EP1776601A1 - Cfar method by statistical segmentation and normalisation - Google Patents

Cfar method by statistical segmentation and normalisation

Info

Publication number
EP1776601A1
EP1776601A1 EP05763075A EP05763075A EP1776601A1 EP 1776601 A1 EP1776601 A1 EP 1776601A1 EP 05763075 A EP05763075 A EP 05763075A EP 05763075 A EP05763075 A EP 05763075A EP 1776601 A1 EP1776601 A1 EP 1776601A1
Authority
EP
European Patent Office
Prior art keywords
classes
map
zones
algorithm
ambient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05763075A
Other languages
German (de)
French (fr)
Inventor
Frédéric THALES Intellectual Property BARBARESCO
Jean-Pierre THALES Intellectual Property LARVOR
Bernard THALES Intellectual Property MONNIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1776601A1 publication Critical patent/EP1776601A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5246Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi post processors for coherent MTI discriminators, e.g. residue cancellers, CFAR after Doppler filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0272Multifunction radar

Definitions

  • the invention relates to the field of surveillance and radar detection. In particular, it deals with the difficulty of detecting low surface area targets operating on rough terrain and at low altitude. It also discusses the difficulty of detecting threatening targets hidden by terrain accidents that hinder the propagation of radar waves.
  • the disclosed invention falls within the more particular field of radar signal processing methods.
  • One of the main tasks of the signal processing methods is to extract from the received signal the portion of the signal corresponding to useful information.
  • Useful information is, for example, the waves reflected by potentially dangerous or hostile targets. These reflected waves or echoes can have a variable level depending on the nature and dimensions of the target in question. As such, targets are generally classified according to their reflectivity, which is reflected in the parameter Equivalent Surface Radar or SER well known by radar equipment designers. Thus the echo reflected by a target having a small equivalent surface is a low power echo. Faced with such a target, the task assigned to radar processing consists in extracting this echo from the thermal noise or ambient clutter received by the radar receiver and accompanying this echo.
  • clutter is meant in an agreed manner the signal reflected by any element not strictly speaking a target in the use case considered. It can be for example the signal reflected by elements of relief, constructions, expanses of water, vegetation or atmospheric phenomena such as clouds.
  • TFAC Constant Attack FALSE
  • TFAC Constant Attack FALSE
  • the concept of false alarm rate, well known to designers of radar equipment is not developed here.
  • the TFAC processes proceed for each signal element received at a time t corresponding to a given distance by relative to the radar, the estimation of the average level of signal received during a time interval ⁇ t framing the instant considered. This estimated average level, also called “ambience”, is subtracted from the received signal level. The difference is then compared to a fixed detection threshold, which threshold may be variable.
  • Any received signal thus processed whose level exceeds the set threshold is considered as an echo representative of the presence of a target at the distance considered corresponding to the time t of reception of the signal.
  • the conventional method of TFAC known from the prior art generally show good efficiency even in the case of low equivalent area targets for which the level of the reflected signal is low and close to the level of the atmosphere. They also make it possible to prevent nuisance tripping of alarms upon reception of a localized boiling element. On the other hand, their effectiveness is faulty in difficult operating conditions or the monitored space includes zones of different natures generating significant and abrupt variations in the level of clutter. Such an operational context is shown schematically in FIG. 1. This loss of efficiency is particularly noticeable in the estimation of the atmosphere at the places situated at the boundary between the two zones having very different levels of clutter.
  • this loss of efficiency is usually attenuated by Doppler analysis.
  • Doppler analysis of the received signal makes it possible to distinguish by its doppler frequency a threatening moving target whose signal has a spectrum centered on a Doppler frequency corresponding to its speed, the signal corresponding to the clutter whose speed is a priori low, or even zero.
  • this attenuation may be insufficient, particularly in the case of a high-level clutter such as the reverberation signal of a mountainous formation, this clutter disturbing the amplitude of the spectrum of the signal received through the secondary lobes of the filter.
  • Doppler used used.
  • the disclosed invention provides a process ⁇ CFAR based on a different principle.
  • the invention consists of a TFAC process characterized in that it comprises at least:
  • a detection step of comparing the normalized level of received signal with a threshold a detection step of comparing the normalized level of received signal with a threshold.
  • the step of determining the clutter areas calls for a statistical segmentation method known by the name of Stochastic Expectation Maximization (SEM) maximization algorithm according to the Anglo-Saxon denomination.
  • SEM Stochastic Expectation Maximization
  • the method effects the segmentation of the received ambient signal into ambient classes, a class being defined by its average level and the standard deviation from this average level.
  • the statistical segmentation method has the advantage of being applied to the complex components of the received signals and not simply to the module of the received signals.
  • this algorithm Since this algorithm has as input parameters the number N of classes of ambiences to be determined, and being initialized by a first card arbitrarily defined, it has the advantage of being parameterizable and adaptive. Normalization is performed relative to the ambient level of the area in which the distance box is located. Each distance box is characterized by its belonging to a given area. The threshold is determined in such a way as to obtain the highest probability of detection for a chosen false alarm probability.
  • the method according to the invention also has the advantage of including the implementation of a complementary iterative process allowing the automatic adjustment of the number of zones by merging zones whose atmospheres are statistically close.
  • FIG. 1 a diagrammatic sectional illustration, along the radar pointing axis of an example of a geographical location showing abrupt changes in the nature of the clutter
  • FIG. 2 is a diagrammatic two-dimensional representation of the example; of Figure 1,
  • FIG. 3 a block diagram for implementing a conventional TFAC method
  • FIG. 4 the block diagram for implementing the method according to the invention
  • the following description implicitly refers to the mode of operation of pulse radars modern and known notions of recurrence, or repetition period, burst, distance boxes and modes of burst operation. It is moreover known that the types of signal processing associated with these radars are burst processes carried out on the distance axis. It is simply recalled that the repetition period corresponds to the time interval between two times of emission of a radar pulse, during which time the radar receiver is active and that this time interval is sampled at a rate corresponding to distance division of the range of the radar in remote cells. A signal sample taken at a time t, thus corresponds to a given distance box.
  • the generally employed processing methods associate by signal signals from several successive transmission pulses constituting a burst.
  • the number of associated pulses in a burst is chosen in particular so that during the corresponding lapse of time, it is considered that the parameters associated with any detected echoes remain unchanged.
  • the burst processing corresponds substantially to the processing of signals from a given pointing axis and is therefore a one-dimensional treatment on the distance axis.
  • Figure 1 illustrates in section, schematically, an example of geographical location causing difficulties in the estimation of the ambient level.
  • This figure represents the variation of the relief as a function of the distance, along a pointing axis of the radar.
  • This figure shows two relief elements 11 and 12 separated by a valley 13 and preventing the emission of a radar located at a point O. These two elements have faces whose surface is otherwise unequal. These faces constitute surfaces reflecting the signals emitted by the radar in the form of high-level clutter which constitutes the ambient signal in the areas of space Z 1 and Z 3 located above these surfaces.
  • zones Z 1 and Z 2 , Z 2 and Z 3 and Z 3 and Z 4 represented by points Pi, P 2 and P 3 represent limits for which the ambient signal level changes abruptly. These limits generally correspond to ridge lines, or more simply to abrupt variation of slope of the relief. For current processing methods the echoes corresponding to targets evolving in the vicinity of the ridge lines constitutes an important problem which originates from the abrupt change of the ambient signal level which has the effect of desensitizing the reception. It should be noted that the zones Z 5 and Z 6 which are located below the direct aim of the radar materialized by the axes 14 and 15 are areas that offers an ideal refuge to threatening targets or targets seeking to go unnoticed.
  • Figure 2 illustrates the same example of geographical location seen in a plan.
  • the variations of the relief of the elements 11 and 12 are represented by the isohypse curves 21.
  • the points Pi, P 2 and P 3 are located on the ridge lines 22, 23 and 24 along the axis 25 (Ox) pointed by a radar located at the point O.
  • FIG. 3 is a block diagram of the operating principle of a conventional TFAC method taken as an example.
  • the TEFAC treatment is performed on the digitized radar signals, after characterization by doppler filtering. This is usually a processing method relating to the received signal module.
  • the signal samples 31 from each of the pulses composing the burst and relating to the same distance box are associated and processed by a Doppler filter bank 32. For each filter and each distance box, the distribution in this manner is thus determined. frequency of the received signal level during the duration of the burst.
  • the Doppler filter bank may be the result of an FFT operation or may result from the application of a FIR type filter or a finite impulse response filter.
  • the levels of the spectral components obtained are then used to estimate the ambient signal level relative to each distance cell and for each frequency range corresponding to a Doppler filter.
  • This estimation can for example be carried out in two stages as shown in box 36 of FIG. 3.
  • the calculation of the ambient level then consists in calculating the average level of signal received over a given number of remote, eight or sixteen cells. distance boxes for example, located before and after the distance box for which it is desired to estimate the ambient level.
  • the averages are here calculated on the amplitude of the output signals of the Doppler filters. This operation 33 for calculating the forward and backward averages is followed, as shown in box 36, by an operation of choice of the highest average.
  • the signals processed by Doppler filtering are subjected to a normalization operation which consists in calculating for each distance box the ratio between the received signal level and the level of the calculated ambient signal. which is the average before or back chosen.
  • This operation is generally carried out, in known manner, with quantities taken in logarithmic form.
  • the signal thus standardized, is compared with a detection threshold, the exceeding of the threshold being the criterion for determining the presence of a target.
  • this type of TFAC process works satisfactorily for geographical areas where the ambient level remains substantially constant or varies non-abruptly.
  • the variation of the values of the front and rear averages along the range of the radar is progressive and leads for any distance box to a choice of ambience for optimal normalization and hence a satisfactory probability of detection.
  • the distance boxes located in the vicinity of the transition zone are shown to be poorly normalized due to an overestimation or underestimation of the ambient level achieved by the abrupt comparison of levels of the front and rear averages. This poor signal normalization leads to a detrimental degradation of the probability of detection of a threatening target.
  • FIG. 4 presents in a global manner the TFAC method according to the invention.
  • the method according to the invention processes the data received after doppler processing 32, as a conventional TFAC method. Likewise, it ends with the comparison 43 of the normalized signal level with a detection threshold.
  • method according to the invention comprises two operations 41 and 42 which are a substitute for the calculation operations averages 33 and normalization with respect to the highest average 34. These operations are also performed not on the module but on the components in phase (I) and in quadrature (Q) of the data produced by the Doppler filtering operation 32.
  • the function of the operation 41 is to carry out for each doppler filter a clutter zone map along the distance axis.
  • This mapping consists of delimiting zones within which the clutter is as statistically homogeneous as possible and as different as possible from the clutter characterizing the other delimited zones. We seek here to establish areas with contrasting atmospheres. Operation 42, in turn, consists in normalizing the data with respect to the ambient level of the zones to which they belong.
  • the detection threshold used during the operation 43 may here be an adaptive threshold determined according to the estimated parameters used to determine the zone considered.
  • mapping of the space covered by the radar is carried out here by applying a statistical segmentation method implementing an iterative algorithm of Stochastic Maximization of Hope more commonly known as the SEM algorithm according to the English name (Stochastic Expectation and Maximization).
  • This algorithm known elsewhere is not detailed here. However, it is specified that this algorithm is applied to the data from the Doppler filtering and taken in complex form. It is also specified that for reasons of convenience and robustness of calculations, the real and imaginary components of the data are considered as independent and centered Gaussian variables, with the same variance.
  • the ambient signal processed by the radar is assimilated to a complex circular Gaussian signal, ie a vector of Gaussian components centered (of zero average), of the same standard deviation and independent.
  • E represents here the mathematical expectation of the variable considered.
  • the radar ambient signal is thus modeled as a signal in which each component, in phase (x) and in quadrature (y), is a centered Gaussian variable, the two components being uncorrelated.
  • the radar environment can be modeled by a medium frequency voltage having for expression:
  • the segmentation algorithm is applied to the vector consisting of the in-phase and quadrature component of the ambient signal F given by:
  • the segmentation algorithm being an iterative process, it should be provided for initialization.
  • a method known as a dynamic cloud method allowing a rapid determination of the different classes of environment, a class being characterized by the parameters m ⁇ ⁇ , m y n , ⁇ x n and ⁇ y ⁇ , with n varying from 1 to N.
  • the segmentation algorithm thus makes it possible to divide the geographical space into clearly defined homogeneous environment zones, each case distance constituting the range of the radar belonging exclusively to a given area.
  • the normalization and detection process consists of comparing each signal sample with the parameters of the class corresponding to the zone to which it belongs.
  • the detection will consist in checking whether the following expression exceeds a fixed one or not according to the chosen probabilities of detection and false alarm.
  • N (0,1) represents the normal distribution of zero mean and standard deviation.
  • an input parameter of the segmentation algorithm is constituted by the number of classes that one wishes to define.
  • the choice of the number of classes necessary for a proper segmentation of any image, radar or otherwise is a recurring problem. If the number of classes is too small, the final result does not allow to distinguish differences in ambient level between several areas, yet well marked. Conversely, in case of over-segmentation, the result is unusable because illegible.
  • the choice depends on the number N depends in particular on the image considered, and in particular the information sought.
  • the method according to the invention can advantageously implement a complementary iterative processing of automatic class fusion that allows to initialize the segmentation with a large number of classes and finally return, by successive iterations, to an optimum number of classes.
  • This processing consists of starting from a relatively large number N and then estimating for each iteration of the segmentation algorithm a parameter making it possible to estimate the difference in atmosphere existing between neighboring zones belonging to different classes. It then consists of merging the areas for which the value of the estimation parameter is less than a threshold.
  • FIG. 5 makes it possible to locate the position of this complementary treatment in the overall processing chain.
  • the illustration of FIG. 5 presents a first step 51 which globally represents the iterative operation performed by the segmentation algorithm. In the absence of further processing, step 51 leads directly to the return of a definitive card comprising zones grouped in N classes.
  • Complementary processing begins with the establishment of a provisional version 53 of the map of the zones defined by step 51. This provisional map is used during a step 54 of comparison of the atmospheres associated with each zone.
  • the comparison parameter used to determine whether or not to merge two zones and to form only one class is a statistical distance calculation D whose definition emerges from the theory of information geometry.
  • This statistical distance makes it possible in particular to compare independent Gaussian multivariate variables, such as those that define the prevailing atmosphere in a given area.
  • the Gaussian variable considered represents the complex data resulting from the doppler filtering step which is expressed as the sum of two independent Gaussian variables.
  • the expression of the distance D, in the sense of the Fisher metric, between two zones marked by the indices a and b is of the following form:
  • mi and ⁇ i correspond respectively to m x and ⁇ x , and m 2 and 02 to m y and ⁇ y .
  • Step 54 therefore consists in treating in pairs the different classes defined and calculating for pair the distance Dy between classes i and j.
  • This step is followed by a step 55 which compares this distance Dy with a given threshold.
  • the number of classes defined corresponds to the optimum number and step 55 leads to the restitution of a definitive map 52 of the homogeneous clutter zones.
  • step 55 leads to a step 56 of merging the two closest classes, that is to say of the two classes for which the value of Dy is the lowest and to the decrementation of the optimal number of zones. to achieve segmentation.
  • Step 56 leads to the establishment of an initialization card 57 which is used by the segmentation algorithm to establish a new provisional map with a number of cluttered areas 58 equal to the number of zones retained at the previous iteration minus one.
  • the overall operation of the method according to the invention can then be described as follows:
  • the implementation of the method begins with an initialization iteration comprising the steps 51, 53, 54 and 55, during which the segmentation algorithm established a first set of N atmosphere class and assigns to the different areas of space one of the N given classes.
  • the number N is initialized to a given value and a first arbitrary division in N clutter zones, forming an initialization card, is provided as input to the processing algorithm.
  • This iteration provides a first provisional map on which are calculated the interclass distances Dy which are compared to a determined threshold. If the totality of the calculated distances is greater than the set threshold, N is considered as the optimum number of classes to account for the variations of atmosphere in the considered space. It is then not necessary to proceed to a new segmentation and the provisional map of the homogeneous clutter areas becomes the definitive map 52 used for the normalization operation 42.
  • the method according to the invention continues with steps 56, 57 and 58.
  • the classes for which the value of D is the lowest are grouped together. This regrouping or merger gives rise to the establishment of a new initialization card of the clutter zones as well as the decrementation of the number N of possible classes.
  • the process is then extended by another iteration during which the segmentation algorithm proceeds to a new division into N-1 zones from the new initialization card.
  • the method thus performs the number of iterations necessary to obtain a segmentation into a number N of classes for which the calculated distances Dy are all greater than the fixed threshold.
  • the automatic merge processing of the statistically close classes is integrated into the main process which implements an SEM type segmentation algorithm.
  • This complementary treatment has the advantage of freeing the process from a precise prior determination of the optimum number of segments to restore the variations of the environment corresponding to the variations in nature of the clutter along the range of the radar.
  • This additional processing allows starting from a large N value, to converge over time the number N to its optimum value.
  • the number N as a parameterizable quantity by an operator for its initial value and for its minimum value.
  • the minimum distance Dg between two classes it is possible to consider taking into account parameters relating to the minimum distance Dg between two classes, as well as the minimum number of distance cells necessary for a given area to form a particular class.
  • This setting makes it possible both to obtain an optimal number of classes and to limit the merger.
  • the user can, for example, access the setting of the melting threshold through a command varying between 0% and 100%, (has a value of 0% corresponding to a very low distance threshold resulting in no fusion, the value 100% corresponding to a significant distance threshold resulting in the merger of all classes into one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to electromagnetic detection of targets or objects, in particular radar detection and the aim of said invention is a solution to the problem caused by the variation in the ambient signal level along the range of the radar which reduces the detection performance. In uneven regions or in the presence of large relief elements the above problem is inadequately resolved by the application to the received signal of known procedures such as maintaining a constant false alarm rate (CFAR). Said aim is achieved with a method comprising at least the following steps: a Doppler filtering (32), a determination of a map of the zones of homogeneous clutter (41), a normalisation of the received signal (42) and a detection step (43). The step of determination of a map of the zones of homogeneous clutter (41) is carried out by application of an iterative algorithm of statistical segmentation of the SEM type to the complex data from the Doppler filtering step. Said data are treated in a complex form, the algorithm being applied to the real and imaginary parts of the data. The step of determination of a map of the zones of homogeneous clutter may also comprise a complementary iterative process of fusion of the classes of environment, which permits a parametrable optimisation of the number of classes of environment used to determine the map of the zones of homogeneous clutter.

Description

Procédé de TFAC par segmentation statistique et normalisation. TFAC process by statistical segmentation and normalization.
L'invention se rapporte au domaine de la surveillance et de la détection radar. Elle traite plus particulièrement de la difficulté de détecter des cibles de faible surface équivalente évoluant en terrain accidenté et à basse altitude. Elle traite également de la difficulté de détecter des cibles menaçantes cachées par des accidents de terrain faisant obstacle à la propagation des ondes radar. L'invention décrite entre dans le domaine plus particulier des procédés de traitement des signaux radar.The invention relates to the field of surveillance and radar detection. In particular, it deals with the difficulty of detecting low surface area targets operating on rough terrain and at low altitude. It also discusses the difficulty of detecting threatening targets hidden by terrain accidents that hinder the propagation of radar waves. The disclosed invention falls within the more particular field of radar signal processing methods.
Une des principales tâches dévolues aux procédés de traitement des signaux consiste à extraire du signal reçu la portion du signal correspondant à une information utile. Par information utile on entend par exemple les ondes réfléchies par des cibles potentiellement dangereuses ou hostiles. Ces ondes réfléchies ou échos peuvent avoir un niveau variable en fonction de la nature et des dimensions de la cible considérée. A ce titre on classe généralement les cibles en fonction de leur pouvoir de réflexion, dont rend compte le paramètre de Surface Equivalente Radar ou SER bien connu des concepteurs d'équipements radar. Ainsi l'écho réfléchi par une cible ayant une faible surface équivalente est un écho de faible puissance. Face à une telle cible la tâche dévolue au traitement radar consiste à extraire cet écho du bruit thermique ou du fouillis ambiant reçu par le récepteur du radar et qui accompagnent cet écho. Par fouillis on entend de manière convenue le signal réfléchi par tout élément ne constituant par à proprement parler une cible dans le cas d'utilisation considéré. Ce peut être par exemple le signal réfléchi par des éléments de relief, des constructions, des étendues d'eau, de la végétation ou encore de phénomènes atmosphériques tels que des nuages.One of the main tasks of the signal processing methods is to extract from the received signal the portion of the signal corresponding to useful information. Useful information is, for example, the waves reflected by potentially dangerous or hostile targets. These reflected waves or echoes can have a variable level depending on the nature and dimensions of the target in question. As such, targets are generally classified according to their reflectivity, which is reflected in the parameter Equivalent Surface Radar or SER well known by radar equipment designers. Thus the echo reflected by a target having a small equivalent surface is a low power echo. Faced with such a target, the task assigned to radar processing consists in extracting this echo from the thermal noise or ambient clutter received by the radar receiver and accompanying this echo. By clutter is meant in an agreed manner the signal reflected by any element not strictly speaking a target in the use case considered. It can be for example the signal reflected by elements of relief, constructions, expanses of water, vegetation or atmospheric phenomena such as clouds.
Pour réaliser cette extraction un moyen bien connu de l'art antérieur consiste à mettre en œuvre des procédés de traitement du signal radar, communément appelés dispositif de maintien d'un Taux de Fausse Alarme Constant ou TFAC. La notion de taux de fausse alarme, bien connue des concepteurs d'équipements radar n'est pas développée ici. De manière générale, les procédés de TFAC procèdent pour chaque élément de signal reçu à un instant t correspondant à une distance donnée par rapport au radar, à l'estimation du niveau moyen de signal reçu pendant un intervalle de temps Δt encadrant l'instant considéré. Ce niveau moyen estimé, encore appelé "ambiance", est soustrait du niveau de signal reçu. La différence est ensuite comparée à un seuil de détection fixé, seuil qui peut être variable. Tout signal reçu ainsi traité dont le niveau dépasse le seuil fixé est considéré comme un écho représentatif de la présence d'une cible à la distance considérée correspondant à l'instant t de réception du signal. Les procédé classique de TFAC connus de l'art antérieur font généralement preuve d'une bonne efficacité même dans le cas de cibles à faible surface équivalente pour lesquelles le niveau du signal réfléchi est faible et proche du niveau de l'ambiance. Ils permettent en outre d'éviter le déclanchement intempestif d'alarmes sur réception d'un élément de bouillis localisé. En revanche leur efficacité est mise en défaut dans des conditions opérationnelles difficiles ou l'espace surveillé comporte des zones de natures différentes engendrant des variations importantes et brutales du niveau de fouillis. Un tel contexte opérationnel est représenté de manière schématique sur la figure 1. Cette perte d'efficacité est particulièrement sensible dans l'estimation de l'ambiance aux endroits situés à la frontière entre les deux zones présentant des niveaux de fouillis très différents. Pour ces endroits l'application d'un procédé de TFAC classique se traduit de manière connue, par une désensibilisation du radar et une augmentation des fausses alarmes. Dans de telles circonstances l'estimation d'un niveau d'ambiance moyen s'avère peut efficace car il ne tient pas compte des variations brutales du niveau de fouillis se produisant dans le temps d'estimation. Cette perte d'efficacité présente l'inconvénient sérieux de rendre les radars utilisant des procédés de TFAC classiques incapables de détecter certains types de cibles potentiellement très menaçantes qui tirent parti des accidents de relief pour se protéger. Parmi ces menaces ont peut citer:To carry out this extraction, a well-known means of the prior art consists in implementing radar signal processing methods, commonly known as Constant Attack FALSE or TFAC. The concept of false alarm rate, well known to designers of radar equipment is not developed here. In general, the TFAC processes proceed for each signal element received at a time t corresponding to a given distance by relative to the radar, the estimation of the average level of signal received during a time interval Δt framing the instant considered. This estimated average level, also called "ambience", is subtracted from the received signal level. The difference is then compared to a fixed detection threshold, which threshold may be variable. Any received signal thus processed whose level exceeds the set threshold is considered as an echo representative of the presence of a target at the distance considered corresponding to the time t of reception of the signal. The conventional method of TFAC known from the prior art generally show good efficiency even in the case of low equivalent area targets for which the level of the reflected signal is low and close to the level of the atmosphere. They also make it possible to prevent nuisance tripping of alarms upon reception of a localized boiling element. On the other hand, their effectiveness is faulty in difficult operating conditions or the monitored space includes zones of different natures generating significant and abrupt variations in the level of clutter. Such an operational context is shown schematically in FIG. 1. This loss of efficiency is particularly noticeable in the estimation of the atmosphere at the places situated at the boundary between the two zones having very different levels of clutter. For these locations the application of a conventional TFAC process is reflected in a known manner, by a desensitization of the radar and an increase in false alarms. Under such circumstances the estimation of an average ambient level proves to be effective because it does not take into account sudden variations in the level of clutter occurring in the estimation time. This loss of efficiency has the serious disadvantage of rendering the radars using conventional TFAC methods incapable of detecting certain types of potentially very threatening targets that take advantage of terrain accidents to protect themselves. These threats include:
- des hélicoptères d'attaque cachés derrière des éléments de reliefs tels que des collines par exemple, qui profitent de la rupture de niveau d'ambiance se produisant sur la ligne de crête pour émerger durant un bref instant de la ligne de crête, tirer un projectile dans la zone surveillée et se remettant immédiatement à l'abri derrière la ligne de crête. - des aéronefs effectuant en zone montagneuse des vols en suivi de terrain, à très basse altitude, qui profitent d'une zone de crête pour passer d'une vallée à une autre en restant invisibles du radar chargé de surveiller la zone. - des cibles menaçantes évoluant le long d'une côte dans la zone de transition terre/mer.- Attack helicopters hidden behind relief elements such as hills, which take advantage of the break-up of ambient level occurring on the ridge to emerge for a brief moment from the ridge, draw a projectile in the area under surveillance and immediately recovering behind the ridge line. - Aircraft operating in mountainous terrain on low altitude terrain monitoring flights, which take advantage of a crest zone to pass from one valley to another, while remaining invisible from the radar responsible for monitoring the area. - threatening targets along a coastline in the land / sea transition zone.
Dans le cas d'une cible en mouvement, cette perte d'efficacité est en général atténuée par l'analyse doppler. L'analyse doppler du signal reçu permet de distinguer par sa fréquence doppler une cible mobile menaçante dont le signal a un spectre centré sur une fréquence doppler correspondant à sa vitesse, du signal correspondant au fouillis dont la vitesse est a priori faible, voire nulle. Néanmoins cette atténuation peut s'avérer insuffisante notamment dans le cas d'un fouillis de fort niveau tel que le signal de réverbération d'une formation montagneuse, ce fouillis venant perturber l'amplitude du spectre du signal reçu au travers des lobes secondaires du filtre doppler utilisé.In the case of a moving target, this loss of efficiency is usually attenuated by Doppler analysis. Doppler analysis of the received signal makes it possible to distinguish by its doppler frequency a threatening moving target whose signal has a spectrum centered on a Doppler frequency corresponding to its speed, the signal corresponding to the clutter whose speed is a priori low, or even zero. However, this attenuation may be insufficient, particularly in the case of a high-level clutter such as the reverberation signal of a mountainous formation, this clutter disturbing the amplitude of the spectrum of the signal received through the secondary lobes of the filter. Doppler used.
Pour pallier cette perte d'efficacité face à des menaces opportunistes tirant parti des variations brutales du niveau de fouillis dans les zones où elles évoluent, l'invention décrite propose un procédé^ de TFAC basé sur un principe différent. A cet effet l'invention consiste en un procédé de TFAC caractérisé en ce qui comporte au moins:To offset this loss of efficiency in the face of threats opportunists taking advantage of sudden changes in level of clutter in the areas where they operate, the disclosed invention provides a process ^ CFAR based on a different principle. For this purpose, the invention consists of a TFAC process characterized in that it comprises at least:
- une étape de détermination de zones de fouillis homogène statistiquement, pour lesquelles le niveau d'ambiance est constant.a step of determining statistically homogeneous clutter areas, for which the ambient level is constant.
- une étape de normalisation du niveau du signal reçu pour chaque case distance,a step of normalizing the received signal level for each distance box,
- une étape de détection consistant à comparer à un seuil le niveau normalisé de signal reçu. L'étape de détermination des zones de fouillis fait appelle à un procédé de segmentation statistique connu sous la dénomination d'algorithme de maximalisation de la moyenne stochastique ou "Stochastic Expectation Maximisation" (SEM) selon la dénomination anglo-saxonne. Le procédé effectue la segmentation du signal d'ambiance reçu en classes d'ambiance, une classe étant définie par son niveau moyen et l'écart type par rapport à ce niveau moyen.a detection step of comparing the normalized level of received signal with a threshold. The step of determining the clutter areas calls for a statistical segmentation method known by the name of Stochastic Expectation Maximization (SEM) maximization algorithm according to the Anglo-Saxon denomination. The method effects the segmentation of the received ambient signal into ambient classes, a class being defined by its average level and the standard deviation from this average level.
Dans le cadre de l'invention. Le procédé de segmentation statistique présente l'avantage d'être appliqué aux composantes complexes des signaux reçus et non pas simplement sur le module des signaux reçus.In the context of the invention. The statistical segmentation method has the advantage of being applied to the complex components of the received signals and not simply to the module of the received signals.
Cet algorithme ayant pour paramètres d'entrée le nombre N de classes d'ambiances à déterminer, et étant initialisé par une première carte définie de manière arbitraire il présente l'avantage d'être paramétrable et adaptatif. La normalisation est effectuée par rapport au niveau d'ambiance de la zone dans laquelle se situe la case distance considérée. Chaque case distance étant caractérisée par son appartenance à une zone donnée. Le seuil est quant à lui déterminé de façon à obtenir la probabilité de détection la plus élevée pour une probabilité de fausse alarme choisie.Since this algorithm has as input parameters the number N of classes of ambiances to be determined, and being initialized by a first card arbitrarily defined, it has the advantage of being parameterizable and adaptive. Normalization is performed relative to the ambient level of the area in which the distance box is located. Each distance box is characterized by its belonging to a given area. The threshold is determined in such a way as to obtain the highest probability of detection for a chosen false alarm probability.
Le procédé selon l'invention présente également l'avantage de comporter la mise en œuvre d'un procédé itératif complémentaire permettant le réglage automatique du nombre de zones par fusion des zones dont les ambiances sont statistiquement proches.The method according to the invention also has the advantage of including the implementation of a complementary iterative process allowing the automatic adjustment of the number of zones by merging zones whose atmospheres are statistically close.
D'autres caractéristiques et avantages apparaîtront au travers de la description faîte en regard des figures annexées qui représentent:Other features and advantages will appear through the description made with reference to the appended figures which represent:
- La figure 1 , une illustration schématique en coupe, selon l'axe de pointage du radar d'un exemple de situation géographique présentant de brusques changements de la nature du fouillis, - la figure 2 la représentation schématique à deux dimensions de l'exemple de la figure 1 ,FIG. 1, a diagrammatic sectional illustration, along the radar pointing axis of an example of a geographical location showing abrupt changes in the nature of the clutter; FIG. 2 is a diagrammatic two-dimensional representation of the example; of Figure 1,
- la figure 3 un synoptique de mise en œuvre d'un procédé de TFAC classique,FIG. 3 a block diagram for implementing a conventional TFAC method,
- la figure 4 le synoptique de mise en œuvre du procédé selon l'invention,FIG. 4 the block diagram for implementing the method according to the invention,
- la figure 5 le synoptique de mise en œuvre du traitement complémentaire de fusion de zones.- Figure 5 the block diagram of the implementation of the complementary treatment of melting zones.
Pour des raisons de clarté, la description qui suit se réfère de manière implicite au mode de fonctionnement des radars à impulsions modernes et aux notions connues de récurrence, ou période de répétition, de rafale, de cases distance et de modes de fonctionnement en rafale. Il est par ailleurs connu que les types de traitement du signal associés à ces radars sont des traitements à la rafale effectués sur l'axe distance. On rappelle simplement que la période de répétition correspond à l'intervalle de temps compris entre deux instants d'émission d'une impulsion radar, temps durant lequel le récepteur du radar est actif et que cet intervalle de temps est échantillonné à un rythme correspondant au découpage en distance de la portée du radar en cases distance. A un échantillon de signal pris à un instant t, correspond ainsi une case distance donnée. D'autre part, les procédés de traitement généralement employés procèdent par association des signaux provenant de plusieurs impulsions d'émission successives constituant une rafale. Le nombre d'impulsions associées dans une rafale est notamment choisi de sorte que pendant le laps de temps correspondant, on considère que les paramètres associés à d'éventuels échos détectés restent inchangés. Le traitement à la rafale correspond sensiblement au traitement des signaux provenant d'un axe de pointage donné et est donc un traitement monodimensionnel sur l'axe distance.For the sake of clarity, the following description implicitly refers to the mode of operation of pulse radars modern and known notions of recurrence, or repetition period, burst, distance boxes and modes of burst operation. It is moreover known that the types of signal processing associated with these radars are burst processes carried out on the distance axis. It is simply recalled that the repetition period corresponds to the time interval between two times of emission of a radar pulse, during which time the radar receiver is active and that this time interval is sampled at a rate corresponding to distance division of the range of the radar in remote cells. A signal sample taken at a time t, thus corresponds to a given distance box. On the other hand, the generally employed processing methods associate by signal signals from several successive transmission pulses constituting a burst. The number of associated pulses in a burst is chosen in particular so that during the corresponding lapse of time, it is considered that the parameters associated with any detected echoes remain unchanged. The burst processing corresponds substantially to the processing of signals from a given pointing axis and is therefore a one-dimensional treatment on the distance axis.
La figure 1 illustre en coupe, de manière schématique, un exemple de situation géographique occasionnant des difficultés dans l'estimation du niveau d'ambiance. Cette figure représente la variation du relief en fonction de la distance, le long d'un axe de pointage du radar. Sur cette figure on voit apparaître deux éléments de relief 11 et 12 séparés par une vallée 13 et faisant obstacle à l'émission d'un radar situé en un point O. Ces deux éléments présentent des faces dont la surface est par ailleurs inégale. Ces faces constituent des surfaces réfléchissant les signaux émis par le radar sous forme de fouillis de fort niveau qui constitue le signal ambiant dans les zones de l'espace Zi et Z3 situées au dessu de ces surfaces. Inversement, entre ces éléments de relief on distingue des zones moins élevées Z5 et Z6, masquée à l'émission directe du radar et qui ne réfléchissent que du bruit thermique. Les limites entre les zones Zi et Z2, Z2 et Z3 et Z3 et Z4 matérialisées par les points P-i, P2 et P3 représentent des limites pour lesquelles le niveau de signal ambiant change brutalement. Ces limites correspondent généralement à des lignes de crête, ou plus simplement à des brusques variation de pente du relief. Pour les procédés de traitement actuels les échos correspondant à des cible évoluant au voisinage des lignes de crête constitue un problème important qui tire son origine du brusque changement du niveau de signal ambiant qui a pour conséquence de désensibiliser la réception. Il est à noter que les zones Z5 et Z6 qui sont située sous la limite de visée directe du radar matérialisée par les axes 14 et 15 sont des zones qui offre un refuge idéal aux cibles menaçantes ou aux cibles cherchant à passer inaperçues.Figure 1 illustrates in section, schematically, an example of geographical location causing difficulties in the estimation of the ambient level. This figure represents the variation of the relief as a function of the distance, along a pointing axis of the radar. This figure shows two relief elements 11 and 12 separated by a valley 13 and preventing the emission of a radar located at a point O. These two elements have faces whose surface is otherwise unequal. These faces constitute surfaces reflecting the signals emitted by the radar in the form of high-level clutter which constitutes the ambient signal in the areas of space Z 1 and Z 3 located above these surfaces. Conversely, between these relief elements there are lower zones Z 5 and Z 6 , masked by the direct emission of the radar and which reflect only thermal noise. The boundaries between zones Z 1 and Z 2 , Z 2 and Z 3 and Z 3 and Z 4 represented by points Pi, P 2 and P 3 represent limits for which the ambient signal level changes abruptly. These limits generally correspond to ridge lines, or more simply to abrupt variation of slope of the relief. For current processing methods the echoes corresponding to targets evolving in the vicinity of the ridge lines constitutes an important problem which originates from the abrupt change of the ambient signal level which has the effect of desensitizing the reception. It should be noted that the zones Z 5 and Z 6 which are located below the direct aim of the radar materialized by the axes 14 and 15 are areas that offers an ideal refuge to threatening targets or targets seeking to go unnoticed.
La figure 2 illustre le même exemple de situation géographique vu dans un plan. Sur cette figure les variations du relief des éléments 11et 12 sont représentées par les courbes isohypses 21. Les points P-i, P2 et P3 sont situé sur les ligne de crête 22, 23 et 24 le long de l'axe 25 (Ox) pointé par un radar situé au point O.Figure 2 illustrates the same example of geographical location seen in a plan. In this figure the variations of the relief of the elements 11 and 12 are represented by the isohypse curves 21. The points Pi, P 2 and P 3 are located on the ridge lines 22, 23 and 24 along the axis 25 (Ox) pointed by a radar located at the point O.
La figure 3 représente de manière synoptique le principe de fonctionnement d'un procédé de TFAC classique pris comme exemple. De manière classique le traitement TEFAC est réalisé sur les signaux radars numérisés, après caractérisation par filtrage doppler. C'est généralement un procédé de traitement portant sur le module du signal reçu. De manière connue, les échantillons de signal 31 issus de chacune des impulsions composant la rafale et relatifs à la même case distance sont associés et traités par un banc de filtres doppler 32. Pour chaque filtre et chaque case distance, on détermine ainsi la distribution en fréquence du niveau de signal reçu pendant la durée de la rafale. Le banc de filtre doppler peut par exemple être le résultat d'une opération de FFT ou encore résulter de l'application d'un filtre de type FIR ou filtre à réponse impulsionnelle finie. Les niveaux des composantes spectrales obtenues sont ensuite utilisées pour estimer le niveau de signal ambiant relatif à chaque case distance et pour chaque plage de fréquence correspondant à un filtre doppler. Cette estimation peut par exemple être réalisée en deux temps comme le montre l'encadré 36 de la figure 3. Le calcul du niveau d'ambiance consiste alors à calculer le niveau moyen de signal reçu sur un nombre donné de cases distance, huit ou seize cases distance par exemple, situées avant et après la case distance pour laquelle on souhaite estimer le niveau d'ambiance. Le calcul des moyennes est ici réalisé sur l'amplitude des signaux en sortie des filtres doppler. Cette opération 33 de calcul des moyennes avant et arrière est suivie, comme le montre l'encadré 36, par une opération de choix de la moyenne la plus forte. On obtient alors, pour chaque case distance et pour chaque filtre doppler, une moyenne représentative de l'ambiance environnant la case distance. Ainsi, dans un procédé de TFAC classique tel que celui décrit ici, les signaux traités par filtrage doppler sont soumis à une opération de normalisation qui consiste à calculer pour chaque case distance le rapport entre le niveau de signal reçu et le niveau du signal ambiant calculé qui correspond à la moyenne avant ou arrière choisie. Cette opération est généralement réalisée, de manière connue, avec des grandeurs prises sous forme logarithmique. Le signal, ainsi normalisé fait l'objet d'une comparaison 35 à un seuil de détection, le dépassement du seuil étant le critère de détermination de la présence d'une cible.FIG. 3 is a block diagram of the operating principle of a conventional TFAC method taken as an example. Conventionally, the TEFAC treatment is performed on the digitized radar signals, after characterization by doppler filtering. This is usually a processing method relating to the received signal module. In known manner, the signal samples 31 from each of the pulses composing the burst and relating to the same distance box are associated and processed by a Doppler filter bank 32. For each filter and each distance box, the distribution in this manner is thus determined. frequency of the received signal level during the duration of the burst. For example, the Doppler filter bank may be the result of an FFT operation or may result from the application of a FIR type filter or a finite impulse response filter. The levels of the spectral components obtained are then used to estimate the ambient signal level relative to each distance cell and for each frequency range corresponding to a Doppler filter. This estimation can for example be carried out in two stages as shown in box 36 of FIG. 3. The calculation of the ambient level then consists in calculating the average level of signal received over a given number of remote, eight or sixteen cells. distance boxes for example, located before and after the distance box for which it is desired to estimate the ambient level. The averages are here calculated on the amplitude of the output signals of the Doppler filters. This operation 33 for calculating the forward and backward averages is followed, as shown in box 36, by an operation of choice of the highest average. We then obtain, for each distance cell and for each Doppler filter, an average representative of the ambient environment surrounding the distance cell. Thus, in a conventional TFAC method such as that described here, the signals processed by Doppler filtering are subjected to a normalization operation which consists in calculating for each distance box the ratio between the received signal level and the level of the calculated ambient signal. which is the average before or back chosen. This operation is generally carried out, in known manner, with quantities taken in logarithmic form. The signal, thus standardized, is compared with a detection threshold, the exceeding of the threshold being the criterion for determining the presence of a target.
Comme il a été dit précédemment ce type de procédé de TFAC fonctionne de manière satisfaisante pour les zones géographiques où le niveau d'ambiance reste sensiblement constant ou bien varie de manière non abrupte. Dans ce cas la variation des valeurs des moyennes avant et arrière le long de la portée du radar est progressive et conduit pour n'importe quelle case distance à un choix d'ambiance permettant une normalisation optimale et par suite une probabilité de détection satisfaisante. En revanche en cas de brusque changement de niveau d'ambiance on assiste pour les cases distance situées au voisinage de la zone de transition à une mauvaise normalisation liée à une surestimation ou à une sous estimation du niveau d'ambiance réalisé par la comparaison brutale des niveaux des moyennes avant et arrière. Cette mauvaise normalisation du signal conduit à une dégradation préjudiciable de la probabilité de détection d'une cible menaçante.As previously stated, this type of TFAC process works satisfactorily for geographical areas where the ambient level remains substantially constant or varies non-abruptly. In this case the variation of the values of the front and rear averages along the range of the radar is progressive and leads for any distance box to a choice of ambience for optimal normalization and hence a satisfactory probability of detection. On the other hand, in the event of a sudden change in the ambient level, the distance boxes located in the vicinity of the transition zone are shown to be poorly normalized due to an overestimation or underestimation of the ambient level achieved by the abrupt comparison of levels of the front and rear averages. This poor signal normalization leads to a detrimental degradation of the probability of detection of a threatening target.
La figure 4 présente de manière globale le procédé de TFAC selon l'invention. Comme on peut le constater sur la figure, le procédé selon l'invention traites les données reçues après traitement doppler 32, comme un procédé de TFAC classique. De même il se termine par la comparaison 43 du niveau de signal normalisé à un seuil de détection. En revanche le procédé selon l'invention comporte deux opérations 41 et 42 qui viennent se substituer aux opérations de calcul des moyennes 33 et de normalisation par rapport à la moyenne la plus forte 34. ces opérations sont en outre réalisées non pas sur le module mais sur les composantes en phase (I) et en quadrature (Q) des données produites par l'opération de filtrage doppler 32. L'opération 41 a pour fonction de réaliser pour chaque filtre doppler une cartographie de zone de fouillis le long de l'axe distance. Cette cartographie consiste à délimiter des zones à l'intérieur desquelles le fouillis est aussi statistiquement homogène que possible et aussi différent que possible du fouillis caractérisant les autres zones délimitées. On cherche ici à établir des zones ayant des ambiances bien contrastées. L'opération 42 quant à elle, consiste à normaliser les données par rapport au niveau d'ambiance des zones auxquelles elles appartiennent. Le seuil de détection utilisé lors de l'opération 43 peut ici être un seuil adaptatif déterminé en fonction des paramètres estimés utilisés pour déterminer la zone considérée.FIG. 4 presents in a global manner the TFAC method according to the invention. As can be seen in the figure, the method according to the invention processes the data received after doppler processing 32, as a conventional TFAC method. Likewise, it ends with the comparison 43 of the normalized signal level with a detection threshold. On the other hand, method according to the invention comprises two operations 41 and 42 which are a substitute for the calculation operations averages 33 and normalization with respect to the highest average 34. These operations are also performed not on the module but on the components in phase (I) and in quadrature (Q) of the data produced by the Doppler filtering operation 32. The function of the operation 41 is to carry out for each doppler filter a clutter zone map along the distance axis. This mapping consists of delimiting zones within which the clutter is as statistically homogeneous as possible and as different as possible from the clutter characterizing the other delimited zones. We seek here to establish areas with contrasting atmospheres. Operation 42, in turn, consists in normalizing the data with respect to the ambient level of the zones to which they belong. The detection threshold used during the operation 43 may here be an adaptive threshold determined according to the estimated parameters used to determine the zone considered.
La cartographie de l'espace couvert par le radar est réalisée ici par application d'une méthode de segmentation statistique mettant en œuvre un algorithme itératif de Maximisation Stochastique de l'Espérance plus communément appelé algorithme SEM selon la dénomination anglo-saxonne (Stochastic Expectation and Maximisation). Cet algorithme connu par ailleurs n'est pas détaillé ici. On précise cependant que cet algorithme est appliqué sur les données issues du filtrage doppler et prises sous forme complexe. On précise également que pour des raisons de commodité et de robustesse des calculs, les composantes réelles et imaginaires des données sont considérées comme des variables gaussiennes indépendantes et centrées, de même variance. Ainsi, le signal d'ambiance traité par le radar (bruit thermique et fouillis) est assimilé à un signal complexe gaussien circulaire, c'est à dire un vecteur de composantes gaussiennes centrées (de moyenne nulle), de même écart type et indépendantes. Soit z le nombre complexe correspondant, on peut alors écrire: z = x + iy = [1]The mapping of the space covered by the radar is carried out here by applying a statistical segmentation method implementing an iterative algorithm of Stochastic Maximization of Hope more commonly known as the SEM algorithm according to the English name (Stochastic Expectation and Maximization). This algorithm known elsewhere is not detailed here. However, it is specified that this algorithm is applied to the data from the Doppler filtering and taken in complex form. It is also specified that for reasons of convenience and robustness of calculations, the real and imaginary components of the data are considered as independent and centered Gaussian variables, with the same variance. Thus, the ambient signal processed by the radar (thermal noise and clutter) is assimilated to a complex circular Gaussian signal, ie a vector of Gaussian components centered (of zero average), of the same standard deviation and independent. Let z be the corresponding complex number, we can then write: z = x + iy = [1]
.yj.yj
avec E(z) = 0 et E(zz*) = a\. E, représente ici l'espérance mathématique de la variable considérée.with E (z) = 0 and E (zz * ) = a \. E, represents here the mathematical expectation of the variable considered.
Le signal d'ambiance radar est ainsi modélisé comme un signal dont chaque composante, en phase (x) et en quadrature (y), est une variable gaussienne centrée, les deux composantes étant non corrélées. On peut donc écrire:The radar ambient signal is thus modeled as a signal in which each component, in phase (x) and in quadrature (y), is a centered Gaussian variable, the two components being uncorrelated. We can write:
x et y étant considérés comme des lois normales centrées sur 0 et d'écarts types respectifs σx et σy. x and y being considered as normal distributions centered on 0 and of the respective standard deviations σ x and σ y .
En effet, l'ambiance radar peut être modélisée par une tension moyenne fréquence ayant pour expression:Indeed, the radar environment can be modeled by a medium frequency voltage having for expression:
z(t) = p(t).cos(oit + φ(t)) = x(t).coscαt + y(t).sinω.t [3]z (t) = p (t) .cos (oit + φ (t)) = x (t) .coscαt + y (t) .sinω.t [3]
avec p(x) = .e et p(y) = - -. [4]with p (x) = .e and p (y) = - -. [4]
/2πσ2 /2πσ"/ 2πσ 2 / 2πσ "
Les expressions [3] et [4] trouvent leur origine dans le fait que chaque composante est la somme d'une infinité de variables aléatoires, de moyenne nulle induite par l'équiprobabilité entre les tensions négatives et positives et de même variance, la répartition des tensions n'ayant aucune raison d'être dissymétrique.The expressions [3] and [4] have their origin in the fact that each component is the sum of an infinity of random variables, of zero average induced by the equiprobability between the negative and positive tensions and of the same variance, the distribution voltages having no reason to be asymmetrical.
Le carré, w, du module du signal d'ambiance suit alors une loi de Laplace qui peut s'écrire:The square, w, of the ambient signal module then follows a Laplace law that can be written:
w = |z| = p2 = x2 + Ϋ [5] avec : w W p(w)= ' e 2σ2 =_L.e •"* [6] 2.σ2 mw et mw = E(w) = 2.σ2 [7]w = | z | = p 2 = x 2 + Ϋ [5] with: w W p (w) = 'e 2σ 2 = _L. e • "* [6] 2.σ 2 m w and m w = E (w) = 2.σ 2 [7]
par suite, le module du signal d'ambiance suit une loi de Rayleigh ayant pour expression:consequently, the modulus of the ambient signal follows a Rayleigh law having for expression:
avec:with:
p(v) = _2γ_.e mw m [9] p (v) = _2γ_. e m wm [9]
WW
Par suite l'algorithme de segmentation est appliqué au vecteur constitué de la composante en phase et en quadrature du signal d'ambiance F donné par:As a result, the segmentation algorithm is applied to the vector consisting of the in-phase and quadrature component of the ambient signal F given by:
l'utilisation d'un algorithme de segmentation de type SEM permet de déterminer des classes d'ambiance, le nombre total N des classes étant fixé a priori.the use of a SEM type segmentation algorithm makes it possible to determine ambient classes, the total number N of the classes being fixed a priori.
L'algorithme de segmentation étant un processus itératif, il convient d'en prévoir l'initialisation. A cet effet une utilisera une méthode connue comme une méthode de nuées dynamiques permettant une détermination rapide des différentes classes d'ambiance, une classe étant caractérisée par les paramètres mx π, my n, σx n et σy π, avec n variant de 1 à N.The segmentation algorithm being an iterative process, it should be provided for initialization. For this purpose one will use a method known as a dynamic cloud method allowing a rapid determination of the different classes of environment, a class being characterized by the parameters m × π , m y n , σ x n and σ y π , with n varying from 1 to N.
L'algorithme de segmentation permet ainsi de découper l'espace géographique en zones d'ambiance homogène clairement définies, chaque case distance constituant la portée du radar appartenant de manière exclusive à une zone déterminée.The segmentation algorithm thus makes it possible to divide the geographical space into clearly defined homogeneous environment zones, each case distance constituting the range of the radar belonging exclusively to a given area.
Par suite, les différentes classes étant définies, le procédé de normalisation et de détection consiste à comparer chaque échantillon de signal aux paramètres de la classe correspondant à la zone à laquelle il appartient. Ainsi pour un échantillon de signal appartenant à une zone donnée appartenant à la classe n, la détection consistera à contrôler si l'expression suivante dépasse ou non un seul fixé en fonction des probabilités de détection et de fausse alarme choisies.As a result, since the different classes are defined, the normalization and detection process consists of comparing each signal sample with the parameters of the class corresponding to the zone to which it belongs. Thus, for a sample of signal belonging to a given zone belonging to the class n, the detection will consist in checking whether the following expression exceeds a fixed one or not according to the chosen probabilities of detection and false alarm.
Cette opération peut notamment être réalisée pour chaque zone sur l'expression du signal normalisé de la façon suivante:This operation can in particular be carried out for each zone on the expression of the normalized signal as follows:
où N(0,1) représente la loi normale de moyenne nulle et d'écart type unité.where N (0,1) represents the normal distribution of zero mean and standard deviation.
Comme il a été dit précédemment, un paramètre d'entrée de l'algorithme de segmentation est constitué par le nombre de classes que l'on souhaite définir. Or, le choix du nombre de classes nécessaires à une segmentation correcte d'une image quelconque, radar ou autre, est un problème récurrent. Si le nombre de classes est trop faible, le résultat final ne permet pas de distinguer des différences de niveau d'ambiance entre plusieurs zone, pourtant bien marquées. A l'inverse en cas de sur¬ segmentation, le résultat est inexploitable car illisible. Le choix dépend du nombre N dépend notamment de l'image considérée, et en particulier de l'information recherchée.As has been said previously, an input parameter of the segmentation algorithm is constituted by the number of classes that one wishes to define. However, the choice of the number of classes necessary for a proper segmentation of any image, radar or otherwise, is a recurring problem. If the number of classes is too small, the final result does not allow to distinguish differences in ambient level between several areas, yet well marked. Conversely, in case of over-segmentation, the result is unusable because illegible. The choice depends on the number N depends in particular on the image considered, and in particular the information sought.
Pour aider l'utilisateur et simplifier ainsi l'utilisation de l'algorithme, le procédé selon l'invention peut avantageusement mettre en oeuvre un traitement itératif complémentaire de fusion automatique de classes qui permet d'initialiser la segmentation avec un nombre N important de classes et de revenir finalement, par itérations successives, à un nombre optimum de classes. Ce traitement consiste à partir d'un nombre N relativement élevé puis à estimer pour chaque itération de l'algorithme de segmentation un paramètre permettant d'estimer la différence d'ambiance existant entre des zones voisines appartenant à des classes différentes. Il consiste ensuite à fusionner les zones pour lesquelles la valeur du paramètre d'estimation est inférieure à un seuil. La figure 5 permet de situer la position de ce traitement complémentaire dans la chaîne de traitement globale. L'illustration de la figure 5 présente une première étape 51 qui représente de manière globale l'opération itérative effectuée par l'algorithme de segmentation. En l'absence de traitement complémentaire l'étape 51 conduit directement à la restitution d'une carte définitive comportant des zones regroupées dans N classes.To help the user and thus simplify the use of the algorithm, the method according to the invention can advantageously implement a complementary iterative processing of automatic class fusion that allows to initialize the segmentation with a large number of classes and finally return, by successive iterations, to an optimum number of classes. This processing consists of starting from a relatively large number N and then estimating for each iteration of the segmentation algorithm a parameter making it possible to estimate the difference in atmosphere existing between neighboring zones belonging to different classes. It then consists of merging the areas for which the value of the estimation parameter is less than a threshold. FIG. 5 makes it possible to locate the position of this complementary treatment in the overall processing chain. The illustration of FIG. 5 presents a first step 51 which globally represents the iterative operation performed by the segmentation algorithm. In the absence of further processing, step 51 leads directly to the return of a definitive card comprising zones grouped in N classes.
Le traitement complémentaire débute par l'établissement d'une version provisoire 53 de la carte des zones définies par l'étape 51. Cette carte provisoire est utilisée lors d'une étape 54 de comparaison des ambiances associées à chacune des zones.Complementary processing begins with the establishment of a provisional version 53 of the map of the zones defined by step 51. This provisional map is used during a step 54 of comparison of the atmospheres associated with each zone.
Le paramètre de comparaison retenu pour déterminer s'il y lieu ou non de fusionner deux zones et ne former qu'une classe, est un calcul de distance statistique D dont la définition ressort de la théorie de la géométrie de l'information. Cette distance statistique permet en particulier de comparer des variables multivariées gaussiennes indépendantes, telles que celles qui définissent l'ambiance qui règne dans une zone donnée. Dans le problème traité par le procédé selon l'invention, la variable gaussienne considérée représente les données complexes issues de l'étape de filtrage doppler qui s'exprime comme la somme de deux variables gaussienne indépendantes. L'expression de la distance D, au sens de la métrique de Fisher, entre deux zones repérées par les indices a et b est de la forme suivante:The comparison parameter used to determine whether or not to merge two zones and to form only one class is a statistical distance calculation D whose definition emerges from the theory of information geometry. This statistical distance makes it possible in particular to compare independent Gaussian multivariate variables, such as those that define the prevailing atmosphere in a given area. In the problem treated by the method according to the invention, the Gaussian variable considered represents the complex data resulting from the doppler filtering step which is expressed as the sum of two independent Gaussian variables. The expression of the distance D, in the sense of the Fisher metric, between two zones marked by the indices a and b is of the following form:
avec: with:
où mi et σi correspondent respectivement à mx et σx, et m2 et 02 à my et σy.where mi and σi correspond respectively to m x and σ x , and m 2 and 02 to m y and σ y .
L'étape 54 consiste donc à traiter par paires les différentes classes définies et calculer pour paire la distance Dy entre les classes i et j. Cette étape est suivie d'une étape 55 qui compare cette distance Dy à un seuil donné. Dans le cas la valeur de Dy est supérieure au seuil pour toutes les paires de classes, le nombre de classes défini correspond au nombre optimum et l'étape 55 conduit à la restitution d'une carte définitive 52 des zones de fouillis homogènes. Dans le cas contraire, l'étape 55 conduit à une étape 56 de fusion des deux classes les plus proches, c'est à dire des deux classes pour lesquelles la valeur de Dy est la plus faible et à la décrémentation du nombre de zones optimal pour réaliser la segmentation. L'étape 56 conduit à l'établissement d'une carte d'initialisation 57 qui est utilisée par l'algorithme de segmentation pour établir une nouvelle carte provisoire comportant un nombre de zones fouillis 58 égal au nombre de zones retenues à l'itération précédente moins un.Step 54 therefore consists in treating in pairs the different classes defined and calculating for pair the distance Dy between classes i and j. This step is followed by a step 55 which compares this distance Dy with a given threshold. In the case where the value of Dy is greater than the threshold for all the pairs of classes, the number of classes defined corresponds to the optimum number and step 55 leads to the restitution of a definitive map 52 of the homogeneous clutter zones. Otherwise, step 55 leads to a step 56 of merging the two closest classes, that is to say of the two classes for which the value of Dy is the lowest and to the decrementation of the optimal number of zones. to achieve segmentation. Step 56 leads to the establishment of an initialization card 57 which is used by the segmentation algorithm to establish a new provisional map with a number of cluttered areas 58 equal to the number of zones retained at the previous iteration minus one.
Le fonctionnement global du procédé selon l'invention peut alors être décrit comme suit: La mise en œuvre du procédé débute par une itération d'initialisation comportant les étapes 51, 53, 54 et 55, durant laquelle l'algorithme de segmentation établi un premier ensemble de N classe d'ambiances et affecte aux différentes zones de l'espace une des N classes données. Pour cette première itération le nombre N est initialisé à une valeur donnée et un premier découpage arbitraire en N zones de fouillis, formant une carte d'initialisation, est fourni en entrée de l'algorithme de traitement. Cette itération fournit une première carte provisoire sur laquelle sont calculées les distances interclasses Dy qui sont comparées à un seuil déterminé. Si la totalité des distances calculées est supérieure au seuil fixé, N est considéré comme le nombre optimum de classes pour rendre compte des variations d'ambiance dans l'espace considéré. Il n'est alors pas nécessaire de procéder à une nouvelle segmentation et la carte provisoire des zones de fouillis homogènes devient la carte définitive 52 utilisée pour l'opération de normalisation 42.The overall operation of the method according to the invention can then be described as follows: The implementation of the method begins with an initialization iteration comprising the steps 51, 53, 54 and 55, during which the segmentation algorithm established a first set of N atmosphere class and assigns to the different areas of space one of the N given classes. For this first iteration, the number N is initialized to a given value and a first arbitrary division in N clutter zones, forming an initialization card, is provided as input to the processing algorithm. This iteration provides a first provisional map on which are calculated the interclass distances Dy which are compared to a determined threshold. If the totality of the calculated distances is greater than the set threshold, N is considered as the optimum number of classes to account for the variations of atmosphere in the considered space. It is then not necessary to proceed to a new segmentation and the provisional map of the homogeneous clutter areas becomes the definitive map 52 used for the normalization operation 42.
En revanche si certaines des distances calculées sont inférieures au seuil, le procédé selon l'invention se poursuit par les étapes 56, 57 et 58. On procède au regroupement des classes pour lesquelles la valeur de D est la plus faible. Ce regroupement ou fusion donne lieu à l'établissement d'une nouvelle carte d'initialisation des zones de fouillis ainsi qu'à la décrémentation du nombre N de classes possibles. Le procédé se prolonge alors par une autre itération durant laquelle l'algorithme de segmentation procède à un nouveau découpage en N- 1 zones à partir de la nouvelle carte d'initialisation. Le procédé effectue ainsi le nombre d'itérations nécessaire pour obtenir une segmentation en un nombre N de classes pour lequel les distances Dy calculées sont toutes supérieures au seuil fixé.On the other hand, if some of the distances calculated are below the threshold, the method according to the invention continues with steps 56, 57 and 58. The classes for which the value of D is the lowest are grouped together. This regrouping or merger gives rise to the establishment of a new initialization card of the clutter zones as well as the decrementation of the number N of possible classes. The process is then extended by another iteration during which the segmentation algorithm proceeds to a new division into N-1 zones from the new initialization card. The method thus performs the number of iterations necessary to obtain a segmentation into a number N of classes for which the calculated distances Dy are all greater than the fixed threshold.
Ainsi, comme on peut le constater au travers de la description relative à la figure 5, Ie traitement de fusion automatique des classes statistiquement proches est intégré au processus principal qui met en œuvre un algorithme de segmentation de type SEM. Ce traitement complémentaire présente l'avantage d'affranchir le procédé d'une détermination préalable précise du nombre de segment optimum pour restituer les variations de l'ambiance correspondant aux variations de nature du fouillis le long de la portée du radar. Ce traitement complémentaire permet en partant d'une valeur de N grande, de faire converger au cours du temps le nombre N vers sa valeur optimale.Thus, as can be seen from the description relating to FIG. 5, the automatic merge processing of the statistically close classes is integrated into the main process which implements an SEM type segmentation algorithm. This complementary treatment has the advantage of freeing the process from a precise prior determination of the optimum number of segments to restore the variations of the environment corresponding to the variations in nature of the clutter along the range of the radar. This additional processing allows starting from a large N value, to converge over time the number N to its optimum value.
Afin de ne pas entraver l'efficacité de l'algorithme de segmentation et de limiter le nombres d'opérations inutiles, il est avantageux dans la pratique de ne faire intervenir le traitement complémentaire de fusion automatique qu'après un certain nombre d'itérations, les premières itérations étant réalisées sans modification de la valeur de N ni changement de la carte d'initialisation. La fusion de classe peut par exemple ne devenir active qu'après 5 itérations dès lors que la répartition des classes devient suffisamment représentative, l'algorithme de segmentation ayant eu le temps de converger.In order not to hinder the efficiency of the segmentation algorithm and to limit the number of unnecessary operations, it is advantageous in practice to involve the complementary automatic merge processing only after a certain number of iterations, the first iterations being carried out without modification of the value of N nor change of the initialization card. For example, class merging can not become active only after 5 iterations as soon as the class distribution becomes sufficiently representative, the segmentation algorithm having had time to converge.
Lors de la mise en œuvre du procédé selon l'invention, il est possible de considérer que le nombre N comme une grandeur paramétrable par un opérateur pour sa valeur initial et pour sa valeur minimale. De même il est possible d'envisager de prendre en compte des paramètres relatifs à la distance minimale Dg entre deux classes, ainsi qu'au nombre minimal de cases distance nécessaire pour qu'une zone donnée forme une classe particulière. Ce paramétrage permet à la fois avantageusement d'obtenir un nombre optimal de classes et de limiter la fusion. L'utilisateur peut par exemple accéder au réglage du seuil de fusion au travers d'une commande variant entre 0% et 100%, (a valeur 0% correspondant à un seuil de distance très faible entraînant un absence de fusion, la valeur 100% correspondant à un seuil de distance important entraînant la fusion de toute les classes en une seule. During the implementation of the method according to the invention, it is possible to consider that the number N as a parameterizable quantity by an operator for its initial value and for its minimum value. Similarly, it is possible to consider taking into account parameters relating to the minimum distance Dg between two classes, as well as the minimum number of distance cells necessary for a given area to form a particular class. This setting makes it possible both to obtain an optimal number of classes and to limit the merger. The user can, for example, access the setting of the melting threshold through a command varying between 0% and 100%, (has a value of 0% corresponding to a very low distance threshold resulting in no fusion, the value 100% corresponding to a significant distance threshold resulting in the merger of all classes into one.

Claims

REVENDICATIONS
1. Procédé de traitement du signal radar mettant en œuvre une étape de filtrage doppler (32), une étape de détermination d'une carte des zones de fouillis homogènes statistiquement (41), une étape de normalisation du signal reçu (42) et une étape de détection (43), l'étape de détermination de zones de fouillis homogènes mettant en œuvre un algorithme itératif de type SEM de segmentation statistique du signal d'ambiance reçu en classes d'ambiance, une classe étant définie par son niveau moyen et l'écart type par rapport à ce niveau moyen; caractérisé en ce que l'algorithme de segmentation statistique du signal reçu est appliqué au module et la phase des données issues de l'étape de filtrage doppler, ces données comportant une composante réelle x et une composante imaginaire y.1. A method of processing the radar signal implementing a Doppler filtering step (32), a step of determining a map of statistically homogeneous clutter areas (41), a step of normalizing the received signal (42) and a detection step (43), the step of determining homogeneous clutter zones implementing an iterative algorithm of the SEM type of statistical segmentation of the ambient signal received in ambient classes, a class being defined by its average level and the standard deviation from this mean level; characterized in that the statistical segmentation algorithm of the received signal is applied to the module and the phase of the data from the doppler filtering step, these data comprising a real component x and an imaginary component y.
2. Procédé selon la revendication 1 , dans lequel cet algorithme itératif de segmentation statistique du signal reçu est initialisé par une première carte (58) définie de manière arbitraire, cet algorithme ayant pour paramètre d'entrée le nombre N de classes d'ambiances à déterminer.2. Method according to claim 1, in which this iterative algorithm of statistical segmentation of the received signal is initialized by a first card (58) arbitrarily defined, this algorithm having as input parameter the number N of classes of ambiances to determine.
3. Procédé selon l'une des revendications 1 ou 2, dans lequel l'étape de détermination d'une carte des zones de fouillis homogènes (52) met en œuvre un traitement itératif complémentaire (53, 54, 55, 56) de fusion des classes dont les ambiances sont statistiquement proches.3. Method according to one of claims 1 or 2, wherein the step of determining a map of the homogeneous clutter areas (52) implements a complementary iterative treatment (53, 54, 55, 56) of fusion classes whose atmospheres are statistically close.
4. Procédé selon la revendication 3, dans lequel le traitement itératif complémentaire de fusion des classes d'ambiance détermine les classes d'ambiances statistiquement proches en calculant pour chaque paire de classes a et b, la distance statistique D définie par la relation : 4. Method according to claim 3, in which the complementary merit repetitive treatment of the ambient classes determines the statistically close ambient classes by calculating for each pair of classes a and b the statistical distance D defined by the relation:
5. Procédé selon l'une des revendications 3 ou 4, dans lequel le traitement complémentaire (53, 54, 55, 56) de fusion des classes d'ambiances n'est mis en œuvre qu'après rétablissement d'une première carte exploitable des zones de fouillis homogènes par convergence de l'algorithme itératif de segmentation. 5. Method according to one of claims 3 or 4, wherein the complementary treatment (53, 54, 55, 56) merging classes of environments is implemented after recovery of a first exploitable map homogeneous clutter areas by convergence of the iterative segmentation algorithm.
EP05763075A 2004-07-13 2005-06-30 Cfar method by statistical segmentation and normalisation Withdrawn EP1776601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0407810A FR2873210B1 (en) 2004-07-13 2004-07-13 TFAC METHOD BY STATISTICAL SEGMENTATION AND STANDARDIZATION
PCT/EP2005/053113 WO2006008227A1 (en) 2004-07-13 2005-06-30 Cfar method by statistical segmentation and normalisation

Publications (1)

Publication Number Publication Date
EP1776601A1 true EP1776601A1 (en) 2007-04-25

Family

ID=34950827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05763075A Withdrawn EP1776601A1 (en) 2004-07-13 2005-06-30 Cfar method by statistical segmentation and normalisation

Country Status (3)

Country Link
EP (1) EP1776601A1 (en)
FR (1) FR2873210B1 (en)
WO (1) WO2006008227A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738606B (en) * 2008-11-21 2011-12-28 清华大学 Method for detecting coherent integration of radar target based on generalized Doppler filter bank
CN105717495A (en) * 2016-03-16 2016-06-29 中国人民解放军海军航空工程学院 Hypersonic target TBD accumulation detection method through space-time polynomial radon transformation
CN104459660B (en) * 2014-06-19 2017-02-15 西安电子科技大学 Array element Doppler domain space-time two-dimensional self-adaptive processing method based on data fitting
CN106501788A (en) * 2016-11-18 2017-03-15 西安电子工程研究所 A kind of radar CFAR detection detection threshold self adaptation method to set up
CN106646396A (en) * 2016-11-18 2017-05-10 西安电子工程研究所 Radar clutter map detection threshold adaptive setting method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197297B (en) * 2013-03-21 2014-08-06 西安电子科技大学 Radar moving target detection method based on cognitive framework
CN103995259B (en) * 2014-06-06 2016-05-18 中国人民解放军海军航空工程学院 Radar target adaptive-filtering fusion detection method under intensive interference environment
CN105182312B (en) * 2015-09-29 2017-09-12 大连楼兰科技股份有限公司 The CFAR detection method of adaptive environment change
CN106324576B (en) * 2016-07-29 2018-11-09 西安电子科技大学 Radar target adaptive matched filter method based on autoregression model
CN112946621A (en) * 2021-02-02 2021-06-11 四川九洲防控科技有限责任公司 Target detection method and device, electronic equipment and storage medium
CN113093121B (en) * 2021-04-12 2022-08-02 北京无线电测量研究所 Adaptive threshold detection method based on trace point density feedback

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717906A1 (en) * 1984-07-27 1995-09-29 Thomson Csf Coherent radar system for air space surveillance and for detecting low altitude aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006008227A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738606B (en) * 2008-11-21 2011-12-28 清华大学 Method for detecting coherent integration of radar target based on generalized Doppler filter bank
CN104459660B (en) * 2014-06-19 2017-02-15 西安电子科技大学 Array element Doppler domain space-time two-dimensional self-adaptive processing method based on data fitting
CN105717495A (en) * 2016-03-16 2016-06-29 中国人民解放军海军航空工程学院 Hypersonic target TBD accumulation detection method through space-time polynomial radon transformation
CN105717495B (en) * 2016-03-16 2017-12-01 中国人民解放军海军航空工程学院 The hypersonic target TBD integration detection methods of space-time multinomial Radon transform
CN106501788A (en) * 2016-11-18 2017-03-15 西安电子工程研究所 A kind of radar CFAR detection detection threshold self adaptation method to set up
CN106646396A (en) * 2016-11-18 2017-05-10 西安电子工程研究所 Radar clutter map detection threshold adaptive setting method
CN106501788B (en) * 2016-11-18 2018-10-23 西安电子工程研究所 A kind of adaptive setting method of radar CFAR detection detection threshold

Also Published As

Publication number Publication date
FR2873210B1 (en) 2008-02-22
FR2873210A1 (en) 2006-01-20
WO2006008227A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
WO2006008227A1 (en) Cfar method by statistical segmentation and normalisation
EP0588688B1 (en) Method and device for controlling the detection's threshold of a radar
EP2368135B1 (en) Method for filtering the radar echoes produced by wind turbines
FR2669116A1 (en) METHOD OF RECOGNIZING AN AIR TARGET FROM ITS ECHO RADAR
EP0752597B1 (en) Polarimetric detection processing circuit for a radar receiver
EP1812807B1 (en) Waveform management method using a doppler mapping by statistical segmentation
EP3457167A1 (en) Method for filtering ground and/or sea clutter echoes received by an airborne radar, and radar implementing such a method
EP2196821A1 (en) Method for multi-dimensional temporal kinematic filtering of radar blips, from antenna tower to antenna tower
FR2953939A1 (en) Radar system for protection of ground zone against intrusion of e.g. pedestrians, has aggregate block validated as function of measurement of distance associated with block, where validated aggregate blocks are transmitted to tracking units
EP1018654B1 (en) Detection method, mainly for small marine targets
FR3070768A1 (en) METHOD FOR AUTOMATIC CLASSIFICATION OF A TARGET VESSEL AND RADAR SYSTEM THEREOF
EP3213112B1 (en) Method for processing a radar signal in land/sea detection mode; processing system and associated computer program product
FR3008803A1 (en) METHOD AND DEVICE FOR MEASURING THE SPEED OF AN AIRCRAFT BY DOPPLER EFFECT
EP3239731B1 (en) Method for post-processing radar signals with low transmission power
EP0977051B1 (en) Method for restoring the sensitivity of a radar in presence of pulsed electromagnetic interference
EP0495759A1 (en) Method and apparatus for extraction of a map of obstacles from the detector signal of a scanning pulsed radar, for vehicles
FR2745388A1 (en) Satellite altitude measuring device
FR2805617A1 (en) SYSTEM OF ACOUSTIC REPORTING BY UNDERWATER BUOYS
FR2550347A1 (en) Improvements to pulsed Doppler radars
WO2017118666A1 (en) Method for deleting a signal coming from an on-board radar
EP0514252B1 (en) Method to detect moving sources and to estimate their path
FR2747792A1 (en) Multichannel adaptive beam forming for ground surveillance radar
FR3129751A1 (en) Gesture detection method, intended in particular for controlling a motor vehicle door
FR2733600A1 (en) SIGNAL PROCESSING METHOD AND DEVICE FOR RAISING THE AMBIGUITY SPEED OF A DOPPLER RADAR
FR2731803A1 (en) Rain clutter removal for radar signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104