EP1767133A2 - Suction brush of vacuum cleaner - Google Patents

Suction brush of vacuum cleaner Download PDF

Info

Publication number
EP1767133A2
EP1767133A2 EP06290581A EP06290581A EP1767133A2 EP 1767133 A2 EP1767133 A2 EP 1767133A2 EP 06290581 A EP06290581 A EP 06290581A EP 06290581 A EP06290581 A EP 06290581A EP 1767133 A2 EP1767133 A2 EP 1767133A2
Authority
EP
European Patent Office
Prior art keywords
suction brush
suction
vacuum cleaner
guide groove
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06290581A
Other languages
German (de)
French (fr)
Inventor
Hwa-Gyu Song
Hyun-Ju Lee
Dong-Houn Yang
Jae-Sun You
Jun-Young Lee
Jung-Heon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Gwangju Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Gwangju Electronics Co Ltd filed Critical Samsung Gwangju Electronics Co Ltd
Publication of EP1767133A2 publication Critical patent/EP1767133A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • A47L11/204Floor surfacing or polishing machines combined with vacuum cleaning devices having combined drive for brushes and for vacuum cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles

Definitions

  • the present invention relates to a suction brush of a vacuum cleaner.
  • a suction brush of a vacuum cleaner has a suction port at the bottom thereof to enable suctioning of dust or other debris (collectively, “debris”) from a surface to be cleaned, and a dust guide groove to guide the debris to the suction port.
  • debris dust or other debris
  • the above-mentioned techniques may somewhat reduce the sticking force between the suction brush and the surface to be cleaned.
  • the object to be cleaned is a soft carpet, it is difficult to improve the manipulability of the suction brush and often the auxiliary wheels or rolling rolls do not smoothly roll.
  • an object of the present invention is to provide an improved suction brush of a vacuum cleaner, which is superior in manipulability for moving the suction brush while contacting a surface to be cleaned. At the same time, a suction force which is directly related to the debris removing capability of the suction brush is maintained.
  • a non-limiting aspect of the present invention provides a suction brush of a vacuum cleaner, which includes: a body configured to communicate with a dust collection device and including at least one suction port; a cover configured to cover a top of the body; and at least one rolling pin configured to be rotatably coupled at a bottom of the body.
  • a vacuum cleaner including: at least one suction brush; at least one dust collector; and means for separating the at least one suction brush from a surface to be cleaned.
  • FIG. 1 is a perspective view showing a non-limiting example of a suction brush of a vacuum cleaner
  • FIG. 2 is a cross-sectional view showing a suction brush of a vacuum cleaner according to a non-limiting embodiment of the present invention
  • FIG. 3 is a view showing a bottom of the suction brush shown in FIG. 2;
  • FIGs. 4A to 4C are schematic views illustrating a non-limiting example of coupling a rolling pin shown in FIG. 2 to the body of the suction brush;
  • FIG. 5A is a graph comparatively showing the dust removing capabilities of a suction brush according to a non-limiting embodiment of the present invention and a conventional suction brush in comparison;
  • FIG. 5B is a graph comparatively showing the manipulation forces required for a suction brush according to a non-limiting aspect of the present invention and a conventional suction brush.
  • FIG. 1 An exemplary vacuum cleaner is illustrated in FIG. 1.
  • the vacuum is turned on when the suction brush is on the surface to be cleaned.
  • a suction motor (not shown) may be driven and debris (with air) is suctioned through the opposite ends 5a and 5b of the dust guide groove 5 when the bottom of the suction brush 1 is proximate to or contacting the surface to be cleaned (e.g., a carpet) (not shown).
  • the debris and air which are caused to flow into the dust guide 5, are suctioned into the vacuum cleaner through the suction port 7, the debris is collected through a dust collecting unit (not shown) and the air is filtered and discharged to the outside of the vacuum cleaner.
  • the effectiveness of a carpet type suction brush may be determined by two factors, i.e., suction force and ease of maneuvering (maneuverability).
  • suction force if the suction force is increased, the force between the suction brush and the carpet is strong, and maneuverability reduces. If the maneuverability is improved, the suction force is generally reduced.
  • an object to be cleaned is lightweight (like a carpet)
  • the dust guide groove 5 is the part into which the debris is introduced during cleaning.
  • the carpet strongly contacts opposite ends 5a and 5b of the dust guide groove 5 and the suction port 7 due to the suction force of the vacuum cleaner. Therefore, when the user moves the suction brush 1 in any direction when the suction brush 1 is in contact with the carpet, the suction force opposes the movement of the suction brush 1. The force caused by suctioning decreases the maneuverability of the vacuum, which increases the amount of force required by the user.
  • a pair of wheels 9a and 9b may be provided at the rear parts of the opposite sides of the body 2 of the suction brush 1.
  • the object to be cleaned is a carpet
  • there is still inconvenience for the user because the carpet still strongly sticks to the dust guide groove 5 and the suction port 7 of the suction brush 1.
  • the suction brush 10 may include a body 11 which may be formed with a suction port 17 and a dust guide groove 15 for guiding debris to the suction port 17, as well as with a cover 12 which may be provided on the top of the body 11 to cover the top of the body 11.
  • a suction brush 10 of a vacuum cleaner may be in communication with a dust collection device (not shown) of the vacuum cleaner at one end thereof directly or via a flexible hose (not shown).
  • the dust guide groove 15 may be extended between the left and right ends of the body 11 in the left and right directions of the suction port 17 and may be in communication with the suction port 17.
  • a pair of rolling pins 20 may be installed at or adjacent to the left and right edge portions of the dust guide groove 15.
  • Each of the rolling pins 20 may include a cylindrical portion 21, which may contact a surface to be cleaned, so that a space of height H may be formed between the surface to be cleaned and the bottom of the body 11 during cleaning, and a pair of coupling projections 25a and 25b may project from opposite ends of the rolling pin 20.
  • two pairs of coupling grooves 15b and 15c may be formed, so that each pair of coupling projections 25a and 25b may be rotatably fitted in a corresponding pair of coupling groove 15b and 15c.
  • the dust guide groove 15 may be also preferable to form the dust guide groove 15 such that the width is gradually increased corresponding to a shape of the suction port 17 as viewed from inlets 15a to a central portion 15d of the dust guide groove15. Moreover, to improve the efficiency of suctioning debris, it may be desirable to form the dust guide groove 15 generally in a streamlined shape, so that flow resistance can be minimized.
  • each rolling pin 20 may include a cylindrical portion 21 configured to contact a surface to be cleaned, thereby spacing the bottom of the body 11 from the surface to be cleaned.
  • a pair of coupling projections 25a and 25b, which may be rotatably connected to the opposite ends of the dust guide groove 15, may also be included.
  • Each pair of projections 25a and 25b which may be removably fitted in the corresponding pair of coupling grooves 15b and 15c, may have a cross-sectional area smaller than that of the coupling grooves 15b and 15c, as shown in FIGs. 4A and 4B. Consequently, spaces S may be formed between coupling grooves 15b and 15c and projections 25a and 25b, thereby forming a passage for the debris introduced from inlets 15a of the dust guide groove 15.
  • the projections 25a and 25b may have any shape in cross-section.
  • the projections 25a and 25b may have a circular shape flattened at opposite sides as shown in FIG. 4A or an oval shape.
  • projections 25a and 25b may be rotatable within the coupling grooves 15a and 15b and the cross-sectional area thereof may be smaller than that of the coupling grooves 15b and 15c.
  • each rolling pin 20 may be formed with a spiral groove 23 extending along the periphery of the cylindrical portion 21.
  • the spiral groove 23 forms five turns around the rolling pin 20
  • the present invention is not limited with respect to the number of turns and/or the pitch of the spiral groove 23.
  • the space between the surface to be cleaned and the bottom of the body 11 within a range not more than approximately 0.5 mm, it is also possible to properly set the diameter of the cylindrical portions 21 and/or to adjust the mounting depth of the rolling pins 20. It is preferable that the space be set to height H, which allows the suction force to be substantially constantly maintained at the level obtained in the state in which the rolling pins 20 are removed from the body 11.
  • the projections 25a, 25b of the rolling pins 20 may be turned so that they are substantially in line with the width of the coupling grooves 15b and 15c as shown in FIG. 4A, and then the projections 25a and 25b may be fitted in the coupling grooves 15b and 15c as shown in FIG. 4B. From this state, it may be preferable that the rolling pins 20 be turned to a predetermined angle to be stably coupled at or adjacent to the left and right edge portions of the dust guide groove 15, so that the escape of the projections 25a and 25b of the rolling pins 20 can be prevented. Because the rolling pins 20 coupled in this manner may be interposed between a surface to be cleaned and the dust guide groove 15 during the cleaning, they may be prevented from moving away from the dust guide groove 15.
  • the suction brush 10 of a vacuum brush according to a non-limiting embodiment of the present invention as configured above can be improved in manipulability because the rolling pins 20 may be installed and roll at or adjacent to the left and right edge portions of the dust guide groove 15, to which the highest suction force is applied, thereby reducing the sticking force between the surface to be cleaned and the suction brush 10.
  • air and debris may be suctioned from the surface to be cleaned through the spiral grooves formed on the rolling pins 20, thereby reducing the frictional force and sticking force between the surface to be cleaned and the suction brush 10.
  • FIG. 5A is a graph comparatively showing the suction forces, which may be directly related to the dust removing capabilities of a suction brush, according to a non-limiting embodiment of the present invention and a conventional suction brush:
  • FIG. 5B is a graph comparatively showing the maneuvering forces of the suction brush according to the embodiment of the present invention and the conventional suction brush.
  • FIG. 5A there is no change in suction efficiency before and after mounting the rolling pins.
  • FIG. 5B it can be confirmed that the force applied by a user to move the suction brush, i.e. the maneuvering force, is substantially reduced.
  • the operation of the inventive suction brush configured as described above will now be described in terms of the case in which the surface to be cleaned is the surface of a carpet.
  • the vacuum cleaner is powered on to drive the vacuum motor of the cleaner, vacuum force is transmitted to the suction brush 10.
  • the suction brush 10 comes into close contact with a surface of the carpet.
  • the space between the bottom of the body of suction brush 10 and the carpet may be maintained at the height H (see FIG. 4B) due to the rolling pins 20.
  • the height H due to the height H, the force between the carpet and the suction brush 10 is reduced.
  • the user when pushing or pulling the suction brush 10 while cleaning, the user can easily manipulate the suction brush 10 because the rolling pins 20 roll. Furthermore, because the air flowing through the spiral grooves 23 formed around the cylindrical portions 21 of the rolling pins 20 functions to slightly lift the suction brush 10, the user can more easily maneuver the suction brush 10.
  • the present invention has an advantage in that by providing a pair of rolling pins at the bottom of the suction brush, the sticking force between a surface to be cleaned and the suction brush can be reduced, whereby the maneuvering force for moving the suction brush can be also reduced.
  • the frictional force between the surface to be cleaned and the suction brush can be reduced, whereby the user can easily clean the surface to be cleaned even if the surface is formed of a lightweight material such as a carpet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

A suction brush of a vacuum cleaner includes: a body configured to communicate with a dust collection device and including at least one suction port; a cover configured to cover a top of the body; and at least one rolling pin configured to be rotatably coupled at a bottom of the body.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority under 35 U.S.C. § 119(a) to Korean Patent Application No. 2005-89809, filed September 27, 2005 , the entire contents of which are incorporated herein by reference. This application may also be related to commonly owned U.S. patent application serial no. 10/991,426, filed November 19, 2004 , and commonly owned U.S. Patent No. 6,918,156 , the contents of each of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a suction brush of a vacuum cleaner.
  • Description of the Related Art
  • In general, a suction brush of a vacuum cleaner has a suction port at the bottom thereof to enable suctioning of dust or other debris (collectively, "debris") from a surface to be cleaned, and a dust guide groove to guide the debris to the suction port.
  • In order to improve the manipulability of the suction brush of a vacuum cleaner, it has been proposed to provide plural auxiliary wheels on the bottom of the suction brush adjacent to the dust guide groove, as described in Korean Patent Publication No. 2004-47365 , or to provide rolling rollers at the rear part of the bottom of the suction brush, as described in Korean Patent Publication No. 2005-18492 .
  • The above-mentioned techniques may somewhat reduce the sticking force between the suction brush and the surface to be cleaned. However, if the object to be cleaned is a soft carpet, it is difficult to improve the manipulability of the suction brush and often the auxiliary wheels or rolling rolls do not smoothly roll.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide an improved suction brush of a vacuum cleaner, which is superior in manipulability for moving the suction brush while contacting a surface to be cleaned. At the same time, a suction force which is directly related to the debris removing capability of the suction brush is maintained.
  • To this end, a non-limiting aspect of the present invention provides a suction brush of a vacuum cleaner, which includes: a body configured to communicate with a dust collection device and including at least one suction port; a cover configured to cover a top of the body; and at least one rolling pin configured to be rotatably coupled at a bottom of the body.
  • Another non-limiting aspect of the present invention provides a vacuum cleaner, including: at least one suction brush; at least one dust collector; and means for separating the at least one suction brush from a surface to be cleaned.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above aspects and features of the present invention will be more apparent from the description for certain embodiments of the present invention taken with reference to the accompanying drawings, in which:
  • FIG. 1 is a perspective view showing a non-limiting example of a suction brush of a vacuum cleaner;
  • FIG. 2 is a cross-sectional view showing a suction brush of a vacuum cleaner according to a non-limiting embodiment of the present invention;
  • FIG. 3 is a view showing a bottom of the suction brush shown in FIG. 2;
  • FIGs. 4A to 4C are schematic views illustrating a non-limiting example of coupling a rolling pin shown in FIG. 2 to the body of the suction brush;
  • FIG. 5A is a graph comparatively showing the dust removing capabilities of a suction brush according to a non-limiting embodiment of the present invention and a conventional suction brush in comparison; and
  • FIG. 5B is a graph comparatively showing the manipulation forces required for a suction brush according to a non-limiting aspect of the present invention and a conventional suction brush.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinbelow, the embodiments of the present invention are described in detail with reference to accompanying drawings. In the accompanying drawings, like numerals refer to like elements thoughout.
  • An exemplary vacuum cleaner is illustrated in FIG. 1. Generally, the vacuum is turned on when the suction brush is on the surface to be cleaned. A suction motor (not shown) may be driven and debris (with air) is suctioned through the opposite ends 5a and 5b of the dust guide groove 5 when the bottom of the suction brush 1 is proximate to or contacting the surface to be cleaned (e.g., a carpet) (not shown).
  • After the debris and air, which are caused to flow into the dust guide 5, are suctioned into the vacuum cleaner through the suction port 7, the debris is collected through a dust collecting unit (not shown) and the air is filtered and discharged to the outside of the vacuum cleaner.
  • The effectiveness of a carpet type suction brush may be determined by two factors, i.e., suction force and ease of maneuvering (maneuverability). In general, if the suction force is increased, the force between the suction brush and the carpet is strong, and maneuverability reduces. If the maneuverability is improved, the suction force is generally reduced. In particular, when an object to be cleaned is lightweight (like a carpet), it is helpful to design the dust guide groove so that the suction force can be increased while the force to be exerted by a user to maneuver the suction brush can be reduced, thereby improving the maneuverability of the suction brush.
  • As mentioned above, the dust guide groove 5 is the part into which the debris is introduced during cleaning. In particular, the carpet strongly contacts opposite ends 5a and 5b of the dust guide groove 5 and the suction port 7 due to the suction force of the vacuum cleaner. Therefore, when the user moves the suction brush 1 in any direction when the suction brush 1 is in contact with the carpet, the suction force opposes the movement of the suction brush 1. The force caused by suctioning decreases the maneuverability of the vacuum, which increases the amount of force required by the user.
  • In order to overcome this problem, a pair of wheels 9a and 9b may be provided at the rear parts of the opposite sides of the body 2 of the suction brush 1. However, when the object to be cleaned is a carpet, there is still inconvenience for the user because the carpet still strongly sticks to the dust guide groove 5 and the suction port 7 of the suction brush 1.
  • Referring to FIGs. 2 and 3, the suction brush 10 may include a body 11 which may be formed with a suction port 17 and a dust guide groove 15 for guiding debris to the suction port 17, as well as with a cover 12 which may be provided on the top of the body 11 to cover the top of the body 11.
  • A suction brush 10 of a vacuum cleaner according to a first non-limiting embodiment of the present invention may be in communication with a dust collection device (not shown) of the vacuum cleaner at one end thereof directly or via a flexible hose (not shown).
  • The dust guide groove 15 may be extended between the left and right ends of the body 11 in the left and right directions of the suction port 17 and may be in communication with the suction port 17. A pair of rolling pins 20 may be installed at or adjacent to the left and right edge portions of the dust guide groove 15. Each of the rolling pins 20 may include a cylindrical portion 21, which may contact a surface to be cleaned, so that a space of height H may be formed between the surface to be cleaned and the bottom of the body 11 during cleaning, and a pair of coupling projections 25a and 25b may project from opposite ends of the rolling pin 20. At or adjacent to the left and right edge portions of the dust guide groove 15, two pairs of coupling grooves 15b and 15c may be formed, so that each pair of coupling projections 25a and 25b may be rotatably fitted in a corresponding pair of coupling groove 15b and 15c.
  • It may be also preferable to form the dust guide groove 15 such that the width is gradually increased corresponding to a shape of the suction port 17 as viewed from inlets 15a to a central portion 15d of the dust guide groove15. Moreover, to improve the efficiency of suctioning debris, it may be desirable to form the dust guide groove 15 generally in a streamlined shape, so that flow resistance can be minimized.
  • Meanwhile, the rolling pins 20 allow the body 11 to be more easily maneuvered when an adhesion force between a surface to be cleaned and the body 11 is constantly maintained. Each rolling pin 20 may include a cylindrical portion 21 configured to contact a surface to be cleaned, thereby spacing the bottom of the body 11 from the surface to be cleaned. A pair of coupling projections 25a and 25b, which may be rotatably connected to the opposite ends of the dust guide groove 15, may also be included.
  • Each pair of projections 25a and 25b, which may be removably fitted in the corresponding pair of coupling grooves 15b and 15c, may have a cross-sectional area smaller than that of the coupling grooves 15b and 15c, as shown in FIGs. 4A and 4B. Consequently, spaces S may be formed between coupling grooves 15b and 15c and projections 25a and 25b, thereby forming a passage for the debris introduced from inlets 15a of the dust guide groove 15.
  • The projections 25a and 25b may have any shape in cross-section. For example, the projections 25a and 25b may have a circular shape flattened at opposite sides as shown in FIG. 4A or an oval shape. Preferably, projections 25a and 25b may be rotatable within the coupling grooves 15a and 15b and the cross-sectional area thereof may be smaller than that of the coupling grooves 15b and 15c.
  • Referring to FIG. 3, each rolling pin 20 may be formed with a spiral groove 23 extending along the periphery of the cylindrical portion 21. Although it is exemplified in the present non-limiting embodiment that the spiral groove 23 forms five turns around the rolling pin 20, the present invention is not limited with respect to the number of turns and/or the pitch of the spiral groove 23. Owing to the spiral grooves 23, even if cleaning is performed when the bottom of the body 11 of the suction brush 10 comes into close contact with a surface to be cleaned, air flows into the suction port in the directions indicated by arrows B as well as in the directions indicated by arrows A as shown in FIG. 3. As a result, it may be possible to prevent the surface to be cleaned from strongly adhering to the suction brush 10 and from being dragged by the suction brush 10. Consequently, the maneuverability of the suction brush 10 can be improved.
  • As the rolling pins 20 rotate, passage for debris can be secured through the spiral grooves 23. Accordingly, it is possible to smoothly move the suction brush 10 in any direction when the bottom of the body 11 is in close contact with the surface to be cleaned.
  • To maintain the space between the surface to be cleaned and the bottom of the body 11 within a range not more than approximately 0.5 mm, it is also possible to properly set the diameter of the cylindrical portions 21 and/or to adjust the mounting depth of the rolling pins 20. It is preferable that the space be set to height H, which allows the suction force to be substantially constantly maintained at the level obtained in the state in which the rolling pins 20 are removed from the body 11.
  • The procedure for installing the rolling pins 20 at or near the bottom of the body 11 will now be described with reference to FIGs. 3 and 4A-4C. At first, the projections 25a, 25b of the rolling pins 20 may be turned so that they are substantially in line with the width of the coupling grooves 15b and 15c as shown in FIG. 4A, and then the projections 25a and 25b may be fitted in the coupling grooves 15b and 15c as shown in FIG. 4B. From this state, it may be preferable that the rolling pins 20 be turned to a predetermined angle to be stably coupled at or adjacent to the left and right edge portions of the dust guide groove 15, so that the escape of the projections 25a and 25b of the rolling pins 20 can be prevented. Because the rolling pins 20 coupled in this manner may be interposed between a surface to be cleaned and the dust guide groove 15 during the cleaning, they may be prevented from moving away from the dust guide groove 15.
  • The suction brush 10 of a vacuum brush according to a non-limiting embodiment of the present invention as configured above can be improved in manipulability because the rolling pins 20 may be installed and roll at or adjacent to the left and right edge portions of the dust guide groove 15, to which the highest suction force is applied, thereby reducing the sticking force between the surface to be cleaned and the suction brush 10. In particular, air and debris may be suctioned from the surface to be cleaned through the spiral grooves formed on the rolling pins 20, thereby reducing the frictional force and sticking force between the surface to be cleaned and the suction brush 10.
  • In addition, according to the above-mentioned embodiment of the present invention, it is possible to improve the manipulability of the suction brush 10 while maintaining the suction force whether a surface to be cleaned is a hard floor or a soft carpet.
  • FIG. 5A is a graph comparatively showing the suction forces, which may be directly related to the dust removing capabilities of a suction brush, according to a non-limiting embodiment of the present invention and a conventional suction brush: FIG. 5B is a graph comparatively showing the maneuvering forces of the suction brush according to the embodiment of the present invention and the conventional suction brush. Referring to FIG. 5A, there is no change in suction efficiency before and after mounting the rolling pins. However, referring to FIG. 5B, it can be confirmed that the force applied by a user to move the suction brush, i.e. the maneuvering force, is substantially reduced.
  • By way of example, the operation of the inventive suction brush configured as described above will now be described in terms of the case in which the surface to be cleaned is the surface of a carpet. At first, if the vacuum cleaner is powered on to drive the vacuum motor of the cleaner, vacuum force is transmitted to the suction brush 10. Then, the suction brush 10 comes into close contact with a surface of the carpet. The space between the bottom of the body of suction brush 10 and the carpet may be maintained at the height H (see FIG. 4B) due to the rolling pins 20. In particular, due to the height H, the force between the carpet and the suction brush 10 is reduced.
  • Therefore, when pushing or pulling the suction brush 10 while cleaning, the user can easily manipulate the suction brush 10 because the rolling pins 20 roll. Furthermore, because the air flowing through the spiral grooves 23 formed around the cylindrical portions 21 of the rolling pins 20 functions to slightly lift the suction brush 10, the user can more easily maneuver the suction brush 10.
  • The present invention has an advantage in that by providing a pair of rolling pins at the bottom of the suction brush, the sticking force between a surface to be cleaned and the suction brush can be reduced, whereby the maneuvering force for moving the suction brush can be also reduced. In addition, because air is suctioned through the spiral grooves 23 formed around the rolling pins 20, the frictional force between the surface to be cleaned and the suction brush can be reduced, whereby the user can easily clean the surface to be cleaned even if the surface is formed of a lightweight material such as a carpet.
  • Although representative embodiments of the present invention have been shown and described in order to exemplify the principle of the present invention, the present invention is not limited to the specific embodiments disclosed herein. It will be understood that various modifications and changes can be made by one skilled in the art without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, it shall be considered that such modifications, changes, and equivalents thereof are all included within the scope of the present invention.

Claims (14)

  1. A suction brush of a vacuum cleaner, comprising:
    a body configured to communicate with a dust collection device and including at least one suction port;
    a cover configured to cover a top of the body; and
    at least one rolling pin configured to be rotatably coupled at a bottom of the body.
  2. The suction brush of claim 1, wherein the at least one rolling pin includes a first rolling pin installed at a first side of the body and a second rolling pin installed a second side of the body.
  3. The suction brush of claim 2, wherein the first side is opposite the second side.
  4. The suction brush of claim 2, wherein at least one dust guide groove is configured to be formed at the bottom of the body to guide debris and air to the at least one suction port.
  5. The suction brush of claim 4, wherein the first and second rolling pins are respectively installed proximate to opposite ends of the at least one dust guide groove.
  6. The suction brush of claim 1, wherein the at least one rolling pin comprises:
    a cylindrical portion configured to contact a surface to be cleaned, thereby spacing the bottom of the body from the surface to be cleaned; and
    at least one coupling projection configured to project from opposite ends of the cylindrical portion and configured to be rotatably connected to the bottom of the body.
  7. The suction brush of claim 1, wherein the at least one rolling pin comprises a groove formed along the periphery thereof.
  8. The suction brush of claim 7, wherein the groove includes at least one spiral portion.
  9. A vacuum cleaner, comprising:
    at least one suction brush;
    at least one dust collector; and
    means for separating the at least one suction brush from a surface to be cleaned.
  10. The vacuum cleaner of claim 9, wherein the means for separating includes at least one rolling pin.
  11. The vacuum cleaner of claim 9, further comprising at least one guide groove configured to guide dust attracted by the at least one suction brush to the at least one dust collector.
  12. The vacuum cleaner of claim 11, wherein the at least one guide groove is configured to be formed proximate to a bottom of the at least one suction brush.
  13. The vacuum cleaner of claim 12, wherein the means for separating is formed proximate to the at least one guide groove.
  14. The vacuum cleaner of claim 11, wherein the means for separating is formed proximate to the at least one guide groove.
EP06290581A 2005-09-27 2006-04-07 Suction brush of vacuum cleaner Withdrawn EP1767133A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050089809A KR100628387B1 (en) 2005-09-27 2005-09-27 Suction brush of vacuum cleaner

Publications (1)

Publication Number Publication Date
EP1767133A2 true EP1767133A2 (en) 2007-03-28

Family

ID=37110158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290581A Withdrawn EP1767133A2 (en) 2005-09-27 2006-04-07 Suction brush of vacuum cleaner

Country Status (6)

Country Link
US (1) US20070067946A1 (en)
EP (1) EP1767133A2 (en)
KR (1) KR100628387B1 (en)
CN (1) CN1939203A (en)
AU (1) AU2006201519B2 (en)
RU (1) RU2322172C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756322B1 (en) * 2006-12-06 2007-09-06 삼성광주전자 주식회사 Brush and vacuum cleaner havig the same
KR102015320B1 (en) * 2012-10-04 2019-08-28 삼성전자주식회사 Vacuum Cleaner
KR20220027698A (en) * 2020-08-27 2022-03-08 엘지전자 주식회사 Vacuum Cleaner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157077A (en) * 1938-10-06 1939-05-02 Filtex Corp Vacuum sweeper nozzle and the like
US2701892A (en) * 1951-09-25 1955-02-15 Richard H Neitzel Vacuum cleaner
US3225374A (en) * 1963-08-26 1965-12-28 Singer Co Beater-brush roller for vacuum cleaner
US4083079A (en) * 1976-09-01 1978-04-11 The Singer Company Vacuum cleaners with nozzle height adjusting mechanisms
DE2817197A1 (en) * 1978-04-20 1979-10-31 Vorwerk Co Interholding FLOOR CARE UNIT
DE4201596C2 (en) * 1992-01-22 2001-07-05 Gerhard Kurz Floor nozzle for vacuum cleaners
DE4304681C2 (en) * 1993-02-16 1996-06-05 Wessel Werk Gmbh One-piece vacuum cleaner nozzle
US5481781A (en) * 1994-01-21 1996-01-09 The Hoover Company Rollered nozzle
US5906024A (en) * 1996-02-08 1999-05-25 Bissell Inc. Nozzle lift and adjustment mechanism for an upright vacuum cleaner
CA2289808A1 (en) * 1998-11-18 2000-05-18 Arnold L. Sepke Battery power combination vacuum cleaner

Also Published As

Publication number Publication date
RU2006113421A (en) 2008-01-20
KR100628387B1 (en) 2006-09-26
CN1939203A (en) 2007-04-04
AU2006201519B2 (en) 2008-07-24
AU2006201519A1 (en) 2007-04-19
US20070067946A1 (en) 2007-03-29
RU2322172C2 (en) 2008-04-20

Similar Documents

Publication Publication Date Title
JP7152837B2 (en) Stirrer for surface treatment equipment and surface treatment equipment having the same
EP1810603B1 (en) Suction head for a vacuum cleaner
KR101400814B1 (en) A vacuum cleaning head
US20130312216A1 (en) Cleaner head
EP1838196B1 (en) Cleaner head for a cleaning appliance
JP2005323999A (en) Robot cleaner
CN106691315B (en) Drum for dust collector and dust collector with same
US10799080B2 (en) Cleaner
JP2009022644A (en) Suction device for vacuum cleaner, and vacuum cleaner
KR20120132501A (en) A vacuum cleaning head
JP4749263B2 (en) Vacuum cleaner suction tool
EP1767133A2 (en) Suction brush of vacuum cleaner
CN105310602A (en) Vacuum dust collector head
JP2006346279A (en) Electric cleaner and its suction port body
JP4231882B2 (en) Suction port and vacuum cleaner provided with the same
EP1808113B1 (en) Vacuum cleaner
US20020133902A1 (en) Large area surface cleaning tool
KR101629300B1 (en) A vacuum cleaner
KR101055910B1 (en) Nozzle of vacuum cleaner
JP2003111701A (en) Cleaner
CN110269544A (en) It is provided with the cleaner suction nozzle of the slidingsurface with rounded back edge
US20230329495A1 (en) Cleaner
JP4215529B2 (en) Suction port body and electric vacuum cleaner provided with the same
JP2008245880A (en) Vacuum cleaner
KR200344833Y1 (en) Vacuum cleaner with wiping function

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080121