity of an A3RAg to the human A3R as well as its relative affinity to the other human adenosine receptors can be determined by a number of assays, such as a binding assay.
- assays include providing membranes containing a receptor and measuring the ability of the A3RAg to displace a bound radioactive agonist; utilizing cells that display the respective human adenosine receptor and measuring, in a functional assay, the ability of the A3RAg to activate or deactivate, as the case may be, downstream signaling events such as the effect on adenylate cyclase measured through increase or decrease of the cAMP level; etc.
- an A3RAg is increased such that its blood level reaches a level approaching that of the Ki of the A1, A2a and A2b adenosine receptors, activation of these receptors may occur following such administration, in addition to activation of the A3R.
- An A3RAg is thus preferably administered at a dose such that the blood level is such so that essentially only the A3R will be activated.
- physiologically acceptable salts of the compounds employed by the present invention it is meant any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium ammonium and protamine zinc salts, which are prepared by methods known in the art.
- the term also includes non-toxic acid addition salts, which are generally prepared by reacting the compounds of this invention with a suitable organic or inorganic acid.
- the acid addition salts are those which retain the biological effectiveness and qualitative properties of the free bases and which are not toxic or otherwise undesirable. Examples include, inter alia, acids derived from mineral acids, hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, metaphosphoric and the like.
- Organic acids include, inter alia, tartaric, acetic, propionic, citric, malic, malonic, lactic, fumaric, benzoic, cinnamic, mandelic, glycolic, gluconic, pyruvic, succinic salicylic and arylsulphonic, e.g. p-toluenesulphonic, acids.
- A3RAg which may be employed according to the present invention are N 6 -2-(4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA).
- APIA N 6 -2-(4-aminophenyl)ethyladenosine
- AB-MECA N 6 -(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide)
- IB-MECA N 6 -(3-io
- the administration of said A3RAg to a patient may be together with a pharmaceutically acceptable carrier.
- the carrier is one that is acceptable for oral administration.
- the carrier is one that is acceptable for topical administration, one example being ocular administration.
- pharmaceutically acceptable carrier any one of inert, non-toxic materials, which do not react with the A3RAg and which can be added to formulations as diluents or carriers or to give form or consistency to the formulation.
- An oral formulation may be in the form of a pill, capsule, in the form of a syrup, an aromatic powder, and other various forms.
- the carrier is selected at times based on the desired form of the formulation.
- the carrier may also at times have the effect of the improving the delivery or penetration of the active ingredient to the target tissue, for improving the stability of the drug, for slowing clearance rates, for imparting slow release properties, for reducing undesired side effects etc.
- the carrier may also be a substance that stabilizes the formulation (e.g.
- the carriers may be any of those conventionally used and is limited only by chemical-physical considerations, such as solubility and lack of reactivity with the A3RAg, and by the route of administration.
- the carrier may include additives, colorants, diluents, buffering agents, disintegrating agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers.
- the carrier may be an adjuvant, which, by definition are substances affecting the action of the active ingredient in a predictable way.
- Typical examples of carriers include (a) liquid solutions, where an effective amount of the active substance is dissolved in diluents, such as water, saline, natural juices, alcohols, syrups, etc.; (b) capsules (e.g. the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers), tablets, lozenges (wherein the active substance is in a flavor, such as sucrose and acacia or tragacanth or the active substance is in an inert base, such as gelatin and glycerin), and troches, each containing a predetermined amount of the A3RAg as solids or granules; (c) powders; (d) suspensions in an appropriate liquid; (e) suitable emulsions; (f) liposome formulation; and others.
- diluents such as water, saline, natural juices, alcohols, syrups, etc.
- capsules e.
- effective amount in the context of the present invention refers to an amount of A3RAg which results in protection of the patient from the pathological symptoms of Sjogren's syndrome.
- effective amount can be readily determined, in accordance with the invention, by administering to a plurality of tested subjects various amounts of the A3RAg and then plotting the physiological response (for example an integrated " SS index " combining several of the therapeutically beneficial effects) as a function of the amount.
- the effective amount may also be determined, at times, through experiments performed in appropriate animal models and then extrapolating to human beings using one of a plurality of conversion methods; or by measuring the plasma concentration or the area under the curve (AUC) of the plasma concentration over time and calculating the effective dose so as to yield a comparable plasma concentration or AUC.
- the effective amount may depend on a variety of factors such as mode of administration (for example, oral administration may require a higher dose to achieve a given plasma level or AUC than an intravenous administration); the age, weight, body surface area, gender, health condition and genetic factors of the subject; other administered drugs; etc.
- dosages are indicated in weight/Kg, meaning weight of administered A3RAg (e.g. IB-MECA or Cl-IB-MECA) per kilogram of body weight of the treated subject in each administration.
- weight/Kg and microgram/Kg denote, respectively, milligrams of administered agent and micrograms of administered agent per kilogram of body weight of the treated subject.
- mice the effective amount is typically less than about 1000 and preferably less than about 500 microgram/Kg.
- a typical dose would be in the range of about 1 microgram/Kg to about 200 microgram/Kg, with a preferred dose being in the range of about 5 microgram/Kg to about 150 microgram/Kg.
- the corresponding effective amount in a human will be a human equivalent amount to that observed in mice, which may be determined in a manner as explained bellow.
- human equivalent refers to the dose that produces in human the same effect as featured when a dose of 0.001-1 mg/Kg of an A3RAg is administered to a mouse or a rat. As known, this dose depends and may be determined on the basis of a number of parameters such as body mass, body surface area, absorption rate of the active agent, clearance rate of the agent, rate of metabolism and others.
- the human equivalent may be calculated based on a number of conversion criteria as explained bellow; or may be a dose such that either the plasma level will be similar to that in a mouse following administration at a dose as specified above; or a dose that yields a total exposure (namely area under the curve - AUC - of the plasma level of said agent as a function of time) that is similar to that in mice at the specified dose range.
- Rat (150g) to Man (70 Kg) is 1/7 the rat dose. This means that, for example, 0.001-1 mg/Kg in rats equals to about 0.14-140 microgram/Kg in humans. Assuming an average human weight of 70 Kg, this would translate into an absolute dosage for humans of about 0.01 to about 10 mg.
- the amounts equivalent to 0.001-1 mg/Kg in rats for humans are 0.16-64 ⁇ g/Kg ; namely an absolute dose for a human weighing about 70 Kg of about 0.011 to about 11 mg, similar to the range indicated in Conversion I.
- Another alternative for conversion is by setting the dose to yield the same plasma level or AUC as that achieved following administration to an animal. For example, based on measurement made in mice following oral administration of IB-MECA and based on such measurements made in humans in a clinical study in which IB-MECA was given to healthy male volunteers it can be concluded that a dose of 1 microgram/Kg - 1,000 microgram/KG in mice is equivalent to a human dose of about 0.14 - 140 microgram/Kg, namely a total dose for a 70 Kg individual of 0.01 - 10 mg.
- a pharmaceutical composition for use in the treatment of Sjogren's syndrome that comprises an effective amount of an A3RAg as defined above and a pharmaceutically acceptable carrier; as well as the use of said A3RAg for the preparation of a pharmaceutical composition for administration to a subject suffering from Sjogren's syndrome and being in need of treatment.
- the pharmaceutical composition is formulated for oral use.
- the effective amount in the pharmaceutical composition will depend on the intended therapeutic regimen and the desired therapeutic dose. By way of example, where the dose is 1 mg per day and the desired administration regimen is once daily, the amount of active agent in the pharmaceutical composition will be 1 mg. In cases where it is intended to administer this daily dose in 2 daily administrations, the amount of the active agent in the pharmaceutical composition will be 0.5 mg.
- RA rheumatoid arthritis
- secondary Sjogren symptoms mainly manifested by dry eye, treated for years with eye drops (tear substitutes).
- the patient participated in a phase 2 clinical trial with IB-MECA for the treatment of active RA.
- the patient's symptoms of dry eye were improved significantly, to the extent of discontinuation of the use of tear substitutes.
- the patient is a 53 years old female with a 7 year history of RA, previously treated with 3 disease-modifying anti-rheumatic drugs (DMARDs), and a history of 2-3 years of dry eyes treated with tear substitutes a few times a day.
- DMARDs disease-modifying anti-rheumatic drugs
- the patient was treated with a blinded dose of IB-MECA - either 0.1, 1.0 or 4.0 mg q12h for 12 weeks. She is currently continuing IB-MECA treatment under a long term extension protocol of the original 12 weeks study.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Ophthalmology & Optometry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
- This invention relates to compounds for use in the treatment of Sjogren's syndrome.
- The preocular tear film plays an essential role in the maintenance of corneal integrity, the protection against microbial challenge and the preservation of visual acuity. These functions, in turn, are critically dependent upon the stability, tonicity and/or composition of the tear film structure, which includes an underlying mucin foundation, a substantial, middle aqueous component and an overlying lipid layer. Alteration, deficiency or absence of the tear film may lead to intractable desiccation of the corneal epithelium, ulceration and perforation of the cornea, an increased incidence of infectious disease, and ultimately, severe visual impairment and blindness. Throughout the world, countless individuals suffer from tear film dysfunctions, which are collectively diagnosed as keratoconjunctivitis sicca (KCS) or, simply, dry eye. By far, the greatest single cause of KCS worldwide, excluding those countries wherein trachoma remains epidemic, is Sjogren's syndrome.
- Sjogren's syndrome is an autoimmune disorder in which immune cells attack and destroy the glands that produce tears and saliva. Sjogren's syndrome is also associated with lupus, scleroderma, polymyositis and rheumatic disorders such as rheumatoid arthritis. Sjogren's syndrome that results from a rheumatic condition is classified as secondary Sjogren's syndrome. The hallmark symptoms of the disorder are dry mouth and dry eyes. In addition, Sjogren's syndrome may cause skin, nose, and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain. The ophthalmologic clinical symptoms of Sjogren syndrome are, for example, foreign body sensation, burning, and itching.
- There is no known cure for Sjogren's syndrome nor is there a specific treatment to restore gland secretion. Treatment is generally symptomatic and supportive. Moisture replacement therapies may ease the symptoms of dryness. Nonsteroidal anti-inflammatory drugs may be used to treat musculoskeletal symptoms. For individuals with severe complications, corticosteroids or immunosuppressive drugs may be prescribed.
- In the scientific literature, reports have suggested that systemic or topical administration of estrogens, cyclosporine A or glucocorticoids might alleviate the ocular manifestations of this disorder. However, other studies indicate that such pharmaceutical exposures are ineffective and, in fact, may accelerate and/or amplify the disease. Indeed, estrogen action may be involved in the etiology of Sjogren's syndrome. Others have suggested that tear stimulants, such as bromhexine or isobutylmethylxanthine, might improve ocular symptoms. These drug effects, though, may be subjective, susceptible to tachyphylaxis and/or limited by the requirement for functional and responsive lacrimal tissue. It has also been proposed that systemic androgen treatment might provide a potential therapy for Sjogren's syndrome and its associated defects. However, a recent report has indicated that systemic androgen therapy is inappropriate for the treatment of the multiple immune dysfunctions in Sjogren's syndrome.
- Therefore, the currently prescribed, therapeutic approach for the management of KCS in Sjogren's syndrome is the frequent application of artificial tear substitutes, which permit lubrication of the eye's anterior surface. Unfortunately, this therapy does not represent a cure and does not ameliorate the inherent, ocular immunopathology and resulting KCS associated with this chronic, extremely uncomfortable and vision-threatening disease.
- Secondary Sjogren syndrome is a chronic, autoimmune disorder that can be found in a number of other disorders including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus, scleroderma and other rheumatic disorders. It is characterized mainly by signs of ocular dryness (keratoconjuctivis sicca), dry mouth and other vascular and muscolosceletal manifestations. This disorder is incurable and treatments are focused in the relief of symptoms. Up to 20% of Rheumatoid Arthritis patients have either clinical or subclinical manifestations of secondary Sjogren syndrome.
- Adenosine receptors are classified into four major classes: A1, A2a, A2b and A3. A3 adenosine receptors belong to the family of the Gi-protein associated cell surface receptors. Receptor activation leads to its internalization and the subsequent inhibition of adenylyl cyclase activity, cAMP formation and protein kinase A (PKA) expression, resulting in the initiation of various signalling pathways (1,2). PKA contains a catalytic subunit PKAc which dissociates from the parent molecule upon activation with cAMP.
-
WO 2004/029025 discloses methods and compositions for the treatment of autoimmune disorders using clofarabine. - The present invention is based on the surprising finding that administration of an A3 adenosine receptor agonist (A3RAg) to a human subject alleviated symptoms of Sjogren's syndrome.
- In one embodiment, the invention provides an A3RAg for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- In another embodiment the invention provides a pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg as specified in the claims and a pharmaceutically acceptable carrier.
- In a third embodiment the invention provides use of an A3RAg for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- In one preferred embodiment, the A3RAg may be administered topically, for example to the eye or skin. In another preferred embodiment, the A3RAg is administered orally.
- The term " Sjogren's syndrome " (SS) refers in the context of the present invention to the autoimmune disorder that causes KCS, in which immune cells attack and destroy the glands that produce tears and saliva. In one embodiment of the invention, the term refers to the disorder classified as secondary Sjogren's syndrome. In a preferred embodiment, the secondary Sjogren's syndrome results from a rheumatic condition. Symptoms of the disorder may include eye, mouth, skin, nose and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain.
- In accordance with the invention, means to treat or prevent the ophthalmologic clinical symptom and sign in dry eye including Sjogren syndrome are provided. The ophthalmologic clinical symptom in Sjogren syndrome includes but is not limited to foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome includes but is not limited to corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
- The terms " treatment " in the context of the present invention refer to any improvement in the clinical symptoms of the disease, as well as any improvement in the well being of the patients. For example, an improvement may be manifested by a decrease in dry eye symptoms.
- The term " adenosine A3 receptor agonist " (A3RAg) in the context of the present invention refers to any molecule capable of specifically binding to the adenosine A3 receptor ("A3R"), thereby fully or partially activating said receptor. The A3RAg is thus a molecule that exerts its prime effect through the binding and activation of the A3R. This means that at the doses it is being administered it essentially binds to and activates only the A3R. In a preferred embodiment, an A3RAg has a binding affinity (Ki) to the human adenosine A3 receptor in the range of less than 100 nM, typically less than 50 nM, preferably less than 20 nM, more preferably less than 10 nM and ideally less than 5 nM. Particularly preferred are A3RAgs that have a Ki to the human A3R of less than 2 nM and desirably less than 1 nM.
- It should be noted that some A3RAgs can also interact with and activate other receptors with lower affinities (namely a higher Ki). A molecule will be considered an A3RAg in the context of the invention (namely a molecule that exerts its prime effect through the binding and activation A3R) if its affinity to the A3R is at least 3 times (i.e. its Ki to the A3R is at least 3 times lower), preferably 10 times, desirably 20 times and most preferably at least 50 times larger than the affinity to any other of the adenosine receptors (i.e. A1, A2a and A2b).
- The affinity of an A3RAg to the human A3R as well as its relative affinity to the other human adenosine receptors (A1, A2a and A2b) can be determined by a number of assays, such as a binding assay. Examples of binding assays include providing membranes containing a receptor and measuring the ability of the A3RAg to displace a bound radioactive agonist; utilizing cells that display the respective human adenosine receptor and measuring, in a functional assay, the ability of the A3RAg to activate or deactivate, as the case may be, downstream signaling events such as the effect on adenylate cyclase measured through increase or decrease of the cAMP level; etc. Clearly, if the administered level of an A3RAg is increased such that its blood level reaches a level approaching that of the Ki of the A1, A2a and A2b adenosine receptors, activation of these receptors may occur following such administration, in addition to activation of the A3R. An A3RAg is thus preferably administered at a dose such that the blood level is such so that essentially only the A3R will be activated.
- The characteristic of some adenosine A3 receptor agonists and methods of their preparation are described in detail in, inter alia,
US 5,688,774 ;US 5,773,423 ;US 5,573,772 ,US 5,443,836 ,US 6,048,865 ,WO 95/02604 WO 99/20284 WO 99/06053 WO 97/27173 09/700,751 - When referring to " physiologically acceptable salts " of the compounds employed by the present invention it is meant any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium ammonium and protamine zinc salts, which are prepared by methods known in the art. The term also includes non-toxic acid addition salts, which are generally prepared by reacting the compounds of this invention with a suitable organic or inorganic acid. The acid addition salts are those which retain the biological effectiveness and qualitative properties of the free bases and which are not toxic or otherwise undesirable. Examples include, inter alia, acids derived from mineral acids, hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, metaphosphoric and the like. Organic acids include, inter alia, tartaric, acetic, propionic, citric, malic, malonic, lactic, fumaric, benzoic, cinnamic, mandelic, glycolic, gluconic, pyruvic, succinic salicylic and arylsulphonic, e.g. p-toluenesulphonic, acids.
- A3RAg which may be employed according to the present invention are N6-2-(4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA).
- The administration of said A3RAg to a patient may be together with a pharmaceutically acceptable carrier. In the case where the administration is oral, the carrier is one that is acceptable for oral administration. In the case where the administration is topical, the carrier is one that is acceptable for topical administration, one example being ocular administration.
- By the term "pharmaceutically acceptable carrier" it is meant any one of inert, non-toxic materials, which do not react with the A3RAg and which can be added to formulations as diluents or carriers or to give form or consistency to the formulation. An oral formulation may be in the form of a pill, capsule, in the form of a syrup, an aromatic powder, and other various forms. The carrier is selected at times based on the desired form of the formulation. The carrier may also at times have the effect of the improving the delivery or penetration of the active ingredient to the target tissue, for improving the stability of the drug, for slowing clearance rates, for imparting slow release properties, for reducing undesired side effects etc. The carrier may also be a substance that stabilizes the formulation (e.g. a preservative), for providing the formulation with an edible flavor, etc. The carriers may be any of those conventionally used and is limited only by chemical-physical considerations, such as solubility and lack of reactivity with the A3RAg, and by the route of administration. The carrier may include additives, colorants, diluents, buffering agents, disintegrating agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers. In addition, the carrier may be an adjuvant, which, by definition are substances affecting the action of the active ingredient in a predictable way. Typical examples of carriers include (a) liquid solutions, where an effective amount of the active substance is dissolved in diluents, such as water, saline, natural juices, alcohols, syrups, etc.; (b) capsules (e.g. the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers), tablets, lozenges (wherein the active substance is in a flavor, such as sucrose and acacia or tragacanth or the active substance is in an inert base, such as gelatin and glycerin), and troches, each containing a predetermined amount of the A3RAg as solids or granules; (c) powders; (d) suspensions in an appropriate liquid; (e) suitable emulsions; (f) liposome formulation; and others.
- The term "effective amount" in the context of the present invention refers to an amount of A3RAg which results in protection of the patient from the pathological symptoms of Sjogren's syndrome. The "effective amount" can be readily determined, in accordance with the invention, by administering to a plurality of tested subjects various amounts of the A3RAg and then plotting the physiological response (for example an integrated "SS index" combining several of the therapeutically beneficial effects) as a function of the amount. Alternatively, the effective amount may also be determined, at times, through experiments performed in appropriate animal models and then extrapolating to human beings using one of a plurality of conversion methods; or by measuring the plasma concentration or the area under the curve (AUC) of the plasma concentration over time and calculating the effective dose so as to yield a comparable plasma concentration or AUC. As known, the effective amount may depend on a variety of factors such as mode of administration (for example, oral administration may require a higher dose to achieve a given plasma level or AUC than an intravenous administration); the age, weight, body surface area, gender, health condition and genetic factors of the subject; other administered drugs; etc.
- In the following, unless otherwise indicated, dosages are indicated in weight/Kg, meaning weight of administered A3RAg (e.g. IB-MECA or Cl-IB-MECA) per kilogram of body weight of the treated subject in each administration. For example, mg/Kg and microgram/Kg denote, respectively, milligrams of administered agent and micrograms of administered agent per kilogram of body weight of the treated subject.
- In mice the effective amount is typically less than about 1000 and preferably less than about 500 microgram/Kg. A typical dose would be in the range of about 1 microgram/Kg to about 200 microgram/Kg, with a preferred dose being in the range of about 5 microgram/Kg to about 150 microgram/Kg. The corresponding effective amount in a human will be a human equivalent amount to that observed in mice, which may be determined in a manner as explained bellow.
- The term "human equivalent" refers to the dose that produces in human the same effect as featured when a dose of 0.001-1 mg/Kg of an A3RAg is administered to a mouse or a rat. As known, this dose depends and may be determined on the basis of a number of parameters such as body mass, body surface area, absorption rate of the active agent, clearance rate of the agent, rate of metabolism and others.
- The human equivalent may be calculated based on a number of conversion criteria as explained bellow; or may be a dose such that either the plasma level will be similar to that in a mouse following administration at a dose as specified above; or a dose that yields a total exposure (namely area under the curve - AUC - of the plasma level of said agent as a function of time) that is similar to that in mice at the specified dose range.
- It is well known that an amount of X mg/Kg administered to rats can be converted to an equivalent amount in another species (notably humans) by the use of one of possible conversions equations well known in the art. Examples of conversion equations are as follows:
-
Species Body Wt. (Kg) Body Surf. Area (m2) Km Factor Mouse 0.2 0.0066 3.0 Rat 0.15 0.025 5.9 Human Child 20.0 0.80 25 Adult 70.0 1.60 37 - Body Surface area dependent Dose conversion: Rat (150g) to Man (70 Kg) is 1/7 the rat dose. This means that, for example, 0.001-1 mg/Kg in rats equals to about 0.14-140 microgram/Kg in humans. Assuming an average human weight of 70 Kg, this would translate into an absolute dosage for humans of about 0.01 to about 10 mg.
- The following conversion factors: Mouse = 3, Rat = 67. Multiply the conversion factor by the animal weight to go from mg/Kg to mg/m2 for human dose equivalent.
Species Weight (Kg) BSA (m2) Human 70.00 1.710 Mouse 0.02 0.007 Rat 0.15 0.025 Dog 8.00 0.448 - According to this equation the amounts equivalent to 0.001-1 mg/Kg in rats for humans are 0.16-64 µg/Kg ; namely an absolute dose for a human weighing about 70 Kg of about 0.011 to about 11 mg, similar to the range indicated in Conversion I.
- Another alternative for conversion is by setting the dose to yield the same plasma level or AUC as that achieved following administration to an animal. For example, based on measurement made in mice following oral administration of IB-MECA and based on such measurements made in humans in a clinical study in which IB-MECA was given to healthy male volunteers it can be concluded that a dose of 1 microgram/Kg - 1,000 microgram/KG in mice is equivalent to a human dose of about 0.14 - 140 microgram/Kg, namely a total dose for a 70 Kg individual of 0.01 - 10 mg.
- Also encompassed within the present invention is a pharmaceutical composition for use in the treatment of Sjogren's syndrome that comprises an effective amount of an A3RAg as defined above and a pharmaceutically acceptable carrier; as well as the use of said A3RAg for the preparation of a pharmaceutical composition for administration to a subject suffering from Sjogren's syndrome and being in need of treatment. In a preferred embodiment, the pharmaceutical composition is formulated for oral use. As will be appreciated, the effective amount in the pharmaceutical composition will depend on the intended therapeutic regimen and the desired therapeutic dose. By way of example, where the dose is 1 mg per day and the desired administration regimen is once daily, the amount of active agent in the pharmaceutical composition will be 1 mg. In cases where it is intended to administer this daily dose in 2 daily administrations, the amount of the active agent in the pharmaceutical composition will be 0.5 mg.
- The invention will now be exemplified in the following description of experiments that were carried out in accordance with the invention. It is to be understood that these examples are intended to be in the nature of illustration rather than of limitation. Obviously, many modifications and variations of these examples are possible in light of the above teaching. It is therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise, in a myriad of possible ways, than as specifically described hereinbelow.
- The following non-limiting example describes a patient with rheumatoid arthritis (RA) and secondary Sjogren symptoms, mainly manifested by dry eye, treated for years with eye drops (tear substitutes). The patient participated in a phase 2 clinical trial with IB-MECA for the treatment of active RA. The patient's symptoms of dry eye were improved significantly, to the extent of discontinuation of the use of tear substitutes.
- Methods: The patient took part in a phase 2, multicenter, randomized, double-blind, parallel-group, dose-ranging study of the safety and preliminary efficacy of daily IB-MECA administered orally for 12 weeks to patients with active rheumatoid arthritis.
- The patient is a 53 years old female with a 7 year history of RA, previously treated with 3 disease-modifying anti-rheumatic drugs (DMARDs), and a history of 2-3 years of dry eyes treated with tear substitutes a few times a day. After a 4 week DMARD washout period, the patient was treated with a blinded dose of IB-MECA - either 0.1, 1.0 or 4.0 mg q12h for 12 weeks. She is currently continuing IB-MECA treatment under a long term extension protocol of the original 12 weeks study.
- Results: There had been a marked improvement in the condition of the RA in this patient, represented by objective measurements of swollen and tender joints, acute phase reactants (ESR and CRP), patient and physician global assessments, patient assessment of pain and disability. Although the evaluation of secondary Sjogren's symptoms had not been a part of the patient evaluation in this study, the patient reported that after years of continuous use of tear substitutes for dry eye, after about 3-4 weeks of IB-MECA administration she did not need them any more, and she currently has no symptoms of dry eye.
- Conclusion: Treatment with IB-MECA resulted in a substantial improvement of the dry eye symptoms of secondary Sjogren's syndrome in a patient with active RA.
Claims (15)
- An A3 adenosine receptor agonist (A3RAg) for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- An A3RAg according to claim 1 for use according to Claim 1, in oral administration.
- An A3RAg according to claim 1 for use according to Claim 1, in topical application.
- An A3RAg according to claim 1 for use according to Claim 3, in topical application to the eye.
- An A3RAg according to claim 1 for use according to any one of Claims 1 to 4, wherein said A3RAg is IB-MECA.
- An A3RAg as defined in Claim 1 or 5, for use in treating the ophthalmologic clinical symptoms and signs in dry eye disorder including Sjogren's syndrome.
- An A3RAg according to claim 6 for use according to Claim 6, wherein the ophthalmologic clinical symptom in Sjogren's syndrome is one selected from the group consisting of foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome is one selected from the group consisting of corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
- An A3RAg according to claim 6 for use according to Claim 7, wherein said Sjogren's syndrome is secondary Sjogren's syndrome.
- A pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg according to Claim 1 or 5 and a pharmaceutically acceptable carrier.
- Use of an A3 adenosine receptor agonist (A3RAg) for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
- The use according to Claim 10, wherein the composition is administered orally or topically.
- The use according to Claim 11, wherein the composition is administered topically to the eye.
- The use of any one of Claims 10 to 12, wherein said A3RAg is IB-MECA.
- The use of any one of Claims 10 to 13, for the preparation of a composition for treating the ophthalmologic clinical symptoms and signs in dry eye disorder including Sjogren's syndrome.
- The use of Claim 14, wherein the ophthalmologic clinical symptom in Sjogren's syndrome is one selected from the group consisting of foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren's syndrome is one selected from the group consisting of corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05762145T PL1778239T3 (en) | 2004-07-28 | 2005-07-18 | Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59162804P | 2004-07-28 | 2004-07-28 | |
PCT/IL2005/000762 WO2006011130A1 (en) | 2004-07-28 | 2005-07-18 | Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren’s syndrome |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1778239A1 EP1778239A1 (en) | 2007-05-02 |
EP1778239B1 true EP1778239B1 (en) | 2013-08-21 |
Family
ID=34979400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05762145.0A Not-in-force EP1778239B1 (en) | 2004-07-28 | 2005-07-18 | Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1778239B1 (en) |
JP (1) | JP4642847B2 (en) |
DK (1) | DK1778239T3 (en) |
ES (1) | ES2432113T3 (en) |
PL (1) | PL1778239T3 (en) |
WO (1) | WO2006011130A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7825102B2 (en) | 2004-07-28 | 2010-11-02 | Can-Fite Biopharma Ltd. | Treatment of dry eye conditions |
WO2007086044A1 (en) * | 2006-01-27 | 2007-08-02 | Can-Fite Biopharma Ltd. | Adenosine a3 receptor agonists for the treatment of dry eye disorders |
GT200500281A (en) | 2004-10-22 | 2006-04-24 | Novartis Ag | ORGANIC COMPOUNDS. |
GB0500785D0 (en) | 2005-01-14 | 2005-02-23 | Novartis Ag | Organic compounds |
ES2440317T3 (en) | 2006-04-21 | 2014-01-28 | Novartis Ag | Purine derivatives for use as adenosine A2A receptor agonists |
GB0607950D0 (en) | 2006-04-21 | 2006-05-31 | Novartis Ag | Organic compounds |
GB0607944D0 (en) * | 2006-04-21 | 2006-05-31 | Novartis Ag | Organic compounds |
EP1889846A1 (en) | 2006-07-13 | 2008-02-20 | Novartis AG | Purine derivatives as A2a agonists |
EP1903044A1 (en) | 2006-09-14 | 2008-03-26 | Novartis AG | Adenosine Derivatives as A2A Receptor Agonists |
JP5467872B2 (en) | 2007-03-14 | 2014-04-09 | キャン−ファイト・バイオファーマ・リミテッド | Synthesis method of IB-MECA |
JP5408882B2 (en) * | 2008-01-23 | 2014-02-05 | ヤマサ醤油株式会社 | Salivary secretion promoter |
SG11201402826YA (en) | 2011-12-22 | 2014-12-30 | Alios Biopharma Inc | Substituted nucleosides, nucleotides and analogs thereof |
US9441007B2 (en) | 2012-03-21 | 2016-09-13 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
USRE48171E1 (en) | 2012-03-21 | 2020-08-25 | Janssen Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
WO2014124458A1 (en) * | 2013-02-11 | 2014-08-14 | The Regents Of The University Of California | Compositions and methods for treating neurodegenerative diseases |
CA2939219C (en) | 2014-02-11 | 2023-02-28 | Mitokinin Llc | Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease |
CA3067695A1 (en) | 2017-06-21 | 2018-12-27 | Mitokinin, Inc. | Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease |
CN114057742A (en) * | 2021-11-03 | 2022-02-18 | 高颜苑科技(深圳)有限责任公司 | METTL3 inhibitor for repairing corneal injury and pharmaceutical application thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5443836A (en) * | 1993-03-15 | 1995-08-22 | Gensia, Inc. | Methods for protecting tissues and organs from ischemic damage |
AU7331094A (en) * | 1993-07-13 | 1995-02-13 | United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The | A3 adenosine receptor agonists |
US5688774A (en) * | 1993-07-13 | 1997-11-18 | The United States Of America As Represented By The Department Of Health And Human Services | A3 adenosine receptor agonists |
US5780481A (en) * | 1996-08-08 | 1998-07-14 | Merck & Co., Inc. | Method for inhibiting activation of the human A3 adenosine receptor to treat asthma |
JP2003517423A (en) * | 1997-07-29 | 2003-05-27 | メドコ リサーチ、インコーポレイテッド | N6-substituted adenosine-5'-uronamide as adenosine receptor modulator |
US6117878A (en) * | 1998-02-24 | 2000-09-12 | University Of Virginia | 8-phenyl- or 8-cycloalkyl xanthine antagonists of A2B human adenosine receptors |
US6303619B1 (en) * | 1998-03-12 | 2001-10-16 | University Of Virginia | Meta-substituted acidic 8-phenylxanthine antagonists of A3 human adenosine receptors |
CO5180581A1 (en) * | 1999-09-30 | 2002-07-30 | Pfizer Prod Inc | COMPOUNDS FOR THE TREATMENT OF THE ISCHEMIA PHARMACEUTICAL TIONS THAT CONTAIN THEM FOR THE TREATMENT OF THE ISCHEMIA |
US20040204481A1 (en) * | 2001-04-12 | 2004-10-14 | Pnina Fishman | Activation of natural killer cells by adenosine A3 receptor agonists |
AU2003276988B2 (en) * | 2002-09-27 | 2009-11-05 | Bioenvision, Inc. | Methods and compositions for the treatment of autoimmune disorders using clofarabine |
-
2005
- 2005-07-18 DK DK05762145.0T patent/DK1778239T3/en active
- 2005-07-18 JP JP2007523232A patent/JP4642847B2/en not_active Expired - Fee Related
- 2005-07-18 ES ES05762145T patent/ES2432113T3/en active Active
- 2005-07-18 EP EP05762145.0A patent/EP1778239B1/en not_active Not-in-force
- 2005-07-18 WO PCT/IL2005/000762 patent/WO2006011130A1/en active Application Filing
- 2005-07-18 PL PL05762145T patent/PL1778239T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
PL1778239T3 (en) | 2014-01-31 |
EP1778239A1 (en) | 2007-05-02 |
WO2006011130A1 (en) | 2006-02-02 |
DK1778239T3 (en) | 2013-12-02 |
JP2008508256A (en) | 2008-03-21 |
ES2432113T3 (en) | 2013-11-29 |
JP4642847B2 (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1778239B1 (en) | Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome | |
US7825102B2 (en) | Treatment of dry eye conditions | |
CN101330909B (en) | Use of A3 adenosine receptor agonist in osteoarthritis treatment | |
US7465715B2 (en) | Method for treatment of multiple sclerosis | |
US20080051364A1 (en) | Therapeutic Treatment of Accelerated Bone Resorption | |
CN101365430B (en) | Adenosine a3 receptor agonists for the treatment of dry eye disorders | |
US7141553B2 (en) | A3AR agonists for the treatment of inflammatory arthritis | |
AU2005302090A1 (en) | Therapeutic treatment of accelerated bone resorption | |
EP3530273B1 (en) | A3 adenosine receptor ligands for use in the treatment of a sexual dysfunction | |
US20130045943A1 (en) | A3ar agonists for the treatment of uveitis | |
US20020198172A1 (en) | Method of treating motor neuron diseases and demyelinating diseases with citicoline | |
US8557790B2 (en) | A3 adenoside receptor agonists for the reduction of intraocular pressure | |
MX2008009506A (en) | Adenosine a3 receptor agonists for the treatment of dry eye disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20090428 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 627638 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005040969 Country of ref document: DE Effective date: 20131017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MARKS AND CLERK (LUXEMBOURG) LLP, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20131126 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131223 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130717 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131221 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131122 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E019645 Country of ref document: HU |
|
26N | No opposition filed |
Effective date: 20140522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005040969 Country of ref document: DE Effective date: 20140522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005040969 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140718 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150201 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140719 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150203 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005040969 Country of ref document: DE Effective date: 20150203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140719 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 627638 Country of ref document: AT Kind code of ref document: T Effective date: 20140718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140719 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130821 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140731 |