EP1761737A1 - Bomb bin - Google Patents

Bomb bin

Info

Publication number
EP1761737A1
EP1761737A1 EP05717835A EP05717835A EP1761737A1 EP 1761737 A1 EP1761737 A1 EP 1761737A1 EP 05717835 A EP05717835 A EP 05717835A EP 05717835 A EP05717835 A EP 05717835A EP 1761737 A1 EP1761737 A1 EP 1761737A1
Authority
EP
European Patent Office
Prior art keywords
water
blast
container
bin
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05717835A
Other languages
German (de)
French (fr)
Inventor
Peter James
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cintec International Ltd
Original Assignee
Cintec International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0404634A external-priority patent/GB0404634D0/en
Priority claimed from GB0405860A external-priority patent/GB0405860D0/en
Application filed by Cintec International Ltd filed Critical Cintec International Ltd
Publication of EP1761737A1 publication Critical patent/EP1761737A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B39/00Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
    • F42B39/14Explosion or fire protection arrangements on packages or ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B39/00Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
    • F42B39/20Packages or ammunition having valves for pressure-equalising; Packages or ammunition having plugs for pressure release, e.g. meltable ; Blow-out panels; Venting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B39/00Packaging or storage of ammunition or explosive charges; Safety features thereof; Cartridge belts or bags
    • F42B39/24Shock-absorbing arrangements in packages, e.g. for shock waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
    • F42D5/045Detonation-wave absorbing or damping means

Definitions

  • Bomb Bin This invention relates to bomb bins for protecting nearby structures against the effects of an explosion. It is well known to use water to mitigate against the effects of an explosion and, for example, EP 0276918 describes various forms of inflatable structures which may be placed over and around a bomb in order to mitigate against the effects of any subsequent explosion. This concept is taken a further step by the use of drop stitch material as taught in GB 2374625, the disclosure of which is incorporated herein by reference, the drop stitch material allowing protective walls to be erected quickly which are taller than the width of the base arid wfiic may fhTtiaTTy ⁇ >e filled with " air ⁇ attain Their desired sfiape, followed " by / water to mitigate against any subsequent blast.
  • This co ⁇ ept is refineS further ⁇ n the Teac ⁇ iihg of GB 2 2B9 750 issued to Parkes in which unwanted munitions can be effectively disposed of by arranging for lay flat plastic tubing filled with water to be draped over rigid supports such that separated volumes of water and air are present in a line away from the intended source of a blast when the munitions are detonated through the use of a control charge.
  • a problem with the foregoing prior art apparatus and methods is that the weight of water constitutes a significant disadvantage where e.g. a terrorist device has to be dealt with, especially on airborne vehicles such as passenger planes.
  • a "worst case" scenario is that a bomb is discovered in e.g.
  • a water fillable blast suppression bin comprising an inflatable container for holding e.g.
  • the container comprising an outer layer of ballistic-grade material acting as a last line of containment for a subsequent blast, one or more internal layers for forming containers for holding water and/or gas and/or material layers to provide separated volumes of water and/or gas, such as nitrogen, in use, and/or fibrous material, sirct. as mineral wool, arid closure means, such as a fid, aTs ⁇ l ⁇ avihg an outer layer of ballistic-grade material and one or more layers of water and/or gas fillable containers and/or fibrous material.
  • the gas may be nitrogen and may be contained in individual fillable polythene bags from e.g. a nitrogen containing cylinder under pressure.
  • the blast suppression bin has, when filled, volumes of gas such as nitrogen contained in e.g. individual polythene bags placed around a suspect device, followed by a layer of water in a fillable container, such as made of drop stitch material, followed by a layer of gas, such as nitrogen, followed by a final layer of water adjacent the ballistics grade outer layer.
  • a layer of gas such as nitrogen
  • a layer of fibrous material such as mineral wool
  • the blast bin includes an inner container for containing water which is separated from an outer container for containing water by an intermediate container for containing a gas which thereby allows water in the inner container to be completely or substantially completely aerosolised upon an explosion occurring within the bin to thereby reduce the peak gas pressure and total gas impulse of the Shockwave before it reaches the outer container.
  • the blast suppression bin may be substantially cylindrical in shape having a closed end intended for placement on a flat surface such as a floor and an open end into which a suspect device may be placed, with closure means in the form of aiid overlaying and seating the otherwise open e ⁇ ci.
  • the blast suppression bin is substantially spherical (or alternatively circular on at least one axis) when inflated and includes an inner container for holding a suspect device, the inner container preferably having opposing walls fillable therebetween with water and most preferably being secured to but spaced from the inside wall of a correspondingly shaped outer container, itself fillable with water so as to create a water/gas/water structure when the bin is inflated.
  • the inner and outer containers may be provided with closure means in the form of openable pocket-like slits permitting insertion and placement of a suspect device into the inner container either before or after inflation of the bin, which slits may also be provided with temporary closure means, such as zips or opposing strips of
  • releaseable hook fasteners such as Velcro ® .
  • a water inlet conduit may be supplied to the inner container and a further conduit may be provided for then filling the inside of the outer container, or alternatively separate conduits may be provided for such purposes.
  • Figure 1 is a part perspective view of a first embodiment of blast suppression bin according to the invention
  • Figure 2 is a part perspective view of a preferred embodiment of blast suppression bin according to the invention
  • Figure 3 Is a [ exploded perspective view oT ' ali alfern itlve emB ⁇ Jime ⁇ t ' ⁇ f ' blast suppression bin
  • Figure 4 is a sectional view taken from the front of the bin of Figure 3
  • Figure 5 is a sectional view of a further alternative blast suppression bin according to the invention.
  • FIG. 1 there is shown a part cutaway view of a first embodiment of blast suppression bin shown generally at 1 with the front wall removed for clarity, the blast bin comprising a container portion 2 and closure means in the form of a lid portion 3 (shown raised for clarity) which may be strapped to the container portion 2 by straps (not shown) of e.g. reinforced ballistics-grade webbing material (e.g. nylon, Kevlar or zylon) such that in the event of detonation of e.g. a TNT bomb, as shown, the lid 3 tends to remain in position attached to the container portion 2 in use.
  • reinforced ballistics-grade webbing material e.g. nylon, Kevlar or zylon
  • the blast suppression bin 1 When assembled together the blast suppression bin 1 has outer walls 4 comprising or including ballistics grade fabric, to act as a last line of containment for a blast.
  • outer walls 4 comprising or including ballistics grade fabric, to act as a last line of containment for a blast.
  • internal walls of the container 2 are made of drop stitch or similar material by which separated volumes of water/gas or fibrous material, such as mineral wool, may be constructed.
  • the outer container 6 may initially be inflated with air to assume its generally cuboid shape and then the air replaced with water piped in from elsewhere, such as a suitable water pipe from within the body of an aircraft.
  • the inner container 7 may simply be filled with e.g. mineral wool which is known to suppress the effects of e.g. a blast from an explosive device, including shrapnel or "fly" and, similarly, the device itself may
  • This can Be achieved By having a relatively thin inner container 9, again typically made of drop stitch material, which can Be filled with water and between which is an intermediate container 10 which may simply Be filled with a gas such as nitrogen or even air such that in comBination with the outer container 6
  • an intermediate container 10 which may simply Be filled with a gas such as nitrogen or even air such that in comBination with the outer container 6
  • the shock wave for example, first passes through a sfnalT aTnount of wafer wfTicT ⁇ is completely aerosolised, then through the gas and then through a larger mass of water in the outer container 6 Before the shock wave hits the outer walls 4 of Ballistics grade material.
  • a plinth 11 may be provided, although it will be appreciated that other forms of support may be used and in particular supports which allow the shock wave from detonation to hit the water in the first container 9 in an unimpeded manner so as to maximise the chances of complete aerosolisati ⁇ n of that water.
  • the plinth 11 may be made of e.g. a rigid plastics support frame so as to ensure as far as possible that aerosolisation is generally spherical and is not Biased in any particular direction.
  • filled Bags of gas such as nitrogen, may be placed around the support device in the manner as shown in Figure 1.
  • the blast mitigation bin includes its own charge of compressed gas in a gas cylinder (not shown) so that it may be immediately available for initially inflating the containers, which is then replaced with water via the use of one or more pressure relief valves.
  • the or each pressure relief valve may be configured to vent gas, such as nitrogen or carbon dioxide, into the interior of the bomb bin so as to mitigate against ignition of detonation products immediately after an explosion.
  • the bomb bin is storable in its deflated condition and is pre-connected or connectable to a hose for liquid, such as water from the galley of a passenger plane, so that the hose can be deployed quickly and connected to the main water system in the plane, ⁇ n a still T ⁇ rt ⁇ er re ⁇ menFffie waf ⁇ fitlable Inner container, wh re Ttttedrts adapted to Be filled first so that in the event the outer water tillable container has not been filled at the time an explosion occurs the inner layer of water is used most efficiently by being aerosolised, so as to minimise the strength of the resulting shock wave.
  • a hose for liquid such as water from the galley of a passenger plane
  • FIG. 3 there is shown a further embodiment of blast suppression bin 12 comprising a cylindrical lower container portion 13 having a closed end 14 for resting on a flat surface such as the deck of an aircraft, and an open end 15 into which a suspect device may be placed and which may thereafter be closed by means of a correspondingly shaped lid 16 having an internal diameter slightly larger than the external diameter of the lower container portion 13.
  • the outside of the outer container 17 includes ballistic grade material (not shown) to act as a last line of containment for an explosion.
  • the lower portion 13 includes a water-fillable outer container 17, an intermediate container 18 and an inner container 19.
  • Inner container 19 is preferably fillable with water but may instead be filled with e.g.
  • the intermediate container 18 may instead simply be filled with an inert gas such as nitrogen with the inner container being filled or fillable with water 19, thereby providing a water/gas/water barrier for the explosive to, initially, aerosolise the water in the inner container 19, the gas within the intermediate container 18 allowing room for this to happen, whereafter the shock wave is further suppressed by the water in the outer container 17.
  • an inert gas such as nitrogen
  • the inner container being filled or fillable with water 19
  • the li ⁇ t T6 includes " a f Outer ⁇ o ⁇ tai ⁇ er 2 ⁇ 7 ⁇ a ⁇ tf ⁇ ⁇ ntermedtate container 21 and an inner container 22, which may be fillable in the same order as the container portion 13 and may conveniently be pneumatically connected therewith or may be separately inflataBle.
  • construction of the Blast suppression Bin 12 particularly suits the use of dropstitch material, which is usually constructed as a flat hollow sheet having opposing side walls connected By fiBrous weBs so that when inflated the fiBrous weBs help to retain the desired shape.
  • each container 17, 18 and 19 it is simply necessary to cut three respective lengths of dropstitch sheet material which are each then joined end-on-end to make the side walls of the container 17, 18 and 19.
  • the dropstitch sheeting can Be cut into circles corresponding with the required diameter, whereafter each such circle is secured to its respective container By e.g. welding or adhesive.
  • FIG. 5 there is shown a cross-sectional view of a further emBodiment of invention in which the inflataBle Blast suppression Bin 23 this time takes the form of a generally spherical container 23 when inflated as shown, although it will Be understood that other forms of circular hut not strictly spherical containers could be used instead, such as circular on one axis But oval on an axis normal thereto.
  • the Blast suppression Bin 23 comprises a hollow outer container 24 and a hollow inner container 25 supported, in use, By radially extending weBs or lines 26 connecting the inner wall 27 of the outer container 24 with the outer wall 28 of aerosolisation of a liquid such as water in the walls of the inner container 25 before the shock wave of an explosion encounters the water within the outer container 24.
  • the containers 24, 25 may Be made of dropstitch material so as to keep their intended shape when inflated, although other ways of achieving this ohjective may Be employed including through the use of internal weBBing or the external welding together of opposing container walls, if made of e.g. plastics materials.
  • the outer container 24 also includes as outer layer of Ballistic grade material (not shown) acting as a last line of containment in the event of an explosion.
  • Ballistic grade material acting as a last line of containment in the event of an explosion.
  • pneumatically sealed pocketlike slits 29, 30 are provided through the walls of the containers 24, 25, of length sufficient only to allow for placement of a device within the centre of the container 25
  • the emBodiment of Figure 5 also includes a water inlet valve 31 which is pneumatically connected to a conduit 32 allowing for the inflow of water under pressure to thereafter initially fill the container 25 in the manner as shown.
  • a pressure relief valve 33 at the end of an outlet conduit 34 then allows water to flow in the direction arrowed into the outer container 24 until it is fully inflated in the manner as shown.
  • the conduit 34 may Be omitted and the conduit 32 may instead a11o To ⁇ Tit1fr ⁇ substantially a tl e same time as The inner container 25.
  • Eyelets 35 may be positioned around the outer container 24 for the purposes of securing it by e.g. rope or webbing above the floor so that any subsequent explosion occurs when the bin 23 and explosive device have been mounted in the strategically safest position, such as in the middle of the fuselage of an aeroplane.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A water fillable blast suppression bin (1, 12, 23) comprising an inflatable container (2, 13, 24) for holding e.g. a bomb, the container comprising an outer layer of ballistics-grade material (4) acting as a last line of containment for a subsequent blast, one or more internal layers for forming containers (6, 7, 9, 10, 17, 18, 19, 24, 25) for holding water and/or gas and/or material layers to provide separated volumes of water and/or gas, such as nitrogen, in use, and/or material, such as mineral wool, and a closure lid (3, 16) also having an outer layer of ballistic-grade material and one or more layers of water and/or gas finable containers (6, 7, 9) and/or material.

Description

Bomb Bin This invention relates to bomb bins for protecting nearby structures against the effects of an explosion. It is well known to use water to mitigate against the effects of an explosion and, for example, EP 0276918 describes various forms of inflatable structures which may be placed over and around a bomb in order to mitigate against the effects of any subsequent explosion. This concept is taken a further step by the use of drop stitch material as taught in GB 2374625, the disclosure of which is incorporated herein by reference, the drop stitch material allowing protective walls to be erected quickly which are taller than the width of the base arid wfiic may fhTtiaTTy Ε>e filled with "air ϊό attain Their desired sfiape, followed "by / water to mitigate against any subsequent blast. It is further known from a paper by Messrs Keenan and Wager dating from 1992 at the 25th DoD Explosives Safety Seminar at Anaheim, California, that where water is allowed to aerosolise by being located at or near the proximity of a subsequent explosion the aerosolised water prevents combustion of detonation products by preventing access to oxygen and by cooling gases below the temperature required to sustain combustion. They also found that vaporisation of water absorbs 539 calories/gram plus 1 calorie/gram/degree to heat the water to 100°C, thereby concluding that aerosolised water can absorb all of the detonation energy of explosive if the weight ratio of water to explosive is 930/539 i.e. 1.8 for TNT explosive and 3.8 for H-6 explosive. Tests they conducted concluded that the peak gas pressure and total gas impulse present can be lowered by as much as 90% than in the case of the corresponding peak gas pressure and total gas impulse in the absence of water. They also found that providing 2.89lbs of water for each pound of TNT explosive reduced the peak gas pressure from 51.1 lbs per sq inch to just 5.85 lbs per sq inch for a total reduction therefor of nearly 90%. They therefore proposed various configurations for use in and around military installations including a transportable bomb cart, being a reinforced container and associated lid into which may be placed e.g. an explosive device and around which may be suspended water filled rupturable containers which permitted the water to be aerosolised in the event of an explosion, thereby reducing the effects of the explosion accordingly. This coπ ept is refineS further ϊn the Teacϊiihg of GB 2 2B9 750 issued to Parkes in which unwanted munitions can be effectively disposed of by arranging for lay flat plastic tubing filled with water to be draped over rigid supports such that separated volumes of water and air are present in a line away from the intended source of a blast when the munitions are detonated through the use of a control charge. A problem with the foregoing prior art apparatus and methods is that the weight of water constitutes a significant disadvantage where e.g. a terrorist device has to be dealt with, especially on airborne vehicles such as passenger planes. A "worst case" scenario is that a bomb is discovered in e.g. the heel of the shoe of a suicide bomber which may or may not detonate prior to the plane landing or descending to a height at which the device may be safely jettisoned. The present invention is derived from the surprising realisation that many aircraft, including passenger aircraft, have reasonably substantial quantities of water or other liquids on board for use in galleys and on board toilets which could be diverted to a stowed blast mitigation bin into which the device may be put to thereafter mitigate against the effects of any subsequent explosion before the plane has landed. According to the invention there is provided a water fillable blast suppression bin comprising an inflatable container for holding e.g. a bomb, the container comprising an outer layer of ballistic-grade material acting as a last line of containment for a subsequent blast, one or more internal layers for forming containers for holding water and/or gas and/or material layers to provide separated volumes of water and/or gas, such as nitrogen, in use, and/or fibrous material, sirct. as mineral wool, arid closure means, such as a fid, aTsόlϊavihg an outer layer of ballistic-grade material and one or more layers of water and/or gas fillable containers and/or fibrous material. Conveniently, the gas may be nitrogen and may be contained in individual fillable polythene bags from e.g. a nitrogen containing cylinder under pressure. Conveniently, the blast suppression bin has, when filled, volumes of gas such as nitrogen contained in e.g. individual polythene bags placed around a suspect device, followed by a layer of water in a fillable container, such as made of drop stitch material, followed by a layer of gas, such as nitrogen, followed by a final layer of water adjacent the ballistics grade outer layer. Alternatively, in place of one or more layers of gas or water one or more layers of fibrous material, such as mineral wool, may be used to progressively dampen the effects of an explosion to hopefully contain it wholly or substantially wholly within the blast suppression bin, at least to the extent that the detonation does not cause structural damage to a vehicle in which it is used, such as an aeroplane. Preferably, the blast bin includes an inner container for containing water which is separated from an outer container for containing water by an intermediate container for containing a gas which thereby allows water in the inner container to be completely or substantially completely aerosolised upon an explosion occurring within the bin to thereby reduce the peak gas pressure and total gas impulse of the Shockwave before it reaches the outer container. The blast suppression bin may be substantially cylindrical in shape having a closed end intended for placement on a flat surface such as a floor and an open end into which a suspect device may be placed, with closure means in the form of aiid overlaying and seating the otherwise open eπci. In a further embodiment the blast suppression bin is substantially spherical (or alternatively circular on at least one axis) when inflated and includes an inner container for holding a suspect device, the inner container preferably having opposing walls fillable therebetween with water and most preferably being secured to but spaced from the inside wall of a correspondingly shaped outer container, itself fillable with water so as to create a water/gas/water structure when the bin is inflated. Conveniently the inner and outer containers may be provided with closure means in the form of openable pocket-like slits permitting insertion and placement of a suspect device into the inner container either before or after inflation of the bin, which slits may also be provided with temporary closure means, such as zips or opposing strips of
releaseable hook fasteners such as Velcro®. In addition, for placement of the bin centrally within e.g. the fuselage of an aircraft means may be provided, such hooks and/or eyes, for suspending it off the floor. Conveniently, a water inlet conduit may be supplied to the inner container and a further conduit may be provided for then filling the inside of the outer container, or alternatively separate conduits may be provided for such purposes. The invention will now be described, by way of example only, with reference to the accompanying drawings in which: Figure 1 is a part perspective view of a first embodiment of blast suppression bin according to the invention, Figure 2 is a part perspective view of a preferred embodiment of blast suppression bin according to the invention, "Figure 3 Is a [ exploded perspective view oT'ali alfern itlve emBόJimeήt'όf' blast suppression bin, Figure 4 is a sectional view taken from the front of the bin of Figure 3, and Figure 5 is a sectional view of a further alternative blast suppression bin according to the invention. Referring firstly to Figure 1 there is shown a part cutaway view of a first embodiment of blast suppression bin shown generally at 1 with the front wall removed for clarity, the blast bin comprising a container portion 2 and closure means in the form of a lid portion 3 (shown raised for clarity) which may be strapped to the container portion 2 by straps (not shown) of e.g. reinforced ballistics-grade webbing material (e.g. nylon, Kevlar or zylon) such that in the event of detonation of e.g. a TNT bomb, as shown, the lid 3 tends to remain in position attached to the container portion 2 in use. When assembled together the blast suppression bin 1 has outer walls 4 comprising or including ballistics grade fabric, to act as a last line of containment for a blast. In order to inhibit the effects of an explosion from e.g. a TNT bomb internal walls of the container 2 are made of drop stitch or similar material by which separated volumes of water/gas or fibrous material, such as mineral wool, may be constructed. In the subject example the outer container 6 may initially be inflated with air to assume its generally cuboid shape and then the air replaced with water piped in from elsewhere, such as a suitable water pipe from within the body of an aircraft. The inner container 7 may simply be filled with e.g. mineral wool which is known to suppress the effects of e.g. a blast from an explosive device, including shrapnel or "fly" and, similarly, the device itself may
Be surrounded By gas"fitlea~pόTyfhehe ! Bags 8, pr eraBry nitrogen filled [or some" other inert gas), placed around the TNT charge so that it is held in the middle of the blast suppression bin 1. In the event of the TNT exploding it will be appreciated that the presence of e.g. nitrogen in its immediate surroundings helps to prevent or inhibit ignition and the presence of the mineral wool 7 can help to soften the impact of and catch any flying debris, whereafter the presence of the water filled container 6 allows the water to absorb some of the shock of the explosion, and finally the ballistic grade outer covering 4 may completely, or at least sufficiently, mitigate against the effect of the explosion such that it is insufficient to cause catastrophic consequences to e.g. the structure of the vehicle in which it is carried. Turning now to the embodiment shown in Figure 2, where like parts are given like numbers, this takes advantage of the principles discussed in the Keenan and Wager prior art and later prior art in that it teaches that it is preferaBle to ensure that water placed next to a charge is immediately aerosolised, as discussed aBove in the preamBle hereto, By providing a relatively small volume of water next to e.g. a TNT BomB so as to maximise the chances of it Being completely aerosolised Before the shock wave carries on through the remaining part of the structure. This can Be achieved By having a relatively thin inner container 9, again typically made of drop stitch material, which can Be filled with water and between which is an intermediate container 10 which may simply Be filled with a gas such as nitrogen or even air such that in comBination with the outer container 6 Being filled with water the shock wave, for example, first passes through a sfnalT aTnount of wafer wfTicTϊ is completely aerosolised, then through the gas and then through a larger mass of water in the outer container 6 Before the shock wave hits the outer walls 4 of Ballistics grade material. In order to ensure that the explosive charge is placed as centrally as possible within the blast suppression bin a plinth 11 may be provided, although it will be appreciated that other forms of support may be used and in particular supports which allow the shock wave from detonation to hit the water in the first container 9 in an unimpeded manner so as to maximise the chances of complete aerosolisatiόn of that water. The plinth 11 may be made of e.g. a rigid plastics support frame so as to ensure as far as possible that aerosolisation is generally spherical and is not Biased in any particular direction. Alternatively, filled Bags of gas, such as nitrogen, may be placed around the support device in the manner as shown in Figure 1. In a further refinement the blast mitigation bin includes its own charge of compressed gas in a gas cylinder (not shown) so that it may be immediately available for initially inflating the containers, which is then replaced with water via the use of one or more pressure relief valves. The or each pressure relief valve may be configured to vent gas, such as nitrogen or carbon dioxide, into the interior of the bomb bin so as to mitigate against ignition of detonation products immediately after an explosion. In a still further refinement the bomb bin is storable in its deflated condition and is pre-connected or connectable to a hose for liquid, such as water from the galley of a passenger plane, so that the hose can be deployed quickly and connected to the main water system in the plane, ϊn a still Tϋrtϊ er re¥ή menFffie waf^fitlable Inner container, wh re Ttttedrts adapted to Be filled first so that in the event the outer water tillable container has not been filled at the time an explosion occurs the inner layer of water is used most efficiently by being aerosolised, so as to minimise the strength of the resulting shock wave. Turning now to Figures 3 and 4, there is shown a further embodiment of blast suppression bin 12 comprising a cylindrical lower container portion 13 having a closed end 14 for resting on a flat surface such as the deck of an aircraft, and an open end 15 into which a suspect device may be placed and which may thereafter be closed by means of a correspondingly shaped lid 16 having an internal diameter slightly larger than the external diameter of the lower container portion 13. The outside of the outer container 17 includes ballistic grade material (not shown) to act as a last line of containment for an explosion. As with the embodiments of Figures 1 and 2, the lower portion 13 includes a water-fillable outer container 17, an intermediate container 18 and an inner container 19. Inner container 19 is preferably fillable with water but may instead be filled with e.g. an inert gas such as nitrogen, or a fibrous fabric material designed to catch shrapnel or "fly" following an explosion of the suspect device. Alternatively, the intermediate container 18 may instead simply be filled with an inert gas such as nitrogen with the inner container being filled or fillable with water 19, thereby providing a water/gas/water barrier for the explosive to, initially, aerosolise the water in the inner container 19, the gas within the intermediate container 18 allowing room for this to happen, whereafter the shock wave is further suppressed by the water in the outer container 17.
• • ■ ■ - ■ ■ - Similarly; The liδt T6 includes" a f Outer ϋoπtaiπer 2θ7 ~aπtf~τntermedtate container 21 and an inner container 22, which may be fillable in the same order as the container portion 13 and may conveniently be pneumatically connected therewith or may be separately inflataBle. In the emBodiment shown in Figures 3 and 4, construction of the Blast suppression Bin 12 particularly suits the use of dropstitch material, which is usually constructed as a flat hollow sheet having opposing side walls connected By fiBrous weBs so that when inflated the fiBrous weBs help to retain the desired shape. As will Be apparent from the drawings, to construct e.g. the lower container portion 13 it is simply necessary to cut three respective lengths of dropstitch sheet material which are each then joined end-on-end to make the side walls of the container 17, 18 and 19. To form the closed end of each container 17, 18 and 19, the dropstitch sheeting can Be cut into circles corresponding with the required diameter, whereafter each such circle is secured to its respective container By e.g. welding or adhesive. Turning now to Figure 5, there is shown a cross-sectional view of a further emBodiment of invention in which the inflataBle Blast suppression Bin 23 this time takes the form of a generally spherical container 23 when inflated as shown, although it will Be understood that other forms of circular hut not strictly spherical containers could be used instead, such as circular on one axis But oval on an axis normal thereto. The Blast suppression Bin 23 comprises a hollow outer container 24 and a hollow inner container 25 supported, in use, By radially extending weBs or lines 26 connecting the inner wall 27 of the outer container 24 with the outer wall 28 of aerosolisation of a liquid such as water in the walls of the inner container 25 before the shock wave of an explosion encounters the water within the outer container 24. The containers 24, 25 may Be made of dropstitch material so as to keep their intended shape when inflated, although other ways of achieving this ohjective may Be employed including through the use of internal weBBing or the external welding together of opposing container walls, if made of e.g. plastics materials. The outer container 24 also includes as outer layer of Ballistic grade material (not shown) acting as a last line of containment in the event of an explosion. In order to gain access to the inside of the Blast suppression Bin 23 for placing e.g. a suspect device in the centre thereof, pneumatically sealed pocketlike slits 29, 30 are provided through the walls of the containers 24, 25, of length sufficient only to allow for placement of a device within the centre of the container 25 By folding the leading edges of these slits 29, 30 in the directions shown arrowed, which slits may thereafter he releasaBly closed through the use of e.g. zips or strips of releaseaBle hook fasteners such as Velcro® secured to opposing sides of the containers 24, 25 in these regions. The emBodiment of Figure 5 also includes a water inlet valve 31 which is pneumatically connected to a conduit 32 allowing for the inflow of water under pressure to thereafter initially fill the container 25 in the manner as shown. A pressure relief valve 33 at the end of an outlet conduit 34 then allows water to flow in the direction arrowed into the outer container 24 until it is fully inflated in the manner as shown. Alternatively, the conduit 34 may Be omitted and the conduit 32 may instead a11o ToτTit1frτ substantially a tl e same time as The inner container 25. Eyelets 35 may be positioned around the outer container 24 for the purposes of securing it by e.g. rope or webbing above the floor so that any subsequent explosion occurs when the bin 23 and explosive device have been mounted in the strategically safest position, such as in the middle of the fuselage of an aeroplane.

Claims

Claims
1. A water fillable blast suppression bin (1, 12, 23) comprising an inflatable container (2, 13, 24) for holding e.g. a bomb, the container comprising an outer layer of ballistics-grade material (4) acting as a last line of containment for a subsequent blast, one or more internal layers for forming containers (6, 7, 9, 17,
18, 19, 20, 21 , 22, 24, 25) for holding water and/or gas and/or fibrous material layers to provide separated volumes of water and gas and/or fibrous material in use, and/or fibrous material, such as mineral wool, and closure means (3, 16, 29, 30) also having an outer layer of ballistics-grade material and one or more layers of water and/or gas fillable and/or material containers.
2. A Blast "Bin "according Iδ claim T further charactefis ln ThafTfie gas is contained in individually tillable polythene Bags (8).
3. A Blast Bin according to claim 2 further characterised in that it has, when filled, volumes of gas such as nitrogen contained in individual polythene Bags (8) placed around a suspect device, followed By a layer of water in a fillable container (9) followed by a layer of gas (10), such as nitrogen, followed by a final layer of water in a container (6) adjacent the ballistics grade outer layer (4).
4. A blast bin according to any preceding claim further characterised in including one or more layers of fibrous material (7), such as mineral wool. 5. A blast bin according to any preceding claim further characterised in being substantially cylindrical in shape when inflated (13, 16) having a closed end (14) intended for placement on a flat surface such as a floor and an open end (15) into which a suspect device may be placed, with closure means in the form of a lid (16) for overlaying and sealing the otherwise open end.
6. A blast bin according to any one of claims 1 to 4 further characterised in being substantially spherical (23) when inflated and including an inner container (25) for holding a suspect device, the walls (28) of the inner container being fillable with water. 7. A blast bin according to claim 6 further characterised in that the inner container (25) is secured to but spaced from the inside wall (27) of a correspondingly shaped outer container (24), itself fillable with water so as to create a water/gas/water structure when the bin is inflated 8. A blast bin according to claim 6 further characterised in that a water inlet conduit (32) is supplied to the inner container.
O. A Blast Bin according to claim i "& further c1τaτaϋteτfsetf in that a further conduit (34) is provided for then filling the inside of the outer container. 10. A blast bin according to claim 6 further characterised in that separate conduits are provided for filling, respectively, the inner and outer containers. 11. A blast bin according to any one of claims 6 to 10 further characterised in that the inner and outer containers are provided with closure means in the form of openable pocket-like slits (29,30) permitting insertion and placement of a suspect device into the inner container either before or after inflation of the bin.
12. A blast bin according to any one of claims 6 to 11 further characterised in that the slits (29, 30) are provided with temporary closure means, such as zips or opposing strips of Velcro®.
13. A blast bin according to any preceding claim further characterised in that means are provided for suspending of the bin centrally within e.g. the fuselage of an aircraft off the floor thereof.
14. A blast bin according to any preceding claim including one or more gas or water inlet valves (31) for introducing gas or water into one or more containers within the blast suppression bin.
15. A blast bin according to claim 14 further characterised in including one or more pressure relief valves (33) permitting water or gas to preferentially fill one container within the bin before filling one or more other container within the bin.
16. A blast bin according to claim 15 further characterised in that the preferential container is the innermost container of the bin.
17. A blast Bin suBstantially as hereinbefore described with reference to Figure 1 , or Figure 2, or Figures 3 and 4, or Figure 5.
EP05717835A 2004-03-02 2005-03-01 Bomb bin Withdrawn EP1761737A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0404634A GB0404634D0 (en) 2004-03-02 2004-03-02 Bomb bin
GB0405860A GB0405860D0 (en) 2004-03-16 2004-03-16 Bomb bin
PCT/GB2005/000756 WO2005085746A1 (en) 2004-03-02 2005-03-01 Bomb bin

Publications (1)

Publication Number Publication Date
EP1761737A1 true EP1761737A1 (en) 2007-03-14

Family

ID=34921490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717835A Withdrawn EP1761737A1 (en) 2004-03-02 2005-03-01 Bomb bin

Country Status (3)

Country Link
US (1) US20070119851A1 (en)
EP (1) EP1761737A1 (en)
WO (1) WO2005085746A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867946A1 (en) * 2005-04-08 2007-12-19 National Institute of Advanced Industrial Science and Technology Pressure-resistant vessel and blasting treating facility having the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904105B1 (en) * 2006-07-21 2008-08-29 Tda Armements Sas PYROTECHNIC DEVICE FOR DESTRUCTION OF AMMUNITION
EP1947247A3 (en) * 2007-01-19 2008-09-03 Environmental Defence Systems Limited Defence system
CZ2007227A3 (en) * 2007-03-27 2008-10-08 Austin Detonator S.R.O. Package of explosive products with enhanced detonation transfer resistance, simple protective element and group protective element for such package
GB2454540A (en) * 2007-11-12 2009-05-13 Carmel Tactical Solutions Group Llc Blast and shrapnel mitigation apparatus
WO2009130398A1 (en) * 2008-04-25 2009-10-29 Sema Protective device for the containment of explosive objects with high velocity fragments
US8413564B1 (en) * 2009-09-29 2013-04-09 The United States Of America As Represented By The Secretary Of The Army Portable vented suppressive shield for protective tactical emplacement over suspected explosive devices
US9470484B2 (en) * 2011-04-07 2016-10-18 Mark Benson Foam explosive containers
RU2474785C1 (en) * 2011-06-30 2013-02-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э. Баумана" Device for isolation of explosive subjects
EP3129745B8 (en) * 2014-04-08 2018-11-14 Environmental Defence Systems Limited A method and apparatus for controlling a hazardous device
PL224967B1 (en) * 2014-06-02 2017-02-28 Wojskowy Inst Techniki Inżynieryjnej Im Profesora Józefa Kosackiego Explosion-proof container
FR3025598B1 (en) * 2014-09-04 2016-09-23 Airbus Defence & Space Sas DEVICE FOR THE DETONATION DESTRUCTION OF HAZARDOUS OBJECTS AND METHOD OF MAKING SAME
CN104986416B (en) * 2015-07-09 2018-03-09 梁荣 A kind of biochemical storage transfer cask of totally-enclosed core
US10173087B2 (en) * 2016-05-26 2019-01-08 The Boeing Company Fire suppression apparatuses and methods for suppressing a fire with an object
CN109029181B (en) * 2018-10-25 2023-09-01 郑州红宇专用汽车有限责任公司 Explosion-eliminating type anti-explosion container
CN109029162B (en) * 2018-10-25 2023-10-13 郑州红宇专用汽车有限责任公司 Pressure release antiknock container
CN111189370A (en) * 2020-02-24 2020-05-22 安徽工程大学 Slope blasting shock absorption test device and method
RU200156U1 (en) * 2020-05-14 2020-10-08 Задорожный Артем Анатольевич LOCALIZATION DEVICE
RU200157U1 (en) * 2020-05-14 2020-10-08 Задорожный Артем Анатольевич LOCALIZATION DEVICE
US11542091B2 (en) * 2020-07-23 2023-01-03 Cellblock Fcs, Llc Shipping package for lithium battery
US10914564B1 (en) * 2020-07-30 2021-02-09 The United States Of America As Represented By The Secretary Of The Navy Blast containment system for trash cans
CN112781453B (en) * 2021-01-29 2023-03-21 安徽雷鸣科化有限责任公司 Classified isolation storage device for civil explosives

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543872A (en) * 1983-08-08 1985-10-01 Graham Kenneth J Blast attenuator
US5102723A (en) * 1989-11-13 1992-04-07 Pepin John N Structural sandwich panel with energy-absorbing material pierced by rigid rods
AU7787294A (en) * 1993-09-24 1995-04-10 Parkes, John A blast and splinter proof screening device and its method of use
RU2150669C1 (en) * 1999-03-15 2000-06-10 Товарищество с ограниченной ответственностью "Научно-производственное объединение специальных материалов" Device for localization of effects of explosive mechanisms
GB2355057A (en) * 1999-09-09 2001-04-11 Post Office Bomb containment device
US7213494B2 (en) * 2001-03-10 2007-05-08 Cintec International Limited Blast protection structures
AU2002364923A1 (en) * 2002-12-27 2004-08-23 Sema Protective device for the confinement of explosive objects or objects believed to be such

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005085746A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867946A1 (en) * 2005-04-08 2007-12-19 National Institute of Advanced Industrial Science and Technology Pressure-resistant vessel and blasting treating facility having the same
EP1867946A4 (en) * 2005-04-08 2009-07-08 Aist Pressure-resistant vessel and blasting treating facility having the same
US8042446B2 (en) 2005-04-08 2011-10-25 National Institute Of Advanced Industrial Science And Technology Pressure-resistant vessel and blasting facility having the same

Also Published As

Publication number Publication date
WO2005085746A1 (en) 2005-09-15
US20070119851A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US20070119851A1 (en) Bomb bin
US5864767A (en) Chemical biological explosive containment system
EP2048079B1 (en) Fuel tank assembly
US5267665A (en) Hardened luggage container
US20070113486A1 (en) Inflatable barrier
US7581478B2 (en) Apparatus for blast suppression
KR101128318B1 (en) Methods and apparatus for controlling hazardous and/or flammable materials
US8292232B1 (en) Deployable decelerator based microsatellite recovery
EP1718923A1 (en) Container for containing an explosion
WO1999031457A1 (en) Apparatus and method for blast suppression
JP2007529710A (en) Gust mitigation device and structure
US7905296B2 (en) Methods and apparatus for controlling hazardous and/or flammable materials
EP0927330B1 (en) Blast resistant and blast directing container assemblies
EP1766319B1 (en) Method and shield structure against flying bodies and shock waves
US20110168004A1 (en) System and method for mitigating and directing an explosion aboard an aircraft
US20070094944A1 (en) Blast mitigation structures
De la Fuente et al. TransHab-NASA's large-scale inflatable spacecraft
CN107107743B (en) For accommodating the fail-safe locking device of volatile fluid
RU2643307C2 (en) Method of space installation of initially disclosed heat-resistant solid cordless parachute for multiton cargoes descent from the planet orbit
WO2004044520A1 (en) A blast-absorbing device
US10518894B2 (en) Fuel bladder mass attenuation system
EP1654513B1 (en) Shock suppression apparatus
US20070193830A1 (en) Balloon landing pad

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081001