EP1778239B1 - Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome - Google Patents

Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome Download PDF

Info

Publication number
EP1778239B1
EP1778239B1 EP05762145.0A EP05762145A EP1778239B1 EP 1778239 B1 EP1778239 B1 EP 1778239B1 EP 05762145 A EP05762145 A EP 05762145A EP 1778239 B1 EP1778239 B1 EP 1778239B1
Authority
EP
European Patent Office
Prior art keywords
a3rag
syndrome
sjogren
adenosine
meca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05762145.0A
Other languages
German (de)
French (fr)
Other versions
EP1778239A1 (en
Inventor
Pnina Fishman
Ilana Lorber
Ilan Cohn
Tatiana Reitblat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Can Fite Biopharma Ltd
Original Assignee
Can Fite Biopharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Can Fite Biopharma Ltd filed Critical Can Fite Biopharma Ltd
Priority to PL05762145T priority Critical patent/PL1778239T3/en
Publication of EP1778239A1 publication Critical patent/EP1778239A1/en
Application granted granted Critical
Publication of EP1778239B1 publication Critical patent/EP1778239B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention relates to compounds for use in the treatment of Sjogren's syndrome.
  • the preocular tear film plays an essential role in the maintenance of corneal integrity, the protection against microbial challenge and the preservation of visual acuity. These functions, in turn, are critically dependent upon the stability, tonicity and/or composition of the tear film structure, which includes an underlying mucin foundation, a substantial, middle aqueous component and an overlying lipid layer. Alteration, deficiency or absence of the tear film may lead to intractable desiccation of the corneal epithelium, ulceration and perforation of the cornea, an increased incidence of infectious disease, and ultimately, severe visual impairment and blindness.
  • KCS keratoconjunctivitis sicca
  • Sjogren's syndrome is an autoimmune disorder in which immune cells attack and destroy the glands that produce tears and saliva. Sjogren's syndrome is also associated with lupus, scleroderma, polymyositis and rheumatic disorders such as rheumatoid arthritis. Sjogren's syndrome that results from a rheumatic condition is classified as secondary Sjogren's syndrome. The hallmark symptoms of the disorder are dry mouth and dry eyes. In addition, Sjogren's syndrome may cause skin, nose, and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain. The ophthalmologic clinical symptoms of Sjogren syndrome are, for example, foreign body sensation, burning, and itching.
  • Nonsteroidal anti-inflammatory drugs may be used to treat musculoskeletal symptoms.
  • corticosteroids or immunosuppressive drugs may be prescribed.
  • systemic androgen treatment might provide a potential therapy for Sjogren's syndrome and its associated defects.
  • systemic androgen therapy is inappropriate for the treatment of the multiple immune dysfunctions in Sjogren's syndrome.
  • Secondary Sjogren syndrome is a chronic, autoimmune disorder that can be found in a number of other disorders including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus, scleroderma and other rheumatic disorders. It is characterized mainly by signs of ocular dryness (keratoconjuctivis sicca), dry mouth and other vascular and muscolosceletal manifestations. This disorder is incurable and treatments are focused in the relief of symptoms. Up to 20% of Rheumatoid Arthritis patients have either clinical or subclinical manifestations of secondary Sjogren syndrome.
  • Adenosine receptors are classified into four major classes: A1, A2a, A2b and A3.
  • A3 adenosine receptors belong to the family of the G i -protein associated cell surface receptors. Receptor activation leads to its internalization and the subsequent inhibition of adenylyl cyclase activity, cAMP formation and protein kinase A (PKA) expression, resulting in the initiation of various signalling pathways (1,2) .
  • PKA contains a catalytic subunit PKAc which dissociates from the parent molecule upon activation with cAMP.
  • WO 2004/029025 discloses methods and compositions for the treatment of autoimmune disorders using clofarabine.
  • the present invention is based on the surprising finding that administration of an A3 adenosine receptor agonist (A3RAg) to a human subject alleviated symptoms of Sjogren's syndrome.
  • A3RAg A3 adenosine receptor agonist
  • the invention provides an A3RAg for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  • A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) aden
  • the invention provides a pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg as specified in the claims and a pharmaceutically acceptable carrier.
  • the invention provides use of an A3RAg for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  • A3RAg is selected from N 6 -2- (4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-io
  • the A3RAg may be administered topically, for example to the eye or skin. In another preferred embodiment, the A3RAg is administered orally.
  • Sjogren's syndrome refers in the context of the present invention to the autoimmune disorder that causes KCS, in which immune cells attack and destroy the glands that produce tears and saliva.
  • the term refers to the disorder classified as secondary Sjogren's syndrome.
  • the secondary Sjogren's syndrome results from a rheumatic condition.
  • Symptoms of the disorder may include eye, mouth, skin, nose and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain.
  • means to treat or prevent the ophthalmologic clinical symptom and sign in dry eye including Sjogren syndrome are provided.
  • the ophthalmologic clinical symptom in Sjogren syndrome includes but is not limited to foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome includes but is not limited to corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
  • treatment in the context of the present invention refer to any improvement in the clinical symptoms of the disease, as well as any improvement in the well being of the patients. For example, an improvement may be manifested by a decrease in dry eye symptoms.
  • adenosine A3 receptor agonist in the context of the present invention refers to any molecule capable of specifically binding to the adenosine A3 receptor (“A3R”), thereby fully or partially activating said receptor.
  • A3RAg is thus a molecule that exerts its prime effect through the binding and activation of the A3R. This means that at the doses it is being administered it essentially binds to and activates only the A3R.
  • an A3RAg has a binding affinity (K i ) to the human adenosine A3 receptor in the range of less than 100 nM, typically less than 50 nM, preferably less than 20 nM, more preferably less than 10 nM and ideally less than 5 nM.
  • K i binding affinity
  • Particularly preferred are A3RAgs that have a K i to the human A3R of less than 2 nM and desirably less than 1 nM.
  • A3RAgs can also interact with and activate other receptors with lower affinities (namely a higher Ki).
  • a molecule will be considered an A3RAg in the context of the invention (namely a molecule that exerts its prime effect through the binding and activation A3R) if its affinity to the A3R is at least 3 times (i.e. its Ki to the A3R is at least 3 times lower), preferably 10 times, desirably 20 times and most preferably at least 50 times larger than the affinity to any other of the adenosine receptors (i.e. A1, A2a and A2b).
  • the affinity of an A3RAg to the human A3R as well as its relative affinity to the other human adenosine receptors can be determined by a number of assays, such as a binding assay.
  • assays include providing membranes containing a receptor and measuring the ability of the A3RAg to displace a bound radioactive agonist; utilizing cells that display the respective human adenosine receptor and measuring, in a functional assay, the ability of the A3RAg to activate or deactivate, as the case may be, downstream signaling events such as the effect on adenylate cyclase measured through increase or decrease of the cAMP level; etc.
  • an A3RAg is increased such that its blood level reaches a level approaching that of the Ki of the A1, A2a and A2b adenosine receptors, activation of these receptors may occur following such administration, in addition to activation of the A3R.
  • An A3RAg is thus preferably administered at a dose such that the blood level is such so that essentially only the A3R will be activated.
  • physiologically acceptable salts of the compounds employed by the present invention it is meant any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium ammonium and protamine zinc salts, which are prepared by methods known in the art.
  • the term also includes non-toxic acid addition salts, which are generally prepared by reacting the compounds of this invention with a suitable organic or inorganic acid.
  • the acid addition salts are those which retain the biological effectiveness and qualitative properties of the free bases and which are not toxic or otherwise undesirable. Examples include, inter alia, acids derived from mineral acids, hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, metaphosphoric and the like.
  • Organic acids include, inter alia, tartaric, acetic, propionic, citric, malic, malonic, lactic, fumaric, benzoic, cinnamic, mandelic, glycolic, gluconic, pyruvic, succinic salicylic and arylsulphonic, e.g. p-toluenesulphonic, acids.
  • A3RAg which may be employed according to the present invention are N 6 -2-(4-aminophenyl)ethyladenosine (APNEA), N 6 -(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide) (AB-MECA), N 6 -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N 6 -(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA).
  • APIA N 6 -2-(4-aminophenyl)ethyladenosine
  • AB-MECA N 6 -(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide)
  • IB-MECA N 6 -(3-io
  • the administration of said A3RAg to a patient may be together with a pharmaceutically acceptable carrier.
  • the carrier is one that is acceptable for oral administration.
  • the carrier is one that is acceptable for topical administration, one example being ocular administration.
  • pharmaceutically acceptable carrier any one of inert, non-toxic materials, which do not react with the A3RAg and which can be added to formulations as diluents or carriers or to give form or consistency to the formulation.
  • An oral formulation may be in the form of a pill, capsule, in the form of a syrup, an aromatic powder, and other various forms.
  • the carrier is selected at times based on the desired form of the formulation.
  • the carrier may also at times have the effect of the improving the delivery or penetration of the active ingredient to the target tissue, for improving the stability of the drug, for slowing clearance rates, for imparting slow release properties, for reducing undesired side effects etc.
  • the carrier may also be a substance that stabilizes the formulation (e.g.
  • the carriers may be any of those conventionally used and is limited only by chemical-physical considerations, such as solubility and lack of reactivity with the A3RAg, and by the route of administration.
  • the carrier may include additives, colorants, diluents, buffering agents, disintegrating agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers.
  • the carrier may be an adjuvant, which, by definition are substances affecting the action of the active ingredient in a predictable way.
  • Typical examples of carriers include (a) liquid solutions, where an effective amount of the active substance is dissolved in diluents, such as water, saline, natural juices, alcohols, syrups, etc.; (b) capsules (e.g. the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers), tablets, lozenges (wherein the active substance is in a flavor, such as sucrose and acacia or tragacanth or the active substance is in an inert base, such as gelatin and glycerin), and troches, each containing a predetermined amount of the A3RAg as solids or granules; (c) powders; (d) suspensions in an appropriate liquid; (e) suitable emulsions; (f) liposome formulation; and others.
  • diluents such as water, saline, natural juices, alcohols, syrups, etc.
  • capsules e.
  • effective amount in the context of the present invention refers to an amount of A3RAg which results in protection of the patient from the pathological symptoms of Sjogren's syndrome.
  • effective amount can be readily determined, in accordance with the invention, by administering to a plurality of tested subjects various amounts of the A3RAg and then plotting the physiological response (for example an integrated " SS index " combining several of the therapeutically beneficial effects) as a function of the amount.
  • the effective amount may also be determined, at times, through experiments performed in appropriate animal models and then extrapolating to human beings using one of a plurality of conversion methods; or by measuring the plasma concentration or the area under the curve (AUC) of the plasma concentration over time and calculating the effective dose so as to yield a comparable plasma concentration or AUC.
  • the effective amount may depend on a variety of factors such as mode of administration (for example, oral administration may require a higher dose to achieve a given plasma level or AUC than an intravenous administration); the age, weight, body surface area, gender, health condition and genetic factors of the subject; other administered drugs; etc.
  • dosages are indicated in weight/Kg, meaning weight of administered A3RAg (e.g. IB-MECA or Cl-IB-MECA) per kilogram of body weight of the treated subject in each administration.
  • weight/Kg and microgram/Kg denote, respectively, milligrams of administered agent and micrograms of administered agent per kilogram of body weight of the treated subject.
  • mice the effective amount is typically less than about 1000 and preferably less than about 500 microgram/Kg.
  • a typical dose would be in the range of about 1 microgram/Kg to about 200 microgram/Kg, with a preferred dose being in the range of about 5 microgram/Kg to about 150 microgram/Kg.
  • the corresponding effective amount in a human will be a human equivalent amount to that observed in mice, which may be determined in a manner as explained bellow.
  • human equivalent refers to the dose that produces in human the same effect as featured when a dose of 0.001-1 mg/Kg of an A3RAg is administered to a mouse or a rat. As known, this dose depends and may be determined on the basis of a number of parameters such as body mass, body surface area, absorption rate of the active agent, clearance rate of the agent, rate of metabolism and others.
  • the human equivalent may be calculated based on a number of conversion criteria as explained bellow; or may be a dose such that either the plasma level will be similar to that in a mouse following administration at a dose as specified above; or a dose that yields a total exposure (namely area under the curve - AUC - of the plasma level of said agent as a function of time) that is similar to that in mice at the specified dose range.
  • Rat (150g) to Man (70 Kg) is 1/7 the rat dose. This means that, for example, 0.001-1 mg/Kg in rats equals to about 0.14-140 microgram/Kg in humans. Assuming an average human weight of 70 Kg, this would translate into an absolute dosage for humans of about 0.01 to about 10 mg.
  • the amounts equivalent to 0.001-1 mg/Kg in rats for humans are 0.16-64 ⁇ g/Kg ; namely an absolute dose for a human weighing about 70 Kg of about 0.011 to about 11 mg, similar to the range indicated in Conversion I.
  • Another alternative for conversion is by setting the dose to yield the same plasma level or AUC as that achieved following administration to an animal. For example, based on measurement made in mice following oral administration of IB-MECA and based on such measurements made in humans in a clinical study in which IB-MECA was given to healthy male volunteers it can be concluded that a dose of 1 microgram/Kg - 1,000 microgram/KG in mice is equivalent to a human dose of about 0.14 - 140 microgram/Kg, namely a total dose for a 70 Kg individual of 0.01 - 10 mg.
  • a pharmaceutical composition for use in the treatment of Sjogren's syndrome that comprises an effective amount of an A3RAg as defined above and a pharmaceutically acceptable carrier; as well as the use of said A3RAg for the preparation of a pharmaceutical composition for administration to a subject suffering from Sjogren's syndrome and being in need of treatment.
  • the pharmaceutical composition is formulated for oral use.
  • the effective amount in the pharmaceutical composition will depend on the intended therapeutic regimen and the desired therapeutic dose. By way of example, where the dose is 1 mg per day and the desired administration regimen is once daily, the amount of active agent in the pharmaceutical composition will be 1 mg. In cases where it is intended to administer this daily dose in 2 daily administrations, the amount of the active agent in the pharmaceutical composition will be 0.5 mg.
  • RA rheumatoid arthritis
  • secondary Sjogren symptoms mainly manifested by dry eye, treated for years with eye drops (tear substitutes).
  • the patient participated in a phase 2 clinical trial with IB-MECA for the treatment of active RA.
  • the patient's symptoms of dry eye were improved significantly, to the extent of discontinuation of the use of tear substitutes.
  • the patient is a 53 years old female with a 7 year history of RA, previously treated with 3 disease-modifying anti-rheumatic drugs (DMARDs), and a history of 2-3 years of dry eyes treated with tear substitutes a few times a day.
  • DMARDs disease-modifying anti-rheumatic drugs
  • the patient was treated with a blinded dose of IB-MECA - either 0.1, 1.0 or 4.0 mg q12h for 12 weeks. She is currently continuing IB-MECA treatment under a long term extension protocol of the original 12 weeks study.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Ophthalmology & Optometry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

    FIELD OF THE INVENTION
  • This invention relates to compounds for use in the treatment of Sjogren's syndrome.
  • BACKGROUND OF THE INVENTION
  • The preocular tear film plays an essential role in the maintenance of corneal integrity, the protection against microbial challenge and the preservation of visual acuity. These functions, in turn, are critically dependent upon the stability, tonicity and/or composition of the tear film structure, which includes an underlying mucin foundation, a substantial, middle aqueous component and an overlying lipid layer. Alteration, deficiency or absence of the tear film may lead to intractable desiccation of the corneal epithelium, ulceration and perforation of the cornea, an increased incidence of infectious disease, and ultimately, severe visual impairment and blindness. Throughout the world, countless individuals suffer from tear film dysfunctions, which are collectively diagnosed as keratoconjunctivitis sicca (KCS) or, simply, dry eye. By far, the greatest single cause of KCS worldwide, excluding those countries wherein trachoma remains epidemic, is Sjogren's syndrome.
  • Sjogren's syndrome is an autoimmune disorder in which immune cells attack and destroy the glands that produce tears and saliva. Sjogren's syndrome is also associated with lupus, scleroderma, polymyositis and rheumatic disorders such as rheumatoid arthritis. Sjogren's syndrome that results from a rheumatic condition is classified as secondary Sjogren's syndrome. The hallmark symptoms of the disorder are dry mouth and dry eyes. In addition, Sjogren's syndrome may cause skin, nose, and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain. The ophthalmologic clinical symptoms of Sjogren syndrome are, for example, foreign body sensation, burning, and itching.
  • There is no known cure for Sjogren's syndrome nor is there a specific treatment to restore gland secretion. Treatment is generally symptomatic and supportive. Moisture replacement therapies may ease the symptoms of dryness. Nonsteroidal anti-inflammatory drugs may be used to treat musculoskeletal symptoms. For individuals with severe complications, corticosteroids or immunosuppressive drugs may be prescribed.
  • In the scientific literature, reports have suggested that systemic or topical administration of estrogens, cyclosporine A or glucocorticoids might alleviate the ocular manifestations of this disorder. However, other studies indicate that such pharmaceutical exposures are ineffective and, in fact, may accelerate and/or amplify the disease. Indeed, estrogen action may be involved in the etiology of Sjogren's syndrome. Others have suggested that tear stimulants, such as bromhexine or isobutylmethylxanthine, might improve ocular symptoms. These drug effects, though, may be subjective, susceptible to tachyphylaxis and/or limited by the requirement for functional and responsive lacrimal tissue. It has also been proposed that systemic androgen treatment might provide a potential therapy for Sjogren's syndrome and its associated defects. However, a recent report has indicated that systemic androgen therapy is inappropriate for the treatment of the multiple immune dysfunctions in Sjogren's syndrome.
  • Therefore, the currently prescribed, therapeutic approach for the management of KCS in Sjogren's syndrome is the frequent application of artificial tear substitutes, which permit lubrication of the eye's anterior surface. Unfortunately, this therapy does not represent a cure and does not ameliorate the inherent, ocular immunopathology and resulting KCS associated with this chronic, extremely uncomfortable and vision-threatening disease.
  • Secondary Sjogren syndrome is a chronic, autoimmune disorder that can be found in a number of other disorders including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus, scleroderma and other rheumatic disorders. It is characterized mainly by signs of ocular dryness (keratoconjuctivis sicca), dry mouth and other vascular and muscolosceletal manifestations. This disorder is incurable and treatments are focused in the relief of symptoms. Up to 20% of Rheumatoid Arthritis patients have either clinical or subclinical manifestations of secondary Sjogren syndrome.
  • Adenosine receptors are classified into four major classes: A1, A2a, A2b and A3. A3 adenosine receptors belong to the family of the Gi-protein associated cell surface receptors. Receptor activation leads to its internalization and the subsequent inhibition of adenylyl cyclase activity, cAMP formation and protein kinase A (PKA) expression, resulting in the initiation of various signalling pathways (1,2). PKA contains a catalytic subunit PKAc which dissociates from the parent molecule upon activation with cAMP.
  • WO 2004/029025 discloses methods and compositions for the treatment of autoimmune disorders using clofarabine.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the surprising finding that administration of an A3 adenosine receptor agonist (A3RAg) to a human subject alleviated symptoms of Sjogren's syndrome.
  • In one embodiment, the invention provides an A3RAg for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  • In another embodiment the invention provides a pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg as specified in the claims and a pharmaceutically acceptable carrier.
  • In a third embodiment the invention provides use of an A3RAg for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  • In one preferred embodiment, the A3RAg may be administered topically, for example to the eye or skin. In another preferred embodiment, the A3RAg is administered orally.
  • The term " Sjogren's syndrome " (SS) refers in the context of the present invention to the autoimmune disorder that causes KCS, in which immune cells attack and destroy the glands that produce tears and saliva. In one embodiment of the invention, the term refers to the disorder classified as secondary Sjogren's syndrome. In a preferred embodiment, the secondary Sjogren's syndrome results from a rheumatic condition. Symptoms of the disorder may include eye, mouth, skin, nose and vaginal dryness, and may affect other organs of the body including the kidneys, blood vessels, lungs, liver, pancreas, and brain.
  • In accordance with the invention, means to treat or prevent the ophthalmologic clinical symptom and sign in dry eye including Sjogren syndrome are provided. The ophthalmologic clinical symptom in Sjogren syndrome includes but is not limited to foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome includes but is not limited to corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
  • The terms " treatment " in the context of the present invention refer to any improvement in the clinical symptoms of the disease, as well as any improvement in the well being of the patients. For example, an improvement may be manifested by a decrease in dry eye symptoms.
  • The term " adenosine A3 receptor agonist " (A3RAg) in the context of the present invention refers to any molecule capable of specifically binding to the adenosine A3 receptor ("A3R"), thereby fully or partially activating said receptor. The A3RAg is thus a molecule that exerts its prime effect through the binding and activation of the A3R. This means that at the doses it is being administered it essentially binds to and activates only the A3R. In a preferred embodiment, an A3RAg has a binding affinity (Ki) to the human adenosine A3 receptor in the range of less than 100 nM, typically less than 50 nM, preferably less than 20 nM, more preferably less than 10 nM and ideally less than 5 nM. Particularly preferred are A3RAgs that have a Ki to the human A3R of less than 2 nM and desirably less than 1 nM.
  • It should be noted that some A3RAgs can also interact with and activate other receptors with lower affinities (namely a higher Ki). A molecule will be considered an A3RAg in the context of the invention (namely a molecule that exerts its prime effect through the binding and activation A3R) if its affinity to the A3R is at least 3 times (i.e. its Ki to the A3R is at least 3 times lower), preferably 10 times, desirably 20 times and most preferably at least 50 times larger than the affinity to any other of the adenosine receptors (i.e. A1, A2a and A2b).
  • The affinity of an A3RAg to the human A3R as well as its relative affinity to the other human adenosine receptors (A1, A2a and A2b) can be determined by a number of assays, such as a binding assay. Examples of binding assays include providing membranes containing a receptor and measuring the ability of the A3RAg to displace a bound radioactive agonist; utilizing cells that display the respective human adenosine receptor and measuring, in a functional assay, the ability of the A3RAg to activate or deactivate, as the case may be, downstream signaling events such as the effect on adenylate cyclase measured through increase or decrease of the cAMP level; etc. Clearly, if the administered level of an A3RAg is increased such that its blood level reaches a level approaching that of the Ki of the A1, A2a and A2b adenosine receptors, activation of these receptors may occur following such administration, in addition to activation of the A3R. An A3RAg is thus preferably administered at a dose such that the blood level is such so that essentially only the A3R will be activated.
  • The characteristic of some adenosine A3 receptor agonists and methods of their preparation are described in detail in, inter alia, US 5,688,774 ; US 5,773,423 ; US 5,573,772 , US 5,443,836 , US 6,048,865 , WO 95/02604 , WO 99/20284 , WO 99/06053 , WO 97/27173 and applicant's co-pending patent application no. 09/700,751 .
  • When referring to " physiologically acceptable salts " of the compounds employed by the present invention it is meant any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium ammonium and protamine zinc salts, which are prepared by methods known in the art. The term also includes non-toxic acid addition salts, which are generally prepared by reacting the compounds of this invention with a suitable organic or inorganic acid. The acid addition salts are those which retain the biological effectiveness and qualitative properties of the free bases and which are not toxic or otherwise undesirable. Examples include, inter alia, acids derived from mineral acids, hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, metaphosphoric and the like. Organic acids include, inter alia, tartaric, acetic, propionic, citric, malic, malonic, lactic, fumaric, benzoic, cinnamic, mandelic, glycolic, gluconic, pyruvic, succinic salicylic and arylsulphonic, e.g. p-toluenesulphonic, acids.
  • A3RAg which may be employed according to the present invention are N6-2-(4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA).
  • The administration of said A3RAg to a patient may be together with a pharmaceutically acceptable carrier. In the case where the administration is oral, the carrier is one that is acceptable for oral administration. In the case where the administration is topical, the carrier is one that is acceptable for topical administration, one example being ocular administration.
  • By the term "pharmaceutically acceptable carrier" it is meant any one of inert, non-toxic materials, which do not react with the A3RAg and which can be added to formulations as diluents or carriers or to give form or consistency to the formulation. An oral formulation may be in the form of a pill, capsule, in the form of a syrup, an aromatic powder, and other various forms. The carrier is selected at times based on the desired form of the formulation. The carrier may also at times have the effect of the improving the delivery or penetration of the active ingredient to the target tissue, for improving the stability of the drug, for slowing clearance rates, for imparting slow release properties, for reducing undesired side effects etc. The carrier may also be a substance that stabilizes the formulation (e.g. a preservative), for providing the formulation with an edible flavor, etc. The carriers may be any of those conventionally used and is limited only by chemical-physical considerations, such as solubility and lack of reactivity with the A3RAg, and by the route of administration. The carrier may include additives, colorants, diluents, buffering agents, disintegrating agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers. In addition, the carrier may be an adjuvant, which, by definition are substances affecting the action of the active ingredient in a predictable way. Typical examples of carriers include (a) liquid solutions, where an effective amount of the active substance is dissolved in diluents, such as water, saline, natural juices, alcohols, syrups, etc.; (b) capsules (e.g. the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers), tablets, lozenges (wherein the active substance is in a flavor, such as sucrose and acacia or tragacanth or the active substance is in an inert base, such as gelatin and glycerin), and troches, each containing a predetermined amount of the A3RAg as solids or granules; (c) powders; (d) suspensions in an appropriate liquid; (e) suitable emulsions; (f) liposome formulation; and others.
  • The term "effective amount" in the context of the present invention refers to an amount of A3RAg which results in protection of the patient from the pathological symptoms of Sjogren's syndrome. The "effective amount" can be readily determined, in accordance with the invention, by administering to a plurality of tested subjects various amounts of the A3RAg and then plotting the physiological response (for example an integrated "SS index" combining several of the therapeutically beneficial effects) as a function of the amount. Alternatively, the effective amount may also be determined, at times, through experiments performed in appropriate animal models and then extrapolating to human beings using one of a plurality of conversion methods; or by measuring the plasma concentration or the area under the curve (AUC) of the plasma concentration over time and calculating the effective dose so as to yield a comparable plasma concentration or AUC. As known, the effective amount may depend on a variety of factors such as mode of administration (for example, oral administration may require a higher dose to achieve a given plasma level or AUC than an intravenous administration); the age, weight, body surface area, gender, health condition and genetic factors of the subject; other administered drugs; etc.
  • In the following, unless otherwise indicated, dosages are indicated in weight/Kg, meaning weight of administered A3RAg (e.g. IB-MECA or Cl-IB-MECA) per kilogram of body weight of the treated subject in each administration. For example, mg/Kg and microgram/Kg denote, respectively, milligrams of administered agent and micrograms of administered agent per kilogram of body weight of the treated subject.
  • In mice the effective amount is typically less than about 1000 and preferably less than about 500 microgram/Kg. A typical dose would be in the range of about 1 microgram/Kg to about 200 microgram/Kg, with a preferred dose being in the range of about 5 microgram/Kg to about 150 microgram/Kg. The corresponding effective amount in a human will be a human equivalent amount to that observed in mice, which may be determined in a manner as explained bellow.
  • The term "human equivalent" refers to the dose that produces in human the same effect as featured when a dose of 0.001-1 mg/Kg of an A3RAg is administered to a mouse or a rat. As known, this dose depends and may be determined on the basis of a number of parameters such as body mass, body surface area, absorption rate of the active agent, clearance rate of the agent, rate of metabolism and others.
  • The human equivalent may be calculated based on a number of conversion criteria as explained bellow; or may be a dose such that either the plasma level will be similar to that in a mouse following administration at a dose as specified above; or a dose that yields a total exposure (namely area under the curve - AUC - of the plasma level of said agent as a function of time) that is similar to that in mice at the specified dose range.
  • It is well known that an amount of X mg/Kg administered to rats can be converted to an equivalent amount in another species (notably humans) by the use of one of possible conversions equations well known in the art. Examples of conversion equations are as follows:
  • Conversion I:
  • Species Body Wt. (Kg) Body Surf. Area (m2) Km Factor
    Mouse 0.2 0.0066 3.0
    Rat 0.15 0.025 5.9
    Human Child 20.0 0.80 25
    Adult 70.0 1.60 37
  • Body Surface area dependent Dose conversion: Rat (150g) to Man (70 Kg) is 1/7 the rat dose. This means that, for example, 0.001-1 mg/Kg in rats equals to about 0.14-140 microgram/Kg in humans. Assuming an average human weight of 70 Kg, this would translate into an absolute dosage for humans of about 0.01 to about 10 mg.
  • Conversion II:
  • The following conversion factors: Mouse = 3, Rat = 67. Multiply the conversion factor by the animal weight to go from mg/Kg to mg/m2 for human dose equivalent.
    Species Weight (Kg) BSA (m2)
    Human 70.00 1.710
    Mouse 0.02 0.007
    Rat 0.15 0.025
    Dog 8.00 0.448
  • According to this equation the amounts equivalent to 0.001-1 mg/Kg in rats for humans are 0.16-64 µg/Kg ; namely an absolute dose for a human weighing about 70 Kg of about 0.011 to about 11 mg, similar to the range indicated in Conversion I.
  • Conversion III:
  • Another alternative for conversion is by setting the dose to yield the same plasma level or AUC as that achieved following administration to an animal. For example, based on measurement made in mice following oral administration of IB-MECA and based on such measurements made in humans in a clinical study in which IB-MECA was given to healthy male volunteers it can be concluded that a dose of 1 microgram/Kg - 1,000 microgram/KG in mice is equivalent to a human dose of about 0.14 - 140 microgram/Kg, namely a total dose for a 70 Kg individual of 0.01 - 10 mg.
  • Also encompassed within the present invention is a pharmaceutical composition for use in the treatment of Sjogren's syndrome that comprises an effective amount of an A3RAg as defined above and a pharmaceutically acceptable carrier; as well as the use of said A3RAg for the preparation of a pharmaceutical composition for administration to a subject suffering from Sjogren's syndrome and being in need of treatment. In a preferred embodiment, the pharmaceutical composition is formulated for oral use. As will be appreciated, the effective amount in the pharmaceutical composition will depend on the intended therapeutic regimen and the desired therapeutic dose. By way of example, where the dose is 1 mg per day and the desired administration regimen is once daily, the amount of active agent in the pharmaceutical composition will be 1 mg. In cases where it is intended to administer this daily dose in 2 daily administrations, the amount of the active agent in the pharmaceutical composition will be 0.5 mg.
  • The invention will now be exemplified in the following description of experiments that were carried out in accordance with the invention. It is to be understood that these examples are intended to be in the nature of illustration rather than of limitation. Obviously, many modifications and variations of these examples are possible in light of the above teaching. It is therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise, in a myriad of possible ways, than as specifically described hereinbelow.
  • Example
  • The following non-limiting example describes a patient with rheumatoid arthritis (RA) and secondary Sjogren symptoms, mainly manifested by dry eye, treated for years with eye drops (tear substitutes). The patient participated in a phase 2 clinical trial with IB-MECA for the treatment of active RA. The patient's symptoms of dry eye were improved significantly, to the extent of discontinuation of the use of tear substitutes.
  • Methods: The patient took part in a phase 2, multicenter, randomized, double-blind, parallel-group, dose-ranging study of the safety and preliminary efficacy of daily IB-MECA administered orally for 12 weeks to patients with active rheumatoid arthritis.
  • The patient is a 53 years old female with a 7 year history of RA, previously treated with 3 disease-modifying anti-rheumatic drugs (DMARDs), and a history of 2-3 years of dry eyes treated with tear substitutes a few times a day. After a 4 week DMARD washout period, the patient was treated with a blinded dose of IB-MECA - either 0.1, 1.0 or 4.0 mg q12h for 12 weeks. She is currently continuing IB-MECA treatment under a long term extension protocol of the original 12 weeks study.
  • Results: There had been a marked improvement in the condition of the RA in this patient, represented by objective measurements of swollen and tender joints, acute phase reactants (ESR and CRP), patient and physician global assessments, patient assessment of pain and disability. Although the evaluation of secondary Sjogren's symptoms had not been a part of the patient evaluation in this study, the patient reported that after years of continuous use of tear substitutes for dry eye, after about 3-4 weeks of IB-MECA administration she did not need them any more, and she currently has no symptoms of dry eye.
  • Conclusion: Treatment with IB-MECA resulted in a substantial improvement of the dry eye symptoms of secondary Sjogren's syndrome in a patient with active RA.

Claims (15)

  1. An A3 adenosine receptor agonist (A3RAg) for use in treating or preventing Sjogren's syndrome in an individual wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  2. An A3RAg according to claim 1 for use according to Claim 1, in oral administration.
  3. An A3RAg according to claim 1 for use according to Claim 1, in topical application.
  4. An A3RAg according to claim 1 for use according to Claim 3, in topical application to the eye.
  5. An A3RAg according to claim 1 for use according to any one of Claims 1 to 4, wherein said A3RAg is IB-MECA.
  6. An A3RAg as defined in Claim 1 or 5, for use in treating the ophthalmologic clinical symptoms and signs in dry eye disorder including Sjogren's syndrome.
  7. An A3RAg according to claim 6 for use according to Claim 6, wherein the ophthalmologic clinical symptom in Sjogren's syndrome is one selected from the group consisting of foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren syndrome is one selected from the group consisting of corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
  8. An A3RAg according to claim 6 for use according to Claim 7, wherein said Sjogren's syndrome is secondary Sjogren's syndrome.
  9. A pharmaceutical composition for use in the treatment or prevention of Sjogren's syndrome that comprises an effective amount of an A3RAg according to Claim 1 or 5 and a pharmaceutically acceptable carrier.
  10. Use of an A3 adenosine receptor agonist (A3RAg) for the preparation of a pharmaceutical composition for treating or preventing Sjogren's syndrome in an individual, wherein said A3RAg is selected from N6-2- (4-aminophenyl)ethyladenosine (APNEA), N6-(4-amino-3-iodobenzyl) adenosine- 5'-(N-methyluronamide) (AB-MECA), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and 2-chloro-N6-(3-iodobenzyl)- adenosine-5'-N-methyluronamide (Cl-IB-MECA), and physiologically acceptable salts thereof.
  11. The use according to Claim 10, wherein the composition is administered orally or topically.
  12. The use according to Claim 11, wherein the composition is administered topically to the eye.
  13. The use of any one of Claims 10 to 12, wherein said A3RAg is IB-MECA.
  14. The use of any one of Claims 10 to 13, for the preparation of a composition for treating the ophthalmologic clinical symptoms and signs in dry eye disorder including Sjogren's syndrome.
  15. The use of Claim 14, wherein the ophthalmologic clinical symptom in Sjogren's syndrome is one selected from the group consisting of foreign body sensation, burning, and itching; and the ophthalmologic clinical sign in Sjogren's syndrome is one selected from the group consisting of corneal and conjunctival erosions stained by fluorescein and rose bengal, and tear film break-up time.
EP05762145.0A 2004-07-28 2005-07-18 Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome Not-in-force EP1778239B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05762145T PL1778239T3 (en) 2004-07-28 2005-07-18 Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59162804P 2004-07-28 2004-07-28
PCT/IL2005/000762 WO2006011130A1 (en) 2004-07-28 2005-07-18 Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren’s syndrome

Publications (2)

Publication Number Publication Date
EP1778239A1 EP1778239A1 (en) 2007-05-02
EP1778239B1 true EP1778239B1 (en) 2013-08-21

Family

ID=34979400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05762145.0A Not-in-force EP1778239B1 (en) 2004-07-28 2005-07-18 Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome

Country Status (6)

Country Link
EP (1) EP1778239B1 (en)
JP (1) JP4642847B2 (en)
DK (1) DK1778239T3 (en)
ES (1) ES2432113T3 (en)
PL (1) PL1778239T3 (en)
WO (1) WO2006011130A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825102B2 (en) 2004-07-28 2010-11-02 Can-Fite Biopharma Ltd. Treatment of dry eye conditions
WO2007086044A1 (en) * 2006-01-27 2007-08-02 Can-Fite Biopharma Ltd. Adenosine a3 receptor agonists for the treatment of dry eye disorders
GT200500281A (en) 2004-10-22 2006-04-24 Novartis Ag ORGANIC COMPOUNDS.
GB0500785D0 (en) 2005-01-14 2005-02-23 Novartis Ag Organic compounds
ES2440317T3 (en) 2006-04-21 2014-01-28 Novartis Ag Purine derivatives for use as adenosine A2A receptor agonists
GB0607950D0 (en) 2006-04-21 2006-05-31 Novartis Ag Organic compounds
GB0607944D0 (en) * 2006-04-21 2006-05-31 Novartis Ag Organic compounds
EP1889846A1 (en) 2006-07-13 2008-02-20 Novartis AG Purine derivatives as A2a agonists
EP1903044A1 (en) 2006-09-14 2008-03-26 Novartis AG Adenosine Derivatives as A2A Receptor Agonists
JP5467872B2 (en) 2007-03-14 2014-04-09 キャン−ファイト・バイオファーマ・リミテッド Synthesis method of IB-MECA
JP5408882B2 (en) * 2008-01-23 2014-02-05 ヤマサ醤油株式会社 Salivary secretion promoter
SG11201402826YA (en) 2011-12-22 2014-12-30 Alios Biopharma Inc Substituted nucleosides, nucleotides and analogs thereof
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
WO2014124458A1 (en) * 2013-02-11 2014-08-14 The Regents Of The University Of California Compositions and methods for treating neurodegenerative diseases
CA2939219C (en) 2014-02-11 2023-02-28 Mitokinin Llc Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease
CA3067695A1 (en) 2017-06-21 2018-12-27 Mitokinin, Inc. Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease
CN114057742A (en) * 2021-11-03 2022-02-18 高颜苑科技(深圳)有限责任公司 METTL3 inhibitor for repairing corneal injury and pharmaceutical application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443836A (en) * 1993-03-15 1995-08-22 Gensia, Inc. Methods for protecting tissues and organs from ischemic damage
AU7331094A (en) * 1993-07-13 1995-02-13 United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The A3 adenosine receptor agonists
US5688774A (en) * 1993-07-13 1997-11-18 The United States Of America As Represented By The Department Of Health And Human Services A3 adenosine receptor agonists
US5780481A (en) * 1996-08-08 1998-07-14 Merck & Co., Inc. Method for inhibiting activation of the human A3 adenosine receptor to treat asthma
JP2003517423A (en) * 1997-07-29 2003-05-27 メドコ リサーチ、インコーポレイテッド N6-substituted adenosine-5'-uronamide as adenosine receptor modulator
US6117878A (en) * 1998-02-24 2000-09-12 University Of Virginia 8-phenyl- or 8-cycloalkyl xanthine antagonists of A2B human adenosine receptors
US6303619B1 (en) * 1998-03-12 2001-10-16 University Of Virginia Meta-substituted acidic 8-phenylxanthine antagonists of A3 human adenosine receptors
CO5180581A1 (en) * 1999-09-30 2002-07-30 Pfizer Prod Inc COMPOUNDS FOR THE TREATMENT OF THE ISCHEMIA PHARMACEUTICAL TIONS THAT CONTAIN THEM FOR THE TREATMENT OF THE ISCHEMIA
US20040204481A1 (en) * 2001-04-12 2004-10-14 Pnina Fishman Activation of natural killer cells by adenosine A3 receptor agonists
AU2003276988B2 (en) * 2002-09-27 2009-11-05 Bioenvision, Inc. Methods and compositions for the treatment of autoimmune disorders using clofarabine

Also Published As

Publication number Publication date
PL1778239T3 (en) 2014-01-31
EP1778239A1 (en) 2007-05-02
WO2006011130A1 (en) 2006-02-02
DK1778239T3 (en) 2013-12-02
JP2008508256A (en) 2008-03-21
ES2432113T3 (en) 2013-11-29
JP4642847B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
EP1778239B1 (en) Adenosine a3 receptor agonists for the treatment of dry eye disorders including sjogren's syndrome
US7825102B2 (en) Treatment of dry eye conditions
CN101330909B (en) Use of A3 adenosine receptor agonist in osteoarthritis treatment
US7465715B2 (en) Method for treatment of multiple sclerosis
US20080051364A1 (en) Therapeutic Treatment of Accelerated Bone Resorption
CN101365430B (en) Adenosine a3 receptor agonists for the treatment of dry eye disorders
US7141553B2 (en) A3AR agonists for the treatment of inflammatory arthritis
AU2005302090A1 (en) Therapeutic treatment of accelerated bone resorption
EP3530273B1 (en) A3 adenosine receptor ligands for use in the treatment of a sexual dysfunction
US20130045943A1 (en) A3ar agonists for the treatment of uveitis
US20020198172A1 (en) Method of treating motor neuron diseases and demyelinating diseases with citicoline
US8557790B2 (en) A3 adenoside receptor agonists for the reduction of intraocular pressure
MX2008009506A (en) Adenosine a3 receptor agonists for the treatment of dry eye disorders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 627638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005040969

Country of ref document: DE

Effective date: 20131017

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MARKS AND CLERK (LUXEMBOURG) LLP, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20131126

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131221

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019645

Country of ref document: HU

26N No opposition filed

Effective date: 20140522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005040969

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005040969

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140719

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005040969

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140719

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 627638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140719

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130821

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731