EP1772880B1 - Safety switch - Google Patents

Safety switch Download PDF

Info

Publication number
EP1772880B1
EP1772880B1 EP20060254894 EP06254894A EP1772880B1 EP 1772880 B1 EP1772880 B1 EP 1772880B1 EP 20060254894 EP20060254894 EP 20060254894 EP 06254894 A EP06254894 A EP 06254894A EP 1772880 B1 EP1772880 B1 EP 1772880B1
Authority
EP
European Patent Office
Prior art keywords
relay
switch
safety switch
mechanically operated
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060254894
Other languages
German (de)
French (fr)
Other versions
EP1772880A1 (en
Inventor
Derek Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Automation Ltd
Original Assignee
EJA Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EJA Ltd filed Critical EJA Ltd
Publication of EP1772880A1 publication Critical patent/EP1772880A1/en
Application granted granted Critical
Publication of EP1772880B1 publication Critical patent/EP1772880B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/20Interlocking, locking, or latching mechanisms
    • H01H9/22Interlocking, locking, or latching mechanisms for interlocking between casing, cover, or protective shutter and mechanism for operating contacts
    • H01H9/226Interlocking, locking, or latching mechanisms for interlocking between casing, cover, or protective shutter and mechanism for operating contacts the casing containing electrical equipment other than and operated by the switch

Definitions

  • the electrically operated output switches are connected to the mechanically operated synchronisation switch by an electrical mechanism.
  • the mechanically operated synchronisation switch is connected to the relay via a second relay.
  • a mechanically operated power supply switch is connected between the first relay and the electrical source, the mechanically operated power supply switch being connected to the mechanical actuator, the mechanical actuator being arranged such that during actuation the mechanically operated power supply switch is actuated after the mechanically operated output switches, thereby interrupting the electrical power provided to the first relay.
  • the mechanical actuator is arranged to be actuated by a removable key.
  • FIG. 1 shows a safety switch which embodies the invention.
  • the safety switch comprises a body 1 into which an actuator 2 may be inserted.
  • the actuator 2 comprises a fixing means 2a and a pair of prongs 2b, and is arranged to be inserted into and removed from the safety switch 1.
  • the safety switch body 1 may be mounted on a door post of an enclosure (not shown) which contains dangerous electromechanical machinery (not shown).
  • the actuator 2 may be mounted on a door of the enclosure, and arranged such that when the door is closed the actuator is inserted into the safety switch body 1.
  • the safety switch is arranged to interrupt the supply of power to the machinery whenever the actuator 2 is removed from the safety switch body 1. This means that whenever the door of the enclosure is opened, to allow access to the machinery, the machinery is automatically switched off.
  • the monitoring circuit 4 determines that a delay of more than 50 milliseconds has occurred between the interruption (or resumption) of the supply of power, as seen by the first monitoring port 4a and the second monitoring port 4b, then the monitoring circuit will shut down the machinery. A safety protocol is then followed, including checking whether the safety switch body 1 is faulty, before the monitoring circuit is reset and the machinery is restarted.
  • the safety switch is arranged to ensure that if the actuator 2 is removed from the safety switch body, open circuits will occur substantially simultaneously across the monitoring ports 4a, 4b, irrespective of whether there is a slight delay between the operation of each of the mechanically operated output switches 6a, 6b.
  • the mechanically operated output switches 6a, 6b are connected to and actuated by the moveable rod 3.
  • the actuator 2 When the actuator 2 is inserted into the safety switch body 1, it pushes the movable rod 3 inwards, thereby holding the mechanically operated output switches 6a, 6b in a closed configuration.
  • the relay 8 is provided with two relay operated switches 9, 10.
  • the relay 8 and relay operated switches 9, 10 are connected via a solenoid generally indicated by a dotted line 11, such that the relay operated switches 9, 10 and the relay 8 are magnetically coupled.
  • this relay 8 will hereafter be referred to as the first relay 8.
  • a first of the relay operated switches 9 is connected to a light (not shown) which is arranged to indicate the status of the safety switch.
  • this relay operated switch 9 will hereafter be referred to as the relay operated indicator switch 9.
  • the second relay operated switch 10 is connected between a third positive voltage source +V 3 and a first plate of a capacitor 12 when the first relay is turned off.
  • This relay operated switch 10 will be hereafter referred to as the relay operated capacitor switch 10.
  • a second plate of the capacitor 12 is connected to a second negative voltage source -V 2 .
  • the normal configuration of the safety switch when the actuator 2 is inserted in the safety switch body 1, is as shown in Figure 1 .
  • the moveable rod 3 is pushed inwards by the actuator 2.
  • the moveable rod 3 ensures that the mechanically operated output switches 6a, 6b are in closed configurations, that the mechanically operated power supply switch 7b is in a closed configuration, and that the mechanically operated synchronisation switch 7a is in an open configuration.
  • the first relay 8 and the second relay 13 are both turned off. Thus, there are closed circuits across the monitoring ports 4a, 4b, and the monitoring circuit 4 allows the electromechanical machinery to operate.
  • the relay operated capacitor switch 10 is in an open configuration and connects the capacitor 12 to the third positive voltage source +V 3 , thereby ensuring that the capacitor is fully charged.
  • the light (not shown) connected to the relay operated indicator switch 9 indicates that the door of the enclosure is closed.
  • the actuator 2 When a user opens the door of the enclosure, the actuator 2 is removed from the safety switch body 1 (the actuator is attached to the door of the enclosure).
  • the action of removing the actuator 2 is shown schematically in stages in Figures 2 to 7 .
  • the actuator 2 has been moved a short distance out of the housing 2. This movement has, via the moveable rod 3, moved the mechanically operated synchronisation switch 7a to a closed configuration.
  • the mechanically operated switches 6a, 6b, 7a, 7b and the moveable rod 3 are arranged such that when the actuator 2 has moved by the short distance shown in Figure 2 , the mechanically operated output switches 6a, 6b and the mechanically operated power supply switch 7b have not moved from their closed configurations.
  • the effect of the mechanically operated synchronisation switch 7a moving to a closed configuration is to connect the first relay 8 to the first positive voltage source +V 1 .
  • This turns the first relay 8 on, which in turn, via the solenoid 11, actuates the relay operated capacitor switch 10 and the relay operated indicator switch 9.
  • the relay operated indicator switch 9 is moved to an open configuration, the light (not shown) connected to the relay operated indicator switch indicates that the door of the enclosure is open.
  • the effect of closing the relay operated power supply switch 16 is to connect the second positive voltage source +V 2 via the mechanically operated power supply switch 7b to the second relay 13. This has the effect of keeping the second relay 13 energised once the capacitor 12 has discharged.
  • Figures 4 and 5 show how, as the actuator 2 continues to be moved out of the safety switch body 1, the mechanically operated output switches 6a, 6b move to open configurations.
  • a first of the mechanically operated output switches 6a moves to the open configuration before a second of the mechanically operated output switches 6b, due to the configuration of the output switches.
  • a slow removal of the actuator 2 could cause a time delay between movement of the mechanically operated output switches 6a, 6b, that would be sufficiently large to make the monitoring circuit 4 perceive a fault in the operation of the safety switch.
  • the embodiment of the invention solves this problem. This is advantageous because it avoids the need for an engineer to check whether the safety switch is working correctly, which may be time consuming and expensive.

Landscapes

  • Mechanisms For Operating Contacts (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Description

  • The present invention relates to a safety switch.
  • Safety switches are well known in the art. Safety switches are typically used to prevent access to dangerous electromechanical machinery whilst the machinery is operating. A known type of safety switch uses an actuator, which must be engaged in a body of the safety switch to allow machinery to operate. The actuator is typically mounted on a door of a machinery enclosure, with the safety switch body being mounted on a corresponding door post. When the door is closed, the actuator engages with the safety switch body, and causes a contact to be closed which allows power to be supplied to the machinery. If the door is opened, the actuator is removed from the safety switch body, thereby opening the contact and interrupting the supply of power to the machinery.
  • In some cases a monitoring circuit may be provided to monitor the operation of the safety switch, and shut down the machinery if the safety switch appears to be faulty. One way in which monitoring of a safety switch may be achieved is to provide the safety switch with two contacts, each of which is opened and closed by the actuator. A monitoring circuit monitors the operation of the two contacts. If one of the contacts is faulty, for example if it is stuck in the closed position, this will be seen by the monitoring circuit which will shut down the machinery. The monitoring circuit may be configured such that the two contacts must open and close simultaneously in order for the safety circuit to be considered to be operating correctly, with any delay between operation of the two contacts indicating that the safety switch is faulty. In practice, the monitoring circuit may allow a small time delay between the opening (or closing) of the contacts, for example 50 milliseconds, to arise without considering the safety switch to be faulty.
  • A problem may arise if the actuator is removed from the safety switch body too slowly. This is because the first and second contacts are independently operated by the actuator, and will open at slightly different times. If the actuator is removed from the safety switch body too slowly, then the time delay between opening the first contact and opening the second contact may be greater than that allowed by the monitoring circuit. The monitoring circuit will incorrectly determine that the safety switch is faulty, and will shut down the electromechanical machinery. The same problem may arise if the actuator is returned to the safety switch body too slowly.
  • In general, when a monitoring circuit shuts down machinery a safety protocol must be followed before the machinery can be restarted. Typically this would include an engineer examining the safety switch to check whether it is faulty. The safety protocol may be time consuming. If the electromechanical machinery is part of a production line, then it may be necessary to stop production along the entire line until the safety protocol has been completed and the machinery has been restarted. This can cause a significant and expensive loss of production.
  • Document DE 36 06 458 discloses a device according to the preamble of claim 1.
  • It is an object of the present invention to provide a safety switch which overcomes or substantially mitigates the above disadvantage.
  • According to the invention there is provided a safety switch body having a plurality of outputs, each output comprising a mechanically operated output switch and an electrically operated output switch, the electrically operated output switches being connected to a mechanically operated synchronisation switch, wherein the mechanically operated output switches and synchronisation switch are connected to a mechanical mechanism arranged such that, during operation of the safety switch, the mechanically operated synchronisation switch is actuated before the mechanically operated output switches, thereby switching the electrically operated output switches substantially simultaneously before the mechanically operated output switches are actuated.
  • An advantage of the invention is that the electrically operated output switches are actuated without undue delay between them (the electrically operated switches close substantially simultaneously).
  • Preferably, the electrically operated output switches are connected to the mechanically operated synchronisation switch by an electrical mechanism.
  • Preferably, the electrical mechanism is a relay.
  • Preferably, the mechanically operated synchronisation switch is connected to the relay via a second relay.
  • Preferably, the safety switch further comprises a capacitor switched by the second relay between an electrical source and the first relay, the second relay being arranged such that the capacitor is connected to the electrical source until the mechanically operated synchronisation switch is actuated, whereupon the capacitor is connected to the first relay, thereby discharging the capacitor through the first relay to energise the first relay on.
  • Preferably, the safety switch further comprises a relay operated power supply switch, the relay operated power supply switch being connected between an electrical source and the first relay, and being closed when the first relay is energised, thereby providing electrical power to the first relay.
  • Preferably, a mechanically operated power supply switch is connected between the first relay and the electrical source, the mechanically operated power supply switch being connected to the mechanical actuator, the mechanical actuator being arranged such that during actuation the mechanically operated power supply switch is actuated after the mechanically operated output switches, thereby interrupting the electrical power provided to the first relay.
  • Preferably, a monitoring circuit is provided, the monitoring circuit having a monitoring port connected across each output of the safety switch.
  • Preferably, the mechanical actuator comprises a resiliently mounted moveable rod.
  • Preferably, the mechanical actuator is arranged to be actuated by a removable key.
  • A specific embodiment of the invention will now be described by way of example only, with reference to the accompanying drawings in which:
    • Figure 1 is a circuit diagram of a safety switch which embodies the invention, an actuator being inserted in a body of the safety switch;
    • Figures 2 to 6 show schematically in stages the effect of removing the actuator from the body of the safety switch; and
    • Figures 7 to 10 show schematically in stages the effect of returning the actuator to the body of the safety switch.
  • Figure 1 shows a safety switch which embodies the invention. The safety switch comprises a body 1 into which an actuator 2 may be inserted. The actuator 2 comprises a fixing means 2a and a pair of prongs 2b, and is arranged to be inserted into and removed from the safety switch 1.
    The safety switch body 1 may be mounted on a door post of an enclosure (not shown) which contains dangerous electromechanical machinery (not shown). The actuator 2 may be mounted on a door of the enclosure, and arranged such that when the door is closed the actuator is inserted into the safety switch body 1. The safety switch is arranged to interrupt the supply of power to the machinery whenever the actuator 2 is removed from the safety switch body 1. This means that whenever the door of the enclosure is opened, to allow access to the machinery, the machinery is automatically switched off.
  • In Figure 1 the actuator 2 is inserted into the safety switch body 1. The actuator 2 is configured to engage with a moveable rod 3 of the safety switch, and push the moveable rod inwards (i.e. away from the nearest wall of the safety switch body 1). The moveable rod 3 is resiliently biased, for example by one or more springs, to move outwards (i.e. towards the nearest wall of the safety switch body 1).
  • A monitoring circuit 4 monitors the safety switch, via a first monitoring port 4a and a second monitoring port 4b. The safety switch is provided with two mechanically operated output switches 6a, 6b which are arranged to interrupt the supply of power to the machinery when the actuator 2 is removed from the safety switch body 1. The first monitoring port 4a of the monitoring circuit 4 is connected across the first mechanically operated output switch 6a, and the second monitoring port 4b is connected across the second mechanically operated output switch 6b. The monitoring circuit 4 is arranged to monitor the interruption (or resumption) of the supply of power to the machinery. If the monitoring circuit 4 determines that a delay of more than 50 milliseconds has occurred between the interruption (or resumption) of the supply of power, as seen by the first monitoring port 4a and the second monitoring port 4b, then the monitoring circuit will shut down the machinery. A safety protocol is then followed, including checking whether the safety switch body 1 is faulty, before the monitoring circuit is reset and the machinery is restarted.
  • It will be appreciated that the monitoring circuit 4 may be arranged to allow a longer or shorter time delay than 50 milliseconds. The term 'substantially simultaneously' will be used hereafter to indicate a time delay which is sufficiently short that it will not cause the monitoring circuit 4 to shut down the machinery.
  • The safety switch is arranged to ensure that if the actuator 2 is removed from the safety switch body, open circuits will occur substantially simultaneously across the monitoring ports 4a, 4b, irrespective of whether there is a slight delay between the operation of each of the mechanically operated output switches 6a, 6b.
  • The mechanically operated output switches 6a, 6b are connected to and actuated by the moveable rod 3. When the actuator 2 is inserted into the safety switch body 1, it pushes the movable rod 3 inwards, thereby holding the mechanically operated output switches 6a, 6b in a closed configuration.
  • A mechanically operated synchronisation switch 7a and a mechanically operated power supply switch 7b, are both operated by the rod 3. The mechanically operated synchronisation switch 7a is connected between a first positive voltage source +V1 and a relay 8 which is in turn connected to a first negative voltage source -V1. The mechanically operated power supply switch 7b is connected between a second positive voltage source +V2 and a relay operated switch which will be described further below.
  • The relay 8 is provided with two relay operated switches 9, 10. The relay 8 and relay operated switches 9, 10 are connected via a solenoid generally indicated by a dotted line 11, such that the relay operated switches 9, 10 and the relay 8 are magnetically coupled. For ease of reference this relay 8 will hereafter be referred to as the first relay 8. A first of the relay operated switches 9 is connected to a light (not shown) which is arranged to indicate the status of the safety switch. For ease of reference, this relay operated switch 9 will hereafter be referred to as the relay operated indicator switch 9. The second relay operated switch 10 is connected between a third positive voltage source +V3 and a first plate of a capacitor 12 when the first relay is turned off. This relay operated switch 10 will be hereafter referred to as the relay operated capacitor switch 10. A second plate of the capacitor 12 is connected to a second negative voltage source -V2. Thus, when the first relay 8 is turned off, the capacitor 12 is charged.
  • Although voltage sources are individually referenced in this description, this is for ease of illustration and is not intended to imply that each voltage source provides a different voltage. Instead, each of the positive voltage sources +V1, +V2, +V3 provide the same positive voltage, and each of the negative voltage sources -V1, -V2 provide the same negative voltage.
  • The safety switch further comprises a second relay 13 which is connected via a solenoid generally indicated by dotted line 14 to four relay operated switches 15a, 15b, 16, 17. For ease of the four relay operated switches will be hereafter referred to as relay operated output switches 15a, 15b, relay operated power supply switch 16 and auxiliary switch 17. The relay operated output switches 15a, 15b are connected across the first monitoring port 4a and the second monitoring port 4b respectively, and are in closed configurations when the second relay 13 is turned off. The relay operated power supply switch 16 is arranged to connect the second positive voltage supply +V2, via the mechanically operated power supply switch 7b to the second relay 13. However, the relay operated power supply switch 16 is in an open configuration when the second relay 13 is turned off.
  • The second relay 13 is connected on one side to the relay operated capacitor switch 10 and the relay operated power supply switch 16, and on the other side to the second negative voltage source -V2.
  • The normal configuration of the safety switch, when the actuator 2 is inserted in the safety switch body 1, is as shown in Figure 1. The moveable rod 3 is pushed inwards by the actuator 2. The moveable rod 3 ensures that the mechanically operated output switches 6a, 6b are in closed configurations, that the mechanically operated power supply switch 7b is in a closed configuration, and that the mechanically operated synchronisation switch 7a is in an open configuration. The first relay 8 and the second relay 13 are both turned off. Thus, there are closed circuits across the monitoring ports 4a, 4b, and the monitoring circuit 4 allows the electromechanical machinery to operate. Because the first relay 8 is turned off, the relay operated capacitor switch 10 is in an open configuration and connects the capacitor 12 to the third positive voltage source +V3, thereby ensuring that the capacitor is fully charged. The light (not shown) connected to the relay operated indicator switch 9 indicates that the door of the enclosure is closed.
  • When a user opens the door of the enclosure, the actuator 2 is removed from the safety switch body 1 (the actuator is attached to the door of the enclosure). The action of removing the actuator 2 is shown schematically in stages in Figures 2 to 7. Referring first to Figure 2, the actuator 2 has been moved a short distance out of the housing 2. This movement has, via the moveable rod 3, moved the mechanically operated synchronisation switch 7a to a closed configuration. The mechanically operated switches 6a, 6b, 7a, 7b and the moveable rod 3 are arranged such that when the actuator 2 has moved by the short distance shown in Figure 2, the mechanically operated output switches 6a, 6b and the mechanically operated power supply switch 7b have not moved from their closed configurations.
  • The effect of the mechanically operated synchronisation switch 7a moving to a closed configuration is to connect the first relay 8 to the first positive voltage source +V1. This turns the first relay 8 on, which in turn, via the solenoid 11, actuates the relay operated capacitor switch 10 and the relay operated indicator switch 9. When the relay operated indicator switch 9 is moved to an open configuration, the light (not shown) connected to the relay operated indicator switch indicates that the door of the enclosure is open.
  • When the first relay 8 is energised, the relay operated capacitor switch 10 is moved to a closed configuration, such that the positively charged plate of the capacitor 12 is connected to the second relay 13.
  • Referring to Figure 3, the second relay 13 is energised when it is connected to the positively charged plate of the capacitor 12. When the second relay 13 is energised it moves the relay operated output switches 15a, 15b to open configurations, and moves the relay operated power supply switch 16 and the auxiliary switch 17 to closed configurations. Synchronised movement of the switches 15a, 15b, 16, and 17 is achieved via the solenoid 14. The switching on of the first relay 8 and the second relay 13 happens very quickly, typically in less than one hundredth of a second, with the effect that the actuator 2 does not move appreciably during operation of the relays 8, 13. In particular, the relays 8, 13 are energised, and the relay operated switches 15a, 15b, 16, and 17 are operated before the actuator 2 has moved sufficiently to open the mechanically operated switch 6a.
  • The effect of opening the relay operated output switches 15a, 15b via the solenoid 14 is that the monitoring circuit 4 simultaneously sees open circuits across the first monitoring port 4a and the second monitoring port 4b. Because the monitoring circuit 4 perceives the open circuits simultaneously (or substantially simultaneously), it does not perceive there to be a fault in the operation of the safety switch body.
  • The effect of closing the relay operated power supply switch 16 is to connect the second positive voltage source +V2 via the mechanically operated power supply switch 7b to the second relay 13. This has the effect of keeping the second relay 13 energised once the capacitor 12 has discharged.
  • Figures 4 and 5 show how, as the actuator 2 continues to be moved out of the safety switch body 1, the mechanically operated output switches 6a, 6b move to open configurations. A first of the mechanically operated output switches 6a moves to the open configuration before a second of the mechanically operated output switches 6b, due to the configuration of the output switches. In the absence of the relay operated output switches 15a, 15b, a slow removal of the actuator 2 could cause a time delay between movement of the mechanically operated output switches 6a, 6b, that would be sufficiently large to make the monitoring circuit 4 perceive a fault in the operation of the safety switch. The embodiment of the invention solves this problem. This is advantageous because it avoids the need for an engineer to check whether the safety switch is working correctly, which may be time consuming and expensive.
  • Referring to Figure 6, as the actuator 2 is moved fully out of the safety switch body 1, the mechanically operated power supply switch 7b moves to an open configuration. This has the effect that the second positive voltage source +V2 is no longer connected to the second relay 13. The second relay 13 thus turns off, and moves the relay operated output switches 15a, 15b to closed configurations, whilst moving the relay operated power supply switch 16 and the auxiliary switch 17 to open configurations. The monitoring circuit 4 continues to perceive interrupted voltages across the monitoring ports 4a, 4b since the mechanically operated output switches 6a, 6b remain in open configurations.
  • Once the door of the enclosure has been opened, a user may access the machinery, for example to perform maintenance work. Once maintenance of the machinery has been completed, the door of the enclosure is closed. On closing the door of the enclosure, the actuator 2 is reinserted into the housing 2, thereby closing the mechanically operated output switches 6a, 6b and allowing power to be supplied to the machinery once more. This is illustrated in Figures 7 to 10, which show schematically in stages the actuator 2 being reinserted into the safety switch body 1.
  • Referring to Figure 7, when the actuator 2 is a small distance into the safety switch body 1, the moveable rod 3 moves the mechanically operated power supply switch 7b to the closed configuration. This has no effect because the relay operated power supply switch 16 remains in an open configuration.
  • Referring to Figures 8 and 9, as the actuator 2 is moved further into the safety switch body 1, the moveable rod 3 moves the mechanically operated output switches 6a, 6b to closed configurations. This allows power to be supplied to the machinery. Closing of the mechanically operated output switches 6a, 6b is monitored at the monitoring ports 4a, 4b of the monitoring circuit 4.
  • Referring to Figure 10, as the actuator 2 moves to its fully inserted position in the safety switch body 1, the moveable rod 3 moves the mechanically operated synchronisation switch 7a to the open configuration. This disconnects the first positive voltage source from the first relay 8, thereby turning the first relay off. When the first relay 8 is turned off, it moves the relay operated capacitor switch 10 to an open configuration such that the third positive voltage source +V3 is connected to the capacitor 12, thereby charging the capacitor. The first relay 8 also moves the relay operated indicator switch 9 to a closed configuration, so that the light (not shown) connected to the relay operated indicator switch 9 indicates that the door of the enclosure is closed.
  • As has been explained above, the purpose of the monitoring circuit 4 is to check that the safety switch body 1 is operating correctly. In particular, the monitoring circuit is intended to be able to detect whether one of the mechanically operated output switches 6a, 6b becomes jammed in the closed configuration. It detects this by monitoring the time between opening of the mechanically operated output switches 6a, 6b. Due to the operation of the relay operated output switches 15a, 15b, the monitoring circuit 4 will see substantially simultaneous open circuits across the monitoring ports 4a, 4b when the actuator 2 is removed from the safety switch body 1. Whilst this is advantageous in the case where the safety switch is operating correctly but has been actuated slowly, it is necessary that the monitoring circuit 4 remains able to detect whether operation of the safety switch is faulty.
  • As shown in Figure 6, when the actuator 2 is fully removed from the safety switch body 1, the relay operated output switches 15a, 15b are moved to closed configurations. This allows the monitoring circuit 4 to detect whether one of the mechanically operated output switches 6a, 6b has become jammed in the closed configuration (a closed circuit will be seen instead of an open circuit).
  • As shown in Figure 8, the relay operated output switches 15a, 15b are in closed configurations when the actuator 2 is re-inserted into the safety switch body 1. This allows the monitoring circuit 4 to detect a fault if one of the mechanically operated output switches 6a, 6b becomes jammed in an open configuration (an open circuit will be seen instead of a closed circuit).
  • As described above in relation to Figure 2, when the actuator 2 is removed from the safety switch body 1, the mechanically operated synchronisation switch 7a is actuated before the other mechanically operated switches. An advantage of this arrangement is that if the actuator 2 were to move slightly outwards from the safety switch body 1, for example due to vibration of electromechanical machinery, then substantially simultaneous open circuits would be seen across the monitoring ports 4a, 4b. Although this would cause the electromechanical machinery to be turned off, it would not cause the monitoring circuit 4 to determine that a fault was present. This is advantageous because it avoids the requirement that an engineer checks that the safety switch is operating correctly.
  • Although the illustrated embodiment of the invention comprises two monitoring ports, it will be appreciated that the invention may be implemented for any number of monitoring ports. This may be achieved by adding additional mechanically operated output switches and associated relay operated output switches.
  • Although the illustrated embodiment of the invention uses a actuator 2 to actuate the moveable rod 3, it will be appreciated that other suitable means may be used to actuate the moveable rod 3. For example, a mechanical button may be used. Similarly, it is not necessary that actuation of the mechanical switches 6a, 6b, 7a, 7b is performed by a moveable rod; other suitable mechanical actuation means may be used. The mechanical switches 6a, 6b, 7a, 7b may take any suitable form, and could for example be non-contact switches such as reed switches.
  • Although the illustrated embodiment of the invention uses individual electrical components, which may for example be mounted on a printed circuit board, it will be appreciated that the invention may alternatively be implemented in semiconductor as in integrated circuit.

Claims (10)

  1. A safety switch body having a plurality of outputs, each output comprising an electrically operated output switch (15a,15b) characterized in that each output further comprises a mechanically operated output switch (6a, 6b), the electrically operated output switches (15a,15b) being connected to a mechanically operated synchronisation switch (7a), wherein the mechanically operated output switches and synchronisation switch are connected to a mechanical mechanism (3) arranged such that, during operation of the safety switch, the mechanically operated synchronisation switch (7a) is actuated before the mechanically operated output switches, thereby switching the electrically operated output switches substantially, simultaneously before the mechanically operated output switches are actuated.
  2. A safety switch according to claim 1, wherein the electrically operated output switches are connected to the mechanically operated synchronisation switch by an electrical mechanism.
  3. A safety switch according to claim 2, wherein the electrical mechanism is a relay.
  4. A safety switch according to claim 3, wherein the mechanically operated synchronisation switch is connected to the relay via a second relay (13).
  5. A safety switch according to claim 3, further comprising a capacitor switched by the second relay between an electrical source and the first relay, the second relay being arranged such that the capacitor is connected to the electrical source until the mechanically operated synchronisation switch is actuated, whereupon the capacitor is connected to the first relay, thereby discharging the capacitor through the first relay to energise the first relay on.
  6. A safety switch according to claim 4 or claim 5, wherein the safety switch further comprises a relay operated power supply switch, the relay operated power supply switch being connected between an electrical source and the first relay, and being closed when the first relay is energised, thereby providing electrical power to the first relay.
  7. A safety switch according to claim 6, wherein a mechanically operated power supply switch is connected between the first relay and the electrical source, the mechanically operated power supply switch being connected to the mechanical actuator, the mechanical actuator being arranged such that during actuation the mechanically operated power supply switch is actuated after the mechanically operated output switches, thereby interrupting the electrical power provided to the first relay.
  8. A safety switch according to any preceding claim, wherein a monitoring circuit is provided, the monitoring circuit having a monitoring port connected across each output of the safety switch.
  9. A safety switch according to any preceding claim, wherein the mechanical actuator comprises a resiliently mounted moveable rod.
  10. A safety switch according to any preceding claim, wherein the mechanical actuator is arranged to be actuated by a removable key.
EP20060254894 2005-10-08 2006-09-21 Safety switch Expired - Fee Related EP1772880B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0520515A GB0520515D0 (en) 2005-10-08 2005-10-08 Safety switch

Publications (2)

Publication Number Publication Date
EP1772880A1 EP1772880A1 (en) 2007-04-11
EP1772880B1 true EP1772880B1 (en) 2008-08-27

Family

ID=35430059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060254894 Expired - Fee Related EP1772880B1 (en) 2005-10-08 2006-09-21 Safety switch

Country Status (3)

Country Link
EP (1) EP1772880B1 (en)
DE (1) DE602006002464D1 (en)
GB (1) GB0520515D0 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1022811A (en) * 1962-11-07 1966-03-16 Westinghouse Electric Corp Improvements in or relating to switching apparatus
DE3606458A1 (en) * 1986-02-27 1987-09-03 Siemens Ag Electromechanical locking arrangement

Also Published As

Publication number Publication date
DE602006002464D1 (en) 2008-10-09
EP1772880A1 (en) 2007-04-11
GB0520515D0 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
KR100887448B1 (en) Method and device for securely operating a switching device
US7928330B2 (en) Safety switch
US8003909B2 (en) Emergency off switching device
US9412534B2 (en) Pushbutton compact component
KR20090006018A (en) Group protection module for a switchgear arrangement and switchgear arrangement having such a group protection module
KR102506084B1 (en) Vacuum circuit breaker equipped with a function of realtime monitoring and the monitoring method
EP1876616B1 (en) Reset device for limit switch and limit switch incorporating such device
CN203192640U (en) Interlocking device of high-voltage stationary cabinet
JPH07262864A (en) Electric switch with press rod
EP1772880B1 (en) Safety switch
CN103247493A (en) Auxiliary trigger for an electric switching device and electric switching device
JP2010015987A (en) Switching device equipped with remover
WO2011129349A1 (en) Relay, control circuit, and method for controlling control circuit
KR20180110532A (en) Electric interlock circuit for circuit breaker
CN204303732U (en) For auxiliary shearing device and the electric switching system of electric switching system
CN111161963A (en) Switch assembly with safety accessory solution for emergency stop device
US10121620B2 (en) Control unit and actuator with control unit
US10199181B2 (en) Holding device for receiving switching elements for a command and alert device
SU1105956A1 (en) Automatic starter
EP2579285B1 (en) Switching device and related switchgear
JP2007115589A (en) Electromagnetic switch
CN117672767A (en) Relay device and safety switching device having at least one relay device
KR19980042913U (en) Gas Discharge Structure of Arc Box for Magnetic Contactor
KR20190000457U (en) Arc gas venting structure of air circuit breaker
KR20180127298A (en) Arc gas venting structure of air circuit breaker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070828

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006002464

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROCKWELL AUTOMATION LIMITED

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200819

Year of fee payment: 15

Ref country code: FR

Payment date: 20200819

Year of fee payment: 15

Ref country code: DE

Payment date: 20200819

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006002464

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401