EP1746377A1 - Header wall to pipe connection for minimum pressure drop in a heat exchanger - Google Patents
Header wall to pipe connection for minimum pressure drop in a heat exchanger Download PDFInfo
- Publication number
- EP1746377A1 EP1746377A1 EP06076270A EP06076270A EP1746377A1 EP 1746377 A1 EP1746377 A1 EP 1746377A1 EP 06076270 A EP06076270 A EP 06076270A EP 06076270 A EP06076270 A EP 06076270A EP 1746377 A1 EP1746377 A1 EP 1746377A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pipe
- assembly
- set forth
- collar
- header wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0234—Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
- F28F21/067—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0246—Arrangements for connecting header boxes with flow lines
Definitions
- This invention relates to automotive heat exchangers in general, and specifically to a liquid flow heat exchanger, such as a radiator, with a novel in tank structure for reducing the pressure drop caused by flow turning losses.
- Automotive heat exchangers that use a pumped, liquid heat exchange medium, as opposed to a compressed gaseous/liquid heat exchange medium, include radiators and heaters.
- these include two elongated manifolds or header tanks, one on each side of the heat exchanger, with a central core consisting of a plurality of evenly spaced, flattened flow tubes and interleaved corrugated air fins running between the two tanks.
- Each tank is generally box shaped, with parallel side walls, a back wall joining the side walls, two axially opposed ends, and an open area opposite the back wall, which is eventually closed off when it is fixed leak tight to one side of the core.
- Each header tank distributes pumped liquid to or from the flow tubes in the core, and is in turn filled or drained by an inlet or outlet pipe opening into the header tank at a discrete location.
- the inlet or outlet pipe to the header tank is oriented both transversely to the length of the tank and to the flow tubes. Coolant flow entering the inlet pipe must, therefore, turn through a substantial angle toward the two ends of the tank before as well as turning substantially again to flow out of the tank interior and into the flow tubes. The converse is true for coolant exiting the return tank through the outlet pipe.
- An example of a recent radiator with molded plastic, box shaped header tanks may be seen in U.S. Pat. No.
- the design of a radiator or any cross flow heat exchanger with a liquid medium flowing in one direction through flow tubes, and with air blown perpendicularly across the flow tubes, is a compromise between heat exchange efficiency between the two flowing media, and the pressure or pumping losses of the two media.
- decreasing the flow passage cross sectional area will present relatively more surface area of the fluid medium within the flow passage to the air blowing over the flow tube, increasing the heat transfer efficiency from fluid to air.
- a tube that is smaller on the inside is also thinner on the outside, and so presents less obstruction the air blown over the outside of it, decreasing the air side pressure loss through the core.
- a thinner flow tube creates more fluid pressure loss through the tube, end to end.
- radiator header tanks become smaller, and the parallel sidewalls become closer.
- Flow exiting the opening of the inlet pipe (through the first side wall) impinges on the proximate, opposed second side wall, creating turbulence and pressure loss before it can be distributed toward the opposite ends of the tank and into the flow tubes.
- the other liquid medium heat exchanger typically found in an automobile, the heater core, has a similar cross flow configuration, but faces a different problem.
- the inlet pipe generally opens through the back wall of the header tank, in line with, rather than perpendicular to, the flow tubes.
- the flow thus impinges directly onto the ends of the nearest aligned flow tubes, rather than against a sidewall of the tank, which would theoretically be positive, in terms of direct flow into the tubes with minimal pressure loss.
- the fact that the ends of the nearest tubes are in line with the inlet pipe is a detriment, because the force of the impinging flow against the near tube ends causes erosion and damage.
- Plate type oil coolers are frequently incorporated in radiator tanks to provide engine and transmission oil cooling. Due to packaging constraints, it is common for oil coolers to straddle the coolant inlet/outlet pipes. This flow blockage increases coolant pressure drop and creates local regions of high coolant velocity that can cause erosion corrosion of the oil cooler. In a typical cross flow radiator, the tanks and oil cooler represent 50% of the total coolant pressure drop. The penalty due to the oil cooler blockage is 35-40% of the tank pressure drop ( ⁇ 20% of total pressure drop).
- the most common method used to limit the oil cooler coolant pressure drop penalty is the spacing (stand off height) of the oil cooler from the inside tank wall.
- the pressure drop penalty typically it is not practical to reduce the pressure drop penalty below the levels described above because the increased stand off height required will reduce the size of oil cooler that can be installed in the tank, or a larger tank must be used with increased packaging space, mass, and cost penalties.
- the internal juncture between the pipe and tank is typically sharp edged. Due to the joint design, the pipe is frequently extended into the tank to allow secure clinching of the pipe to the tank. Both the sharp edge and pipe extension act to increase coolant pressure drop.
- the subject invention provides a radiator header tank to pipe joint that reduces coolant pressure drop by reducing turning losses at the transition between the pipe and the header tank wall.
- the heat exchanger assembly of the subject invention is distinguished by a transition between the header wall and the pipe extending transition completely around the opening to present an expanding flow control surface between from the header wall to the pipe for conveying the heat exchange medium closely over the control surface between the tank interior and the pipe to reduce turbulence and pressure loss at the transition between the tank interior the said pipe.
- This invention provides a transition to significantly reduce the oil cooler pressure drop penalty and/or reduce the size of the tank.
- a method of determining the required feature size and practical designs are provided for integrally molded or fabricated sheet metal tanks. Several configurations are shown that incorporate an internal radius or chamfer to eliminate the pipe extension inside the tank.
- a heat exchanger assembly constructed in accordance with the subject invention is generally shown at 20 in Figures 1 and 2.
- the assembly 20 includes a core comprising a plurality of flow tubes 22 having heat exchange fins 24 extending therebetween.
- a header tank 26 distributes a flowing liquid heat exchange medium to and from the flow tubes 22 and presents a header wall 28 with an interior surface.
- a pipe 30 is disposed in an opening through the header wall 28.
- a joint extends between the pipe 30 and the header wall 28 to define an endless transition completely around the opening to present an expanding flow control surface between the pipe 30 and the interior surface 32 of the header wall 28 for conveying the heat exchange medium closely over the control surface between the interior surface and the pipe 30 to reduce turbulence and pressure loss at the transition between the interior surface and the pipe 30.
- a typical pipe to header wall joint is shown in Figure 3 wherein a sharp edged corner is presented annularly about the opening into the header wall 28.
- the pipe is formed in a cylindrical shape to define entry flow into the header as cylindrical.
- the cylindrical pipe could be flattened into an oval, elliptical, or other shape at the joint.
- the joint of the subject invention presents an expanding flow control surface with a rounded radius 32 or a straight or conical shaped chamfer 34 as illustrated in Figure 4.
- the use of a chamfer 34 is slightly more effective than the radius 32 due to increased entrance flow area for the same size pipe flow area as shown in Figure 5.
- the typical pipe/tank juncture is a sharp edged corner as illustrated in Figure 3.
- the limiting entrance flow area into the pipe is a cylinder.
- This invention replaces the sharp corner with a radius or chamfer to increase entrance flow area and facilitate turning of the flow into the pipe.
- Flow streamlines for both sharp and chamfered geometry's are shown in figures 3 and 4.
- Use of a chamfer is slightly more effective than a radius due to increased entrance flow area for the same size feature as shown in Figures 5 and 7.
- the optimum chamfer angle was found to be 45° as shown in Figure 8.
- radius/chamfer size is similar through out the practical range of pipe and standoff sizes.
- a radius/chamfer of 2.0 mm yields approximately 50% of the total savings possible as shown in Figures 9 and 10. Therefore this invention claims the use of a radius or 30/60° chamfer equal to or greater than 2.0 mm.
- the pipe 30 is cylindrical about an axis and the flow control surface expands radially as it opens axially into the interior surface 32 of the header wall 28, it expanding through a radius or through a cone shaped chamfer.
- the header wall 28 presents a planar disk-like portion immediately adjacent to and extending radially from the opening in the header wall 28 to define the interior surface 32 in a radial plane.
- the control surface blends into the planar disk-like portion to present a smooth transition of the control surface from the pipe 30 into the interior surface 32 of the header wall 28. It is important that the control surface blend into the planar interior surface 32 to present a smooth transition of the control surface from the pipe 30 into the interior surface 32 of the header wall 28.
- control surface may extend through a radius 32 or through a cone to define a chamfer 34.
- the pipe 30 is integrally formed of plastic material with the header wall 28 define the chamfered control surface 34 that expands to the radial plane of the interior surface 32 of the header wall 28.
- An oil cooler 36 is disposed opposite to the pipe 30. The chamfer 34 significantly reduces the pressure drop caused by the imposition of the oil cooler 36.
- the header wall 28 defines the control surface and the control surface expands from a cylindrical collar 40 to the radial plane of the interior surface 32. Said another way, the header wall 28 extends through a transition control surface into a cylindrical collar 40, which receives the pipe 30.
- the pipe 30 extends within the opening of the collar 40 and terminates in an annular edge 38.
- the header wall 28 extends into the axially extending collar 40 to surround and engage the pipe 30.
- the pipe 30 includes a bead 42 abutting the open end of the collar 40.
- the pipe 30 has an end which terminates in spaced relationship to the radial plane in the header wall 28.
- the pipe 30 is disposed about the exterior of the collar 40.
- the pipe 30 is flared 48 outwardly into a flare to engage the exterior of the collar 40 defining the control surface.
- the pipe 30 includes an enlarged end 50 defining a shoulder 52 for surrounding and engaging the exterior of the collar 40 with the shoulder 52 abutting the collar 40.
- the only difference in Figure 15 is that the pipe 30 and the collar 40 are forced radially into one another to create a mechanically overlapping connection in the axial direction.
- the pipe 30 and the collar 40 include mating undulations 54 extending annularly thereabout for locking the pipe 30 to the collar 40 to create a mechanically overlapping connection in the axial direction.
- the various embodiments may employ the radius 32 shown in Figures 12-14 and 16 or the chamfer 34 shown in Figures 11 and 15 and that either may be used with the various species of Figures 11-16.
- the joint may be formed with a radiused or chamfered flange and may be secured by fixturing, staking, tack weld, or spin welding, prior to final bonding.
- the pipe 30 end may be expanded to engage the outside surface of the collar or flange 40 as illustrated in Figures 11-12. A feature can be added to the end of the pipe 30 to provide lead in.
- the pipe 30 and the header wall 28 may be molded of an organic polymeric material (plastic) or formed of sheet metal, when of metal, the pipe 30 may be secured to the tank 26 prior to brazing by expanding the collar 40 into the pipe 30.
- the pipe 30 can be a press fit on to the collar 40, or can be shrunk onto the collar 40. Either the collar 40 or the pipe 30 can be tapered to control the press fit characteristics.
- the collar 40 can be expanded into the pipe 30 or the pipe 30 shrunk on to the collar 40.
- the bead 42 may be formed into the pipe 30 and the collar expanded into the bead 42. All configurations allow the use of an unclad pipe 30 and externally clad tank 26.
- All configurations are designed to allow brazing of the pipe 30 and collar.
- clad material is used for the tank 26 body and bare material for the pipe 30, but either or both parts can be clad.
- a separate source of braze material can be used such as a braze ring or braze paste.
- Some of the configurations could also be spin welded.
- the pipe 30 may be mechanically attached or bonded to the collar 40, as by an adhesive, fusion or spin welding or integrally molded.
- the collar 40 and the pipe 30 may be bonded together by brazing, soldering, welding or an adhesive, depending upon the composition of the components.
- the pipe 30 may be secured prior to bonding to the collar 40 by fixturing, a press fit, e.g., expanding or shrinking, staking, forming undulations, etc.
- the pipe 30 and/or collar 40 may include a lead-in such as a taper, or the locating bead 42 or shoulder 52.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
- This invention relates to automotive heat exchangers in general, and specifically to a liquid flow heat exchanger, such as a radiator, with a novel in tank structure for reducing the pressure drop caused by flow turning losses.
- Automotive heat exchangers that use a pumped, liquid heat exchange medium, as opposed to a compressed gaseous/liquid heat exchange medium, include radiators and heaters. Typically, these include two elongated manifolds or header tanks, one on each side of the heat exchanger, with a central core consisting of a plurality of evenly spaced, flattened flow tubes and interleaved corrugated air fins running between the two tanks. Each tank is generally box shaped, with parallel side walls, a back wall joining the side walls, two axially opposed ends, and an open area opposite the back wall, which is eventually closed off when it is fixed leak tight to one side of the core. Each header tank distributes pumped liquid to or from the flow tubes in the core, and is in turn filled or drained by an inlet or outlet pipe opening into the header tank at a discrete location. In typical radiators, the inlet or outlet pipe to the header tank is oriented both transversely to the length of the tank and to the flow tubes. Coolant flow entering the inlet pipe must, therefore, turn through a substantial angle toward the two ends of the tank before as well as turning substantially again to flow out of the tank interior and into the flow tubes. The converse is true for coolant exiting the return tank through the outlet pipe. An example of a recent radiator with molded plastic, box shaped header tanks may be seen in
U.S. Pat. No. 5,762,130 , which is fairly typical in its basic flow configuration, apart from being a U flow design, with the inlet and outlet pipe located on one tank. The orientation of the pipes relative to the tank walls and flow tubes is as described above, however. A metal design is shown inU.S. Patent No. 6,283,200 wherein the end of the inlet pipe is flared outwardly to reduce the pressure loss. - The design of a radiator or any cross flow heat exchanger with a liquid medium flowing in one direction through flow tubes, and with air blown perpendicularly across the flow tubes, is a compromise between heat exchange efficiency between the two flowing media, and the pressure or pumping losses of the two media. For example, it is well known that decreasing the flow passage cross sectional area will present relatively more surface area of the fluid medium within the flow passage to the air blowing over the flow tube, increasing the heat transfer efficiency from fluid to air. A tube that is smaller on the inside is also thinner on the outside, and so presents less obstruction the air blown over the outside of it, decreasing the air side pressure loss through the core. However, a thinner flow tube creates more fluid pressure loss through the tube, end to end. Some compromise can generally be found between airside pressure drop, tube thickness, and liquid (coolant) pressure drop. However, the ability to reduce total coolant pressure loss (pumping loss) elsewhere in the heat exchanger would allow the use of thinner tubes in general, which would be very positive, considering that thinner tubes also decrease air side pressure loss.
- One source of coolant pressure drop through the heat exchanger that has not received a great deal of attention in the prior art is turbulence or "turning" losses that occur at the transition between the pipe opening and the enclosed interior of the header tank. That is, since the inlet pipe typically enters through a tank side wall, and not the tank back wall, it is oriented transversely to the flow tubes, as well, and must change direction both to reach the opposite ends of the tank and in order to flow into the tubes. The turning transition is not a great source of pressure loss when the interior volume of the tanks is large, since a large interior volume can act as a large pressure reservoir to "absorb" and distribute coolant to the flow tubes. As available underhood space shrinks, however, radiator header tanks become smaller, and the parallel sidewalls become closer. Flow exiting the opening of the inlet pipe (through the first side wall) impinges on the proximate, opposed second side wall, creating turbulence and pressure loss before it can be distributed toward the opposite ends of the tank and into the flow tubes.
- The other liquid medium heat exchanger typically found in an automobile, the heater core, has a similar cross flow configuration, but faces a different problem. There, the inlet pipe generally opens through the back wall of the header tank, in line with, rather than perpendicular to, the flow tubes. The flow thus impinges directly onto the ends of the nearest aligned flow tubes, rather than against a sidewall of the tank, which would theoretically be positive, in terms of direct flow into the tubes with minimal pressure loss. However, the fact that the ends of the nearest tubes are in line with the inlet pipe is a detriment, because the force of the impinging flow against the near tube ends causes erosion and damage. Therefore, it has been proposed in several heater core designs to place a protective tent or baffle like structure between the inlet pipe opening and the ends of the nearest aligned flow tubes. These act as a road block, in effect, interrupting the flow at that point, rather than smoothing it out, and would actually increase total coolant pressure drop across the core. This is an acceptable price in that context, however, since it is considered necessary to protect the otherwise eroded tubes. Another solution is shown in U. S. Patent
6,116,335 to Beamer et al wherein a flow turning structure is molded into the inlet header tank opposite to the inlet pipe. - Design of tanks and manifolds in automotive heat exchangers such as radiators involves tradeoffs between the conflicting requirements of minimizing coolant pressure drop and packaging space. Market trends are simultaneously driving down the allowable tank size and pressure drop. This problem is further compounded when internal oil coolers or baffles are required that partially block the inlet/outlet pipes.
- Plate type oil coolers are frequently incorporated in radiator tanks to provide engine and transmission oil cooling. Due to packaging constraints, it is common for oil coolers to straddle the coolant inlet/outlet pipes. This flow blockage increases coolant pressure drop and creates local regions of high coolant velocity that can cause erosion corrosion of the oil cooler. In a typical cross flow radiator, the tanks and oil cooler represent 50% of the total coolant pressure drop. The penalty due to the oil cooler blockage is 35-40% of the tank pressure drop (~20% of total pressure drop).
- Since the pipe diameters are specified by the vehicle manufacture, the most common method used to limit the oil cooler coolant pressure drop penalty is the spacing (stand off height) of the oil cooler from the inside tank wall. Typically it is not practical to reduce the pressure drop penalty below the levels described above because the increased stand off height required will reduce the size of oil cooler that can be installed in the tank, or a larger tank must be used with increased packaging space, mass, and cost penalties.
- For sheet metal tanks and pipes, the internal juncture between the pipe and tank is typically sharp edged. Due to the joint design, the pipe is frequently extended into the tank to allow secure clinching of the pipe to the tank. Both the sharp edge and pipe extension act to increase coolant pressure drop.
- The subject invention provides a radiator header tank to pipe joint that reduces coolant pressure drop by reducing turning losses at the transition between the pipe and the header tank wall.
- The heat exchanger assembly of the subject invention is distinguished by a transition between the header wall and the pipe extending transition completely around the opening to present an expanding flow control surface between from the header wall to the pipe for conveying the heat exchange medium closely over the control surface between the tank interior and the pipe to reduce turbulence and pressure loss at the transition between the tank interior the said pipe.
- This invention provides a transition to significantly reduce the oil cooler pressure drop penalty and/or reduce the size of the tank. A method of determining the required feature size and practical designs are provided for integrally molded or fabricated sheet metal tanks. Several configurations are shown that incorporate an internal radius or chamfer to eliminate the pipe extension inside the tank.
- Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
- Figure 1 is a fragmentary view of a heat exchanger showing a header tank and heat exchanger core;
- Figure 2 is an interior perspective view of the heat exchanger header tank of Figure 1;
- Figure 3 is schematic showing the flow pattern for a sharp edged pipe to header joint of the prior art;
- Figure 4 is schematic showing the flow pattern for a chamfered header to pipe transition of the subject invention;
- Figure 5 is a schematic view comparing the radius and chamfered joints of the subject invention; and
- Figure 6 is a perspective view of a header tank incorporating an oil cooler facing an inlet configured in accordance with Figure 4;
- Figure 7 is a plot of the chamfer/radius size versus the pressure drop for a given inlet diameter;
- Figure 8 is a plot of the taper angle versus pressure drop with a given chamber angle and pipe size;
- Figure 9 is a plot of chamfer versus pressure drop for various pipe diameters and stand off heights;
- Figure 10 is a plot of radius versus pressure drop for a given pipe size and various stand-off heights;
- Figures 11 through 16 show various pipe to header joints constructed in accordance with the subject invention.
- A heat exchanger assembly constructed in accordance with the subject invention is generally shown at 20 in Figures 1 and 2. The
assembly 20 includes a core comprising a plurality offlow tubes 22 havingheat exchange fins 24 extending therebetween. Aheader tank 26 distributes a flowing liquid heat exchange medium to and from theflow tubes 22 and presents aheader wall 28 with an interior surface. Apipe 30 is disposed in an opening through theheader wall 28. - A joint extends between the
pipe 30 and theheader wall 28 to define an endless transition completely around the opening to present an expanding flow control surface between thepipe 30 and theinterior surface 32 of theheader wall 28 for conveying the heat exchange medium closely over the control surface between the interior surface and thepipe 30 to reduce turbulence and pressure loss at the transition between the interior surface and thepipe 30. - A typical pipe to header wall joint is shown in Figure 3 wherein a sharp edged corner is presented annularly about the opening into the
header wall 28. The pipe is formed in a cylindrical shape to define entry flow into the header as cylindrical. However, it is to be understood that the cylindrical pipe could be flattened into an oval, elliptical, or other shape at the joint. The joint of the subject invention presents an expanding flow control surface with arounded radius 32 or a straight or conical shapedchamfer 34 as illustrated in Figure 4. The use of achamfer 34 is slightly more effective than theradius 32 due to increased entrance flow area for the same size pipe flow area as shown in Figure 5. - The typical pipe/tank juncture is a sharp edged corner as illustrated in Figure 3. The limiting entrance flow area into the pipe is a cylinder. This invention replaces the sharp corner with a radius or chamfer to increase entrance flow area and facilitate turning of the flow into the pipe. Flow streamlines for both sharp and chamfered geometry's are shown in figures 3 and 4. Use of a chamfer is slightly more effective than a radius due to increased entrance flow area for the same size feature as shown in Figures 5 and 7. The optimum chamfer angle was found to be 45° as shown in Figure 8.
- Based on CFD simulation and prototype testing it was found that the effect of radius/chamfer size is similar through out the practical range of pipe and standoff sizes. A radius/chamfer of 2.0 mm yields approximately 50% of the total savings possible as shown in Figures 9 and 10. Therefore this invention claims the use of a radius or 30/60° chamfer equal to or greater than 2.0 mm.
- Accordingly, the
pipe 30 is cylindrical about an axis and the flow control surface expands radially as it opens axially into theinterior surface 32 of theheader wall 28, it expanding through a radius or through a cone shaped chamfer. Theheader wall 28 presents a planar disk-like portion immediately adjacent to and extending radially from the opening in theheader wall 28 to define theinterior surface 32 in a radial plane. In all cases, the control surface blends into the planar disk-like portion to present a smooth transition of the control surface from thepipe 30 into theinterior surface 32 of theheader wall 28. It is important that the control surface blend into the planarinterior surface 32 to present a smooth transition of the control surface from thepipe 30 into theinterior surface 32 of theheader wall 28. As alluded to above, the control surface may extend through aradius 32 or through a cone to define achamfer 34. Referring to Figure 6, thepipe 30 is integrally formed of plastic material with theheader wall 28 define the chamferedcontrol surface 34 that expands to the radial plane of theinterior surface 32 of theheader wall 28. Anoil cooler 36 is disposed opposite to thepipe 30. Thechamfer 34 significantly reduces the pressure drop caused by the imposition of theoil cooler 36. - Referring to Figures 11-16, the
header wall 28 defines the control surface and the control surface expands from acylindrical collar 40 to the radial plane of theinterior surface 32. Said another way, theheader wall 28 extends through a transition control surface into acylindrical collar 40, which receives thepipe 30. - In the Figures 11 and 12, the
pipe 30 extends within the opening of thecollar 40 and terminates in anannular edge 38. Theheader wall 28 extends into theaxially extending collar 40 to surround and engage thepipe 30. Thepipe 30 includes abead 42 abutting the open end of thecollar 40. - Accordance with the invention, the
pipe 30 has an end which terminates in spaced relationship to the radial plane in theheader wall 28. - In Figures 13-16, the
pipe 30 is disposed about the exterior of thecollar 40. - In Figure 13, the
pipe 30 is flared 48 outwardly into a flare to engage the exterior of thecollar 40 defining the control surface. - In Figures 14 and 15, the
pipe 30 includes anenlarged end 50 defining ashoulder 52 for surrounding and engaging the exterior of thecollar 40 with theshoulder 52 abutting thecollar 40. The only difference in Figure 15 is that thepipe 30 and thecollar 40 are forced radially into one another to create a mechanically overlapping connection in the axial direction. - In Figure 16, the
pipe 30 and thecollar 40 includemating undulations 54 extending annularly thereabout for locking thepipe 30 to thecollar 40 to create a mechanically overlapping connection in the axial direction. - It is to be understood that the various embodiments may employ the
radius 32 shown in Figures 12-14 and 16 or thechamfer 34 shown in Figures 11 and 15 and that either may be used with the various species of Figures 11-16. The joint may be formed with a radiused or chamfered flange and may be secured by fixturing, staking, tack weld, or spin welding, prior to final bonding. Thepipe 30 end may be expanded to engage the outside surface of the collar orflange 40 as illustrated in Figures 11-12. A feature can be added to the end of thepipe 30 to provide lead in. - The
pipe 30 and theheader wall 28 may be molded of an organic polymeric material (plastic) or formed of sheet metal, when of metal, thepipe 30 may be secured to thetank 26 prior to brazing by expanding thecollar 40 into thepipe 30. Alternately, as illustrated in Figures 13-16, thepipe 30 can be a press fit on to thecollar 40, or can be shrunk onto thecollar 40. Either thecollar 40 or thepipe 30 can be tapered to control the press fit characteristics. Thecollar 40 can be expanded into thepipe 30 or thepipe 30 shrunk on to thecollar 40. Thebead 42 may be formed into thepipe 30 and the collar expanded into thebead 42. All configurations allow the use of anunclad pipe 30 and externally cladtank 26. All configurations are designed to allow brazing of thepipe 30 and collar. Typically clad material is used for thetank 26 body and bare material for thepipe 30, but either or both parts can be clad. Alternately, a separate source of braze material can be used such as a braze ring or braze paste. Some of the configurations could also be spin welded. In the case of plastics, thepipe 30 may be mechanically attached or bonded to thecollar 40, as by an adhesive, fusion or spin welding or integrally molded. - The
collar 40 and thepipe 30 may be bonded together by brazing, soldering, welding or an adhesive, depending upon the composition of the components. In addition, thepipe 30 may be secured prior to bonding to thecollar 40 by fixturing, a press fit, e.g., expanding or shrinking, staking, forming undulations, etc. In order to facilitate assembly, thepipe 30 and/orcollar 40 may include a lead-in such as a taper, or the locatingbead 42 orshoulder 52. - Obviously, many modifications and variations of the present invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims.
Claims (16)
- A heat exchanger assembly comprising;a plurality of flow tubes (22),a header tank (26) for distributing a flowing liquid heat exchange medium to and from said flow tubes (22) and presenting a header wall (28) with an interior surface (32),a pipe (30) disposed in an opening through said header wall (28), anda transition by extending said header wall (28) into said pipe (30) around said opening to present an expanding flow control surface between said pipe (30) and said interior surface (32) of said header wall (28) for conveying the heat exchange medium closely over said control surface between said interior surface and said pipe (30) to reduce turbulence and pressure loss at said transition between said interior surface and said pipe (30).
- An assembly as set forth in claim 1 wherein said flow control surface is internal with said header wall (28) and expands radially as it opens axially into said interior surface (32) of said header wall (28).
- An assembly as set forth in claim 2 wherein said flow control surface extends in a circle about an axis for defining a collar (40) for receiving said pipe (30).
- An assembly as set forth in claim 2 wherein said control surface extends through a radius (32).
- An assembly as set forth in claim 2 wherein said control surface extends through a cone to define a chamfer (34).
- An assembly as set forth in claim 2 wherein said pipe (30) and said header wall (28) comprise an organic polymeric material.
- An assembly as set forth in claim 2 wherein said pipe (30) and said header wall (28) comprise metal.
- An assembly as set forth in claim 3 wherein said pipe (30) terminates in spaced relationship to the plane of said header wall (28).
- An assembly as set forth in claim 3 wherein said pipe (30) includes a bead (42) abutting said collar (40).
- An assembly as set forth in claim 3 wherein said collar (40) and said pipe (30) are bonded together.
- An assembly as set forth in claim 10 wherein said pipe (30) is secured prior to bonding to said collar (46).
- An assembly as set forth in claim 3 wherein said pipe (30) is flared (48) outwardly and engages the exterior of said collar (46) defining said control surface.
- An assembly as set forth in claim 12 wherein said pipe (30) includes an enlarged end (50) defining a shoulder (52) for surrounding and engaging the exterior of said collar (46) with said shoulder (52) abutting said collar (46).
- An assembly as set forth in claim 12 wherein said pipe (30) and said collar (46) include mating undulations (54) extending annularly thereabout for locking said pipe (30) to said collar (46).
- An assembly as set forth in claim 4 wherein said control surface presents a smooth transition from said pipe (30) into said interior surface (32) of said header wall (28) with a radius or a 30°to 60° chamfer equal to or greater than 2.0mm
- An assembly as set forth in claim 5 wherein said control surface presents a smooth transition from said pipe (30) into said interior surface (32) of said header wall (28) with a radius or a 30 to 60 chamfer equal to or greater than 2.0 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/184,478 US20070017664A1 (en) | 2005-07-19 | 2005-07-19 | Sheet metal pipe geometry for minimum pressure drop in a heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1746377A1 true EP1746377A1 (en) | 2007-01-24 |
Family
ID=37255696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06076270A Withdrawn EP1746377A1 (en) | 2005-07-19 | 2006-06-20 | Header wall to pipe connection for minimum pressure drop in a heat exchanger |
Country Status (2)
Country | Link |
---|---|
US (1) | US20070017664A1 (en) |
EP (1) | EP1746377A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2402694A1 (en) * | 2010-06-30 | 2012-01-04 | Valeo Systemes Thermiques | Condenser, in particular for a car air-conditioning system and heat exchanger equipped with such a condenser |
CN106482367A (en) * | 2016-12-01 | 2017-03-08 | 浙江鸿乐光热科技有限公司 | A kind of solar water heater water tube base flow guiding connector |
EP3943860A1 (en) * | 2020-07-23 | 2022-01-26 | Valeo Autosystemy SP. Z.O.O. | A heat exchanger |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006003317B4 (en) | 2006-01-23 | 2008-10-02 | Alstom Technology Ltd. | Tube bundle heat exchanger |
US20080156014A1 (en) * | 2006-12-27 | 2008-07-03 | Johnson Controls Technology Company | Condenser refrigerant distribution |
WO2009018150A1 (en) * | 2007-07-27 | 2009-02-05 | Johnson Controls Technology Company | Multichannel heat exchanger |
US9557119B2 (en) | 2009-05-08 | 2017-01-31 | Arvos Inc. | Heat transfer sheet for rotary regenerative heat exchanger |
US20120199779A1 (en) * | 2009-10-09 | 2012-08-09 | Norgren Gmbh | Valve block assembly for a blow molding system |
US8439104B2 (en) * | 2009-10-16 | 2013-05-14 | Johnson Controls Technology Company | Multichannel heat exchanger with improved flow distribution |
US9200853B2 (en) | 2012-08-23 | 2015-12-01 | Arvos Technology Limited | Heat transfer assembly for rotary regenerative preheater |
JP2014126284A (en) * | 2012-12-26 | 2014-07-07 | Daikin Ind Ltd | Refrigeration device |
US10175006B2 (en) | 2013-11-25 | 2019-01-08 | Arvos Ljungstrom Llc | Heat transfer elements for a closed channel rotary regenerative air preheater |
US10094626B2 (en) | 2015-10-07 | 2018-10-09 | Arvos Ljungstrom Llc | Alternating notch configuration for spacing heat transfer sheets |
US10240874B2 (en) | 2017-08-04 | 2019-03-26 | Denso International America, Inc. | Radiator tank |
US11098966B2 (en) | 2018-08-08 | 2021-08-24 | Denso International America, Inc. | Header tank for heat exchanger |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06241614A (en) * | 1993-02-12 | 1994-09-02 | Sharp Corp | Heat exchanger |
EP0702201A1 (en) * | 1994-09-14 | 1996-03-20 | General Motors Corporation | Laminated heat exchanger core with interior opening feed pipe |
JPH0989491A (en) * | 1995-09-21 | 1997-04-04 | Usui Internatl Ind Co Ltd | Egr gas cooling device |
FR2750483A1 (en) * | 1996-06-27 | 1998-01-02 | Valeo Climatizzazione Spa | Heater for automobile driving compartment |
US5762130A (en) | 1996-12-09 | 1998-06-09 | General Motors Corporation | Down flow, two pass radiator with air venting means |
DE19849574A1 (en) * | 1998-10-27 | 2000-05-11 | Valeo Klimatech Gmbh & Co Kg | Pipe connection between a collector of a motor vehicle heat exchanger and an outer pipe for the inner heat exchange fluid and method for producing the pipe connection |
US6116335A (en) | 1999-08-30 | 2000-09-12 | Delphi Technologies, Inc. | Fluid flow heat exchanger with reduced pressure drop |
US6283200B1 (en) | 1998-12-03 | 2001-09-04 | Denso Corporation | Heat exchanger having header tank increased in volume in the vicinity of pipe connected thereto |
JP2002181486A (en) * | 2000-12-15 | 2002-06-26 | Denso Corp | Heat exchanger |
FR2844346A1 (en) * | 2002-09-10 | 2004-03-12 | Valeo Climatisation | Automobile heat exchanger comprises manifold common to range of heat exchangers and interface piece at end of manifold receiving one or more pipes |
JP2005156000A (en) * | 2003-11-25 | 2005-06-16 | Denso Corp | Heat exchanger |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531204A (en) * | 1978-08-23 | 1980-03-05 | Diesel Kiki Co Ltd | Heat exchanger |
US4544030A (en) * | 1983-08-15 | 1985-10-01 | American Standard Inc. | Shell nozzle |
JPH0271097A (en) * | 1988-09-06 | 1990-03-09 | Diesel Kiki Co Ltd | Heat exchanger |
US5513700A (en) * | 1994-07-29 | 1996-05-07 | Ford Motor Company | Automotive evaporator manifold |
SE9702420L (en) * | 1997-06-25 | 1998-12-26 | Alfa Laval Ab | plate heat exchangers |
DE10203521A1 (en) * | 2002-01-30 | 2003-07-31 | Modine Mfg Co | Quick Couplings |
-
2005
- 2005-07-19 US US11/184,478 patent/US20070017664A1/en not_active Abandoned
-
2006
- 2006-06-20 EP EP06076270A patent/EP1746377A1/en not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06241614A (en) * | 1993-02-12 | 1994-09-02 | Sharp Corp | Heat exchanger |
EP0702201A1 (en) * | 1994-09-14 | 1996-03-20 | General Motors Corporation | Laminated heat exchanger core with interior opening feed pipe |
JPH0989491A (en) * | 1995-09-21 | 1997-04-04 | Usui Internatl Ind Co Ltd | Egr gas cooling device |
FR2750483A1 (en) * | 1996-06-27 | 1998-01-02 | Valeo Climatizzazione Spa | Heater for automobile driving compartment |
US5762130A (en) | 1996-12-09 | 1998-06-09 | General Motors Corporation | Down flow, two pass radiator with air venting means |
DE19849574A1 (en) * | 1998-10-27 | 2000-05-11 | Valeo Klimatech Gmbh & Co Kg | Pipe connection between a collector of a motor vehicle heat exchanger and an outer pipe for the inner heat exchange fluid and method for producing the pipe connection |
US6283200B1 (en) | 1998-12-03 | 2001-09-04 | Denso Corporation | Heat exchanger having header tank increased in volume in the vicinity of pipe connected thereto |
US6116335A (en) | 1999-08-30 | 2000-09-12 | Delphi Technologies, Inc. | Fluid flow heat exchanger with reduced pressure drop |
JP2002181486A (en) * | 2000-12-15 | 2002-06-26 | Denso Corp | Heat exchanger |
FR2844346A1 (en) * | 2002-09-10 | 2004-03-12 | Valeo Climatisation | Automobile heat exchanger comprises manifold common to range of heat exchangers and interface piece at end of manifold receiving one or more pipes |
JP2005156000A (en) * | 2003-11-25 | 2005-06-16 | Denso Corp | Heat exchanger |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2402694A1 (en) * | 2010-06-30 | 2012-01-04 | Valeo Systemes Thermiques | Condenser, in particular for a car air-conditioning system and heat exchanger equipped with such a condenser |
FR2962199A1 (en) * | 2010-06-30 | 2012-01-06 | Valeo Systemes Thermiques | CONDENSER, IN PARTICULAR FOR AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE. |
CN106482367A (en) * | 2016-12-01 | 2017-03-08 | 浙江鸿乐光热科技有限公司 | A kind of solar water heater water tube base flow guiding connector |
EP3943860A1 (en) * | 2020-07-23 | 2022-01-26 | Valeo Autosystemy SP. Z.O.O. | A heat exchanger |
WO2022017751A1 (en) * | 2020-07-23 | 2022-01-27 | Valeo Autosystemy Sp. Z O.O. | A heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
US20070017664A1 (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1746377A1 (en) | Header wall to pipe connection for minimum pressure drop in a heat exchanger | |
EP1764573B1 (en) | Flanged connection for heat exchanger | |
US9316449B2 (en) | Heat exchanger tank and related apparatuses | |
CN100520269C (en) | Double-tube heat exchanger and method of producing the same | |
US6474698B2 (en) | Connection piece for a heat exchanger | |
US6116335A (en) | Fluid flow heat exchanger with reduced pressure drop | |
US8561679B2 (en) | Heat exchanger header and related methods and apparatuses | |
US5785119A (en) | Heat exchanger and method for manufacturing the same | |
US7926853B2 (en) | Heat exchanger pipe joint | |
US7143824B2 (en) | Heat exchanger, in particular charge-air cooler | |
EP1172623B1 (en) | Heat exchanger and fluid pipe therefor | |
US9897387B2 (en) | Heat exchanger with double-walled tubes | |
US20070000652A1 (en) | Heat exchanger with dimpled tube surfaces | |
EP1528347A2 (en) | End cap with an integral flow diverter | |
CN101663554B (en) | Heat exchanger construction | |
US4915163A (en) | Plate type heat exchanger | |
US7322403B2 (en) | Heat exchanger with modified tube surface feature | |
US20050155748A1 (en) | Concentric tube heat exchanger end seal therefor | |
CN101408125B (en) | Exhaust manifold assembly | |
US20160363380A1 (en) | Heat exchanger | |
US6129146A (en) | Manifold for a brazed radiator | |
EP4133230A1 (en) | Heat exchanger | |
CN100541099C (en) | The assembly of heat-exchange device | |
US20210270547A1 (en) | Heat exchanger | |
US20090120626A1 (en) | Heat exchanger for vehicles and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070724 |
|
17Q | First examination report despatched |
Effective date: 20070827 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080108 |