EP1774369A1 - Anti-reflecting coatings for solar batteries and method for the production thereof - Google Patents

Anti-reflecting coatings for solar batteries and method for the production thereof

Info

Publication number
EP1774369A1
EP1774369A1 EP05775776A EP05775776A EP1774369A1 EP 1774369 A1 EP1774369 A1 EP 1774369A1 EP 05775776 A EP05775776 A EP 05775776A EP 05775776 A EP05775776 A EP 05775776A EP 1774369 A1 EP1774369 A1 EP 1774369A1
Authority
EP
European Patent Office
Prior art keywords
layer
coating
amorphous diamond
carbon
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05775776A
Other languages
German (de)
French (fr)
Inventor
Vladimir Aroutiounian
Khachatur Martirosyan
Patrick Soukiassian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIVERSITE D'ETAT D'EREVAN
Universite Paris Sud Paris 11
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
D ETAT D EREVAN, University of
UNIVERSITE D'ETAT D'EREVAN
Commissariat a lEnergie Atomique CEA
Universite Paris Sud Paris 11
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D ETAT D EREVAN, University of, UNIVERSITE D'ETAT D'EREVAN, Commissariat a lEnergie Atomique CEA, Universite Paris Sud Paris 11 filed Critical D ETAT D EREVAN, University of
Publication of EP1774369A1 publication Critical patent/EP1774369A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention generally relates to anti-reflective coatings, processes for their manufacture and their use, in particular as coatings for solar cells. Reducing the reflectivity of surfaces is now one of the best ways to improve the performance of solar cells, and we have already developed for this purpose coatings, anti-reflective.
  • a porous silicon coating has been used as an antireflective layer to improve the solar cell conversion factor by decreasing the amount of sunlight reflected at the input surface of the cell.
  • Such a porous Si layer has drawbacks, and in particular the property of being able to degrade with time, which reduces its anti-reflective capabilities.
  • the present invention seeks to overcome these disadvantages and to provide an anti-reflective coating for solar cells that is less likely to degrade over time, without impairing the performance of the solar cell.
  • Another object of the present invention is to make it possible to adjust and optimize the spectral range in which efficient conversion of the light into electrical energy can be effected in the solar cell. More specifically, one goal is to enlarge the spectral range in the direction of ultraviolet (UV).
  • the present invention proposes an anti-reflective coating, in particular for solar cells, characterized in that it comprises, in combination, an inner layer of anti-reflective porous silicon and an outer layer of amorphous diamond-shaped carbon which is essentially non-porous and essentially devoid of alien species.
  • the cores at the interface of these two layers coalesce in a manner that does not reproduce the geometry of the porous silicon surface.
  • Some preferred, but not limiting, aspects of this coating are the following: the volume occupied by the porosity in the amorphous diamond-shaped carbon layer is less than 50% of the total volume of said layer.
  • the porous silicon layer has a thickness of between approximately 38 and 56 nm, the porous silicon layer has a refractive index of between approximately 2.6 and 2.9, the amorphous diamond-shaped carbon layer has a thickness of approximately a thickness between about 72 and 104 nm, and the amorphous diamond-shaped carbon layer has a refractive index of between about 1.6 and 1.8.
  • the porous silicon layer has a thickness of about 42 nm and a refractive index of about 2.9, while the amorphous diamond-shaped carbon layer has a thickness of about 88 nm and a refractive index of about 1.6.
  • the present invention provides a method for forming an anti-reflective coating on an article having an exposed surface of solid silicon, such as a solar cell panel, characterized in that it comprises the following steps: applying a porosification treatment to the exposed surface of solid silicon to a predetermined thickness, so as to form a porous silicon layer, and depositing on said porous silicon layer a solid layer of amorphous diamond-shaped carbon which is substantially free of foreign species.
  • the porosification treatment is anodization
  • the etching agent for anodization is chosen from a mixture of hydrofluoric acid and dimethylformamide and a mixture of hydrofluoric acid and ethanol
  • the deposition step of the solid carbon layer in the form of amorphous diamond is carried out by ion sputtering from a graphite target; * the graphite target is bombarded with argon ions;
  • the deposition step of the solid carbon layer in the form of amorphous diamond is carried out by electron bombardment of toluene vapor.
  • the present invention proposes the use of an anti-reflective coating as defined above as a coating for a solar cell.
  • FIG. 1 schematically illustrates a solar cell panel provided with an antireflection coating according to the present invention
  • FIG. 2 is the reflection factor / wavelength diagram of a first example of a coating according to the present invention
  • Fig. 3 is the reflection factor / wavelength diagram of a second example of a coating according to the present invention.
  • FIG. 1 there is schematically a flat solar cell panel 10 having an anti-reflective coating 20 according to the present invention.
  • the coating 20 contains an inner layer 21 of porous silicon and an outer layer 22 of hard amorphous carbon, also called carbon in the form of amorphous diamond.
  • the porosity of silicon remains determined by the deposit method used.
  • Hard amorphous carbon is known per se in the art as a generally deposited carbon in film form, containing a significant fraction of sp3 hybrid carbon atoms.
  • These films or layers of amorphous diamond may contain a significant fraction of hydrogen. In general, the different types of DLC are differentiated with respect to hydrogen depending on the deposition method.
  • hydrogen-free DLC films can in particular be prepared by ion sputtering of graphite or toluene, these techniques also making it possible to avoid or minimize the presence of additional foreign species such as 1 'nitrogen.
  • the porous silicon is preferably formed on the solar cell panel by an electrochemical anodizing method 1.
  • an electrochemical etching process or one anodization is performed on the panel surface as described above, after degreasing and washing with pure water of the latter.
  • An electrolyte composed of 4M dimethylformamide in hydrofluoric acid (HF) in a molar ratio of 1: 1 with water is used to obtain macroporous silicon (pore size between 200 nm and 2 ⁇ m).
  • an electrolyte having a composition of equal amounts of HF at a concentration of 48% and ethanol (C 2 H 5 OH) at a concentration of 96% is used to obtain microporous silicon (pore size between 10 and 100 nm).
  • Several samples were prepared with different current densities and etching times. More particularly, current densities of between 1 and 15 mA / cm 2 were used for times of between 5 seconds and 10 minutes, and the anodizing process was carried out under constant illumination under a power halogen lamp.
  • the porous silicon layer has a thickness (denoted SP ) of several tens of nanometers, more preferably between about 38 and 56 nm.
  • the anodizing conditions are furthermore chosen in such a way that the refractive index n S p of the layer 21 is between approximately 2.6 and 2.9.
  • the layer 22 of carbon in the form of amorphous diamond is formed directly on top of the layer 21.
  • a first technique is an ion sputtering technique from a graphite target.
  • a graphite target is irradiated with argon ions so as to deposit a carbon layer in the form of amorphous diamond 22, according to a technique known per se. Different irradiation densities are used.
  • the films are obtained in the filing room in DC ion plasma, equipped with a DC ion source.
  • the working current is between 0.1 and 20 mA at an acceleration voltage of between 1 and 7 kV.
  • This source of ions makes it possible to obtain at the output a dispersing ion beam of a diameter approximately equal to 100 nanometers.
  • the density of the ionic current j is less than 0.8 mA / cm 2 .
  • the pulverized carbon is deposited on the substrate which, during the deposition (at a chosen periodicity), is irradiated periodically with, for example, argon ions.
  • the deposition temperature is between about 180 and 200 ° C.
  • the duration of the treatment is adjusted so as to form a layer 22 having a thickness, called d CDA> of between 72 nm and 104 nanometers approximately, and a refractive index n C D A between about 1.6 and 1.8.
  • Another technique that can be used to form the amorphous diamond carbon layer is to use toluene as a vapor. In this case, amorphous diamond carbon films are obtained by plasma chemical vapor deposition.
  • the technique used to deposit the carbon layer in the form of amorphous diamond must be able to forming a layer which is substantially non-porous, preferably wherein the volume occupied by the porosity is less than 50% of the total volume of said layer, and substantially free of foreign species such as hydrogen or nitrogen.
  • the absence of porosity or the low degree of porosity of the layer 22 ensures that the porous silicon layer 21 is effectively protected against degradation (in particular chemical degradation by oxidation with time, visible from a week in the absence of protection), and the absence of significant amounts of alien species ensures that satisfactory and stable physical and chemical properties, which affect the optical properties of the layer, can be achieved.
  • the spectral range in which the conversion of the light of a solar cell provided with the coating according to the present invention is effective depends on the respective values of thickness and refractive index of the layers 21 and 22. does not exist at the moment any relation proven mathematical accuracy between the optimal values of the parameters, but we can perform experimental work to obtain the desired light conversion curves.
  • Example 1 A solar cell is provided with a two-layer system according to the present invention, the porous silicon layer (SP) being formed by anodizing, while the amorphous diamond-shaped carbon (ADC) layer is formed by sputtering ionic.
  • the reflection factor curve which determines the proportion of radiation reflected by a solar cell with such a coating as a function of wavelength, is shown in Figure 2.
  • Figure 2 shows that the conversion of the battery is correct in a significant part of the visible range, while the efficiency decreases (ie the reflection increases) towards the ultraviolet and infrared domains.
  • FIG. 3 shows a substantially improved battery conversion to the ultraviolet range, up to a wavelength of about 400 nm. The conversion is also improved, but more moderately, towards the infrared domain. From an overall point of view, a solar cell with the coating having the parameters of Example 2 exhibits a total solar radiation conversion of 70%, an increase of 14% over solar cells with a conventional coating. . It should be noted here that the reflection factor curves of FIGS. 2 and 3 have been obtained by simulation according to an optical matrix approach such as that described, for example, in VM Arutyunian, KR Maroutyan, AL Zatikyan, C. Lévy - Clement, KJ Touryan, Proc.
  • the coating according to the present invention can be advantageously used whenever it is desirable to limit the reflection of incident radiation such as visible, infrared or ultraviolet radiation on a surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to an anti-reflecting coating (20) comprising a combined inner coating (21), made of anti-reflecting silicon, and outer coating (22) made of carbon in the form of an amorphous diamond which is essentially non-porous and essentially devoid of foreign species. The invention also relates to a method for the production of an anti-reflecting coating and to the use thereof as a coating for a solar batter (10). The coating is less likely to deteriorate with time and can improve the spectral domain of efficient conversion of radiation.

Description

REVETEMENTS ANTI-REFLECHISSANTS POUR PILES SOLAIRES ET PROCEDE POUR LES FABRIQUER ANTI-REFLECTIVE COATINGS FOR SOLAR CELLS AND METHOD FOR MANUFACTURING SAME
La présente invention concerne d'une façon générale des revêtements anti-réfléchissants, des procédés pour les fabriquer et leur utilisation, en particulier comme revêtements pour piles solaires. Réduire le facteur de réflexion des surfaces est aujourd'hui l'une des meilleures façons d'améliorer la performance de piles solaires, et on a déjà mis au point dans ce but des revêtements, anti-réfléchissants. En particulier, un revêtement de silicium poreux a été utilisé comme couche anti-réfléchissante pour améliorer le facteur de conversion des piles solaires en diminuant la quantité de rayons solaires réfléchis au niveau de la surface d'entrée de la pile. Une telle couche de Si poreux a cependant des inconvénients, et en particulier la propriété d'être susceptible de se dégrader avec le temps, ce qui diminue ses capacités anti-réfléchissantes. La présente invention cherche à pallier ces inconvénients et à proposer un revêtement anti¬ réfléchissant pour piles solaires qui soit moins susceptible de se dégrader avec le temps, sans pour autant nuire aux performances de la pile solaire. Un autre objectif de la présente invention est de permettre d'ajuster et d'optimiser le domaine spectral dans lequel peut s'effectuer une conversion efficace de la lumière en énergie électrique dans la pile solaire. Plus précisément, un objectif est d'agrandir le domaine spectral dans la direction des ultraviolets (UV) . Selon un premier aspect, la présente invention propose un revêtement anti-réfléchissant, en particulier pour cellules solaires, caractérisé en ce qu'il comprend, en combinaison, une couche interne de silicium poreux anti-réfléchissant et une couche externe de carbone sous forme de diamant amorphe qui est essentiellement non poreuse et essentiellement dépourvue d'espèces étrangères. Dans la combinaison de la couche interne de silicium poreux anti-réfléchissant et de la couche externe de carbone sous forme de diamant amorphe, les noyaux a l'interface de ces deux couches subissent une coalescence d'une manière qui ne reproduit pas la géométrie de surface du silicium poreux. Certains aspects préférés, mais non limitatifs, de ce revêtement sont les suivants : * le volume occupé par la porosité dans la couche de carbone sous forme de diamant amorphe est inférieur à 50% du volume total de ladite couche. * - la couche de silicium poreux a une épaisseur comprise entre environ 38 et 56 nm, - la couche de silicium poreux a un indice de réfraction compris entre environ 2,6 et 2,9, la couche de carbone sous forme de diamant amorphe a une épaisseur comprise entre environ 72 et 104 nm, et la couche de carbone sous forme de diamant amorphe a un indice de réfraction compris entre environ 1,6 et 1,8. * dans un mode de réalisation spécifique, la couche de silicium poreux a une épaisseur d'environ 42 nm et un indice de réfraction d'environ 2,9, tandis que la couche de carbone sous forme de diamant amorphe a une épaisseur d'environ 88 nm et un indice de réfraction d'environ 1,6. Grâce à la présente invention, on peut obtenir un facteur de réflexion du revêtement anti-réfléchissant qui soit inférieur à 5,5% dans le domaine de 400 - 900 nm lorsque ledit revêtement est fabriqué au moyen de l'ensemble des valeurs d'épaisseurs et d'indices de réfraction indiquées ci-dessus pour les couches de silicium poreux et de carbone sous forme de diamant amorphe. Selon un second aspect, la présente invention propose un procédé permettant de former un revêtement anti-réfléchissant sur un article comportant une surface exposée de silicium solide, telle qu'un panneau de piles solaires, caractérisé en ce qu'il comprend les étapes suivantes : appliquer un traitement de porosification à la surface exposée de silicium solide sur une épaisseur prédéterminée, de manière à former une couche de silicium poreux, et - déposer sur ladite couche de silicium poreux une couche solide de carbone sous forme de diamant amorphe qui est essentiellement exempte d'espèces étrangères. Certains aspects préférés, mais non limitatifs, du procédé sont les suivants : * le traitement de porosification est une anodisation ; * l'agent de gravure pour 1 'anodisation est choisi parmi un mélange d'acide fluorhydrique et de diméthylformamide et un mélange d'acide fluorhydrique et d'éthanol ; * l'étape de dépôt de la couche solide de carbone sous forme de diamant amorphe est réalisée par pulvérisation ionique à partir d'une cible de graphite ; * la cible de graphite est bombardée d'ions argon ; * l'étape de dépôt de la couche solide de carbone sous forme de diamant amorphe est réalisée par bombardement électronique de vapeur de toluène. Enfin, la présente invention propose l'utilisation d'un revêtement anti-réfléchissant tel que défini ci- dessus comme revêtement pour une pile solaire. D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante d'un de ses modes de réalisation, donné uniquement à titre d'exemple et présenté par référence aux dessins annexés, dans lesquels : la figure 1 illustre schématiquement un panneau de piles solaires muni d'un revêtement anti-réfléchissant selon la présente invention, la figure 2 est le diagramme facteur de réflexion/longueur d'onde d'un premier exemple d'un revêtement selon la présente invention, et la figure 3 est le diagramme facteur de réflexion/longueur d'onde d'un second exemple d'un revêtement selon la présente invention. Si l'on se réfère à la figure 1, on voit schématiquement un panneau de piles solaires plat 10, doté d'un revêtement anti-réfléchissant 20 selon la présente invention. Le revêtement 20 contient une couche interne 21 de silicium poreux et une couche externe 22 de carbone amorphe dur, appelé aussi carbone sous forme de diamant amorphe. La porosité du silicium reste déterminée par la méthode de dépôt employée. Le carbone amorphe dur est connu en soi dans la technique comme étant un carbone déposé en général sous forme de film, renfermant une fraction significative d'atomes de carbone hybrides en sp3. Ces films ou couches de diamant amorphe (DLC, acronyme de l'expression « Diamond Like Carbon » en langue anglo-saxonne) peuvent contenir une fraction significative d'hydrogène. De manière générale, on différencie les différents types de DLC par rapport à l'hydrogène en fonction de la méthode de déposition. Et, dans l'état actuel de la technique, les films de DLC sans hydrogène peuvent notamment être préparés par pulvérisation ionique de graphite ou de toluène, ces techniques permettant de plus d'éviter ou de minimiser la présence d'espèces étrangères supplémentaires comme 1'azote. Pour de plus amples détails sur ces sujets, on pourra se référer notamment à la norme IUPAC (acronyme de l'expression anglo-saxonne « International Union of Pure and Applied Chemistry ») . Le silicium poreux est de préférence formé sur le panneau de piles solaires par un procédé d1anodisation électrochimique. Dans le présent exemple, un procédé de gravure électrochimique ou d1anodisation est réalisé sur la surface du panneau comme décrit ci-dessus, après dégraissage et lavage à l'eau pure de cette dernière. On fait appel à un électrolyte composé de diméthylformamide 4M dans de l'acide fluorhydrique (HF) dans un rapport molaire de 1:1 avec de l'eau pour obtenir du silicium macroporeux (taille des pores entre 200 nm et 2 μm) . En variante, on fait appel à un électrolyte ayant une composition de quantités égales de HF à une concentration de 48% et d'éthanol (C2H5OH) à une concentration de 96% pour obtenir du silicium microporeux (taille des pores entre 10 et 100 nm) . Plusieurs échantillons ont été préparés avec différentes densités de courant et temps de gravure. Plus particulièrement, on a utilisé des densités de courant comprises entre 1 et 15 mA/cm2 pendant des durées comprises entre 5 secondes et 10 minutes, et on a réalisé le procédé d'anodisation sous un éclairement constant sous une lampe à halogène de puissance 1 kW placée à une distance de 20 cm de la surface à anodiser. La couche de silicium poreux a une épaisseur (notée dSP) de plusieurs dizaines de nanomètres, mieux encore comprise entre environ 38 et 56 nm. Les conditions d'anodisation sont par ailleurs choisies de telle manière que l'indice de réfraction nSp de la couche 21 soit compris entre environ 2,6 et 2,9. Après avoir formé la couche de silicium poreux 21 par le procédé d'anodisation ci-dessus, on forme directement par dessus la couche 21 la couche 22 de carbone sous forme de diamant amorphe. On peut dans ce but utiliser deux techniques. Une première technique est une technique de pulvérisation ionique à partir d'une cible de graphite. Plus particulièrement, une cible de graphite est irradiée avec des ions argon de manière à déposer une couche de carbone sous forme de diamant amorphe 22, selon une technique connue en soi. On utilise différentes densités d'irradiation. Les films sont obtenus dans la chambre de dépôt en plasma ionique à courant continu, équipée d'une source d'ions en courant continu. Le courant de travail est compris entre 0,1 et 20 mA sous une tension d'accélération de comprise entre 1 et 7 kV. Cette source d'ions permet d'obtenir à la sortie un faisceau ionique dispersant d'un diamètre à peu près égal à 100 nanomètres. La densité du courant ionique j est inférieure à 0,8 mA/cm2. Le carbone pulvérisé est déposé sur le substrat qui, pendant le dépôt (à une périodicité choisie) , est irradié périodiquement avec, par exemple, des ions argon. La température de dépôt est comprise entre environ 180 et 2000C. La durée du traitement est ajustée de manière à former une couche 22 ayant une épaisseur, appelée dCDA> comprise entre 72 nm et 104 nanomètres approximativement, et un indice de réfraction nCDA compris entre environ 1,6 et 1,8. Une autre technique que l'on peut utiliser pour former la couche de carbone sous forme de diamant amorphe consiste à utiliser du toluène sous forme de vapeur. Dans ce cas, on obtient des films de carbone sous forme de diamant amorphe par dépôt chimique en phase vapeur en plasma. On prévoit à cet effet les paramètres suivants : - température du substrat d'environ 600 à 8000C, - pression dans la chambre d'environ 10"1 à 10~2 Torr, - teneur relative en toluène du mélange d'environ 0,5 à 2,5%, - température du filament de tungstène environ 2000 - 21000C, - courant de travail du faisceau ionique d'environ 20 à 50 mA sous une tension d'accélération d'environ 1,5 à 4 kV. On choisit comme filament employé pour la neutralisation du plasma et la dissociation du toluène et de l'hydrogène un fil de tungstène de diamètre 0,8 mm. Avant que le mélange de gaz pénètre dans la chambre, il est pompé jusqu'à une pression de vide d'environ ICT5 Torr. La distance entre le filament et le substrat est d'environ 5 cm. Les ions qui sont ainsi formés sont à leur tour accélérés et déposés par dessus la couche 21, de manière à former la couche 22. Dans tous les cas, la technique utilisée pour déposer la couche de carbone sous forme de diamant amorphe doit être capable de former une couche qui soit essentiellement non poreuse, avantageusement dans laquelle le volume occupé par la porosité soit inférieur à 50% du volume total de ladite couche, et essentiellement exempte d'espèces étrangères telles qu'hydrogène ou azote. L'absence de porosité ou le faible degré de porosité de la couche 22 garantit que la couche de silicium poreux 21 soit protégée efficacement contre la dégradation (en particulier la dégradation chimique par oxydation avec le temps, visible dès une semaine en l'absence de protection), et l'absence de quantités significatives d'espèces étrangères garantit que l'on pourra obtenir des propriétés physiques et chimiques satisfaisantes et stables, qui affectent pour leur part les propriétés optiques de la couche. Il convient de remarquer ici que le domaine spectral dans lequel la conversion de la lumière d'une pile solaire dotée du revêtement selon la présente invention est efficace dépend des valeurs respectives d'épaisseur et d'indice de réfraction des couches 21 et 22. Il n'existe à l'heure actuelle aucune relation mathématique démontrée et précise entre les valeurs optimales des paramètres, mais on peut effectuer des travaux expérimentaux pour obtenir les courbes de conversion de la lumière souhaitées.The present invention generally relates to anti-reflective coatings, processes for their manufacture and their use, in particular as coatings for solar cells. Reducing the reflectivity of surfaces is now one of the best ways to improve the performance of solar cells, and we have already developed for this purpose coatings, anti-reflective. In particular, a porous silicon coating has been used as an antireflective layer to improve the solar cell conversion factor by decreasing the amount of sunlight reflected at the input surface of the cell. Such a porous Si layer, however, has drawbacks, and in particular the property of being able to degrade with time, which reduces its anti-reflective capabilities. The present invention seeks to overcome these disadvantages and to provide an anti-reflective coating for solar cells that is less likely to degrade over time, without impairing the performance of the solar cell. Another object of the present invention is to make it possible to adjust and optimize the spectral range in which efficient conversion of the light into electrical energy can be effected in the solar cell. More specifically, one goal is to enlarge the spectral range in the direction of ultraviolet (UV). According to a first aspect, the present invention proposes an anti-reflective coating, in particular for solar cells, characterized in that it comprises, in combination, an inner layer of anti-reflective porous silicon and an outer layer of amorphous diamond-shaped carbon which is essentially non-porous and essentially devoid of alien species. In the combination of the inner anti-reflective porous silicon layer and the outer amorphous diamond carbon layer, the cores at the interface of these two layers coalesce in a manner that does not reproduce the geometry of the porous silicon surface. Some preferred, but not limiting, aspects of this coating are the following: the volume occupied by the porosity in the amorphous diamond-shaped carbon layer is less than 50% of the total volume of said layer. the porous silicon layer has a thickness of between approximately 38 and 56 nm, the porous silicon layer has a refractive index of between approximately 2.6 and 2.9, the amorphous diamond-shaped carbon layer has a thickness of approximately a thickness between about 72 and 104 nm, and the amorphous diamond-shaped carbon layer has a refractive index of between about 1.6 and 1.8. in a specific embodiment, the porous silicon layer has a thickness of about 42 nm and a refractive index of about 2.9, while the amorphous diamond-shaped carbon layer has a thickness of about 88 nm and a refractive index of about 1.6. With the present invention, an antireflection coating reflection factor of less than 5.5% in the range of 400-900 nm can be obtained when said coating is manufactured using all thickness values. and refractive indexes given above for the porous silicon and amorphous diamond carbon layers. According to a second aspect, the present invention provides a method for forming an anti-reflective coating on an article having an exposed surface of solid silicon, such as a solar cell panel, characterized in that it comprises the following steps: applying a porosification treatment to the exposed surface of solid silicon to a predetermined thickness, so as to form a porous silicon layer, and depositing on said porous silicon layer a solid layer of amorphous diamond-shaped carbon which is substantially free of foreign species. Some preferred, but not limiting, aspects of the process are as follows: the porosification treatment is anodization; the etching agent for anodization is chosen from a mixture of hydrofluoric acid and dimethylformamide and a mixture of hydrofluoric acid and ethanol; the deposition step of the solid carbon layer in the form of amorphous diamond is carried out by ion sputtering from a graphite target; * the graphite target is bombarded with argon ions; the deposition step of the solid carbon layer in the form of amorphous diamond is carried out by electron bombardment of toluene vapor. Finally, the present invention proposes the use of an anti-reflective coating as defined above as a coating for a solar cell. Other aspects, objects and advantages of the present invention will appear better on reading the following detailed description of one of its embodiments, given solely by way of example and presented with reference to the appended drawings, in which: FIG. 1 schematically illustrates a solar cell panel provided with an antireflection coating according to the present invention; FIG. 2 is the reflection factor / wavelength diagram of a first example of a coating according to the present invention; and Fig. 3 is the reflection factor / wavelength diagram of a second example of a coating according to the present invention. Referring to FIG. 1, there is schematically a flat solar cell panel 10 having an anti-reflective coating 20 according to the present invention. The coating 20 contains an inner layer 21 of porous silicon and an outer layer 22 of hard amorphous carbon, also called carbon in the form of amorphous diamond. The porosity of silicon remains determined by the deposit method used. Hard amorphous carbon is known per se in the art as a generally deposited carbon in film form, containing a significant fraction of sp3 hybrid carbon atoms. These films or layers of amorphous diamond (DLC, acronym for the expression "Diamond Like Carbon" in the English language) may contain a significant fraction of hydrogen. In general, the different types of DLC are differentiated with respect to hydrogen depending on the deposition method. And, in the current state of the art, hydrogen-free DLC films can in particular be prepared by ion sputtering of graphite or toluene, these techniques also making it possible to avoid or minimize the presence of additional foreign species such as 1 'nitrogen. For further details on these subjects, reference may be made in particular to the IUPAC standard (acronym for the English expression "International Union of Pure and Applied Chemistry"). The porous silicon is preferably formed on the solar cell panel by an electrochemical anodizing method 1. In the present example, an electrochemical etching process or one anodization is performed on the panel surface as described above, after degreasing and washing with pure water of the latter. An electrolyte composed of 4M dimethylformamide in hydrofluoric acid (HF) in a molar ratio of 1: 1 with water is used to obtain macroporous silicon (pore size between 200 nm and 2 μm). Alternatively, an electrolyte having a composition of equal amounts of HF at a concentration of 48% and ethanol (C 2 H 5 OH) at a concentration of 96% is used to obtain microporous silicon (pore size between 10 and 100 nm). Several samples were prepared with different current densities and etching times. More particularly, current densities of between 1 and 15 mA / cm 2 were used for times of between 5 seconds and 10 minutes, and the anodizing process was carried out under constant illumination under a power halogen lamp. 1 kW placed at a distance of 20 cm from the surface to be anodised. The porous silicon layer has a thickness (denoted SP ) of several tens of nanometers, more preferably between about 38 and 56 nm. The anodizing conditions are furthermore chosen in such a way that the refractive index n S p of the layer 21 is between approximately 2.6 and 2.9. After having formed the porous silicon layer 21 by the above anodizing process, the layer 22 of carbon in the form of amorphous diamond is formed directly on top of the layer 21. For this purpose two techniques can be used. A first technique is an ion sputtering technique from a graphite target. More particularly, a graphite target is irradiated with argon ions so as to deposit a carbon layer in the form of amorphous diamond 22, according to a technique known per se. Different irradiation densities are used. The films are obtained in the filing room in DC ion plasma, equipped with a DC ion source. The working current is between 0.1 and 20 mA at an acceleration voltage of between 1 and 7 kV. This source of ions makes it possible to obtain at the output a dispersing ion beam of a diameter approximately equal to 100 nanometers. The density of the ionic current j is less than 0.8 mA / cm 2 . The pulverized carbon is deposited on the substrate which, during the deposition (at a chosen periodicity), is irradiated periodically with, for example, argon ions. The deposition temperature is between about 180 and 200 ° C. The duration of the treatment is adjusted so as to form a layer 22 having a thickness, called d CDA> of between 72 nm and 104 nanometers approximately, and a refractive index n C D A between about 1.6 and 1.8. Another technique that can be used to form the amorphous diamond carbon layer is to use toluene as a vapor. In this case, amorphous diamond carbon films are obtained by plasma chemical vapor deposition. It provides the following parameters for this purpose: - temperature of about 600 to 800 0 C substrate, - pressure in the chamber of about 10 "1-10 ~ 2 Torr, - Relative toluene content of the mixture about 0 , 5 to 2.5%, - tungsten filament temperature around 2000 - 2100 0 C, - ion beam working current of about 20 to 50 mA at an acceleration voltage of about 1.5 to 4 kV We choose as the filament used for the Plasma neutralization and dissociation of toluene and hydrogen a 0.8 mm diameter tungsten wire. Before the gas mixture enters the chamber, it is pumped to a vacuum pressure of about ITC 5 Torr. The distance between the filament and the substrate is about 5 cm. The ions that are thus formed are in turn accelerated and deposited over the layer 21, so as to form the layer 22. In all cases, the technique used to deposit the carbon layer in the form of amorphous diamond must be able to forming a layer which is substantially non-porous, preferably wherein the volume occupied by the porosity is less than 50% of the total volume of said layer, and substantially free of foreign species such as hydrogen or nitrogen. The absence of porosity or the low degree of porosity of the layer 22 ensures that the porous silicon layer 21 is effectively protected against degradation (in particular chemical degradation by oxidation with time, visible from a week in the absence of protection), and the absence of significant amounts of alien species ensures that satisfactory and stable physical and chemical properties, which affect the optical properties of the layer, can be achieved. It should be noted here that the spectral range in which the conversion of the light of a solar cell provided with the coating according to the present invention is effective depends on the respective values of thickness and refractive index of the layers 21 and 22. does not exist at the moment any relation proven mathematical accuracy between the optimal values of the parameters, but we can perform experimental work to obtain the desired light conversion curves.
Exemple 1 Une pile solaire est dotée d'un système à deux couches selon la présente invention, la couche de silicium poreux (SP) étant formée par anodisation, tandis que la couche de carbone sous forme de diamant amorphe (CDA) est formée par pulvérisation ionique. Les couches ont les paramètres suivants : dSP = 42 nm nSP = 2,9Example 1 A solar cell is provided with a two-layer system according to the present invention, the porous silicon layer (SP) being formed by anodizing, while the amorphous diamond-shaped carbon (ADC) layer is formed by sputtering ionic. The layers have the following parameters: d SP = 42 nm n SP = 2.9
La courbe de facteur de réflexion, qui détermine la proportion du rayonnement réfléchi par une pile solaire dotée d'un tel revêtement en fonction de la longueur d'onde, est présentée sur la figure 2. La figure 2 montre que la conversion de la pile est correcte dans une partie significative du domaine visible, tandis que l'efficacité diminue (à savoir la réflexion augmente) vers les domaines ultraviolet et infrarouge. The reflection factor curve, which determines the proportion of radiation reflected by a solar cell with such a coating as a function of wavelength, is shown in Figure 2. Figure 2 shows that the conversion of the battery is correct in a significant part of the visible range, while the efficiency decreases (ie the reflection increases) towards the ultraviolet and infrared domains.
Exemple 2 On fabrique un revêtement à deux couches avec' les mêmes techniques que pour l'exemple 1, mais en utilisant les paramètres suivants : dSP ≈ 47,9 nm nSP = 2,8 dCDA = 86 , 9 nm Example 2 produces a two-layer coating with 'the same techniques as for Example 1, but using the following parameters: d ≈ 47.9 nm SP SP n = 2.8 d CDA = 86.9 nm
La courbe de facteur de réflexion correspondante est présentée sur la figure 3. La figure 3 montre une conversion de la pile sensiblement améliorée vers le domaine ultraviolet, et ce jusqu'à une longueur d'onde d'environ 400 nm. La conversion est également améliorée, mais plus modérément, vers le domaine infrarouge. D'un point de vue global, une pile solaire dotée du revêtement présentant les paramètres de 1 'exemple 2 manifeste une conversion totale du rayonnement solaire de 70%, soit une augmentation de 14% par rapport aux piles solaires dotées d'un revêtement classique. II convient de noter ici que les courbes de facteur de réflexion des figures 2 et 3 ont été obtenues par simulation selon une approche dite de matrice optique telle que celle décrite, par exemple, dans V. M. Aroutiounian, K. R. Maroutyan, A. L. Zatikyan, C. Lévy- Clément, K. J. Touryan, Proc. SPIE on Solar and Switching Materials, v. 4458, 61 (2001) . Les courbes réelles déterminées par expérimentation pourraient être légèrement différentes des courbes simulées des figures 2 et 3. La présente invention n'est pas limitée à la description ci-dessus et aux dessins annexés, et on peut y apporter de nombreuses variantes et modifications. En particulier, le revêtement selon la présente invention peut être avantageusement utilisé chaque fois qu'il est souhaitable de limiter la réflexion d'un rayonnement incident tel qu'un rayonnement visible, infrarouge ou ultraviolet sur une surface. The corresponding reflection factor curve is shown in FIG. 3. FIG. 3 shows a substantially improved battery conversion to the ultraviolet range, up to a wavelength of about 400 nm. The conversion is also improved, but more moderately, towards the infrared domain. From an overall point of view, a solar cell with the coating having the parameters of Example 2 exhibits a total solar radiation conversion of 70%, an increase of 14% over solar cells with a conventional coating. . It should be noted here that the reflection factor curves of FIGS. 2 and 3 have been obtained by simulation according to an optical matrix approach such as that described, for example, in VM Arutyunian, KR Maroutyan, AL Zatikyan, C. Lévy - Clement, KJ Touryan, Proc. SPIE on Solar and Switching Materials, v. 4458, 61 (2001). The actual curves determined by experimentation could be slightly different from the simulated curves of Figures 2 and 3. The present invention is not limited to the above description and the accompanying drawings, and many variations and modifications can be made thereto. In particular, the coating according to the present invention can be advantageously used whenever it is desirable to limit the reflection of incident radiation such as visible, infrared or ultraviolet radiation on a surface.

Claims

REVENDICATIONS 1. Revêtement anti-réfléchissant (20), en particulier pour piles solaires, caractérisé en ce qu'il comprend, en combinaison, une couche interne de silicium poreux anti- réfléchissant (21) et une couche externe de carbone sous forme de diamant amorphe (22) qui est essentiellement non poreuse et essentiellement dépourvue d'espèces étrangères. 1. antireflective coating (20), in particular for solar cells, characterized in that it comprises, in combination, an inner layer of porous silicon antireflective (21) and an outer layer of carbon in the form of diamond amorphous (22) which is essentially nonporous and essentially devoid of alien species.
2. Revêtement selon la revendication 1, caractérisé en ce que le volume occupé par la porosité dans la couche de carbone sous forme de diamant amorphe est inférieur à 50% du volume total de ladite couche.2. The coating of claim 1, characterized in that the volume occupied by the porosity in the amorphous diamond-shaped carbon layer is less than 50% of the total volume of said layer.
3. Revêtement selon la revendication 1 ou 2, caractérisé en ce que : la couche de silicium poreux a une épaisseur comprise entre environ 38 et 56 nm, la couche de silicium poreux a un indice de réfraction compris entre environ 2,6 et 2,9, - la couche de carbone sous forme de diamant amorphe a une épaisseur comprise entre environ 72 et 104 nm, et - la couche de carbone sous forme de diamant amorphe a un indice de réfraction compris entre environ 1,6 et 1,8.3. Coating according to claim 1 or 2, characterized in that: the porous silicon layer has a thickness between about 38 and 56 nm, the porous silicon layer has a refractive index between about 2.6 and 2, 9, the amorphous diamond-shaped carbon layer has a thickness between about 72 and 104 nm, and the amorphous diamond-shaped carbon layer has a refractive index between about 1.6 and 1.8.
4. Revêtement selon la revendication 3, caractérisé en ce que la couche de silicium poreux a une épaisseur d'environ 47,9 nm et un indice de réfraction d'environ 2,8, tandis que la couche de carbone sous forme de diamant amorphe a une épaisseur d'environ 86,9 nm et un indice de réfraction d'environ 1,6. 4. The coating of claim 3, characterized in that the porous silicon layer has a thickness of about 47.9 nm and a refractive index of about 2.8, while the amorphous diamond-shaped carbon layer. has a thickness of about 86.9 nm and a refractive index of about 1.6.
5. Procédé permettant' de former un revêtement anti¬ réfléchissant sur un article comportant une surface exposée de silicium solide, telle qu'un panneau de piles solaires, caractérisé en ce qu'il comprend les étapes suivantes : - appliquer un traitement de porosification à la surface exposée de silicium solide sur une épaisseur prédéterminée, de manière à former une couche de silicium poreux, et - déposer sur ladite couche de silicium poreux une couche solide de carbone sous forme de diamant amorphe qui est essentiellement exempte d'espèces étrangères.5. A method 'of forming an anti¬ reflective coating on an article having an exposed surface of solid silicon, such as a panel of solar cells, characterized in that it comprises the following steps: - applying a treatment to porosification the exposed surface of solid silicon to a predetermined thickness, so as to form a porous silicon layer, and - deposit on said porous silicon layer a solid layer of carbon in the form of amorphous diamond which is essentially free of foreign species.
6. Procédé selon la revendication 5, caractérisé en ce que le traitement de porosification est une anodisation.6. Process according to claim 5, characterized in that the porosification treatment is anodization.
7. Procédé selon la revendication 6, caractérisé en ce que l'agent de gravure pour 1 'anodisation est choisi parmi un mélange d'acide fluorhydrique et de diméthylformamide et un mélange d'acide fluorhydrique et d'éthanol .7. Method according to claim 6, characterized in that the etching agent for anodization is selected from a mixture of hydrofluoric acid and dimethylformamide and a mixture of hydrofluoric acid and ethanol.
8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l'étape de dépôt de la - couche solide de carbone sous forme . de diamant amorphe est réalisée par pulvérisation ionique à partir d'une cible de graphite.8. Process according to any one of claims 5 to 7, characterized in that the deposition step of the solid layer of carbon in form. Amorphous diamond is made by ion sputtering from a graphite target.
9. Procédé selon la revendication 8, caractérisé en ce que la cible de graphite est bombardée d'ions argon. 9. The method of claim 8, characterized in that the graphite target is bombarded with argon ions.
10. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l'étape de dépôt de la couche solide de carbone sous forme de diamant amorphe est réalisée par bombardement électronique de vapeur de toluène.10. Process according to any one of claims 5 to 7, characterized in that the step of depositing the carbon solid layer in the form of amorphous diamond is performed by electron bombardment of toluene vapor.
11. Utilisation d'un revêtement anti-réfléchissant selon l'une quelconque des revendications 1 à 4 comme revêtement pour une pile solaire. 11. Use of an anti-reflective coating according to any one of claims 1 to 4 as a coating for a solar cell.
EP05775776A 2004-06-02 2005-06-01 Anti-reflecting coatings for solar batteries and method for the production thereof Withdrawn EP1774369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405933A FR2871243B1 (en) 2004-06-02 2004-06-02 ANTI-REFLECTIVE COATINGS FOR SOLAR CELLS AND METHOD FOR MANUFACTURING SAME
PCT/FR2005/001341 WO2006000688A1 (en) 2004-06-02 2005-06-01 Anti-reflecting coatings for solar batteries and method for the production thereof

Publications (1)

Publication Number Publication Date
EP1774369A1 true EP1774369A1 (en) 2007-04-18

Family

ID=34949295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05775776A Withdrawn EP1774369A1 (en) 2004-06-02 2005-06-01 Anti-reflecting coatings for solar batteries and method for the production thereof

Country Status (4)

Country Link
US (1) US20080193635A1 (en)
EP (1) EP1774369A1 (en)
FR (1) FR2871243B1 (en)
WO (1) WO2006000688A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346523B1 (en) * 2002-01-11 2008-03-18 P5, Inc. Processing an insurance claim using electronic versions of supporting documents
WO2009098241A1 (en) * 2008-02-05 2009-08-13 Oerlikon Trading Ag, Trübbach Encapsulation of optoelectronic devices
JP2011149710A (en) * 2010-01-19 2011-08-04 Seiko Epson Corp Timepiece cover glass and timepiece
WO2011157820A1 (en) 2010-06-18 2011-12-22 Dsm Ip Assets B.V. Inorganic oxide coating
FR2979108B1 (en) * 2011-08-18 2013-08-16 Saint Gobain ANTIREFLECTION GLAZING WITH POROUS COATING
FR2982423B1 (en) * 2011-11-03 2013-12-13 Ass Pour La Rech Et Le Dev De Methodes Et Processus Ind Armines PHOTOVOLTAIC CELL WITH FLUORESCENT DIAMONDS
US8686527B2 (en) * 2012-06-22 2014-04-01 Taiwan Semiconductor Manufacturing Company, Ltd. Porous Si as CMOS image sensor ARC layer
CN103570253A (en) * 2012-07-28 2014-02-12 比亚迪股份有限公司 Surface-coated glass, making method thereof, and solar module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169608A (en) * 1989-09-26 1992-12-08 Mitsubishi Cable Industries, Ltd. Inorganic article for crystal growth and liquid-phase epitaxy apparatus using the same
US5225926A (en) * 1991-09-04 1993-07-06 International Business Machines Corporation Durable optical elements fabricated from free standing polycrystalline diamond and non-hydrogenated amorphous diamond like carbon (dlc) thin films
US6028699A (en) * 1997-01-13 2000-02-22 Exotic Electrooptics Electromagnetically shielded window, sensor system using the window, and method of manufacture
US6248948B1 (en) * 1998-05-15 2001-06-19 Canon Kabushiki Kaisha Solar cell module and method of producing the same
US6261693B1 (en) * 1999-05-03 2001-07-17 Guardian Industries Corporation Highly tetrahedral amorphous carbon coating on glass
JP4997674B2 (en) * 2001-09-03 2012-08-08 日本電気株式会社 Negative electrode for secondary battery and secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006000688A1 *

Also Published As

Publication number Publication date
FR2871243A1 (en) 2005-12-09
FR2871243B1 (en) 2006-09-08
WO2006000688A1 (en) 2006-01-05
US20080193635A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1774369A1 (en) Anti-reflecting coatings for solar batteries and method for the production thereof
EP1913642A1 (en) Antireflection coating, particularly for solar cells, and method for producing this coating
EP2586063B1 (en) Substrate comprising a transparent conductive oxide layer and manufacturing process
WO1997024769A1 (en) Method and device for the deposit of at least one film of intrinsic microcrystalline or nanocrystalline hydrogenated silicon and photovoltaic cell obtained by this method
EP2529416A2 (en) Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same
WO2010023318A1 (en) Method for limiting epitaxial growth in a photoelectric device with heterojunctions, and photoelectric device
EP3000137B1 (en) Method for producing a photosensitive device
WO2014002002A1 (en) Lithium-ion battery with a cathode with variable porosity and corresponding method
JP2013542317A (en) Method for coating a substrate for manufacturing solar cells
WO2014128371A2 (en) Method for producing 3d-structured thin films
EP2744760B1 (en) Antireflection glazing unit equipped with a porous coating and method of making
FR2581794A1 (en) PROCESS FOR THE MANUFACTURE OF ELECTRONIC DEVICES IN THE SOLID STATE, IN PARTICULAR POLYCRYSTALLINE SILICON SOLAR CELLS
EP2795677B1 (en) Process for texturing the surface of a silicon substrate, structured substrate and photovoltaic device comprising such a structured substrate
WO2014029836A2 (en) Method for producing the electrical contacts of a semiconductor device
WO2022243611A1 (en) Method for deposition of dense chromium on a substrate
FR3089346A1 (en) Texturing of the front electrode in a semi-transparent photovoltaic module in order to control the colorimetric aspect
WO2022136080A1 (en) Tandem photovoltaic cell having two terminals and associated manufacturing method
EP4303566A1 (en) Silicon membrane having infrared transmittance and method for producing same
Reuna et al. Broadband Anti-reflective Coatings for Multi-junction Solar Cells
FR3132593A1 (en) CREATING A RADIATION OUTPUT WINDOW FOR A PHOTOEMITTING COMPONENT
FR3026230A1 (en) SEMI-TRANSPARENT PHOTOVOLTAIC DEVICE WITH THROUGH HOLE
FR3077930A1 (en) PHOTOVOLTAIC DEVICE OR PHOTODETECTOR OF PASSIVE CONTACT TRANSMITTER TYPE WITH REAR CONTACT AND METHOD OF MANUFACTURING SUCH A DEVICE
FR2995141A1 (en) Method for manufacturing transparent electrode for organic LED, involves removing microspheres to expose engraved surface of coating or enamel, depositing metal layer on engraved surface, and polishing metalized engraved surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE PARIS SUD

Owner name: UNIVERSITE D'ETAT D'EREVAN

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140103