EP1771569A2 - Verfahren und zusammensetzungen zur modulierung der blüte und reife von pflanzen - Google Patents

Verfahren und zusammensetzungen zur modulierung der blüte und reife von pflanzen

Info

Publication number
EP1771569A2
EP1771569A2 EP05777342A EP05777342A EP1771569A2 EP 1771569 A2 EP1771569 A2 EP 1771569A2 EP 05777342 A EP05777342 A EP 05777342A EP 05777342 A EP05777342 A EP 05777342A EP 1771569 A2 EP1771569 A2 EP 1771569A2
Authority
EP
European Patent Office
Prior art keywords
plant
sequence
nucleic acid
acid molecule
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05777342A
Other languages
English (en)
French (fr)
Other versions
EP1771569B1 (de
EP1771569A4 (de
Inventor
Dwight Tomes
S. Dept Agroenvironmental Sci. and Techn. SALVI
Michele University of Udine MORGANTE
G. Dept Agroenvironmental Sci. and Techn. SPONZA
Edward Bruggemann
Xiaomu Niu
Bailin Li
R. Dept Agroenvironmental Sci. and Tech TUBEROSA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universita di Bologna
Pioneer Hi Bred International Inc
Original Assignee
Universita di Bologna
Pioneer Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universita di Bologna, Pioneer Hi Bred International Inc filed Critical Universita di Bologna
Publication of EP1771569A2 publication Critical patent/EP1771569A2/de
Publication of EP1771569A4 publication Critical patent/EP1771569A4/de
Application granted granted Critical
Publication of EP1771569B1 publication Critical patent/EP1771569B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • This invention is related to compositions and methods for affecting flowering time in plants.
  • Plants have two basic growth modes during their life cycles — vegetative growth and flower and seed growth. Above ground vegetative growth of the plant develops from the apical meristem. This vegetative meristem gives rise to all of the leaves that are found on the plant. The plant will maintain its vegetative growth pattern until the apical meristem undergoes a change. This change actually alters the identity of the meristem from a vegetative to an inflorescence meristem. The inflorescence meristem produces small leaves before it next produces floral meristems. It is the floral meristem from which the flower develops.
  • the first genetic change involves the switch from the vegetative to the floral state. If this genetic change is not functioning properly, then flowering will not occur.
  • the second genetic event follows the commitment of the plant to form flowers. The observation that the organs of the plant develop in a sequential manner suggests that a genetic mechanism exists in which a series of genes are sequentially turned on and off.
  • Flowering time is an important agronomic trait in cultivated plant species as it determines in large measure the growing region of adaptation. Most angiosperm species are induced to flower in response to environmental stimuli such as day length and temperature, and internal cues, such as age. Genetic analysis revealed that there are several types of mutants that alter flowering time.
  • Flower meristems are derived from inflorescence meristems in both Arabidopsis and Antirrhinum. Two factors that control the development of meristematic cells into flowers are known. In Arabidopsis, the factors are the products of the LEAFY gene (Weigel, et al., Cell 69:843, 1992) and the APETALAl gene (Mandel, et al., Nature 360:273, 1992). When either of these genes is inactivated by mutation, structures combining the properties of flowers and inflorescence develop (Weigel, et al., supra; Irish and Wales, Plant Cell, 2:741, 1990).
  • the homologue of the Arabidopsis LEAFY gene is FLORIC AULA (Coen, et al., Cell, 63:1311, 1990) and that of the APETALAl gene is SQUAMOSA (Huijser, et al., EMBO J., 11 :1239, 1992).
  • FLORIC AULA Coen, et al., Cell, 63:1311, 1990
  • SQUAMOSA Human, et al., EMBO J., 11 :1239, 1992.
  • the latter pair contains MADS box domains.
  • APETALA2 (AP2) plays an important role in the control of Arabidopsis flower and seed development and encodes a putative transcription factor that is distinguished by a novel DNA binding motif referred to as the AP2 domain.
  • the AP2 domain containing or RAP2 (related to AP2) family of proteins is encoded by a minimum of 12 genes in
  • the RAP2 genes encode two classes of proteins, AP2-like and EREBP-like, that are defined by the number of AP2 domains in each polypeptide as well as by two sequence motifs referred to as the YRG and RAYD elements that are located within each AP2 domain.
  • RAP2 genes are differentially expressed in flower, leaf, inflorescence stem, and root.
  • the expression of at least three RAP2 genes in vegetative tissues are controlled by AP2.
  • AP2 is active during both reproductive and vegetative development.
  • Maize is a monocotyledonous plant species and belongs to the grass family. It is unusual for a flowering plant as it has unisexual inflorescences The male inflorescence (tassel) develops in a terminal position, whereas the female inflorescences (ears) grow in the axil of vegetative leaves.
  • the inflorescences as typical for grasses, are composed of spikelets. In the case of maize each spikelet contains two florets (the grass flower) enclosed by a pair of bracts (inner and outer glume).
  • a number of genes have been identified which modify flowering time in maize including IdI and DLF.
  • compositions and methods involved in the modulation of flowering in plants are provided.
  • the compositions include nucleic acid molecules isolated from maize which encode RAP2.7 proteins. Amino acid sequences of these proteins are also provided. Further, polynucleotides having nucleic acid sequences encoding maize RAP2.7 proteins are also provided. These proteins and the nucleotide sequences encoding them provide an opportunity to manipulate maturity of plants. When polynucleotide sequences encoding the RAP2.7 gene product are overexpressed flowering time is delayed, and when the product is inhibited flowering is earlier.
  • compositions of the invention provide for the ability to make significant changes in maturity while keeping other vegetative and reproductive characteristics similar using a transgenic approach.
  • the invention includes methods for manipulating the maturity of plants using polynucleotide sequences that were isolated from maize (Zea mays). These sequences alone, or in combination with other sequences, can be used to control plant maturity and thus area of adaptation.
  • nucleotide constructs such as expression cassettes and transformation vectors comprising the isolated nucleotide sequences are disclosed.
  • the transformation vectors can be used to transform plants and express the flower modulation control genes in the transformed cells. In this manner, the maturity of plants as well as area of adaptation can be controlled.
  • Transformed cells as well as regenerated transgenic plants and seeds containing and expressing the isolated polynucleotide sequences and protein products are also provided.
  • VGTl a novel DNA sequence termed (VGTl) which is a 2kb region on maize chromosome 8L.
  • VGTl acts as a CIS interaction type non-coding RNA sequence for maize RAP2.7. hi mutants with early flowering, VGTl may interact or repress the expression level of RAP2.7 causing down regulation of RAP2.7 and early flowering.
  • the invention also comprises nucleotide sequences encoding a
  • VGTl DNA factor which interacts either directly or indirectly with RAP2.7 in modulating the flowering time in plants.
  • the invention includes nucleotide sequences, polymorphisms, "expression-type” constructs with the VGTl sequences operably linked to promoters regions for transcription of the same, transgenic cells and plants with altered flowering time.
  • the VGTl sequences and the alternate forms thereof may also be used as markers to identify plants with flowering that may be different from wild type.
  • the polynucleotide of the invention or at least 20 contiguous bases therefrom may be used as probes to isolate and identify similar genes in other plant species.
  • the sequences disclosed may also be used to isolate regulatory elements and promoter sequences that are natively associated with the polynucleotides disclosed herein to give spatial and temporal expression of operatively linked sequences to flowering in plants.
  • Figure 1 is a graph depicting the levels of RAP2.7 expression at Day: 14, day 20 and day 27.
  • FIG 2 is an illustration of the over-expression vector used in transformation, showing the portion between the right and left T-DNA borders (RB, LB).
  • the transformation vector for RAP2.7 over-expression, PHP20922 was created by electroporating the JT vector PHP20921 into Agrobacterium.
  • the Invitrogen (Carlsbad, California) Gateway technology was used to create PHP20921.
  • the RAP2.7 coding region was first amplified by PCR with 5 '-primer (ggggacaagtttgtacaaaaagcaggctatgcagttggatctgaacgt) and 3 'primer (ggggaccactttgtacaagaaagctgggttcagcggggatggtgatg). These primers contain Gateway attB recombination sites.
  • the PCR product was confirmed by sequencing and cloned into a Gateway vector pDONR221 via a BP recombination reaction as described by the vendor (Invitrogen, Carlsbad, California). This resulted in the entry clone, PHP20923.
  • a destination vector PHP20909 was also created from pDESTR4-R3 vector (Invitrogen, Carlsbad, California) by inserting an expression cassette of the CaMV35S promoter driving the herbicide resistance gene Bar followed by a pinll terminator.
  • the four vectors, PHP20923, 20830, 20234 and 20909, were then used to create the JT vector, PHP20921, via a LR recombination reaction following vendor's instructions (Invitrogen, Carlsbad, California).
  • Figure 3 is the deduced amino acid sequence of RAP2.7 from C22-4 allele.
  • the two putative AP2 domains are highlighted in bold, whereas the linker region between them is italicized.
  • the well conserved YRG and RAYD motifs are underlined, although there is an R to K substitution in the second RAYD motif.
  • Figure 4 is a GAP alignment between the genomic RAP2.7 from B73 compared to the sequence of RAP2.7 of MO17.
  • Mannutu, C McLaughlin J. and Phillips R.L. 1999. Fine Mapping and Characterization of Linked Quantitative Trait Loci Involved in the Transition of the Maize Apical Meristem From Vegetative to Generative Structures. Genetics 153: 993-1007.
  • Figure 5 is an illustration of construction of the RAP2.7 gene fragments for the
  • Fragment TRl (Truncatedl) was created by PCR using forward (ggatccgatctgaacgtggccgag) and reverse primers (gaattcctaggcagctgttcttgtctctttg) corresponding to roughly 2/3 of the coding sequence starting from 9 bp downstream of ATG.
  • Fragment IRl (Invertedl) was generated similarly by PCR with forward (gcggccgcgatctgaacgtggccgag) and reverse primers (gaattctgtgggactcccagcggcctgtgc) starting from the same position as TRl, although IRl is only half the length of TRl.
  • FIG. 6 is an illustration of the vector used in transformation showing only the portion between the right and left T-DNA borders (RB, LB).
  • fragments corresponding to truncated coding regions to be used for the RNA interference construct were generated by as TRl, flanked by BamHl and EcoRl, and IRl, flanked by Notl and EcoRl restriction sites.
  • Vector PHP 16501 containing the rice actin promoter was linearized with Notl and BamHl.
  • TRl was cloned in downstream of Notl followed by IRl in reverse orientation.
  • the resulting cassette vector, PHP21767 was then cloned into a JT vector containing the CaMV35S promoter driving the herbicide resistance gene Bar.
  • the transformation vector for RAP2.7 down regulation, PHP21842 was generated by electroporating PHP21798 into Agrobacterium.
  • Figure 7 is the data showing the fine genetic and physical mapping of VGTl.
  • First row indicates physical distance (in kb) from Rap2.7, based on sequence derived from the relevant Mo 17 BAC clone from library.
  • Second row indicates the type of molecular marker.
  • Third row indicates the name of the molecular markers. Rows from 4 to 21 indicate the genotype of parental lines (N28 and C22-4) and of the 17 segmental QTL- Nearly Isogenic Lines.
  • the VGTl column shows where the QTL was mapped. The last two columns provide the phenotypic scores for DPS (Days to Pollen Shed) and ND (plant node number).
  • Figure 8 is a graph showing the results of association mapping for markers developed at the Vgtl-Rap2.7 region and phenotypic data for flowering time collected in Bologna (2002 and 2003) among a set of 96 maize inbred lines. Statistical association is expressed as P from ANOVA tests.
  • Figure 9 is an alignment of the VGTl sequences from all four lines, including a consensus sequence line N28 was identical to B73.
  • the present invention provides, inter alia, compositions and methods for manipulating flowering time in plants.
  • flowering time or maturity shall mean the time at which a plant reaches physiological maturity and is capable of reproducing.
  • compositions comprise nucleic acid molecules comprising sequences of plant genes and the polypeptides encoded thereby as well as regulatory factors which are non- coding.
  • nucleotide and amino acid sequences for a maize RAP2.7 (related to AP2 domain containing) gene are provided.
  • Three RAP2.7 encoding nucleotide sequences are provided at SEQ ID NOS: 1 (cDNA), 3 (genomic), and 4 (genomic) with the corresponding protein at SEQ ID NO: 2.
  • Three VGTl nucleotide sequences are provided at SEQ ID NOS: 5, 6, and 7 with the consensus sequence at SEQ ID NO:8.
  • sequences of the invention are involved in many basic biochemical pathways that regulate flowering time and maturity in plants.
  • methods are provided for the expression of these sequences in a host plant to modulate plant flowering.
  • Some of the methods involve stably transforming a plant with a nucleotide sequence capable of modulating plant flowering operably linked with a promoter capable of driving expression (or transcription) of a nucleotide sequence in a plant cell.
  • Promoter and other regulatory elements which are natively associated with these genes can be easily isolated using the sequences and methods described herein with no more than routine experimentation. These sequences can be used to identify promoter, enhancer or other signaling signals in the regulatory regions of RAP2.7 encoding sequences. These regulatory and promoter elements provide for temporal and spatial expression of operably linked sequences with flowering in a plant. Methods are provided for the regulated expression of a nucleotide sequence of interest that is operably linked to the promoter regulatory sequences disclosed herein. Nucleotide sequences operably linked to the promoter sequences are transformed into a plant cell. Exposure of the transformed plant to a stimulus such as the timing of flowering induces transcriptional activation of the nucleotide sequences operably linked to these promoter regulatory sequences.
  • heterologous nucleotide sequence is intended a sequence that is not naturally occurring with the referenced sequence. While the referenced nucleotide sequence is heterologous to the promoter sequence or vice versa, it may be homologous, or native, or heterologous, or foreign, to the plant host.
  • operably linked is intended a functional linkage between a promoter sequence and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.
  • operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. In the case of a DNA regulatory factor the nucleic acid sequences are transcribed only.
  • a polypeptide is said to have RAP2.7-like activity when it has one or more of the properties of the native protein. It is within the skill in the art to assay protein activities obtained from various sources to determine whether the properties of the proteins are the same. In so doing, one of skill in the art may employ any of a wide array of known assays including, for example, biochemical and/or pathological assays. For example, one of skill in the art could readily produce a plant transformed with a RAP2.7 polypeptide variant and assay a property of native RAP2.7 protein in that plant material to determine whether a particular RAP2.7 property was retained by the variant.
  • compositions and methods of the invention are involved in biochemical pathways and as such may also find use in the activation or modulation of expression of other genes, including those involved in other aspects of flowering time.
  • proteins encoded by members of these gene families may contain different elements or motifs or sequence patterns that modulate or affect the activity, subcellular localization, and/or target of the protein in which they are found. Such elements, motifs, or sequence patterns may be useful in engineering novel enzymes for modulating gene expression in particular tissues.
  • modulating or “modulation” is intended that the level of expression of a gene may be increased or decreased relative to genes driven by other promoters or relative to the normal or uninduced level of the gene in question.
  • overexpression of maize RAP2.7 caused flowering that was later than normal in plants as well as an increased number of leaves (nodes) produced prior to flowering resulting in taller plant stature. Inhibition of maize RAP2.7 caused maturation or flowering that was earlier than normal. Also the presence of mutant VGTl correlated with earlier flowering as well, thus leading to the concept that VGTl acts as direct or indirect enhancer/regulator of RAP2.7. Expression of the proteins encoded by RAP2.7 encoding sequences or transcription of the VGTl regulatory element can be used to modulate or regulate the expression of proteins in these flowering pathways and other directly or indirectly affected pathways. Hence, the compositions and methods of the invention find use in altering plant flowering and maturity.
  • fragments of the sequences are used to confer desired properties to synthetic constructs for use in regulating plant maturity and flowering.
  • the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NOS: 2 as well as their conservatively modified variants. Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein, for example those polypeptides comprising the sequences set forth in SEQ ID NO: 1, 3 and 4, and fragments and variants thereof.
  • the present invention further provides for an isolated nucleic acid molecule comprising the sequences shown in SEQ ID NO: 1, 3, 4, 5, 6, 7, or 8.
  • the invention encompasses isolated or substantially purified nucleic acid or protein compositions.
  • An "isolated” or “purified” nucleic acid molecule or protein, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • an "isolated" nucleic acid is free of sequences (such as other protein-encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3 1 ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, 0.4 kb, 0.3 kb, 0.2 kb, or 0.1 kb, or 50, 40, 30, 20 , or 10 nucleotides that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
  • a protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, (by dry weight) of contaminating protein.
  • culture medium may represent less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-protein-of-interest chemicals. Fragments and variants of the disclosed nucleotide sequences which retain the functional properties of the encoded peptide or of the non-coding RNA are encompassed by the present invention. By “fragment” is intended a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby.
  • Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence affect flowering by retaining RAP2.7-like activity or may include portions of non-coding regulatory element which retain the RAP2.7 modulating activity of VGTl.
  • fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment proteins retaining biological activity.
  • fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence encoding the proteins or regulating RAP2.7 of the invention.
  • a fragment of a RAP2.7 nucleotide sequence that encodes a biologically active portion of a RAP2.7 protein of the invention will encode at least 12, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, or 450, contiguous amino acids, or up to the total number of amino acids present in a full-length RAP2.7 protein of the invention.
  • a fragment of a VGTl nucleotide sequence that encodes a biologically active non- transcribed RNA of the invention will encode at least 12, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, or 680 contiguous nucleotide bases or up to the total number of nucleotides present in a full-length VGTl regulatory element of the invention.
  • Fragments of a RAP2.7 or VGTl nucleotide sequence that are useful as hybridization probes or PCR primers generally need not encode a biologically active portion of a protein or RNA.
  • a fragment of a RAP2.7 or VGTl nucleotide sequence may encode a biologically active portion of a RAP2.7 protein or a biologically active non-coding RNA, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below.
  • a biologically active portion of a RAP2.7 protein or VGTl regulatory element can be prepared by isolating a portion of the RAP2.7 or VGTl nucleotide sequences of the invention, expressing the encoded portion of the Rap2.7 or the active portion of the VGTl regulatory element (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the RAP2.7 protein or the regulating ability of the regulatory element on RAP2.7.
  • Nucleic acid molecules that are fragments of a RAP2.7 or VGTl nucleotide sequence comprise at least 16, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, or 2400 nucleotides, or up to the number of nucleotides present in a full RAP2.7 or VGTl nucleotide sequence disclosed herein.
  • variants are intended substantially similar sequences.
  • conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the polypeptides of the invention.
  • Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below.
  • Variant nucleotide sequences also include synthetically-derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis but which still encode a RAP2.7 protein or VGTl regulatory element of the invention.
  • variants of a particular nucleotide sequence of the invention will have at least 40%, 50%, 60%, 70%, generally at least 75%, 80%, 85%, or about 90%, 91%, 92%, 93%, 94%, 95%, 96%,97%, 98%, 99%, or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters.
  • variant protein is intended a protein derived from the native protein by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C- terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein.
  • variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, hence they will continue to possess at least one activity possessed by the native RAP2.7 protein. Such variants may result from, for example, genetic polymorphism or from human manipulation.
  • Biologically active variants of a RAP2.7 native protein of the invention will have at least 40%, 50%, 60%, 70%, generally at least 75%, 80%, 85%, 86%, 87%, 88%, 89%, about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs described elsewhere herein using default parameters.
  • a biologically active variant of a protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, , as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.
  • reference to a particular nucleotide or amino acid sequence shall include all modified variants as described supra.
  • the proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art.
  • amino acid sequence variants of RAP2.7 proteins can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) Proc. Nad. Acad. ScL USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367- 382; U.S.
  • nucleotide sequences of the invention include both naturally occurring sequences as well as mutant forms.
  • proteins of the invention encompass both naturally-occurring proteins as well as variations and modified forms thereof.
  • variants whether protein or nucleotide will continue to possess the desired RAP2.7 or VGTl -like activity. It is recognized that variants need not retain all of the activities and/or properties of the native RAP2.7 or VGTl.
  • the mutations that will be made in the DNA encoding the RPA2.7 variant must not place the sequence out of reading frame and in some embodiments will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.
  • deletions, insertions, and substitutions of the protein or nucleotide sequences encompassed herein are not expected to produce radical changes in the characteristics of the RAP 2.7 protein or VGTl regulatory element. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity of RAP2.7 polypeptides or VGTl can be evaluated by either a change in flowering time or maturity when the encoded protein or regulatory element is altered.
  • Variant nucleotide sequences and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling.
  • RAP2.7 or VGTl coding sequences can be manipulated to create a new RAP2.7 or VGTl possessing the desired properties.
  • libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo.
  • sequence motifs encoding a domain of interest may be shuffled between the RAP2.7 encoding polynucleotide of the invention and other known flowering genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased K m in the case of an enzyme.
  • compositions of the invention also include isolated nucleic acid molecules comprising the promoter nucleotide sequences natively associated with the RAP2.7 polynucleotides.
  • promoter is intended a regulatory region of DNA usually comprising a TATA box capable of directing RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site for a particular coding sequence.
  • a promoter may additionally comprise other recognition sequences generally positioned upstream or 5' to the TATA box, referred to as upstream promoter elements, which influence the transcription initiation rate.
  • the nucleotide sequences of the invention can be used to isolate corresponding sequences from other organisms, particularly other plants, more particularly other crop plants.
  • sequences can be used to identify such sequences based on their sequence homology to the sequences set forth herein.
  • Sequences isolated based on their sequence identity to the nucleotide sequences set forth herein or to fragments thereof are encompassed by the present invention.
  • Such sequences include sequences that are orthologs of the disclosed sequences.
  • orthologs is intended genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.
  • oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any plant of interest.
  • Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press Plainview, New York). See also Innis et al., eds.
  • PCR Protocols A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York).
  • Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.
  • hybridization techniques all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present it a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism.
  • the hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as 32 P, or any other detectable marker.
  • probes for hybridization can be made by labeling synthetic oligonucleotides based on the disease-resistant sequences of the invention.
  • an entire sequence disclosed herein, or one or more portions thereof may be used as a probe capable of specifically hybridizing to corresponding flowering or maturity regulating sequences, including promoters and messenger RNAs.
  • probes include sequences that are unique among flowering or maturity related sequences and may be at least about 10 or 15 or 17 nucleotides in length or at least about 20 or 22 or 25 nucleotides in length.
  • Such probes may be used to amplify corresponding sequences from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism.
  • Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
  • Hybridization of such sequences may be carried out under stringent conditions.
  • stringent conditions or “stringent hybridization conditions” is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background).
  • Stringent conditions are sequence- dependent and will be different under different circumstances.
  • target sequences that are 100% complementary to the probe can be identified (homologous probing).
  • stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing).
  • a probe is less than about 1000 nucleotides in length or less than 500 nucleotides in length.
  • stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3. Incubation should be at a temperature of least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 0 C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.
  • Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to IX SSC at 55 to 60 0 C.
  • Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in O.1X SSC at 60 to 65°C for 20 minutes.
  • wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.
  • T m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T m is reduced by about 1 °C for each 1% of mismatching; thus, T m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the T m can be decreased 10°C.
  • stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence and its complement at a defined ionic strength and pH.
  • severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T m ); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (Tm); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20 0 C lower than the thermal melting point (Tm).
  • the SSC concentration may be increased so that a higher temperature can be used.
  • sequences that encode a RAP2.7 protein or which encode a VGTl regulatory element and which hybridize to the RAP2.7 or VGTl sequences disclosed herein will be at least about 70% homologous, and even about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 98%, 99% or more homologous with the disclosed sequences.
  • sequence identity of the sequences may be from about 70% or 75%, and even about 80%, 85%, 87%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical, or higher, so that the sequences may differ by only 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue or by 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 nucleic acid.
  • the following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) “reference sequence,” (b) “comparison window,” (c) “sequence identity,” (d) "percentage of sequence identity,” and (e) “substantial identity.”
  • reference sequence is a defined sequence used as a basis for sequence comparison.
  • a reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
  • comparison window makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
  • the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer.
  • Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, Wisconsin, USA). Alignments using these programs can be performed using the default parameters.
  • the CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151- 153; Corpet et al.
  • Gapped BLAST in BLAST 2.0
  • PSI-BLAST in BLAST 2.0
  • PSI-BLAST in BLAST 2.0
  • sequence identity/similarity values provided herein refer to the value obtained using GAP version 10 using the following parameters: % identity using GAP Weight of 50 and Length Weight of 3; % similarity using Gap Weight of 12 and Length Weight of 4, or any equivalent program.
  • equivalent program is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.
  • GAP uses the algorithm of Needleman and Wunsch (1970) J. MoI. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.
  • GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3.
  • the gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200.
  • the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.
  • GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity.
  • the Quality is the metric maximized in order to align the sequences.
  • Ratio is the quality divided by the number of bases in the shorter segment.
  • Percent Identity is the percent of the symbols that actually match.
  • Percent Similarity is the percent of the symbols that are similar.
  • sequence identity or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
  • sequence similarity or “similarity.” Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity.
  • percentage of sequence identity means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
  • polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70%, 80%, 85%, 90%, 95%, or higher sequence identity compared to a reference sequence using one of the alignment programs described using standard parameters.
  • sequence identity can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.
  • Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or at least 95% or higher sequence identity.
  • nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions.
  • stringent conditions are selected to be about 5°C lower than the thermal melting point (Trr,) for the specific sequence at a defined ionic strength and pH.
  • stringent conditions encompass temperatures in the range of about l'C to about 20°C lower than the T m , depending upon the desired degree of stringency as otherwise qualified herein.
  • Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.
  • One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross-reactive with the polypeptide encoded by the second nucleic acid.
  • substantially identical in the context of a peptide indicates that a peptide comprises a sequence with at least 70%, 75%, 80%, 83%, 85%, 88%, 90%, 93%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity to the reference sequence over a specified comparison window.
  • optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch (1970) J MoI. Biol. 48:443453. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide.
  • a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution.
  • Peptides that are "substantially similar" share sequences as noted above except that residue positions that are not identical may differ by conservative amino acid changes.
  • the methods involve stably transforming a plant with a DNA construct comprising a nucleotide sequence of the invention operably linked to a promoter that drives expression (or transcription) in a plant. While the choice of promoter will depend on the desired timing and location of expression of the nucleotide sequences, desirable promoters include constitutive and tissue specific promoters. These methods may find use in agriculture, particularly in changing the maturity of a particular crop plant to alter its area of adaptation. Thus, transformed plants, plant cells, plant tissues and seeds thereof are provided by the present invention. In another embodiment, the methods of the present invention involve identifying phenotypes associated with an altered flowering time by loss of RAP2.7 or VGTl activity in plants that contain transposon insertions within the nucleotide sequences herein.
  • the nucleic acid molecules comprising RAP2.7 or VGTl sequences of the invention are provided in expression cassettes or nucleotide constructs for expression/transcription in the plant of interest.
  • Such cassettes will include 5' and 3' regulatory sequences operably linked to a RAP2.7 or VGTl nucleotide sequence of the invention.
  • operably linked is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.
  • the cassette may additionally contain at least one additional nucleotide sequence to be cotransformed into the organism. Alternatively, the additional sequence(s) can be provided on multiple expression cassettes or nucleotide construct.
  • Such an expression cassette or nucleotide construct is provided with a plurality of restriction sites for insertion of the RAP2.7 or VGTl sequence to be under the transcriptional regulation of the regulatory regions.
  • the expression cassette or nucleotide construct may additionally contain selectable marker genes.
  • the expression cassette will include in the 5'-3' direction of transcription, a transcriptional and if necessary a translational initiation region, a RAP2.7 or VGTl nucleotide sequence of the invention, and a transcriptional and if necessary, translational termination region functional in plants.
  • the transcriptional initiation region, or promoter may be native or analogous or foreign or heterologous to the plant host. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence.
  • a “chimeric gene” comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.
  • the native promoter sequences may be used. Such constructs would change expression levels of the RAP2.7 or amounts of the VGTl regulatory element present in the plant or plant cell. Thus, the phenotype of the plant or plant cell is altered.
  • the termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, or may be derived from another source.
  • Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) MoI. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al.
  • the gene(s) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant- preferred codons for improved expression. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Patent Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.
  • Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well characterized sequences that may be deleterious to gene expression.
  • the G-C content of the sequence may be adjusted to enhance expression in a given host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.
  • the expression cassettes/nucleotide constructs may additionally contain 5' leader sequences in the expression cassette construct.
  • leader sequences can act to enhance translation.
  • Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) Proc. Nat'l. Acad. Sci. USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al.
  • MDMV leader Mainze Dwarf Mosaic Virus
  • Virology 154:9-20 and human immunoglobulin heavy-chain binding protein (BiP), (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al.
  • AMV RNA 4 alfalfa mosaic virus
  • TMV tobacco mosaic virus leader
  • MCMV maize chlorotic mottle virus leader
  • the expression cassette may further comprise a coding sequence for a transit peptide.
  • transit peptides are well known in the art and include, but are not limited to, the transit peptide for the acyl carrier protein, the small subunit of RUBISCO, plant EPSP synthase, and the like.
  • the various DNA fragments may be manipulated so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame.
  • adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like.
  • in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions may be involved.
  • the expression cassette/nucleotide construct will comprise a selectable marker gene for the selection of transformed cells.
  • Selectable marker genes are utilized for the selection of transformed cells or tissues.
  • Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4- dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christopherson et al. (1992) Proc.
  • selectable marker genes are not meant to be limiting. Any selectable marker gene can be used in the present invention.
  • a number of promoters can be used in the practice of the invention. The promoters can be selected based on the desired outcome. That is, the nucleic acids can be combined with constitutive, tissue-preferred, or other promoters for expression in plants.
  • Constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35 S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant MoI. Biol.
  • Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator.
  • the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression.
  • Chemical- inducible promoters are known in the art and include, but are not limited to: the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners; the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides; and the tobacco PR-I a promoter, which is activated by salicylic acid.
  • promoters of interest include steroid-responsive promoters. See, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Nad. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (for example, Gatz et al. (1991) MoI. Gen. Genet. 227:229-237, and U.S. Patent Nos. 5,814,618 and 5,789,156), herein incorporated by reference.
  • Tissue-preferred promoters can be utilized to target enhanced gene expression within a particular plant tissue.
  • Tissue-preferred promoters include Yamamoto et al. (1997) Plant J 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792- 803; Hansen et al. (1997) MoI. Gen Genet. 254(3):337-343; Russell et al. (1997)
  • Leaf-specific promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J 3:509-18; Orozco et al. (1993) Plant MoI. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Nad. Acad. Sci. USA 90(20):9586-9590.
  • weak promoters will be used.
  • weak promoter a promoter that drives expression of a coding sequence at a low level.
  • low level is intended at levels of about 1/1000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts per cell.
  • weak promoters also include promoters that are expressed in only a few cells and not in others to give a total low level of expression. Where a promoter is expressed at unacceptably high levels, portions of the promoter sequence can be deleted or modified to decrease expression levels.
  • weak constitutive promoters include, for example, the core promoter of the Rsyn 7 promoter (WO 99/43838 and U.S. Patent No.
  • vector refers to a molecule such as a plasmid, cosmid or bacterial phage for introducing a nucleotide construct and/or expression cassette into a host cell.
  • Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites at which foreign nucleotide sequences can be inserted in a determinable fashion without loss of essential biological function of the vector, as well as a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance, hygromycin resistance or ampicillin resistance.
  • the methods of the invention involve introducing a nucleotide construct into a plant.
  • introducing is intended presenting to the plant the nucleotide construct in such a manner that the construct gains access to the interior of a cell of the plant.
  • the methods of the invention do not depend on a particular method for introducing a nucleotide construct to a plant, only that the nucleotide construct gains access to the interior of at least one cell of the plant.
  • Methods for introducing nucleotide constructs into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.
  • stable transformation is intended that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by progeny thereof.
  • transient transformation is intended that a nucleotide construct introduced into a plant does not integrate into the genome of the plant.
  • the nucleotide constructs of the invention may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct of the invention within a viral DNA or RNA molecule. It is recognized that the RAP2.7 protein of the invention may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant protein. Further, it is recognized that promoters of the invention also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing nucleotide constructs into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367 and 5,316,931, herein incorporated by reference.
  • Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i. e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Nad. Acad. ScL USA 83:5602-5606, Agrobacterium-mediated transformation (Townsend et al., U.S. Patent No.
  • These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.
  • the present invention may be used for transformation of any plant species, including, but not limited to, monocots and dicots.
  • plant species of interest include, but are not limited to, corn (Zea mays), Brassica spp. (e.g., B. napus, B. rapa, B.
  • juncea particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculent
  • Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo).
  • tomatoes Locopersicon esculentum
  • lettuce e.g., Lactuca sativa
  • green beans Phaseolus vulgaris
  • lima beans Phaseolus limensis
  • peas Lathyrus spp.
  • members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo).
  • Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.
  • Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens) ; true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thujaplicata) and Alaska yellow cedar (Chamaecyparis nootkatensis). Plants of the present invention may be crop plants (for example, alfalfa, sunflower, Brassica, cotton,
  • Plants of particular interest include grain plants that provide seeds of interest, oil- seed plants, and leguminous plants.
  • Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc.
  • Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc.
  • Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.
  • gene silencing such as antisense constructions complementary to at least a portion of the messenger RNA (mRNA) for RAP2.7 or VGTl sequences can be constructed.
  • Antisense nucleotides are constructed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, 80%, 85%, 90%, 95% or more sequence identity to the corresponding antisense sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene.
  • Gene silencing refers to posttranscriptional interference with gene expression.
  • Techniques such as antisense, co-suppression, and RNA interference (RNAi), for example, have been shown to be effective in gene silencing.
  • RNAi RNA interference
  • Antisense technology can be used to control gene expression through antisense DNA or RNA or through double- or triple-helix formation.
  • Antisense techniques are discussed, for example, in - Okano, J. Neurochem. 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al, Nucleic Acids Research 10-1573 (1979); Cooney et al, Science 241:456 (1988); and Dervan et al, Science 251:1360 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.
  • the 5' coding portion of a polynucleotide that encodes the mature polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
  • a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription, thereby preventing transcription and the production of cytokinin biosynthetic enzymes.
  • the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into cytokinin biosynthetic enzymes.
  • oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of cytokinin biosynthetic enzymes.
  • the DNAs of this invention may also be employed to co- suppress or silence the cytokinin metabolic enzyme genes; for example, as described in PCT Patent Application Publication WO 98/36083.
  • the RAP 2.7 nucleotide sequence operably linked to the regulatory elements herein can be an antisense sequence for a targeted gene.
  • antisense DNA nucleotide sequence is intended a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence.
  • expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene.
  • the antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing with the endogenous messenger RNA
  • mRNA produced by transcription of the DNA nucleotide sequence for the targeted gene.
  • production of the native protein encoded by the targeted gene is inhibited to achieve a desired phenotypic response.
  • the regulatory sequences disclosed herein can be operably linked to antisense DNA sequences to reduce or inhibit expression of a native protein in the plant seed.
  • the level and/or activity of the polypeptide may be modulated by employing a polynucleotide that is not capable of directing, in a transformed plant, the expression of a protein or an RNA.
  • the polynucleotides of the invention may be used to design polynucleotide constructs that can be employed in methods for altering or mutating a genomic nucleotide sequence in an organism.
  • Such polynucleotide constructs include, but are not limited to, RNA:DNA vectors, RNA:DNA mutational vectors, RNA:DNA repair vectors, mixed-duplex oligonucleotides, self- complementary RNA:DNA oligonucleotides, and recombinogenic oligonucleobases.
  • Such nucleotide constructs and methods of use are known in the art. See, U.S. Patent Nos. 5,565,350; 5,731,181; 5,756,325; 5,760,012; 5,795,972; and 5,871,984; all of which are herein incorporated by reference.
  • Alterations to the genome of the present invention include, but are not limited to, additions, deletions, and substitutions of nucleotides into the genome. While the methods of the present invention do not depend on additions, deletions, and substitutions of any particular number of nucleotides, it is recognized that such additions, deletions, or substitutions comprises at least one nucleotide. Methods are provided to reduce or eliminate the activity of a RAP2.7 polypeptide of the invention by transforming a plant cell with an expression cassette that expresses a polynucleotide that inhibits the expression of the RAP2.7 polypeptide.
  • the polynucleotide may inhibit the expression of the Rap2.7 polypeptide directly, by preventing translation of the RAP2.7 messenger RNA, or indirectly, by encoding a polypeptide that inhibits the transcription or translation of a RAP2.7 gene encoding a RAP2.7 polypeptide.
  • Methods for inhibiting or eliminating the expression of a gene in a plant are well known in the art, and any such method may be used in the present invention to inhibit the expression of a RAP2.7 polypeptide.
  • a plant is transformed with an expression cassette that is capable of expressing a polynucleotide that inhibits the expression of a RAP2.7 polypeptide of the invention.
  • expression refers to the biosynthesis of a gene product, including the transcription and/or translation of said gene product.
  • an expression cassette capable of expressing a polynucleotide that inhibits the expression of at least one RAP2.7 polypeptide is an expression cassette capable of producing an RNA molecule that inhibits the transcription and/or translation of at least one RAP2.7 polypeptide of the invention.
  • the "expression” or “production” of a protein or polypeptide from a DNA molecule refers to the transcription and translation of the coding sequence to produce the protein or polypeptide
  • the "expression” or “production” of a protein or polypeptide from an RNA molecule refers to the translation of the RNA coding sequence to produce the protein or polypeptide.
  • inhibition of the expression of a RAP2.7 polypeptide may be obtained by sense suppression or cosuppression.
  • an expression cassette is designed to express an RNA molecule corresponding to all or part of a messenger RNA encoding a RAP2.7 polypeptide in the "sense" orientation. Over expression of the RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the cosuppression expression cassette are screened to identify those that show the greatest inhibition of RAP2.7 polypeptide expression.
  • the polynucleotide used for cosuppression may correspond to all or part of the sequence encoding the RAP2.7 polypeptide, all or part of the 5 1 and/or 3' untranslated region of a RAP2.7 polypeptide transcript, or all or part of both the coding sequence and the untranslated regions of a transcript encoding a RAP2.7 polypeptide.
  • the expression cassette is designed to eliminate the start codon of the polynucleotide so that no protein product will be translated.
  • Cosuppression may be used to inhibit the expression of plant genes to produce plants having undetectable protein levels for the proteins encoded by these genes. See, for example, Broin et al. (2002) Plant Cell 14:1417-1432. Cosuppression may also be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Patent No. 5,942,657. Methods for using cosuppression to inhibit the expression of endogenous genes in plants are described in Flavell et al. (1994) Proc. Natl. Acad. ScL USA 91 :3490- 3496; Jorgensen et al. (1996) Plant MoI. Biol. 31 :957-973; Johansen and Carrington (2001) Plant Physiol.
  • nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, optimally greater than about 65% sequence identity, more optimally greater than about 85% sequence identity, most optimally greater than about 95% sequence identity. See, U.S. Patent Nos. 5,283,184 and 5,034,323; herein incorporated by reference.
  • inhibition of the expression of the RAP2.7 polypeptide may be obtained by antisense suppression.
  • the expression cassette is designed to express an RNA molecule complementary to all or part of a messenger RNA encoding the RAP2.7 polypeptide. Over expression of the antisense RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the antisense suppression expression cassette are screened to identify those that show the greatest inhibition of RAP2.7 polypeptide expression.
  • the polynucleotide for use in antisense suppression may correspond to all or part of the complement of the sequence encoding the RAP2.7 polypeptide, all or part of the complement of the 5' and/or 3' untranslated region of the RAP2.7 transcript, or all or part of the complement of both the coding sequence and the untranslated regions of a transcript encoding the RAP2.7 polypeptide.
  • the antisense polynucleotide may be fully complementary (i.e., 100% identical to the complement of the target sequence) or partially complementary (i.e., less than 100% identical to the complement of the target sequence) to the target sequence.
  • Antisense suppression may be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Patent No.
  • portions of the antisense nucleotides may be used to disrupt the expression of the target gene.
  • sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, 300, 400, 450, 500, 550, or greater may be used.
  • Methods for using antisense suppression to inhibit the expression of endogenous genes in plants are described, for example, in Liu et al (2002) Plant Physiol. 129: 1732-1743 and U.S. Patent Nos. 5,759,829 and 5,942,657, each of which is herein incorporated by reference.
  • Efficiency of antisense suppression may be increased by including a poly-dT region in the expression cassette at a position 3 1 to the antisense sequence and 5' of the polyadenylation signal. See, U.S. Patent Publication No. 20020048814, herein incorporated by reference.
  • inhibition of the expression of a RAP2.7 polypeptide may be obtained by double-stranded RNA (dsRNA) interference.
  • dsRNA interference a sense RNA molecule like that described above for cosuppression and an antisense RNA molecule that is fully or partially complementary to the sense RNA molecule are expressed in the same cell, resulting in inhibition of the expression of the corresponding endogenous messenger RNA.
  • Expression of the sense and antisense molecules can be accomplished by designing the expression cassette to comprise both a sense sequence and an antisense sequence. Alternatively, separate expression cassettes may be used for the sense and antisense sequences. Multiple plant lines transformed with the dsRNA interference expression cassette or expression cassettes are then screened to identify plant lines that show the greatest inhibition of RAP2.7 polypeptide expression. Methods for using dsRNA interference to inhibit the expression of endogenous plant genes are described in Waterhouse et al. (1998) Proc. Natl. Acad. ScL USA 95:13959-13964, Liu et al. (2002) Plant Physiol. 129:1732-1743, and WO 99/49029, WO 99/53050, WO 99/61631, and WO 00/49035; each of which is herein incorporated by reference.
  • inhibition of the expression of one or a RAP2.7 polypeptide may be obtained by hairpin RNA (hpRNA) interference or intron- containing hairpin RNA (ihpRNA) interference.
  • hpRNA hairpin RNA
  • ihpRNA intron- containing hairpin RNA
  • the expression cassette is designed to express an RNA molecule that hybridizes with itself to form a hairpin structure that comprises a single- stranded loop region and a base-paired stem.
  • the base-paired stem region comprises a sense sequence corresponding to all or part of the endogenous messenger RNA encoding the gene whose expression is to be inhibited, and an antisense sequence that is fully or partially complementary to the sense sequence.
  • the base-paired stem region of the molecule generally determines the specificity of the RNA interference.
  • hpRNA molecules are highly efficient at inhibiting the expression of endogenous genes, and the RNA interference they induce is inherited by subsequent generations of plants. See, for example, Chuang and Meyerowitz (2000) Proc. Natl. Acad.
  • the interfering molecules have the same general structure as for hpRNA, but the RNA molecule additionally comprises an intron that is capable of being spliced in the cell in which the ihpRNA is expressed.
  • the use of an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference.
  • Smith et al. show 100% suppression of endogenous gene expression using ihpRNA- mediated interference.
  • the expression cassette for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA.
  • the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene.
  • it is the loop region that determines the specificity of the RNA interference. See, for example, WO 02/00904, herein incorporated by reference. etal
  • Amplicon expression cassettes comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus.
  • the viral sequences present in the transcription product of the expression cassette allow the transcription product to direct its own replication.
  • the transcripts produced by the amplicon may be either sense or antisense relative to the target sequence (i.e., the messenger RNA for the RAP2.7 polypeptide).
  • Methods of using amplicons to inhibit the expression of endogenous plant genes are described, for example, in Angell and Baulcombe (1997) EMBO J. 16:3675-3684, Angell and Baulcombe (1999) Plant J. 20:357-362, and U.S. Patent No. 6,646,805, each of which is herein incorporated by reference.
  • the polynucleotide expressed by the expression cassette of the invention is catalytic RNA or has ribozyme activity specific for the messenger RNA of the RAP2.7 polypeptide.
  • the polynucleotide causes the degradation of the endogenous messenger RNA, resulting in reduced expression of the RAP2.7 polypeptide.
  • inhibition of the expression of a RAP2.7 polypeptide may be obtained by RNA interference by expression of a gene encoding a micro RNA (miRNA).
  • miRNAs are regulatory agents consisting of about 22 ribonucleotides. miRNA are highly efficient at inhibiting the expression of endogenous genes. See, for example Javier (2003) Nature 425: 257-263, herein incorporated by reference.
  • the expression cassette is designed to express an RNA molecule that is modeled on an endogenous miRNA gene.
  • the miRNA gene encodes an RNA that forms a hairpin structure containing a 22-nucleotide sequence that is complementary to another endogenous gene (target sequence).
  • target sequence another endogenous gene
  • the 22-nucleotide sequence is selected from a RAP2.7 transcript sequence and contains 22 nucleotides of said RAP2.7 sequence in sense orientation and 21 nucleotides of a corresponding antisense sequence that is complementary to the sense sequence.
  • miRNA molecules are highly efficient at inhibiting the expression of endogenous genes, and the RNA interference they induce is inherited by subsequent generations of plants.
  • the central feature of the system is to identify Mu transposon insertions within a DNA sequence of interest in anticipation that at least some of these insertion alleles will be mutants. See US Patents Numbers 6,300,542 and 5,962,764.
  • DNA was collected from a large population of Mutator transposon stocks that were then self-pollinated to produced F2 seed.
  • To find Mu transposon insertions within a specific DNA sequence the collection of DNA samples is screened via PCR using a gene-specific primer and a primer that anneals to the inverted repeats of Mu transposons.
  • a PCR product is expected only when the template DNA comes from a plant that contains a Mu transposon insertion within the target gene.
  • F2 seed from the corresponding plant is screened for a transposon insertion allele.
  • Transposon insertion mutations of the anl gene have been obtained via the TUSC procedure (Bensen et al. (1995)). This system is applicable to other plant species, at times modified in accordance with knowledge and skills reasonably attributed to ordinary artisans.
  • nucleotide constructs are not intended to limit the present invention to nucleotide constructs comprising DNA.
  • nucleotide constructs particularly polynucleotides and oligonucleotides, comprised of ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides may also be employed in the methods disclosed herein.
  • the nucleotide constructs of the present invention encompass all nucleotide constructs that can be employed in the methods of the present invention for transforming plants including, but not limited to, those comprised of deoxyribonucleotides, ribonucleotides, and combinations thereof.
  • nucleotide constructs of the invention also encompass all forms of nucleotide constructs including, but not limited to, single-stranded forms, double-stranded forms, hairpins, stem-and- loop structures, and the like.
  • the methods of the invention may employ a nucleotide construct that is capable of directing, in a transformed plant, the expression of at least one protein, or at least one RNA, such as, for example, an antisense RNA that is complementary to at least a portion of an mRNA.
  • nucleotide construct is comprised of a coding sequence for a protein or an RNA operably linked to 5 ' and 3 ' transcriptional regulatory regions.
  • methods of the invention may employ a nucleotide construct that is not capable of directing, in a transformed plant, the expression of a protein or an RNA.
  • methods of the present invention do not depend on the incorporation of the entire nucleotide construct into the genome. Rather, the methods of the present invention only require that the plant or cell thereof is altered as a result of the introduction of the nucleotide construct into a cell, hi one embodiment of the invention, the genome may be altered following the introduction of the nucleotide construct into a cell, or example, the nucleotide construct, or any part thereof, may incorporate into the genome of the plant. Alterations to the genome of the present invention include, but are not limited to, additions, deletions, and substitutions of nucleotides in the genome.
  • nucleic acid sequences of the present invention can be used in combination ("stacked") with other polynucleotide sequences of interest in order to create plants with a desired phenotype.
  • the combinations generated can include multiple copies of any one or more of the polynucleotides of interest.
  • the polynucleotides of the present invention may be stacked with any gene or combination of genes to produce plants with a variety of desired trait combinations, including but not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Patent No.
  • polynucleotides of the present invention can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Patent Nos. 5,366,892; 5,747,450; 5,737,514; 5723,756; 5,593,881; Geiser et al (1986) Gene 48:109); lectins (Van Damme et al.
  • acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations
  • inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS gene)
  • traits desirable for processing or process products such as high oil (e.g., U.S. Patent No. 6,232,529 ); modified oils (e.g., fatty acid desaturase genes (U.S.
  • Patent No. 5,952,544; WO 94/11516) modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch debranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. patent No. 5.602,321; beta- ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-CoA reductase (Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)), the disclosures of which are herein incorporated by reference.
  • PHAs polyhydroxyalkanoates
  • polynucleotides of the present invention with polynucleotides affecting agronomic traits such as male sterility (e.g., see U.S. Patent No. 5.583,210), stalk strength, flowering time, or transformation technology traits such as cell cycle regulation or gene targeting (e.g. WO 99/61619; WO 00/17364; WO 99/25821), the disclosures of which are herein incorporated by reference.
  • agronomic traits such as male sterility (e.g., see U.S. Patent No. 5.583,210), stalk strength, flowering time, or transformation technology traits such as cell cycle regulation or gene targeting (e.g. WO 99/61619; WO 00/17364; WO 99/25821), the disclosures of which are herein incorporated by reference.
  • stacked combinations can be created by any method, including but not limited to cross breeding plants by any conventional or TopCross methodology, or genetic transformation. If the traits are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. For example, a transgenic plant comprising one or more desired traits can be used as the target to introduce further traits by subsequent transformation. The traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis).
  • Expression of the sequences of interest can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of a polynucleotide of interest. This may be accompanied by any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant.
  • nucleotide constructs of the invention also encompass nucleotide constructs that may be employed in methods for altering or mutating a genomic nucleotide sequence in an organism, including, but not limited to, chimeric vectors, chimeric mutational vectors, chimeric repair vectors, mixed-duplex oligonucleotides, self-complementary chimeric oligonucleotides, and recombinogenic oligonucleobases.
  • nucleotide constructs and methods of use such as, for example, chimeraplasty, are known in the art.
  • Chimeraplasty involves the use of such nucleotide constructs to introduce site-specific changes into the sequence of genomic DNA within an organism, eg, U.S.
  • VGTl VGTl and its alternate forms described herein as markers to screen for and identify plants which may have altered maturity.
  • the invention thus relates to genetic markers for plants with altered maturity.
  • the markers represent polymorphic variants of the non-coding regulatory element VGTl that are associated with RAP2.7 regulation and thus provides a method of genotyping plants to determine those more likely to have flowering time that is altered from wildtype.
  • the invention relates to genetic markers and methods of identifying those markers in plants, whereby the plant is more likely to have a maturity that is earlier than normal by means of a mutant VGTl which does not down regulate RAP2.7 appropriately.
  • SSCP single-strand conformation polymorphism
  • BESS base excision sequence scanning
  • RFLP RFLP analysis
  • heteroduplex analysis denaturing gradient gel electrophoresis
  • temperature gradient electrophoresis allelic PCR
  • ligase chain reaction direct sequencing mini sequencing, nucleic acid hybridization, micro- array- type detection of the VGTl regulatory element.
  • a sample of genetic material is obtained from a plant.
  • Samples of genomic DNA are isolated from any convenient source including any suitable cell or tissue sample with intact interphase nuclei or metaphase cells.
  • the cells can be obtained from solid tissue as from a fresh or preserved plant part or from a tissue sample.
  • the sample can contain compounds which are not naturally intermixed with the biological material such as preservatives, anticoagulants, buffers, fixatives, nutrients, antibiotics, or the like. Methods for isolation of genomic DNA from these various sources are described in, for example, Kirby, DNA Fingerprinting, An Introduction, W.H. Freeman & Co. New York (1992).
  • Genomic DNA can also be isolated from cultured primary or secondary cell cultures or from transformed cell lines derived from any of the aforementioned tissue samples. Samples of RNA can also be used.
  • RNA can be isolated from tissues as described in Sambrook et al., supra.
  • RNA can be total cellular RNA, mRNA, poly A+ RNA, or any combination thereof.
  • the RNA is purified, but can also be unpurified cytoplasmic RNA.
  • RNA can be reverse transcribed to form DNA which is then used as the amplification template, such that the PCR indirectly amplifies a specific population of RNA transcripts. See, e.g., Sambrook, supra, Kawasaki et al., Chapter 8 in PCR Technology, (1992) supra, and Berg et al., Hum. Genet. 85:655-658 (1990).
  • PCR polymerase chain reaction
  • Kits for the extraction of high-molecular weight DNA for PCR include a Genomic Isolation Kit A.S.A.P. (Boehringer Mannheim, Indianapolis, Ind.), Genomic DNA Isolation System (GIBCO BRL, Gaithersburg, Md.), Elu-Quik DNA Purification Kit (Schleicher & Schuell, Keene, N.H.), DNA Extraction Kit (Stratagene, LaJoIIa, Calif), TurboGen Isolation Kit (Invitrogen, San Diego, Calif.), and the like. Use of these kits according to the manufacturer's instructions is generally acceptable for purification of DNA prior to practicing the methods of the present invention.
  • the concentration and purity of the extracted DNA can be determined by spectrophotometric analysis of the absorbance of a diluted aliquot at 260 nm and 280 nm.
  • PCR amplification may proceed.
  • the first step of each cycle of the PCR involves the separation of the nucleic acid duplex formed by the primer extension. Once the strands are separated, the next step in PCR involves hybridizing the separated strands with primers that flank the target sequence. The primers are then extended to form complementary copies of the target strands.
  • the primers are designed so that the position at which each primer hybridizes along a duplex sequence is such that an extension product synthesized from one primer, when separated from the template (complement), serves as a template for the extension of the other primer.
  • the cycle of denaturation, hybridization, and extension is repeated as many times as necessary to obtain the desired amount of amplified nucleic acid.
  • strand separation is achieved by heating the reaction to a sufficiently high temperature for a sufficient time to cause the denaturation of the duplex but not to cause an irreversible denaturation of the polymerase (see U.S. Pat. No. 4,965,188, incorporated herein by reference).
  • Typical heat denaturation involves temperatures ranging from about 80 0 C to 105 0 C for times ranging from seconds to minutes.
  • Strand separation can be accomplished by any suitable denaturing method including physical, chemical, or enzymatic means.
  • Strand separation may be induced by a helicase, for example, or an enzyme capable of exhibiting helicase activity.
  • the enzyme RecA has helicase activity in the presence of ATP.
  • Template-dependent extension of primers in PCR is catalyzed by a polymerizing agent in the presence of adequate amounts of four deoxyribonucleotide triphosphates (typically dATP, dGTP, dCTP, and dTTP) in a reaction medium comprised of the appropriate salts, metal cations, and pH buffering systems.
  • Suitable polymerizing agents are enzymes known to catalyze template-dependent DNA synthesis.
  • the target regions may encode at least a portion of a protein expressed by the cell.
  • mRNA may be used for amplification of the target region.
  • PCR can be used to generate a cDNA library from RNA for further amplification, the initial template for primer extension is RNA.
  • Polymerizing agents suitable for synthesizing a complementary, copy-DNA (cDNA) sequence from the RNA template are reverse transcriptase (RT), such as avian myeloblastosis virus RT, Moloney murine leukemia virus RT, or Thermus thermophilus (Tth) DNA polymerase, a thermostable DNA polymerase with reverse transcriptase activity marketed by Perkin Elmer Cetus, Inc.
  • RT reverse transcriptase
  • Tth Thermus thermophilus
  • the genomic RNA template is heat degraded during the first denaturation step after the initial reverse transcription step leaving only DNA template.
  • Suitable polymerases for use with a DNA template include, for example, E.
  • coli DNA polymerase I or its Klenow fragment T4 DNA polymerase, Tth polymerase, and Taq polymerase, a heat-stable DNA polymerase isolated from Thermus aquaticus and commercially available from Perkin Elmer Cetus, Inc.
  • the latter enzyme is widely used in the amplification and sequencing of nucleic acids.
  • the reaction conditions for using Taq polymerase are known in the art and are described in Gelfand, 1989, PCR Technology, supra.
  • Allele-specif ⁇ c PCR differentiates between target regions differing in the presence of absence of a variation or polymorphism.
  • PCR amplification primers are chosen which bind only to certain alleles of the target sequence. This method is described by Gibbs, Nucleic Acid Res. 17:12427-2448 (1989).
  • Oligonucleotides with one or more base pair mismatches are generated for any particular allele.
  • ASO screening methods detect mismatches between variant target genomic or PCR amplified DNA and non-mutant oligonucleotides, showing decreased binding of the oligonucleotide relative to a mutant oligonucleotide.
  • Oligonucleotide probes can be designed so that under low stringency, they will bind to both polymorphic forms of the allele, but at high stringency, bind to the allele to which they correspond.
  • stringency conditions can be devised in which an essentially binary response is obtained, i.e., an ASO corresponding to a variant form of the target gene will hybridize to that allele, and not to the wild-type allele.
  • Target regions of a test subject's DNA can be compared with target regions in unaffected and affected family members by ligase-mediated allele detection.
  • Ligase may also be used to detect point mutations in the ligation amplification reaction described in Wu et al., Genomics 4:560- 569 (1989).
  • the ligation amplification reaction (LAR) utilizes amplification of specific DNA sequence using sequential rounds of template dependent ligation as described in Wu, supra, and Barany, Proc. Nat. Acad. Sci. 88:189-193 (1990).
  • Denaturing Gradient Gel Electrophoresis Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. DNA molecules melt in segments, termed melting domains, under conditions of increased temperature or denaturation. Each melting domain melts cooperatively at a distinct, base-specific melting temperature (T m ).
  • Melting domains are at least 20 base pairs in length, and may be up to several hundred base pairs in length.
  • a target region to be analyzed by denaturing gradient gel electrophoresis is amplified using PCR primers flanking the target region.
  • the amplified PCR product is applied to a polyacrylamide gel with a linear denaturing gradient as described in Myers et al., Meth. Enzymol. 155:501-527 (1986), and Myers et al., in
  • the electrophoresis system is maintained at a temperature slightly below the Tm of the melting domains of the target sequences.
  • the target sequences may be initially attached to a stretch of GC nucleotides, termed a GC clamp, as described in Chapter 7 of Erlich, supra.
  • a GC clamp a stretch of GC nucleotides
  • at least 80% of the nucleotides in the GC clamp are either guanine or cytosine.
  • the GC clamp is at least 30 bases long. This method is particularly suited to target sequences with high T m 's.
  • the target region is amplified by the polymerase chain reaction as described above.
  • One of the oligonucleotide PCR primers carries at its 5' end, the GC clamp region, at least 30 bases of the GC rich sequence, which is incorporated into the 5' end of the target region during amplification.
  • the resulting amplified target region is run on an electrophoresis gel under denaturing gradient conditions as described above. DNA fragments differing by a single base change will migrate through the gel to different positions, which may be visualized by ethidium bromide staining.
  • Temperature gradient gel electrophoresis is based on the same underlying principles as denaturing gradient gel electrophoresis, except the denaturing gradient is produced by differences in temperature instead of differences in the concentration of a chemical denaturant.
  • Standard TGGE utilizes an electrophoresis apparatus with a temperature gradient running along the electrophoresis path. As samples migrate through a gel with a uniform concentration of a chemical denaturant, they encounter increasing temperatures.
  • An alternative method of TGGE, temporal temperature gradient gel electrophoresis uses a steadily increasing temperature of the entire electrophoresis gel to achieve the same result. As the samples migrate through the gel the temperature of the entire gel increases, leading the samples to encounter increasing temperature as they migrate through the gel. Preparation of samples, including PCR amplification with incorporation of a GC clamp, and visualization of products are the same as for denaturing gradient gel electrophoresis.
  • Target sequences or alleles at the VGTl loci can be differentiated using single- strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single-stranded PCR products, as described in Orita et al., Proc. Nat. Acad. Sci. 85:2766-2770 (1989).
  • Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single-stranded amplification products.
  • Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence.
  • electrophoretic mobility of single-stranded amplification products can detect base-sequence difference between alleles or target sequences.
  • Differences between target sequences can also be detected by differential chemical cleavage of mismatched base pairs, as described in Grompe et al., Am. J. Hum. Genet. 48:212-222 (1991).
  • differences between target sequences can be detected by enzymatic cleavage of mismatched base pairs, as described in Nelson et al., Nature Genetics 4:11-18 (1993). Briefly, genetic material from a plant and an affected family member may be used to generate mismatch free heterohybrid DNA duplexes.
  • heterohybrid means a DNA duplex strand comprising one strand of DNA from one plant, and a second DNA strand from another plant, usually a plant differing in the phenotype for the trait of interest. Positive selection for heterohybrids free of mismatches allows determination of small insertions, deletions or other polymorphisms that may be associated with VGTl polymorphisms.
  • oligonucleotide PCR primers are designed that flank the mutation in question and allow PCR amplification of the region.
  • a third oligonucleotide probe is then designed to hybridize to the region containing the base subject to change between different alleles of the gene. This probe is labeled with fluorescent dyes at both the 5' and 3' ends. These dyes are chosen such that while in this proximity to each other the fluorescence of one of them is quenched by the other and cannot be detected.
  • Extension by Taq DNA polymerase from the PCR primer positioned 5' on the template relative to the probe leads to the cleavage of the dye attached to the 5' end of the annealed probe through the 5' nuclease activity of the Taq DNA polymerase. This removes the quenching effect allowing detection of the fluorescence from the dye at the 3' end of the probe.
  • the discrimination between different DNA sequences arises through the fact that if the hybridization of the probe to the template molecule is not complete, i.e., there is a mismatch of some form, the cleavage of the dye does not take place.
  • a reaction mix can contain two different probe sequences each designed against different alleles that might be present thus allowing the detection of both alleles in one reaction.
  • Yet another technique includes an Invader Assay, which includes isothermic amplification that relies on a catalytic release of fluorescence. See Third Wave Technology at world wide web at twt.com.
  • Hybridization probes are generally oligonucleotides which bind through complementary base pairing to all or part of a target nucleic acid. Probes typically bind target sequences lacking complete complementarity with the probe sequence depending on the stringency of the hybridization conditions.
  • the probes are preferably labeled directly or indirectly, such that by assaying for the presence or absence of the probe, one can detect the presence or absence of the target sequence.
  • Direct labeling methods include radioisotope labeling, such as with P 32 or S 35 .
  • Indirect labeling methods include fluorescent tags, biotin complexes which may be bound to avidin or streptavidin, or peptide or protein tags.
  • Visual detection methods include photoluminescents, Texas red, rhodamine and its derivatives, red leuco dye and 3,3',5,5'-tetramethylbenzidine (TMB), fluorescein, and its derivatives, dansyl, umbelliferone and the like or with horse radish peroxidase, alkaline phosphatase and the like.
  • TMB 3,3',5,5'-tetramethylbenzidine
  • Hybridization probes include any nucleotide sequence capable of hybridizing to the chromosome where VGTl resides, and thus defining a genetic marker linked toVGTl, including a restriction fragment length polymorphism, a hypervariable region, repetitive element, or a variable number tandem repeat. Further suitable hybridization probes include exon fragments or portions of cDNAs or genes known to map to the relevant region of the chromosome.
  • Preferred tandem repeat hybridization probes for use according to the present invention are those that recognize a small number of fragments at a specific locus at high stringency hybridization conditions, or that recognize a larger number of fragments at that locus when the stringency conditions are lowered.
  • One or more additional restriction enzymes and/or probes and/or primers can be used. Additional enzymes, constructed probes, and primers can be determined by routine experimentation by those of ordinary skill in the art and are intended to be within the scope of the invention.
  • the methods described herein may be in terms of the use of a single restriction enzyme and a single set of primers, the methods are not so limited.
  • One or more additional restriction enzymes and/or probes and/or primers can be used, if desired. Indeed, in some situations it may be preferable to use combinations of markers giving specific haplotypes. Additional enzymes, constructed probes and primers can be determined through routine experimentation, combined with the teachings provided and incorporated herein.
  • the sequences surrounding the polymorphism will facilitate the development of alternate PCR tests in which a primer of about 4-30 contiguous bases taken from the sequence immediately adjacent to the polymorphism is used in connection with a polymerase chain reaction to greatly amplify the region before treatment with the desired restriction enzyme.
  • primers need not be the exact complement; substantially equivalent sequences are acceptable.
  • the design of primers for amplification by PCR is known to those of skill in the art and is discussed in detail in Ausubel (ed.), Short Protocols in Molecular Biology, 4th Edition, John Wiley and Sons (1999).
  • PCR polymerase chain reaction
  • Designing oligonucleotides for use as either sequencing or PCR primers requires selection of an appropriate sequence that specifically recognizes the target, and then testing the sequence to eliminate the possibility that the oligonucleotide will have a stable secondary structure. Inverted repeats in the sequence can be identified using a repeat-identification or RNA- folding program such as those described above. If a possible stem structure is observed, the sequence of the primer can be shifted a few nucleotides in either direction to minimize the predicted secondary structure. The sequence of the oligonucleotide should also be compared with the sequences of both strands of the appropriate vector and insert DNA. Obviously, a sequencing primer should only have a single match to the target DNA.
  • primer sequence should be compared to the sequences in the GenBank database to determine if any significant matches occur. If the oligonucleotide sequence is present in any known DNA sequence or, more importantly, in any known repetitive elements, the primer sequence should be changed.
  • RAP2.7 expression level is associated with differences in maturity It was determined that RAP2.7 gene expression level determines the transition to flowering in plants and that vgtl is a ⁇ s-element that regulates RAP2.7 transcription. Two plants with different maturities (N28 and C22-4) were then screened to identify if the RAP2.7 expression levels differ between them.
  • Figure 1 shows the levels of RAP2.7 expression at Day: 14 before transition, C22-4 on transition at 20 days, and N28 at transition at 27 days. Last two dates have 3 samples of each. P values are significantly different at the first two sampling dates, but not at the latest date.
  • the cDNA sequences of RAP2.7 were obtained from a RT-PCR experiment. Specifically, total RNA from C22-4 leaves was isolated and used as template in RT-PCR with gene-specific primers.
  • the gene-specific primers were designed based on RAP2.7 genomic sequences from B73 genotype.
  • the primer sequences are sense - ATGCAGTTGGATCTGAACGT (SEQ ID NO: 9) and antisense - GCCATCACCATCCCCGCTGA (SEQ ID NO: 10).
  • the RT-PCR amplified fragment of RAP2.7 was fused to the rice actin promoter and pinll terminator to produce an expression cassette.
  • This expression cassette was then linked to a selectable marker cassette containing a bar gene driven by CaMV 35S promoter and a pinll terminator in Figure 2.
  • Transgenic maize plants were produced by transforming Immature GS 3 maize embryos with this expression cassette, using the Agrobacterium-based transformation method described as below.
  • immature embryos were isolated from maize and the embryos contacted with a suspension of Agrobacterium, where the bacteria are capable of transferring the ACTIN promoter-RAP2.7 expression cassette (illustrated above) to at least one cell of at least one of the immature embryos (step 1: the infection step).
  • the immature embryos were immersed in an Agrobacterium suspension for the initiation of inoculation.
  • the embryos were co-cultured for a time with the Agrobacterium (step 2: the co- cultivation step).
  • the immature embryos were cultured on solid medium following the infection step.
  • step 3 resting step
  • step 4 selection step
  • step 4 the selection step
  • the immature embryos were cultured on solid medium with a selective agent resulting in the selective growth of transformed cells.
  • the resulting calli were then regenerated into plants by culturing the calli on solid, selective medium (step 5: the regeneration step).
  • Ectopic expression of Rap2.7 with the rice actin promoter resulted in over expression of the gene, and significantly delayed flowering as measured by the number of leaves (nodes) produced prior to flowering.
  • vectors for transformation were produced in two corn genetic backgrounds (GS3 X HC69, and GS3 X GF, gaspe flint) using the Rap2.7 structural gene with the rice actin promoter.
  • a brief summary of the TO phenotype from over-expressing RAP2.7 in maize is shown in the following tables.
  • GS3XGaspe plants coming out of tissue culture get pollinated (exuding silks) within 45 - 60 days, and have 10 or less leaves. Since these are TO plants, accurate counts for leaf number and days to flowering are not possible.
  • the plants that were late in flowering also had substantial increase in internode elongation, resulting in increase in plant height. These plants also had delayed senescence.
  • the ligated 2-piece fragment was then linked to rice actin promoter with actin 5'-UTR and actin intronl to create a full expression cassette.
  • This expression cassette was then linked to a selectable marker cassette containing a bar gene driven by CaMV 35S promoter and a pinll terminator.
  • FIG. 6 is an illustration of the vector used in transformation. Note only the portion between the right and left T-DNA borders (RB, LB) is shown.
  • Transgenic maize plants were produced by transforming Immature GS3 maize embryos with this expression cassette, using the Agrobacterium-based transformation method described for the RAP2.7 over-expression study. The transformation produced 20 transgenic events from GS3XHC69, a genotype with a normal maturity; and 15 events from GS3XGaspe flint, an early- flowering genotype. Based on preliminary observation on TO plants, all 15 events from the GS3XGaspe flint background showed no visible change in flowering time.
  • Vgtl lies within an intergenic region, ca. 75 kb upstream of an Ap-2 like gene (Rap2.7) and ca. 10 kb downstream of a RAD51- like gene.
  • the 2.7 kb region found to be completely associated with Vgtl is essentially a low-copy region with a number of polymorphisms between N28 and C22-4 (one of the polymorphisms is caused by the insertion of a MITE transposable element in C22-4).
  • this sequence does not code for any known protein. It is hypothesized to either be a RNAi element or a regulatory RNA or DNA element that either directly regulates expression of flowering genes such as Rap2.7 or specifically targets expression of other genes which control flowering genes such as Rap2.7.
  • Vgtl is associated with maturity shift in inbred lines.
  • This element thus can be used as a sequence-based marker to identify inbred and hybrids which have altered maturity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
EP05777342A 2004-07-29 2005-07-27 Verfahren und Zusammensetzungen zur Modulierung der Blüte und Reife von Pflanzen Not-in-force EP1771569B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59226804P 2004-07-29 2004-07-29
PCT/US2005/026641 WO2006015045A2 (en) 2004-07-29 2005-07-27 Methods and compositions for modulating flowering and maturity in plants

Publications (3)

Publication Number Publication Date
EP1771569A2 true EP1771569A2 (de) 2007-04-11
EP1771569A4 EP1771569A4 (de) 2009-04-29
EP1771569B1 EP1771569B1 (de) 2012-07-18

Family

ID=35787794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05777342A Not-in-force EP1771569B1 (de) 2004-07-29 2005-07-27 Verfahren und Zusammensetzungen zur Modulierung der Blüte und Reife von Pflanzen

Country Status (5)

Country Link
US (3) US7479584B2 (de)
EP (1) EP1771569B1 (de)
AR (1) AR050025A1 (de)
CA (2) CA2575388C (de)
WO (1) WO2006015045A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366791A1 (de) * 2010-03-16 2011-09-21 Biogemma Verfahren zur Veränderung der Blütezeit einer Pflanze
MX2016008991A (es) 2016-07-08 2018-01-08 Centro De Investig Cientifica De Yucatan A C Factores de transcripcion aislados de carica papaya y su aplicacion para obtener plantas tolerantes a temperaturas extremas.
CN112748752B (zh) * 2020-12-21 2022-07-26 上海联影医疗科技股份有限公司 冷却系统温度调节方法、装置、计算机设备和存储介质
CN114836441B (zh) * 2022-06-17 2024-05-07 中国农业大学 玉米种子耐贮性相关的ZmRAP2.7基因及其功能标记与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033091A1 (en) * 2000-10-19 2002-04-25 Agriculture Victoria Services Pty Ltd Manipulation of flowering and plant architecture
US20040019927A1 (en) * 1999-11-17 2004-01-29 Sherman Bradley K. Polynucleotides and polypeptides in plants
US20040045049A1 (en) * 1998-09-22 2004-03-04 James Zhang Polynucleotides and polypeptides in plants
EP1586652A1 (de) * 2004-03-25 2005-10-19 Monsanto Technology LLC Gene und ihre Verwendung zur Pflanzenverbesserung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9422083D0 (en) 1994-11-02 1994-12-21 Innes John Centre Genetic control of flowering
GB9511196D0 (en) 1995-06-02 1995-07-26 Innes John Centre Genetic control of flowering
GB9518731D0 (en) 1995-09-13 1995-11-15 Innes John Centre Flowering genes
GB9602796D0 (en) 1996-02-12 1996-04-10 Innes John Centre Innov Ltd Genetic control of plant growth and development
GB9613132D0 (en) 1996-06-21 1996-08-28 Innes John Centre Innov Ltd Genetic control of flowering
GB9712415D0 (en) 1997-06-13 1997-08-13 Innes John Centre Innov Ltd Genetic control of flowering
GB9717192D0 (en) 1997-08-13 1997-10-22 Innes John Centre Innov Ltd Genetic control of plant growth and development
WO1999049064A2 (en) 1998-03-20 1999-09-30 Plant Bioscience Limited Plant control genes
US20030101481A1 (en) * 1998-09-22 2003-05-29 James Zhang Plant gene sequences I
US20090087878A9 (en) * 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants
GB9922071D0 (en) * 1999-09-17 1999-11-17 Plant Bioscience Ltd Methods and means for modification of plant characteristics
US20050066394A1 (en) 2000-11-28 2005-03-24 Olga Danilevskaya Floral development genes
GB0117054D0 (en) 2001-07-12 2001-09-05 Plant Bioscience Ltd Methods and means for modification of plant characteristics
WO2006026287A2 (en) 2004-08-25 2006-03-09 The Samuel Roberts Noble Foundation, Inc. Plants with delayed flowering
US20060053661A1 (en) 2004-09-16 2006-03-16 Van Duyne Arthine C Modular design for a utility shoe component system for women's classical and casual shoes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040045049A1 (en) * 1998-09-22 2004-03-04 James Zhang Polynucleotides and polypeptides in plants
US20040019927A1 (en) * 1999-11-17 2004-01-29 Sherman Bradley K. Polynucleotides and polypeptides in plants
WO2002033091A1 (en) * 2000-10-19 2002-04-25 Agriculture Victoria Services Pty Ltd Manipulation of flowering and plant architecture
EP1586652A1 (de) * 2004-03-25 2005-10-19 Monsanto Technology LLC Gene und ihre Verwendung zur Pflanzenverbesserung

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AHARONI ASAPH ET AL: "The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis", PLANT CELL, vol. 16, no. 9, September 2004 (2004-09), pages 2463-2480, ISSN: 1040-4651 *
AUKERMAN M J ET AL: "Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes" PLANT CELL, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 15, no. 11, 1 November 2003 (2003-11-01), pages 2730-2741, XP002323691 ISSN: 1040-4651 *
CHUCK G ET AL: "THE CONTROL OF MAIZE SPIKELET MERISTEM FATE BY THE APETALA2-LIKE GENE INDETERMINATE SPIKELET1" GENES AND DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, PLAINVIEW, NY, US, vol. 12, no. 8, 1 January 1998 (1998-01-01), pages 1145-1154, XP000907506 ISSN: 0890-9369 *
DATABASE EMBL [Online] 20 June 2003 (2003-06-20), "OGLAX04TV ZM_0.7_1.5_KB Zea mays genomic clone ZMMBMa0312B08, genomic survey sequence." XP002518399 retrieved from EBI accession no. EMBL:CC639651 Database accession no. CC639651 *
DATABASE EMBL [Online] 20 May 2003 (2003-05-20), "PUHKS07TB ZM_0.6_1.0_KB Zea mays genomic clone ZMMBTa473B13, DNA sequence." XP002518400 retrieved from EBI accession no. EMBL:CC379756 Database accession no. CC379756 *
DATABASE EMBL [Online] 20 May 2003 (2003-05-20), "PUHKS07TD ZM_0.6_1.0_KB Zea mays genomic clone ZMMBTa473B13, DNA sequence." XP002518401 retrieved from EBI accession no. EMBL:CC379759 Database accession no. CC379759 *
DATABASE EMBL [Online] 25 August 2003 (2003-08-25), "OG1DY21TV ZM_0.7_1.5_KB Zea mays genomic clone ZMMBMa0740D17, genomic survey sequence." XP002518402 retrieved from EBI accession no. EMBL:CG240742 Database accession no. CG240742 *
MENKE FRANK L H ET AL: "A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2", EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 18, no. 16, 16 August 1999 (1999-08-16), pages 4455-4463, ISSN: 0261-4189 *
OKAMURO J ET AL: "The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC.; US, vol. 94, no. 13, 1 June 1997 (1997-06-01), pages 7076-7081, XP002108957 ISSN: 0027-8424 *
RIECHMANN J L ET AL: "THE AP2/EREBP FAMILY OF PLANT TRANSCRIPTION FACTORS" BIOLOGICAL CHEMISTRY, WALTER DE GRUYTER GMBH & CO., BERLIN, DE, vol. 379, 1 June 1998 (1998-06-01), pages 633-646, XP002938736 ISSN: 1431-6730 *
SALVI SILVIO ET AL: "Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize" PLANT MOLECULAR BIOLOGY, vol. 48, no. 5-6, March 2002 (2002-03), pages 601-613, XP002518248 ISSN: 0167-4412 *
See also references of WO2006015045A2 *
STOCKINGER ERIC J ET AL: "Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 94, no. 3, 1997, pages 1035-1040, ISSN: 0027-8424 *
VAHALA TIINA ET AL: "Two APETALA2-like genes of Picea abies are differentially expressed during development" JOURNAL OF EXPERIMENTAL BOTANY, vol. 52, no. 358, May 2001 (2001-05), pages 1111-1115, XP002518246 ISSN: 0022-0957 *

Also Published As

Publication number Publication date
WO2006015045A2 (en) 2006-02-09
CA2805455A1 (en) 2006-02-09
US20090158467A1 (en) 2009-06-18
AR050025A1 (es) 2006-09-20
EP1771569B1 (de) 2012-07-18
EP1771569A4 (de) 2009-04-29
US20060070144A1 (en) 2006-03-30
US20120240290A1 (en) 2012-09-20
US8173867B2 (en) 2012-05-08
US7479584B2 (en) 2009-01-20
CA2575388A1 (en) 2006-02-09
CA2575388C (en) 2013-04-30
WO2006015045A3 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US20100175150A1 (en) Dof (dna binding with one finger) sequences and methods of use
AU2007223053A1 (en) Compositions and methods for increasing plant tolerance to high population density
AU2008258491A1 (en) Yield enhancement in plants by modulation of maize mads box transcription factor ZMM28
US20120240290A1 (en) Methods and Compositions for Modulating Flowering and Maturity in Plants
AU2008257460A1 (en) Yield enhancement in plants by modulation of GARP transcripton factor ZmRR10_p
US7495150B2 (en) Method of increasing seed oil content in plants
EP3292205B1 (de) Verfahren und zusammensetzungen zur herstellung von nichtreduzierten, nichtrekombinierten gameten und klonalen nachkommen
CA2917103A1 (en) Transgenic plants produced with a k-domain, and methods and expression cassettes related thereto
US7803998B2 (en) Methods and compositions for modifying flower development
WO2009000848A1 (en) Yield enhancement in plants by modulation of zmago1
AU2008250020A1 (en) Yield enhancement in plants by modulation of ZmPKT
AU2008257572A1 (en) Yield enhancement in plants by modulation of maize Alfins
US20100218273A1 (en) Yield Enhancement In Plants By Modulation Of Maize Mads Box Transcription Factor Silky1
WO2009000876A1 (en) Yield enhancement in plants by modulation of maize rp120-rna binding protein homolog (ebna2-coact)
WO2008142146A1 (en) Yield enhancement in plants by modulation of zmphdf
WO2010123667A1 (en) Yield enhancement in plants by modulation of a maize transcription coactivator p15 (pc4) protein

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070131

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20081002

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 15/14 20060101ALI20081114BHEP

Ipc: C12N 15/52 20060101AFI20081114BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: A01H 5/00 20060101ALI20090317BHEP

Ipc: C07K 14/415 20060101ALI20090317BHEP

Ipc: C12N 15/82 20060101AFI20090317BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20090326

17Q First examination report despatched

Effective date: 20090716

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHODS AND COMPOSITIONS FOR MODULATING FLOWERING AND MATURITY IN PLANTS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 567044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005035223

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 567044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

26N No opposition filed

Effective date: 20130419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005035223

Country of ref document: DE

Effective date: 20130419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140708

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005035223

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731