EP1755767A1 - Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine - Google Patents

Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine

Info

Publication number
EP1755767A1
EP1755767A1 EP05740021A EP05740021A EP1755767A1 EP 1755767 A1 EP1755767 A1 EP 1755767A1 EP 05740021 A EP05740021 A EP 05740021A EP 05740021 A EP05740021 A EP 05740021A EP 1755767 A1 EP1755767 A1 EP 1755767A1
Authority
EP
European Patent Office
Prior art keywords
filter
filter device
elevations
wall
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05740021A
Other languages
English (en)
French (fr)
Inventor
Bernd Reinsch
Warren Suter
Klaus Mueller
Teruo Komori
Lars Thuener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1755767A1 publication Critical patent/EP1755767A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/106Ring-shaped filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • B01D46/522Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material with specific folds, e.g. having different lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines

Definitions

  • Filter device in particular for an exhaust system of an internal combustion engine
  • the invention relates to a filter device, in particular for an exhaust gas system of an internal combustion engine, with a filter structure which comprises at least one filter wall made of an open-pore material, on the upstream surface of which particles filtered out are separated.
  • a filter device of the type mentioned is known from DE 101 28 936 AI.
  • the filter device shown there is a particle filter for an exhaust system of a diesel internal combustion engine.
  • the filter walls in the known filter device are made of sintered metal and arranged so that wedge-shaped filter pockets are formed.
  • Filter bags point against the flow direction of the exhaust gas, the rear narrow side of a filter bag seen in the flow direction is open.
  • the filter bags are arranged side by side in such a way that an overall rotationally symmetrical ring-like filter structure is formed. This occurs in operation Exhaust gas through the overall flat filter walls of the filter bags, particles being separated on the upstream surface of the respective filter wall.
  • the filter walls are made of sintered metal, which forms a porous filtration material.
  • the sintered metal filter walls are held in a supporting structure made of a solid metal.
  • the soot particles deposited over time on the upstream surface of the filter wall lead to a reduction in the permeability of the filter wall and consequently to an increase in the pressure drop which occurs when the gas stream passes through the filter wall.
  • the so-called "exhaust gas back pressure" increases accordingly. If this exceeds a certain value, the filter is regenerated by burning the deposited soot particles.
  • the temperature of the exhaust gas, which is passed through the filter device is increased, which in turn is brought about by the injection of additional fuel.
  • the object of the present invention is to reduce the additional fuel requirement for the regeneration of the filter device.
  • the upstream surface is larger compared to conventional filter devices.
  • a larger amount of particles can be deposited there without causing an inadmissible increase in the pressure drop when flowing through the filter wall.
  • the filter device according to the invention has to be regenerated less frequently than conventional filter devices, which lowers the overall fuel consumption required for the regeneration.
  • a major difference from the previous filter devices is that this reduction in fuel consumption is possible without increasing the overall dimensions of the filter device.
  • the increase in the area available for the deposition of the particles is brought about solely or at least essentially by the uneven design of the surface.
  • the upstream surface has unevenness and thus a different slope locally than a plane in which the wall lies as a whole.
  • This can be achieved in a simple manner, in particular in the case of sintered metal structures, by appropriately shaping the green compact.
  • the surface has wave-like elevations at least in some areas.
  • the slope of the surface is only different in one direction from the slope of the plane in which the wall lies overall, whereas in a direction orthogonal to this it also in the uneven areas of the slope of the plane in which the wall lies overall , corresponds.
  • Such a surface shape can be produced, in particular in the case of a filter wall, from a sintered material without great expense.
  • the cost is further reduced if the wave-like elevations have a triangular and / or sinusoidal cross section.
  • Elevations are approximately between 1 and 3, more preferably approximately between 1 and 1.5. At a ratio between 1 and 1.5 there will be a 50% increase in the amount available for the deposition of filtered particles
  • the ratio between a period and an amplitude of the elevations is approximately between 1 and 5.6, more preferably between 1 and 3.7, even more preferably between 1 and 2.
  • 6 still achieves a 25% increase in the effective surface, with a value of 3.7 even an approximately 50% increase, and with a value of 2 even more than a doubling.
  • the average thickness of the wall is approximately equal to the thickness of a wall with a flat surface and the same filtration capacity, the larger surface area and consequently the lower fuel consumption are achieved without the need for an increased use of materials and without the filter device according to the invention weighing more than one conventional filter device. This also reduces manufacturing costs due to the reduced use of materials.
  • At least the upstream surface of the filter wall has a catalytic coating.
  • the large surface area increases the catalytic effect, for example when the filter device is regenerated.
  • Figure 1 is a schematic representation of an internal combustion engine with a filter device
  • FIG. 2 shows a perspective illustration of the filter device from FIG. 1 with a plurality of filter pockets which are delimited by filter walls;
  • FIG. 3 shows a detail of the filter device of Figure 2;
  • Figure 4 is a schematic representation of a first embodiment of an upstream surface of a filter wall of Figure 2;
  • Figure 5 shows a representation similar to Figure 4 of a second embodiment
  • FIG. 6 is an illustration similar to Figure 4 of a third embodiment
  • FIG. 7 shows a representation similar to FIG. 4 of a fourth embodiment
  • FIG. 8 shows a representation similar to FIG. 4 of a fifth embodiment
  • FIG. 9 is a diagram from which the ratio of the surface of FIG. 5 to a flat surface is plotted for different amplitudes and periods; and 30
  • Figure 10 is a diagram similar to Figure 9 for the surface shown in Figure 4.
  • an internal combustion engine bears the reference number 10.
  • the exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this, soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is particularly necessary for diesel internal combustion engines in order to comply with legal regulations.
  • the filter device 14 comprises a cylindrical housing 16, in which a filter structure 18, which is rotationally symmetrical in the present exemplary embodiment, is also arranged overall.
  • This comprises a multiplicity of wedge-shaped filter bags, only one of which is provided with the reference number 20 in FIG. This filter bag and an adjacent filter bag are shown again enlarged in FIG.
  • Each of the wedge-shaped filter pockets 20 has two lateral filter walls 22a and 22b.
  • the edges of the filter walls 22a and 22b of a filter bag 20 which face an inlet 24 of the housing 16 and which are left or front in FIGS. 2 and 3 are connected to one another, whereas those which face an outlet 26 of the housing 18 and which are on the right or rear in FIGS. 2 and 3 Edges of the filter walls 22a and 22b of a filter bag 20 are spaced apart. This results in the wedge shape of the filter pockets 20.
  • the filter pockets 20 are closed radially inward and radially outward by a total of triangular filter wall sections 22c and 22d.
  • the filter pockets 20 are arranged in a ring around a central channel-like flow space 28 and are sealed off from one another. This is closed at its rear end, which is not visible in FIG. 2, by a sealing plate.
  • the filter structure 18 is also sealed in the region of its rear end in FIG. 2 by sealing devices (not shown in more detail).
  • the filter walls 22, which ultimately form the filter structure 18, are made of sintered metal. This is an open-pore and gas-permeable structure which filters out soot particles from the gas stream when it passes through the filter walls 22. A corresponding gas flow is indicated in FIG. 3 by an arrow 30.
  • the cleaned gas stream leaves the filter bags 20 via their right or rear and open end in FIGS. 2 and 3.
  • the soot particles filtered out of the gas flow are deposited on those surfaces of the filter walls 20 which, viewed in the direction of the gas flow 30, limit the filter walls 20 upstream.
  • This surface is designated by 32 on the filter wall 22b by way of example.
  • the filter walls 22 are straight overall, they have unevenness, the possible configurations of which are shown in detail in FIGS. 4 to 8:
  • the upstream surface 32 has a filter wall 22 a plurality of parallel wave-like elevations 34, which have a sinusoidal cross section.
  • the slope of the surface 32 changes in the embodiment shown in FIG. 4 only in the Y direction, but not in the X direction.
  • a further embodiment, which is shown in FIG. 5, likewise has wave-like elevations 34, which, however, have a triangular cross section.
  • the slope of the surface 32 changes only in the Y direction, but not in the X direction.
  • FIG. 6 A variant of FIG. 5 is shown in FIG. 6: There, too, are wave-like elevations 34 with a triangular cross section, which, however, do not directly adjoin one another, but between which there is a flat region 36 parallel to the wave-like elevations 34.
  • FIG. 7 A still further embodiment of a surface 32 is shown in FIG. 7:
  • the surface 32 there has a plurality of undulating elevations 38. These can have a conical, pyramidal, pointed or rounded shape, for example.
  • the undulating elevations 38 are so high and the "valleys" 42 between the undulating elevations 38 are so deep that the average thickness of the filter wall 22 in the exemplary embodiment shown in FIG. 8 corresponds approximately to the thickness of a conventional flat filter wall 22.
  • FIG. 9 shows a quotient Q over a period P and an amplitude A for the embodiment of a surface 32 of a filter wall 22 shown in FIG. 5 applied.
  • the quotient Q is formed by the effective area F uneVe n / which is available for the deposition of soot particles on the uneven surface 32 in FIG. 5, and an area F even r which would be available on a conventional flat surface (at in the top view of an identical surface). It can be seen that a quotient Q of 125% is obtained even with a period of 0.8 mm and an amplitude of 0.3 mm, and that a quotient is obtained with a period of 0.5 mm and an amplitude of 0.3 mm of 150% is achieved.
  • FIG. 10 A similar diagram is shown in FIG. 10, but for the exemplary embodiment in FIG. 4, in which the wave-like elevations 34 have a sinusoidal cross section: there, a quotient Q of 125% with an amplitude A of 0.3 mm is already given for a period P of 1, 7 mm, a quotient Q of 150% with an amplitude A of 0.3 mm and a period P of 1.1 mm, and a quotient Q of 200%, i.e. a doubling of the effective surface, with an amplitude A of 0 , 3 mm and a period P of 0.7 mm.
  • the period P for the surface structures is preferably between 0.3 mm and 3 mm, the amplitude A preferably between 0.1 mm and 0.3 mm.
  • the filter device can be a sintered metal filter or a comparable ceramic filter which also has a porous filter medium.
  • This porous filter medium for which metal powder can be used as the starting substance for the sintered metal filters or ceramic powder for the ceramic filters, is used in the Manufacture of the filter, for example on a solid metal support such as woven metal or expanded metal or, in the case of ceramic filament, applied to comparable ceramic fiber layers and exposed to the metal or
  • the porous filter medium is connected to the carrier in such a way that the filter surface has a three-dimensional shape, just the waves or hills and thalers described above. It may be advantageous to choose a period for the surface structure that is equal to the period of the support structure (for example in the case of a woven metal fabric), or it may be advantageous to choose the period of the support structure according to a period of the surface structure to be set. In this way, the thaler can be arranged in the gaps in the weaving structure and the hills on the pre-binding aers of the weaving or carrier structure.
  • the filter device according to the invention can also be constructed from materials other than sintered metals or ceramics, for example from metal or ceramic foams, or from a fiber composite, in particular from metal fibers.

Abstract

Eine Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine, umfasst eine Filterstruktur, die mindestens eine Filterwand (22) umfasst. An deren stromaufwärts gelegener Oberfläche (32) werden herausgefilterte Partikel abgeschieden. Es wird vorgeschlagen, dass die stromaufwärts gelegene Oberfläche (32) der Filterwand (22) wenigstens bereichsweise uneben ist (34).

Description

Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft eine Filtereinrichtung, insbesondere für ein AbgasSystem einer Brennkraftmaschine, mit einer Filterstruktur, welche mindestens eine Filterwand aus einem offenporigen Material umfasst, an deren stromaufwärts gelegener Oberfläche herausgefilterte Partikel abgeschieden werden.
Eine Filtereinrichtung der eingangs genannten Art ist aus der DE 101 28 936 AI bekannt. Bei der dort gezeigten Filtereinrichtung handelt es sich um einen Partikelfilter für ein Abgassystem einer Diesel- Brennkraftmaschine. Die Filterwände bei der bekannten Filtereinrichtung sind aus Sintermetall hergestellt und so angeordnet, dass keilförmige Filtertaschen gebildet werden. Die spitzzulaufenden Keilkanten der
Filtertaschen zeigen entgegen der Strömungsrichtung des Abgases, die in Strömungsrichtung gesehene hintere Schmalseite einer Filtertasche ist offen. Die Filtertaschen sind nebeneinander derart angeordnet, dass eine insgesamt rotationssymmetrische ringartige Filterstruktur gebildet wird. Im Betrieb tritt das Abgas durch die insgesamt ebenen Filterwände der Filtertaschen hindurch, wobei Partikel an der stromaufwärts gelegenen Oberfläche der jeweiligen Filterwand abgeschieden werden.
Bei der bekannten Filtereinrichtung sind die Filterwände aus Sintermetall hergestellt, welches ein poröses Filtrationsmaterial bildet. Die Sintermetall- Filterwände sind in einer Tragstruktur aus einem festen Metall gehalten.
Bei der bekannten Filtereinrichtung führen die sich mit der Zeit an der stromaufwärts gelegenen Oberfläche der Filterwand abgeschiedenen Rußpartikel zu einer Verringerung der Durchlässigkeit der Filterwand und in der Folge zu einer Erhöhung des Druckabfalls, der beim Durchtritt des Gasstroms durch die Filterwand auftritt. Entsprechend erhöht sich der sogenannte "Abgasgegendruck". Überschreitet dieser einen bestimmten Wert, wird der Filter regeneriert, indem die abgeschiedenen Rußpartikel verbrannt werden. Hierzu wird die Temperatur des Abgases, welches durch die Filtereinrichtung geleitet wird, erhöht, was wiederum durch die Einspritzung von zusätzlichem Kraftstoff bewirkt wird.
Aufgabe der vorliegenden Erfindung ist es, den zusätzlichen Kraftstoffbedarf für die Regenerierung der Filtereinrichtung zu reduzieren.
Diese Aufgabe wird bei einer Filtereinrichtung der eingangs genannten Art dadurch gelöst, dass die stromaufwärts gelegene Oberfläche der Filterwand wenigstens bereichsweise uneben ist. Vorteile der Erfindung
Bei der erfindungsgemäßen Filtereinrichtung ist im Vergleich zu herkömmlichen Filtereinrichtungen die stromaufwärts gelegene Oberfläche größer. In der Folge kann dort eine größere Partikelmenge angelagert werden, ohne dass es zu einem unzulässigen Anstieg des Druckabfalls bei der Durchströmung der Filterwand kommt. Als Konsequenz hieraus wiederum muss die erfindungsgemäße Filtereinrichtung im Vergleich zu herkömmlichen Filtereinrichtungen seltener regeneriert werden, was den insgesamt für die Regenerierung erforderlichen Kraftstoffeinsatz senkt.
Dabei ist ein wesentlicher Unterschied zu den bisherigen Filtereinrichtungen, dass diese Verringerung des Kraftstoffverbrauchs möglich ist, ohne dass die Gesamtabmessungen der Filtereinrichtung vergrößert werden. Die Vergrößerung der für die Ablagerung der Partikel zur Verfügung stehenden Fläche wird allein oder zumindest im Wesentlichen durch die unebene Ausführung der Oberfläche herbeigeführt.
Erreicht wird die dadurch, dass die stromaufwärts gelegene Oberfläche Unebenheiten und somit örtlich eine andere Steigung aufweist als eine Ebene, in der die Wand insgesamt liegt. Dies kann insbesondere bei SintermetallStrukturen durch eine entsprechende Formung des Grünlings auf leichte Art und Weise erreicht werden. Die erfindungsgemäß vorgesehene unebene
Oberfläche führt daher zu keinen oder zumindest zu keinen wesentlichen Zusatzkosten bei der Herstellung.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben. Zunächst wird vorgeschlagen, dass die Oberfläche mindestens bereichsweise wellenartige Erhebungen aufweist. Mit anderen Worten: Die Steigung der Oberfläche ist nur in einer Richtung von der Steigung der Ebene unterschiedlich, in der die Wand insgesamt liegt, wohingegen sie in einer hierzu orthogonalen Richtung auch in den unebenen Bereichen der Steigung der Ebene, in der die Wand insgesamt liegt, entspricht. Eine derartige Oberflächengestalt kann insbesondere bei einer Filterwand aus einem Sintermaterial ohne großen Kostenaufwand hergestellt werden.
Der Kostenaufwand wird nochmals reduziert, wenn die wellenartigen Erhebungen dreieckigen und/oder sinusförmigen Querschnitt aufweisen.
Dabei wird vorgeschlagen, dass bei wellenartigen Erhebungen mit dreieckigem Querschnitt das Verhältnis zwischen einer Periode und einer Amplitude der
Erhebungen ungefähr zwischen 1 und 3, stärker bevorzugt ungefähr zwischen 1 und 1.5 liegt. Bei einem Verhältniswert zwischen 1 und 1.5 wird eine 50%-ige Vergrößerung der für die Ablagerung von herausgefilterten Teilchen zur Verfügung stehenden
Oberfläche erzielt, bei einem Verhältniswert von 1,5 bis 3 immerhin noch eine mindestens 25%-ige Vergrößerung.
Analog hierzu wird vorgeschlagen, dass bei wellenartigen Erhebungen mit sinusförmigem Querschnitt das Verhältnis zwischen einer Periode und einer Amplitude der Erhebungen ungefähr zwischen 1 und 5.6, stärker bevorzugt zwischen 1 und 3.7, noch stärker bevorzugt zwischen 1 und 2 liegt. Bei einem Verhältniswert von 5, 6 wird immer noch eine 25%-ige Vergrößerung der wirksamen Oberfläche erreicht, bei einem Wert von 3.7 sogar eine ungefähr 50%-ige Vergrößerung, und bei einem Wert von 2 sogar mehr als eine Verdoppelung. Möglich ist aber auch, dass die
Oberfläche mindestens bereichsweise hügelige Erhebungen aufweist. Dies ermöglicht, gegenüber einer ebenen Wand, eine nochmals deutliche Erhöhung der wirksamen Oberfläche, bei gleichen Gesamtabmessungen der Filtereinrichtung.
Wenn die mittlere Dicke der Wand ungefähr gleich der Dicke einer Wand mit ebener Oberfläche und gleichem Filtrationsvermögen ist, wird die größere Oberfläche und in der Folge der geringere Kraftstoffverbrauch erreicht, ohne dass ein erhöhter Materialeinsatz erforderlich ist und ohne dass die erfindungsgemäße Filtereinrichtung mehr wiegt als eine herkömmliche Filtereinrichtung. Dies reduziert durch den verringerten Materialeinsatz auch die Herstellkosten.
Besonders vorteilhaft ist es, wenn mindestens die stromaufwärts gelegene Oberfläche der Filterwand eine katalytische Beschichtung aufweist. Durch die große Oberfläche wird die katalytische Wirkung beispielsweise bei einer Regenerierung der Filtereinrichtung verstärkt .
Zeichnungen
Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen: Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit einer Filtereinrichtung;
Figjur 2 eine perspektivische Darstellung der Filtereinrichtung von Figur 1 mit mehreren Filtertaschen, die von Filterwänden begrenzt werden;
Figur 3 einen Ausschnitt der Filtereinrichtung von Figur 2; 10
Figur 4 eine schematische Darstellung einer ersten Ausführungsform einer stromaufwärts gelegenen Oberfläche einer Filterwand von Figur 2;
Fikδur 5 eine Darstellung ähnlich Figur 4 einer zweiten Ausführungsform;
Figur 6 eine Darstellung ähnlich Figur 4 einer dritten Ausführungsform; 20 Figur 7 eine Darstellung ähnlich Figur 4 einer vierten Ausführungsform;
Figur 8 eine Darstellung ähnlich Figur 4 einer fünften 25 Ausführungsform;
Figur 9 ein Diagramm, aus dem das Verhältnis der Oberfläche von Figur 5 zu einer ebenen Oberfläche für verschiedene Amplituden und Perioden aufgetragen ist; und 30
Figur 10 ein Diagramm ähnlich zu Figur 9 für die in Figur 4 gezeigte Oberfläche.
35 Beschreibung der Ausführungsbeispiele In Figur 1 trägt eine Brennkraftmaschine das Bezugszeichen 10. Die Abgase werden über ein Abgasrohr 12 abgeleitet, in dem eine Filtereinrichtung 14 angeordnet ist. Mit dieser werden Rußpartikel aus dem im Abgasrohr 12 strömenden Abgas herausgefiltert. Dies ist insbesondere bei Diesel-Brennkraftmaschinen erforderlich, um gesetzliche Bestimmungen einzuhalten.
Die Filtereinrichtung 14 umfasst ein zylindrisches Gehäuse 16, in dem eine im vorliegenden Ausführungsbeispiel rotationssymmetrische, insgesamt ebenfalls zylindrische Filterstruktur 18 angeordnet ist. Diese umfasst eine Vielzahl von keilförmigen Filtertaschen, von denen in Figur 2 nur eine mit dem Bezugszeichen 20 versehen ist. Diese Filtertasche und eine benachbarte Filtertasche sind in Figur 3 nochmals vergrößert dargestellt.
Jede der keilförmigen Filtertaschen 20 weist zwei seitliche Filterwände 22a und 22b auf. Die einem Einlass 24 des Gehäuses 16 zugewandten und in den Figuren 2 und 3 linken beziehungsweise vorderen Ränder der Filterwände 22a und 22b einer Filtertasche 20 sind miteinander verbunden, wohingegen die einem Auslass 26 des Gehäuses 18 zugewandten und in den Figuren 2 und 3 rechten beziehungsweise hinteren Ränder der Filterwände 22a und 22b einer Filtertasche 20 voneinander beabstandet sind. Hierdurch ergibt sich die Keilform der Filtertaschen 20. Nach radial innen und nach radial außen sind die Filtertaschen 20 durch insgesamt dreieckige Filterwandabschnitte 22c und 22d verschlossen. Die Filtertaschen 20 sind im vorliegenden Ausführungsbeispiel ringförmig um einen zentrischen kanalartigen Strömungsraum 28 angeordnet und zueinander abgedichtet. Dieser ist an seinem in Figur 2 hinteren und nicht sichtbaren Ende durch eine Dichtplatte verschlossen. Gegenüber dem Gehäuse 16 ist die FilterStruktur 18 ebenfalls im Bereich ihres in Figur 2 hinteren Endes durch nicht näher gezeigte Dichteinrichtungen abgedichtet.
Die die Filtertaschen 20 und letztlich die Filterstruktur 18 bildenden Filterwände 22 sind auf Sintermetallbasis hergestellt. Dabei handelt es sich um eine offenporige und gasdurchlässige Struktur, welche Rußpartikel aus dem Gasstrom herausfiltert, wenn dieser durch die Filterwände 22 hindurchtritt. Ein entsprechender Gasstrom ist in Figur 3 durch einen Pfeil 30 angedeutet. Der gereinigte Gasstrom verlässt die Filtertaschen 20 über deren in den Figuren 2 und 3 rechtes beziehungsweise hinteres und offenes Ende.
Während des Betriebs der Filtereinrichtung 14 werden die aus dem Gasström herausgefilterten Rußpartikel an jenen Oberflächen der Filterwände 20 abgelagert, die die Filterwände 20 in Richtung des Gasstroms 30 gesehen nach stromaufwärts begrenzen. Diese Oberfläche ist in Figur 3 beispielhaft an der Filterwand 22b mit 32 bezeichnet. Die Filterwände 22 sind zwar insgesamt gerade, in sich weisen sie jedoch Unebenheiten auf, deren mögliche Ausgestaltungen im Detail in den Figuren 4 bis 8 dargestellt sind: In einer ersten Ausführungsform, die in Figur 4 gezeigt ist, weist die stromaufwärts gelegene Oberfläche 32 einer Filterwand 22 eine Mehrzahl paralleler wellenartiger Erhebungen 34 auf, welche sinusförmigen Querschnitt aufweisen. Die Steigung der Oberfläche 32 ändert sich bei der in Figur 4 gezeigten Ausführungsform also nur in der Y-Richtung, jedoch nicht in der X-Richtung.
Eine weitere Ausführungsform, die in Figur 5 gezeigt ist, weist ebenfalls wellenartige Erhebungen 34 auf, welche jedoch dreieckigen Querschnitt aufweisen. Auch hier ändert sich die Steigung der Oberfläche 32 nur in Y-Richtung, nicht jedoch in X-Richtung.
Eine Variante zu Figur 5 ist in Figur 6 gezeigt: Auch dort sind wellenartige Erhebungen 34 mit dreieckigem Querschnitt vorhanden, welche jedoch nicht unmittelbar aneinander anschließen, sondern zwischen denen ein zu den wellenartigen Erhebungen 34 paralleler ebener Bereich 36 vorhanden ist.
Eine nochmals andere Ausführungsform einer Oberfläche 32 ist in Figur 7 gezeigt: Die dortige Oberfläche 32 weist eine Mehrzahl hügeliger Erhebungen 38 auf. Diese können beispielsweise kegelige,- pyramidale, spitze, oder abgerundete Gestalt haben.
In Figur 8 ist die Oberfläche einer herkömmlichen Filterwand durch eine gestrichelte Linie mit dem
Bezugszeichen 40 angedeutet. Die hügeligen Erhebungen 38 sind so hoch und die "Täler" 42 zwischen den hügeligen Erhebungen 38 sind so tief, dass die mittlere Dicke der Filterwand 22 bei der in Figur 8 gezeigten Ausführungsbeispiel ungefähr der Dicke einer herkömmlichen ebenen Filterwand 22 entspricht.
In Figur 9 ist ein Quotient Q über einer Periode P und einer Amplitude A für die in Figur 5 gezeigte Ausführungsform einer Oberfläche 32 einer Filterwand 22 aufgetragen. Der Quotient Q wird gebildet durch die effektive Fläche FuneVen/ welche für die Ablagerung von Rußpartikeln bei der in Figur 5 unebenen Oberfläche 32 zur Verfügung steht, und eine Fläche Feven r die bei einer herkömmlichen ebenen Oberfläche zur Verfügung stehen würde (bei in der Draufsicht identischer Fläche) . Man erkennt, dass bereits bei einer Periode von 0,8 mm und einer Amplitude von 0,3 mm ein Quotient Q von 125% erhalten wird, und dass bei einer Periode von 0,5 mm und einer Amplitude von 0,3 mm ein Quotient von 150% erzielt wird.
Ein ähnliches Diagramm zeigt Figur 10, jedoch für das Ausführungsbeispiel von Figur 4, bei dem die wellenartigen Erhebungen 34 sinusförmigen Querschnitt aufweisen: Dort wird ein Quotient Q von 125% bei einer Amplitude A von 0,3 mm bereits bei einer Periode P von 1,7 mm erzielt, ein Quotient Q von 150% bei einer Amplitude A von 0,3 mm und einer Periode P von 1,1 mm, und ein Quotient Q von 200%, also eine Verdoppelung der effektiven Oberfläche, bei einer Amplitude A von 0,3 mm und einer Periode P von 0,7 mm.
Die Periode P liegt bei den Oberflächenstrukturen bevorzugt zwischen 0,3 mm und 3 mm, die Amplitude A bevorzug zwischen 0,1 mm und 0,3 mm.
Die Filtercinrichtung kann ein SintermeLallfilter oder auch ein vergleichbares keramisches Filter sein, das ebenfalls ein poröses Filtermedium aufweist.
Dieses poröse Filtermedium, für das als AusgangsSubstanz bei den Sintermetallfiltern Metallpulver bzw. bei den keramischen Filtern Keramikpulver verwendet werden kann, wird bei der Herstellung des Filters beispielsweise auf einen festen Metallträger wie beispielsweise gewebter Metallstoff oder Streckmetall bzw. bei Keramikfiltorn auf vergleichbaren Keramikfaserschichten aufgebracht und unter Hitzeeinwirkung mit dem Metall- bzw.
Keramikträger verbunden. Dabei wird das poröse Filtermedium mit dem Träger derart verbunden, dass die Filteroberflache eine dreidimensionale Gestalt hat, eben die oben beschriebenen Wellen bzw. Hügel und Taler. Dabei kann es vorteilhaft sein, eine Periode für die Oberflächenstruktur zu wählen, die gleich der Periode der Trägerstruktur ist (beispielsweise im Falle eines gewebten Metallstoffs), bzw. es kann vorteilhaft sein, die Periode der Trägerstruktur entsprechend einer einzustellenden Periode der Oberflächenstruktur zu wählen. So können die Taler in den Lücken der Webstruktur und die Hügel auf den Vorbindungs asern der Web- bzw. Trägerstruktur angeordnet werden.
Die erfindungsgemäße Filtereinrichtung kann auch aus anderen Werkstoffen als Sintermetallen oder Keramiken aufgebaut sein, beispielsweise aus Metall- oder Keramikschäumen, oder aus einem Faserverbund insbesondere aus Metallfasern.

Claims

Ansprüche
1. Filtereinrichtung (14), insbesondere für ein Abgassystem einer Brennkraftmaschine (10) , mit einer FilterStruktur (18) , welche mindestens eine Filterwand (22) umfasst, an deren stromaufwärts gelegener
Oberfläche (32) herausgefilterte Partikel abgeschieden werden, dadurch gekennzeichnet, dass die stromaufwärts gelegene Oberfläche (32) der Filterwand (22) wenigstens bereichsweise uneben ist (34; 38) .
2. Filtereinrichtung (14) nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche (32) mindestens bereichsweise wellenartige Erhebungen (34) aufweist.
3. Filtereinrichtung (14) nach Anspruch 2, dadurch gekennzeichnet, dass die wellenartigen Erhebungen (34) dreieckigen und/oder sinusförmigen Querschnitt aufweisen.
4. Filtereinrichtung (14) nach Anspruch 3, dadurch gekennzeichnet, dass bei wellenartigen Erhebungen (34) mit dreieckigem Querschnitt das Verhältnis zwischen einer Periode (P) und einer Amplitude (A) der
Erhebungen (34) ungefähr zwischen 1 und 3, stärker bevorzugt ungefähr zwischen 1 und 1.5 liegt.
5. Filtereinrichtung (14) nach Anspruch 3, dadurch gekennzeichnet, dass bei wellenartigen Erhebungen (34) mit sinusförmigem Querschnitt das Verhältnis zwischen einer Periode (P) und einer Amplitude (A) der Erhebungen (34) ungefähr zwischen 1 und 5.6, stärker bevorzugt ungefähr zwischen 1 und 3.7, noch stärker bevorzugt zwischen 1 und 2 liegt.
6. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oberfläche (32) mindestens bereichsweise hügelige Erhebungen (38) aufweist.
7. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine mittlere Dicke der Filterwand (22) ungefähr gleich der Dicke einer Filterwand mit ebener Oberfläche und gleichem Filtrationsvermögen ist.
8. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens die stromaufwärts gelegene Oberfläche (32) der Filterwand (22) eine katalytische Beschichtung aufweist.
9. Filtereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Filterwand ein poröses und gasdurchlässiges Material aufweist.
EP05740021A 2004-05-21 2005-04-22 Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine Withdrawn EP1755767A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004024993 2004-05-21
DE102004042730A DE102004042730B4 (de) 2004-05-21 2004-09-03 Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
PCT/EP2005/051814 WO2005113113A1 (de) 2004-05-21 2005-04-22 Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1755767A1 true EP1755767A1 (de) 2007-02-28

Family

ID=34966288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05740021A Withdrawn EP1755767A1 (de) 2004-05-21 2005-04-22 Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US20080115472A1 (de)
EP (1) EP1755767A1 (de)
JP (1) JP2007538193A (de)
DE (1) DE102004042730B4 (de)
WO (1) WO2005113113A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016956A1 (de) * 2008-04-01 2009-10-08 Branofilter Gmbh Staubsauger und Filterkörper für einen Staubsauger
US20120174787A1 (en) * 2011-01-12 2012-07-12 General Electric Company Filter having flow control features
PL3034148T3 (pl) 2013-08-14 2018-10-31 Sumitomo Chemical Company Limited Filtr cząstek stałych
RU2645863C2 (ru) * 2016-08-19 2018-02-28 Акционерное общество "Климов" Турбовинтовой двигатель

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464301A (en) * 1943-12-18 1949-03-15 American Viscose Corp Textile fibrous product
DE2854931A1 (de) * 1978-12-20 1980-07-10 Bayer Ag Vorrichtung zum agglomerieren und abscheiden von feinen nebeltropfen
JPS5624013A (en) * 1979-05-04 1981-03-07 Nitta Kk Structure of air filter element
DE3109609A1 (de) * 1981-03-13 1982-09-23 Kernforschungsanlage Jülich GmbH, 5170 Jülich "schadstoff-filter fuer abgase"
US5346519A (en) * 1993-04-27 1994-09-13 Pneumafil Corporation Filter media construction
EP0713420B1 (de) * 1993-08-13 1997-08-06 Minnesota Mining And Manufacturing Company Filterpatrone mit darauf angeordneten unlöslichen enzympartikeln
DE4433129A1 (de) * 1994-09-16 1996-03-28 Gore W L & Ass Gmbh Verfahren zur Herstellung eines Filtermediums
FR2774925B3 (fr) * 1998-02-17 2000-04-14 Filtrauto Cartouche de filtration, notamment pour moteur a combustion interne
US6521011B1 (en) * 1999-07-15 2003-02-18 3M Innovative Properties Company Self-supporting pleated filter and method of making same
US6544310B2 (en) * 2001-05-24 2003-04-08 Fleetguard, Inc. Exhaust aftertreatment filter with particulate distribution pattern
DE10128936A1 (de) * 2001-06-18 2003-01-02 Hjs Fahrzeugtechnik Gmbh & Co Partikelfilter, insbesondere für Abgase von Dieselbrennkraftmaschinen
US6997969B1 (en) * 2003-07-17 2006-02-14 Lpd Technologies Filter material and method
US7235115B2 (en) * 2004-07-09 2007-06-26 3M Innovative Properties Company Method of forming self-supporting pleated filter media

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005113113A1 *

Also Published As

Publication number Publication date
DE102004042730A1 (de) 2005-12-15
DE102004042730B4 (de) 2008-07-31
US20080115472A1 (en) 2008-05-22
WO2005113113A1 (de) 2005-12-01
JP2007538193A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
AT396966B (de) Abgasfilter für dieselmotoren
EP3064262B1 (de) Filtermedium, verfahren zur herstellung eines filtermediums und filterelement mit einem filtermedium
EP0467147B1 (de) Filter- oder Katalysatorkörper
DE4206812C2 (de) Motorabgasfilter
DE3043995A1 (de) Abgasdurchstroemter schwebeteilchenfilter fuer dieselmaschinen
DE3043996A1 (de) Abgasdurchstroemter schwebeteilchenfilter fuer dieselmaschien
EP4094819A1 (de) Filterelement
DE60205938T2 (de) Filtermedium
CH668618A5 (de) Abgasfilter fuer dieselmotoren.
DE60212245T2 (de) Verfahren und Vorrichtung zum Entfernen von Russpartikeln aus dem Abgas eines Dieselmotors
EP1755767A1 (de) Filtereinrichtung, insbesondere für ein abgassystem einer brennkraftmaschine
DE6919686U (de) Filterkoerper aus metallfasern
EP1787705A1 (de) Filtereinrichtung, insbesondere für ein Abgassystem einer Dieselbrennkraftmaschine
WO2006114345A1 (de) FILTEREINRICHTUNG, INSBESONDERE RUßPARTIKELFILTER, FÜR EIN ABGASSYSTEM EINER BRENNKRAFTMASCHINE
WO2006015778A1 (de) Filterplatte für einen partikelfilter
DE102008000688A1 (de) Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
DE102017103555B4 (de) Partikelfilter für eine Verbrennungskraftmaschine mit einer katalytisch wirksamen Beschichtung
DE1632871A1 (de) Filteraufbau
DE19611150A1 (de) Partikelfilter für eine Brennkraftmaschine
EP1543871B1 (de) Filter mit Filtereinsatz und Verwendung eines derartigen Filters
WO2004035175A2 (de) Filteranordnung zum abscheiden von partikeln aus einem flüssigen und/oder gasförmigen medium
DE102006021737B4 (de) Filterelement für einen Rußpartikelfilter einer Brennkraftmaschine
DE102004026798A1 (de) Abgaspartikelfilter
EP2134443A1 (de) Keramischer formkörper für ein dieselpartikelfilter
DE102006001387A1 (de) Filtereinrichtung, insbesondere zur Filterung von Abgasen einer Dieselbrennkraftmaschine, sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091020