EP1759423A2 - Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede - Google Patents

Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede

Info

Publication number
EP1759423A2
EP1759423A2 EP05707080A EP05707080A EP1759423A2 EP 1759423 A2 EP1759423 A2 EP 1759423A2 EP 05707080 A EP05707080 A EP 05707080A EP 05707080 A EP05707080 A EP 05707080A EP 1759423 A2 EP1759423 A2 EP 1759423A2
Authority
EP
European Patent Office
Prior art keywords
light
interference mirror
radiation
mirrors
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05707080A
Other languages
German (de)
English (en)
Inventor
Detlef Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1759423A2 publication Critical patent/EP1759423A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/006Controlling the distribution of the light emitted by adjustment of elements by means of optical elements, e.g. films, filters or screens, being rolled up around a roller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention has for its object to find suitable interference filter materials and arrangements for solar radiation, which can be produced inexpensively and whose tendency to contamination, discoloration or corrosion under the influence of changing temperatures, air humidity in the dew point area and exposure to dust is low.
  • the object is achieved as follows: It is characteristic of the device according to the invention that the light with movable interference mirror films in at least two spectral Wavelength ranges are separated, a wavelength range being reflected on each film and a part being transmitted.
  • the direct solar radiation is refractive beforehand, e.g. B. with Fresnel lenses, or reflective, e.g. B. bundled with concave mirrors or Fresnel concave mirrors (mirror field).
  • One or more such interference mirror foils are arranged in front of the optical focal point, so that there is in each case an optical focal point for the reflected and also for the transmitted light fraction.
  • photocells made of semiconductor materials are arranged which have the best possible efficiency for converting light radiation into electric current for the respective wavelength range.
  • the color-selective interference mirrors are realized with foils that are slowly moved from roll to roll through the light cone like a film in a cinema. This offers the advantage that inexpensive plastic film laminates can be used.
  • Interference mirror films of the device according to the invention are preferably used 'materials, which, in addition to the visible spectrum and a high transmittance of NIR radiation microns to about.
  • 2 Flour polymers and Flourid soft glasses let sunlight through in a wide frequency range. Transparency for UV radiation reduces the degradation of the films and improves the energy yield.
  • Thin layer systems in the form of thermoplastic films with transparent basic plastics (PMMA, PC, styrenes) with parts made of tellurium or flour compounds can be used for a wide spectral range down to the NIR.
  • the photocells are therefore arranged on a heat sink through which a cooling medium can flow.
  • a cooling medium can flow.
  • organic solvents classic refrigerants (e.g. R134, propane, etc.), binary solutions (e.g. ammonia solution) or gases (such as helium) under higher operating pressure can also be used.
  • classic refrigerants e.g. R134, propane, etc.
  • binary solutions e.g. ammonia solution
  • gases such as helium
  • Absorption chillers, ORC systems (Organic Rankine Cycle), Villumier heat pumps and MCE converters (Magneto-Caloric-Effect) operate.
  • a very thin layer system with thermionic function from z. B. Bi 2 Te 3 / Sb 2 Te 3 (thermodiode) between the solar cell and the heat sink can partially convert the resulting heat flow into electrical current if necessary. The electrical efficiency can thus be increased again.
  • a light fraction can also be fed into an optical waveguide (LWL).
  • LWL optical waveguide
  • convex Fresnel lenses 1 are incorporated in the translucent upper boundary plate facing the light. They are aligned perpendicular to the position of the sun, whereby the outside of the upper boundary plate can preferably have an anti-reflective or easy-to-clean coating (dirt and water-repellent surface).
  • a lower boundary plate 8 which is arranged parallel to the upper boundary plate with the Fresnel lenses 1 and forms a largely dustproof and watertight box with this and the side walls of the frame 6.
  • the depth of the frame 6, ie the distance between the upper Fresnel lens 1 and the lower boundary plate 8, corresponds approximately to the focal length of the Fresnel lenses 1 used.
  • germanium photocells for NIR radiation 5b are mounted on heat sinks 7, through which a liquid can flow. If the Fresnel lenses 1 are aligned perpendicular to the sun, a light cone is formed in each case and the radiation is directed onto the respective, in comparison to the Fresnel Lens small-area germanium photocell for NIR radiation 5b bundled.
  • the semiconductor germanium has a small band gap and is particularly efficient in a photocell for NIR radiation up to 2 ⁇ m, but less suitable for visible light.
  • a multi-meter long interference mirror foil 2 is arranged in the form of a tape, which is wound on a spindle 3. It is rewound from this unwinding spindle 3 in the course of the device's usage time onto a winding spindle 4, so that the interference mirror film 2 is slowly drawn through the respective light cone of the Fresnel lenses 1.
  • the interference mirror foil 2 consists of several layers of two alternately stacked transparent plastics with different optical refractive index, z. B. PMMA and polystyrene. Alternatively, other plastics with better resistance to UV light and NIR transparency can be used.
  • FIG. 2 shows an embodiment of the invention which not only directs two but four different wavelength ranges (light colors) to four different photocells.
  • the cover plate made of glass is on the outside with a weather-resistant multilayer interference mirror layer system, e.g. B. from silicon dioxide and tantalum pentoxide, each with a layer thickness of 55-110 nm, which reflects UV and blue light and transmits green, yellow, red and near-infrared radiation components down to at least 2 ⁇ m wavelength.
  • the glass plate is embossed in a bowl shape and on the inside it has the Fresnel lenses with front
  • Interference concave mirror for blue light 10 with its typical groove structures The bowl-shaped curvatures with the interference mirror layer system each have the function of a concave mirror.
  • the frame 6 with the Fresnel lenses with front interference concave mirror for blue light 10 becomes vertical facing the sun, a cone of light is formed by the bowl-shaped curvatures with the interference mirror layer system above these concave mirrors with the reflected UV and blue light.
  • photocells 15a are arranged, which have a high quantum efficiency for blue and UV radiation, for. B. from InGaP or CdS.
  • a light cone is formed from the non-reflected green, yellow, red and NIR light components, which are further fractionated with interference mirror foils 2 according to the invention.
  • Two different interference mirror foils 2 in the form of tapes are arranged one above the other between the Fresnel lenses with a front interference concave mirror for blue light 10 and the lower boundary plate 8, each of which is wound from a spool 3 to a spool 4 through the light cone.
  • the second interference mirror foil for red VIS radiation 12b which is located some distance below, is designed for the reflection range from about 650 to 1100 nm.
  • a double-sided photo cell for red VIS radiation 15c unfold its optimal efficiency.
  • the housing for the liquid cooling with the heat sink 5c of the photocell 15c is preferably transparent to the radiation range 650-2000 nm, as is the cooling medium.
  • the lowermost photocells for NIR radiation 5d on the lower boundary plate 8 are in turn optimized for the NIR radiation 1.1-2 .mu.m, and could for example consist of the semiconductor germanium or InGaAs.
  • Several such frames 6 can be mounted on suitable frames or on masts, equipped with rotary drives, which align the frames 6 perpendicular to the current sun position, so that the direct light radiation through the Fresnel lenses with front-side interference mirror for blue light 10 always on the photocells is focused.
  • FIG. 3 shows a device according to the invention with a reflective concentrator, in which the Concentrating the solar radiation with Fresnel concave mirrors 11 takes place.
  • a reflective concentrator in which the Concentrating the solar radiation with Fresnel concave mirrors 11 takes place.
  • These can be realized with individual mirrors that are movably arranged on roof, facade or open spaces for tracking the position of the sun.
  • FIG. 4 shows a solar receiver for the Fresnel concave mirror arrangement shown in FIG. 3.
  • an interference mirror film for blue and green VIS radiation 32a arranged in the light entry area of the frame 6 reflects a defined spectral range of light, e.g. B. blue, green and yellow, on an outside of the frame 6 photo cell for blue and green VIS radiation 45a, z. B. from GaAs.
  • the radiation components red and NIR transmitted by the first interference mirror foil for blue and green VIS radiation 32a are directed to a second interference mirror foil for yellow and red VIS radiation 32b, which z. B. reflected on a Si photo cell for yellow and red VIS radiation 35b and NIR transmitted, which falls on a germanium photo cell for NIR radiation 5c.
  • FIG. 5 also shows a solar receiver for the Fresnel concave mirror arrangement shown in FIG. 3.
  • the same interference mirror film for blue and green VIS radiation 32a irradiated with an entry angle of approximately 0 °, reflects a different wavelength range than is the case with a flatter radiation angle, e.g. B. about 45 ° is the case.
  • the interference mirror film for blue and green VIS radiation 32a will have a respective layer thickness of the alternating plastic layers in the range 100-132 nm and will reflect the blue and green light when irradiated vertically, while yellow, red and NIR are transmitted.
  • This initially transmitted radiation component passes through the same film again, but now at a steeper angle, e.g. B. about 40 ° - 50 °, the yellow light is now reflected, while red and NIR are largely transmitted.
  • Figure 6 it is shown that one or more of the light components separated with interference mirror foils 2 instead of a photocell in an optical waveguide 9, z. B. liquid-filled hose, can be fed and transported over limited distances to another place.
  • This application is shown on the basis of the embodiment of the device with refractive light concentrator already shown in FIG.
  • the focal point of the Fresnel lens 1 lies in the area of the glass fiber entrance when the sun is precisely aligned.
  • the invention offers several advantages.
  • the advantage of concentrator technology is that the light is concentrated on only small semiconductor areas with relatively inexpensive optical components (mirrors, Fresnel lenses), thus saving expensive semiconductor area.
  • the slow coils with the spindles 3 and 4 of the interference mirror films 2 from roll to roll by the light cone has the advantage that not act permanently prejudicial to this surface reached dirt and damage due to moisture, baked dirt particles and light-induced degradation "as the claimed sheet sections are continuously renewed.
  • These thin interference mirror foils 2 can be produced from very inexpensive and commercially available plastic raw materials in mass production by lamination, rolling or drawing processes. There is no need for costly CVD or epitaxial deposition processes in a high vacuum.
  • the DSC technology Denssitized Cell
  • the Fresnel concave mirror 11 being rotated in such a way that these DSC surfaces are optimally illuminated when cloudy.
  • Both direct-directional and diffuse (scattered) light can be used in a wide spectral range, which means that the annual energy yield can be increased considerably.
  • Wavelength range can be transported over a limited distance in a non-linear way and focused on the smallest areas. This light can be used to illuminate windowless interior or

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé et un dispositif de collecteur solaire et concentrateur destiné à diviser le rayonnement solaire en diverses couleurs spectrales à l'aide de miroirs sélectifs en couleur et à concentrer celles-ci sur des cellules photovoltaïques à semiconducteurs optimisées pour diverses couleurs. Le dispositif selon l'invention sert à transformer l'énergie du rayonnement solaire en courant électrique et en chaleur avec un rendement élevé.
EP05707080A 2004-01-30 2005-01-29 Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede Withdrawn EP1759423A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005050A DE102004005050A1 (de) 2004-01-30 2004-01-30 Verfahren zur Energieumwandlung solarer Strahlung in elektrischen Strom und Wärme mit farbselektiven Interferenzfilterspiegeln und eine Vorrichtung eines Konzentrator-Solarkollektors mit farbselektiven Spiegeln zur Anwendung des Verfahrens
PCT/EP2005/000889 WO2005074041A2 (fr) 2004-01-30 2005-01-29 Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede

Publications (1)

Publication Number Publication Date
EP1759423A2 true EP1759423A2 (fr) 2007-03-07

Family

ID=34801417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707080A Withdrawn EP1759423A2 (fr) 2004-01-30 2005-01-29 Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede

Country Status (10)

Country Link
US (1) US20090014053A1 (fr)
EP (1) EP1759423A2 (fr)
CN (1) CN1930693A (fr)
AU (1) AU2005208043A1 (fr)
DE (1) DE102004005050A1 (fr)
IL (1) IL177161A0 (fr)
MA (1) MA28374A1 (fr)
MX (1) MXPA06008501A (fr)
TN (1) TNSN06239A1 (fr)
WO (1) WO2005074041A2 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1030369C2 (nl) * 2005-11-08 2007-05-09 Plant Res Int Bv Inrichting voor het opvangen van infrarode warmtestraling uit zonnestraling.
CN101384908A (zh) * 2006-02-17 2009-03-11 加利福尼亚大学董事会 聚合物太阳能电池中提高效率和防止劣化的光子转换材料(pcm)
CN102623538A (zh) * 2006-05-30 2012-08-01 曳达研究和发展有限公司 太阳能电池装置
DE102008010013A1 (de) * 2007-06-01 2008-12-11 Solartec Ag Photovoltaik-Vorrichtung mit ultradünnen optischen Elementen und Herstellverfahren hierfür
US8507785B2 (en) 2007-11-06 2013-08-13 Pacific Integrated Energy, Inc. Photo induced enhanced field electron emission collector
DE102007062378A1 (de) * 2007-12-22 2009-07-02 Conpower Energieanlagen Gmbh & Co Kg. Verfahren und Einrichtung zur Erzeugung elektrischer Energie
US20090250097A1 (en) * 2008-04-07 2009-10-08 Eric Ting-Shan Pan Solar-To-Electricity Conversion System
US20090283144A1 (en) * 2008-05-14 2009-11-19 3M Innovative Properties Company Solar concentrating mirror
DE102008035575B4 (de) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaik-Vorrichtung zur direkten Umwandlung von Sonnenenergie in elektrische Energie enthaltend eine zweistufige aus mehreren Elementen bestehende Konzentratoroptik
WO2010078105A1 (fr) 2008-12-30 2010-07-08 3M Innovative Properties Company Réflecteurs à bande large, systèmes de concentration d'énergie solaire, et procédés d'utilisation de ceux-ci
CN101769643B (zh) * 2009-01-06 2011-08-10 成都钟顺科技发展有限公司 追踪式大型菲涅耳透镜点聚焦太阳能系统
ITRM20090126A1 (it) * 2009-03-23 2010-09-24 Elianto S R L Impianto solare termico a concentrazione
EP2302688A1 (fr) 2009-09-23 2011-03-30 Robert Bosch GmbH Procédé de fabrication d'un substrat doté d'une couche de filtre d'interférence colorée, ce substrat comprenant une couche de filtre d'interférence colorée, l'utilisation de ce substrat comme cellule solaire colorée ou comme module solaire coloré ou comme composant de celui-ci et un faisceau comprenant au moins deux de ces substrats
US9348078B2 (en) 2010-06-08 2016-05-24 Pacific Integrated Energy, Inc. Optical antennas with enhanced fields and electron emission
US9504100B2 (en) * 2011-05-31 2016-11-22 Munro Design & Technologies, Llc Selective radiation utilization apparatuses for high-efficiency photobioreactor illumination and methods thereof
EP2993706A1 (fr) 2011-07-29 2016-03-09 Corning Incorporated Systèmes solaires à décalage vers le rouge
TWI484115B (zh) * 2012-08-31 2015-05-11 George Uh-Schu Liau 光電盒
EP3004639B1 (fr) * 2013-05-29 2019-07-17 Saudi Arabian Oil Company Générateur d'électricité solaire à haut rendement pour applications en mer
KR101673703B1 (ko) * 2014-11-27 2016-11-07 현대자동차주식회사 엔진의 열전 발전 시스템
CN108323214A (zh) * 2015-12-01 2018-07-24 博立多媒体控股有限公司 聚光式太阳能系统
IT201700047754A1 (it) * 2017-05-03 2018-11-03 Eni Spa Pannelli fotovoltaici comprendenti concentratori solari luminescenti
EP3732779A1 (fr) * 2017-12-26 2020-11-04 Ünal, Can Baran Conception de centrale solaire avec salle de lumière souterraine
US11901859B1 (en) 2018-07-02 2024-02-13 The University Of Tulsa Photovoltaic device for enhancing power output of concentrating solar thermal power plants
EP3817005A1 (fr) * 2019-11-01 2021-05-05 Koninklijke Philips N.V. Système de diagnostic d'infections
US11686097B2 (en) * 2019-11-22 2023-06-27 Arizona Board Of Regents On Behalf Of Arizona State University Skylights with integrated photovoltaics and refractive light-steering

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056309A (en) * 1976-05-04 1977-11-01 General Dynamics Corporation Renewable surface heliostat type solar mirror
US4134387A (en) * 1977-03-28 1979-01-16 Mobil Tyco Solar Energy Corporation Solar energy concentrator
DE2855553A1 (de) * 1978-12-22 1980-07-31 Maschf Augsburg Nuernberg Ag Sonnenenergie-umwandlungsanlage
DE3130226A1 (de) * 1981-07-31 1983-02-17 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Solarenergieanlage mit photozellen
DE3140974C2 (de) * 1981-10-15 1986-11-20 Viktor Voskanovič Afian Fotoelektrischer Sonnenmodul
DE3323267A1 (de) * 1983-07-18 1985-01-10 Vladimir Kuz'mič Leningrad Baranov Lichtelektrischer solarzellenmodul
US4700013A (en) * 1985-08-19 1987-10-13 Soule David E Hybrid solar energy generating system
DE4108503C2 (de) * 1991-03-15 1994-07-14 Fraunhofer Ges Forschung Solarenergieumwandlungseinrichtung zur gleichzeitigen Gewinnung von elektrischer und thermischer Energie
AU691792B2 (en) * 1992-11-25 1998-05-28 Solar Systems Pty Ltd The production of hydrogen from solar radiation at high efficiency
EP0785400A4 (fr) * 1994-10-05 1999-04-28 Hisao Izumi Dispositif de rechauffement et de production de courant electrique fonctionnant par separation de longueurs d'ondes et par condensation de lumiere
CA2225629A1 (fr) * 1995-06-26 1997-01-16 The Minnesota Mining & Manufacturing Company Dispositif multicouche transparent
DE19747613A1 (de) * 1997-10-29 1999-05-12 Hne Elektronik Gmbh & Co Satel Photovoltaische Anordnung mit einer Vorrichtung zur Konzentration von solarer Strahlungsenergie
DE19982011D2 (de) * 1998-10-05 2001-09-27 Powerpulse Holding Ag Zug Lichelement mit einer Lichtdurchlässigen Fläche
DE19924783C2 (de) * 1999-05-29 2003-04-03 Kurz Leonhard Fa Optische Einrichtung
US6630622B2 (en) * 2001-01-15 2003-10-07 Annemarie Hvistendahl Konold Combined solar electric power and liquid heat transfer collector panel
US7964789B2 (en) * 2003-05-07 2011-06-21 Imec Germanium solar cell and method for the production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005074041A2 *

Also Published As

Publication number Publication date
MA28374A1 (fr) 2006-12-01
WO2005074041A2 (fr) 2005-08-11
MXPA06008501A (es) 2007-01-30
WO2005074041A3 (fr) 2006-08-24
US20090014053A1 (en) 2009-01-15
AU2005208043A1 (en) 2005-08-11
TNSN06239A1 (fr) 2007-12-03
CN1930693A (zh) 2007-03-14
DE102004005050A1 (de) 2005-08-25
IL177161A0 (en) 2006-12-10

Similar Documents

Publication Publication Date Title
EP1759423A2 (fr) Procede de transformation de l'energie du rayonnement solaire en courant electrique et en chaleur au moyen de miroirs filtres d'interference selectifs en couleur et dispositif de collecteur-concentrateur comportant des miroirs selectifs en couleur destine a la mise en oeuvre dudit procede
Rafiee et al. An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications
US20190326460A1 (en) Micro-Grid Luminescent Solar Concentrators and Related Methods of Manufacturing
US20180248063A1 (en) Hybrid concentrated photovoltaic device
DE102008004771A1 (de) Solarzelle
CN101728445B (zh) 具有高分子多层膜的太阳能电池及其制作方法
DE102007058971A1 (de) Photovoltaik-Vorrichtung und deren Verwendung
DE202011110117U1 (de) Konzentrierendes evakuiertes Photovoltaik-Verglasungsmodul
CN103703569A (zh) 太阳能模块
DE112012004611T5 (de) Photovoltaiksysteme und damit verknüpfte Komponenten, welche an Gebäuden verwendet werden, und/oder damit verknüpfte Verfahren
DE202017006810U1 (de) Tageslicht-Beleuchtungssystem
DE102008010012A1 (de) Photovoltaik-Vorrichtung mit mindestens einem mindestens eine Lichtumwandlerschicht aufweisenden optischen Element
DE112009004290B4 (de) Variable Sammellinsenvorrichtung und Solarzellenvorrichtung
WO2008071180A2 (fr) Dispositif photovoltaïque avec structure holographique pour la déviation de rayonnement solaire entrant, et son procédé de fabrication
DE102007023583A1 (de) Photovoltaik-Vorrichtung mit optischen Elementen zum Umlenken einfallender Sonnenstrahlen in einem gegebenen Spektralbereich auf an den optischen Elementen seitlich angebrachte Solarzellen
DE19614787A1 (de) Gebäudeklimatisierungssystem mit Einrichtungen zur Konzentration von Sonnenstrahlung
US11049989B2 (en) Colorless luminescent solar concentrator, free of heavy metals, based on at least ternary chalcogenide semiconductor nanocrystals with absorption extending to the near infrared region
DE102008026760A1 (de) Solarzelle mit Lichtfalle und Solarmodul
KR101402722B1 (ko) 광결정 구조체를 이용한 파장 제한 광전지 장치
WO2006027188A1 (fr) Capteur solaire dote d'un revetement translucide
CN115128715B (zh) 利用谐振腔与干涉膜层协同增强的高效吸光构型复合材料
EP2529413B1 (fr) Capteur solaire et ensemble capteur solaire
DE102007054323A1 (de) Photovoltaik-Vorrichtung mit mindestens einem mindestens eine Lichtumwandlerschicht aufweisenden optischen Element mit mindestens einer seitlich angebrachten Solarzelle
WO2018210589A1 (fr) Système de production d'énergie solaire et utilisation d'un matériau de base réfléchissant dans un tel système
DE102012210446A1 (de) Solarzellenanordnung mit mehreren Solarzellen und mindestens einer den Solarzellen zugeordneten Fluoreszenzkonzentratorplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060831

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090901