EP1743344A2 - Remote communication method and device using nuclear isomers - Google Patents

Remote communication method and device using nuclear isomers

Info

Publication number
EP1743344A2
EP1743344A2 EP05733600A EP05733600A EP1743344A2 EP 1743344 A2 EP1743344 A2 EP 1743344A2 EP 05733600 A EP05733600 A EP 05733600A EP 05733600 A EP05733600 A EP 05733600A EP 1743344 A2 EP1743344 A2 EP 1743344A2
Authority
EP
European Patent Office
Prior art keywords
samples
gamma
master
stimulation
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05733600A
Other languages
German (de)
French (fr)
Other versions
EP1743344B1 (en
Inventor
Robert Desbrandes
Daniel Lee Van Gent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E-QUANTIC COMMUNICATIONS
Original Assignee
E-QUANTIC COMMUNICATIONS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E-QUANTIC COMMUNICATIONS filed Critical E-QUANTIC COMMUNICATIONS
Publication of EP1743344A2 publication Critical patent/EP1743344A2/en
Application granted granted Critical
Publication of EP1743344B1 publication Critical patent/EP1743344B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Definitions

  • the present invention relates to a method and apparatus for communicating remotely using isomeric nuclides.
  • the half-life of normal 115 m indium is 268 minutes.
  • the probability of nucleation de-excitation per minute is 0.00258 which represents one chance in 387 per minute.
  • Indium 115 m normal denotes the conventionally excited isomer.
  • a nuclide capable of having a metastable state. It can be excited by neutron irradiation or simply come from the disintegration of a heavier nucleus. Excitation of the isomeric nuclides can also take place by reverse isomeric transition due to irradiation of gamma rays of sufficient energy.
  • the photon entanglement technique is used in cryptography. This allows messages to be transmitted between two correspondents. The detection of the messages by a third person is immediately known to the correspondents. A conventional link is however necessary to decode the messages.
  • the technique of entangling nuclides contained in macroscopic objects which is used in this invention for remote communication is not known to those skilled in the art.
  • the present invention consists in irradiating by the method described below and simultaneously, two or more samples of the same element and capable of having a metastable state.
  • this irradiation is caused by gamma rays emitted by the same nucleus and in cascade, the half-life varies with time instead of being constant.
  • a similar but even more important phenomenon is obtained with the gamma rays produced by Bremstrahlung by particle accelerators. This phenomenon is attributed to the entanglement of irradiated metastable nuclei.
  • This invention is generalized to a plurality of samples irradiated together, each sample being able to be "master” and / or “slave” in successive implementations of the invention. Stimulation of at least one “master” sample causes the deexcitions of one or more "slave” samples which are measured by gamma ray detectors associated with the "slave” samples. Given the quantum nature of the transmission, there is no known method of interference between the “master” sample (s) and the “slave” sample (s). The sample (s) irradiated together are the only ones that can instantly receive the signal (s) from one or more "master” samples, whatever the distances separating the samples.
  • Implementations of the invention have been made with a source of cobalt 60, each nucleus of which has the characteristic of cascading two gamma rays with sufficient energy to excite indium 115.
  • Other implementations of the invention were made by exciting indium 115 with gamma rays from a compact linear accelerator.
  • the gamma spectrum extends from 0 to 6 MeV, but is centered on 1, 5 MeV, that is to say that, in majority, two, three or four gamma rays are emitted in cascade by the same electron, when the accelerator uses electrons.
  • some of the gamma, X or optical rays emitted are entangled.
  • the present invention makes use of entangled gamma rays to excite isomeric nuclei.
  • These gamma rays come, as indicated above, from nuclear reactions such as the disintegration of cobalt 60 or the Bremsstrahlung phenomenon in particle accelerators.
  • the gamma activity is measured in particular for the energy of the isomeric transition on the slave sample.
  • FIG. 1 An enclosure (1) of 3 mm of copper, 15 cm of lead and 12 mm of steel contains the gamma counter (10) and the slave sample (8 ) which emits gamma (9) naturally.
  • the master sample (4) is irradiated by the source of iron 55 (2) which emits gamma rays and X-rays (3).
  • the well-known stimulation of those skilled in the art occurs and additional gamma rays (5) are emitted from the master sample (4).
  • stimulation of the master sample causes an additional emission of the slave sample (8) although it is inside its thick shielding and 12 m from the master sample.
  • FIG. 2 is an example of measurements made on indium sheets at 99.999% purity, irradiated beforehand and simultaneously for 20 minutes with a compact linear accelerator.
  • the X-ray and gamma source of iron 55 was placed for 5 minutes on the master sample, noted “YES” and then removed for 5 minutes, noted “NO” and so on.
  • the measurements in Figure 2 represent the count total during the 5 minutes of irradiation from the master, the 5 minutes without irradiation and so on.
  • An important signal on the slave is obtained during the master's irradiation periods, except the last period for which no signal was obtained.
  • the same experiments made with the cobalt 60 source give identical results but barely superior to noise.
  • FIG. 1 schematically represents the principle of the method used in the invention for communicating remotely.
  • FIG. 2 represents an example of an experimental result obtained with two samples of Indium 115 irradiated with the gamma rays of a compact linear accelerator. In this test, the samples are separated by 12 m.
  • FIG. 3 illustrates an embodiment of the invention with a radioactive source and a plurality of pairs of samples.
  • FIG. 4 illustrates an embodiment of the invention with a particle accelerator and a plurality of pairs of samples placed on a single disc.
  • FIG. 5 illustrates an embodiment of the invention with a particle accelerator and a plurality of pairs of samples placed on two superimposed discs.
  • Table 1 lists a list of the main nuclear nuclei having a metastable state with their symbol, abundance, half-life and emission of gamma rays.
  • Excited samples can be transported over long distances and wait for long periods, if their half-life allows, being still likely to be de-energized.
  • the implementations of the invention which are reported relate to a master and a slave, but a master can deactivate a plurality of slaves if a plurality of samples have been excited together. Likewise, a slave can receive a signal from any master. The action occurs regardless of the distance or the materials that separate master and slave.
  • the method according to the invention consists in irradiating with gamma rays two or more samples of an element having a metastable state with a half-life duration ranging from less than a second to several years.
  • the gamma rays used for excitation of the samples must come either from a cascade decay in the case of a radioactive isotope, or from a Bremstrahlung effect in which the same particle emits several gamma rays.
  • a cascade emission is provided by cobalt 60.
  • the gamma rays emitted must have sufficient energy to effect an inverse isomeric transition, that is to say to bring the nucleus from its ground state to the metastable state.
  • the necessary energy of the excitation threshold is 1080 keV, a condition which is fulfilled by the two gamma rays of cobalt 60.
  • One of the gamma has an energy of 1173 keV with 99.90% chance of happening, and the other 1332 keV 99.98% chance of happening.
  • We do have a cascade because the two gamma rays are emitted at 0.713 picoseconds (10 12 s) apart on average.
  • a compact linear accelerator can emit highly focused gamma radiation with a gamma energy spectrum of 0 to 6 MeV. If the energy of all the electrons before meeting the tungsten target is 6 MeV, each electron emits on average four gamma rays of 1.5 MeV (1500 keV) in a very rapid succession comparable to a cascade.
  • the gamma cascade of the accelerator is, as experience shows, more efficient in carrying out the work described in this invention.
  • the samples to be irradiated are placed in pairs or more on a tray (11) which presents the groups samples (12) in succession in front of a piston (16) which introduces them opposite a radioactive source (14) through the orifice (15) using the piston.
  • the source is placed in a thick shield of lead and steel (17).
  • An axis (18) connects the plate to a stepping motor (19) controlled by a timer (20).
  • the irradiation time is adjusted for each group of samples using a timer (21) which actuates a pneumatic valve (22) to obtain the optimal activation response.
  • the groups of samples (23) are placed on a turntable (24). This plate is supported by an axis (25) and connected to a stepping motor (26), itself controlled by a timer (27).
  • the groups of samples are presented one after the other in front of the X-ray beam of a compact linear accelerator (28) for example.
  • accelerators cannot operate continuously.
  • a number of irradiation time units, for example 5 minutes, will be applied to each sample to obtain optimal excitation using a timer (30).
  • FIG. 5 An ordered set of independent pairs of samples can also be irradiated, as shown in FIG. 5.
  • the pairs of samples are arranged on two discs, the master disc (31) and the slave disc (32), during irradiation.
  • the other elements of FIG. 5 are identical to those of FIG. 4. These discs can then be moved away at any distance and exploited by stimulation of modulated de-excitation of each ordered sample of the master disc and the reception of this modulation by the 'corresponding sample of the slave disk, thus allows the transmission of a complex message.
  • the message can be transmitted simultaneously to several slave disks.
  • Other media than discs can be used.
  • the devices described above are examples of embodiment.
  • Other means for presenting the samples to irradiation can be used without departing from the scope of the invention.
  • the groups of master-slave samples to be irradiated are sheet or powder solids, liquids or gases (in the case of Xenon for example) which contain a proportion of one or more isotopes, for example mentioned in Table 1.
  • the samples can also be alloys, mixtures or chemical compounds incorporating a proportion of one or more isotopes from Table 1.
  • the samples of the same group can be of different nature, for example one in powder and the other in sheet form.
  • One or more of the samples of the same group can also be transformed physically or chemically after irradiation, the slave sample in the form of powder or gas can be incorporated into a carrier molecule for injection, for example.
  • the isomer, a salt or a molecule containing the isomer can also be dissolved in the sample. A plurality of isomers can be used in this solution.
  • the gamma measurements due to the isomeric transition of the slave during stimulation of the master can be carried out with the conventional instruments of those skilled in the art.
  • a common instrument is the germanium crystal detector operating at low temperatures.
  • the slave sample can be placed in a container with walls of copper, lead and steel, located at a great distance from the master sample (12 m in reported implementation).
  • a multi-channel analyzer must be able to calibrate on the characteristic radiation of the chosen isomer. For example, in the case of 115 m indium, the gamma rays in the 336.2 keV line are counted.
  • a temporal modulation of the stimulation of de-excitation can be used to send a message composed of "yes" and "no", that is to say 1 and 0 in binary language , on one or a plurality of samples.
  • Implementations of the invention with more complex modulations such as an amplitude or frequency modulation of de-excitation stimulations can also be used.
  • the optimal radiation can be chosen to stimulate a particular isomer.
  • the master sample containing a mixture of isomers can be selectively excited. Each isomer therefore represents in this case a particular "channel" of transmission.
  • the isomer emits, naturally or during remote stimulation, gamma of several energies, the measurements made for each energy improve the signal-to-noise level.
  • This invention therefore solves a technical problem of information transmission, for the moment very summary, but nevertheless of great novelty.
  • Different industrial applications are immediately conceivable, emergency signals, remote controls, data acquisition, in mines, the seabed (robots and submarines), in boreholes, in the space sector in particular at very long distances, etc.
  • Medical applications are also possible by remotely stimulating the product according to the invention, a slave sample of which has been placed near or in the organ to be treated.

Abstract

The invention relates to a method and device which are intended for remote control and communication using nuclear isomers. Several samples of nuclides that can have a metastable state are irradiated together and simultaneously with cascade gamma-rays emitted from a radioactive source or a particle accelerator. According to quantum mechanics, the gamma-rays produced are entangled, and said entanglement is transferred to the nuclear isomers. When the samples are separated and one of said samples, namely the master, is stimulated using a standard gamma- or X-ray irradiation method, the other samples, namely the slaves, are also deexcited. There is no known method for interference between the masters and slaves. Only the slave(s) can receive the signal instantly from the master through any medium and over any distance. The method and device are particularly suitable for communication and control applications.

Description

Procédé et Appareillage pour Communiquer à Distance en utilisant des Nucléides isomères Method and Apparatus for Remote Communication Using Isomeric Nuclides
DESCRIPTION Domaine technique :DESCRIPTION Technical area:
La présente invention concerne un procédé et un appareillage pour communiquer à distance en utilisant des nucléides isomères.The present invention relates to a method and apparatus for communicating remotely using isomeric nuclides.
Certains nucléides possèdent un état métastable. Ces états sont des isomères, c'est à dire des états excités du noyau de l'atome. Les isomères retournent à leur état fondamental par transition isomérique en émettant un rayonnement gamma. La transition isomérique, comme la conversion interne, ne donne pas lieu à un changement de numéro atomique. Dans son état normal, un isomère retourne à son état fondamental avec une loi exponentielle comme les autres éléments radioactifs. Cette loi exponentielle est généralement caractérisée par la demi-vie de l'élément radioactif. La demi-vie est reliée à la probabilité de désexcitation par la formule : P = LN(2)/λ P, probabilité de désintégration par minutes ; LN, logarithme naturel ; λ, demi-vie en minutes. Par exemple, la demi-vie de l'indium 115m normal est de 268 minutes. La probabilité de désexcitation d'un noyau par minutes est de 0,00258 ce qui représente une chance sur 387 par minute. Par indium 115m normal, on désigne l'isomère excité classiquement. Il existe en effet plusieurs façons d'exciter un nucléide susceptible d'avoir un état métastable. Il peut être excité par irradiation neutronique ou simplement provenir de la désintégration d'un noyau plus lourd. L'excitation des nucléides isomères peut également avoir lieu par transition isomérique inverse due à une irradiation de rayons gamma d'énergie suffisante.Some nuclides have a metastable state. These states are isomers, that is, excited states of the atom's nucleus. The isomers return to their ground state by isomeric transition by emitting gamma radiation. The isomeric transition, like internal conversion, does not give rise to a change in atomic number. In its normal state, an isomer returns to its ground state with an exponential law like the other radioactive elements. This exponential law is generally characterized by the half-life of the radioactive element. The half-life is related to the probability of de-excitation by the formula: P = LN (2) / λ P, probability of disintegration per minute; LN, natural logarithm; λ, half-life in minutes. For example, the half-life of normal 115 m indium is 268 minutes. The probability of nucleation de-excitation per minute is 0.00258 which represents one chance in 387 per minute. Indium 115 m normal denotes the conventionally excited isomer. There are indeed several ways to excite a nuclide capable of having a metastable state. It can be excited by neutron irradiation or simply come from the disintegration of a heavier nucleus. Excitation of the isomeric nuclides can also take place by reverse isomeric transition due to irradiation of gamma rays of sufficient energy.
Il est connu des hommes de l'art que la désexcitation de l'isomère peut être accélérée par irradiation X ou gamma. Dans cette invention cette propriété sera utilisée. L'invention, dont la mise en œuvre sera détaillée dans la suite, exploite des propriétés anticipées par la Mécanique Quantique selon lesquelles deux ou plusieurs particules intriquées conservent une liaison quantique lorsqu'elles sont séparées par une distance quelconque, liaison quantique qui est instantanée dans le même référentiel. De nombreux articles et ouvrages existent sur le sujet de l'intricatioπ. Ci-dessous sont listés les principaux [1. Einstein A., Podolski B., Rosen N ., «Can Quantum Mechanical Description of Physical Reality Be Considered Complète», Physical Review, 47, (1935),pp. 777-780. [2.] Bell J. S., «Speakable and Unspeakable in Quantum Méchantes», New York, Cambridge University Press, 1993. [3.] Aspect A., « Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons», Thèse de Doctorat d'Etat, Université de Paris Orsay, 1er Février 1983. [4.] Townsend P. D., Rarity J. G., Tapster P. R., «Single-Photon Interférence in 10 km Long Optical-FibβD>, lectronics etters, V; 29, p. 634, 1993. [5.] Le Bellac M., « Physique Quantique », EDP/Sciences/CNRS, 2003, voir « Etats Intriqués », p. 165-201. [6.] Aczel A. D., «ENTANGLEMENT: The Greatest Mystery in Physics», John Wiley & Sons, LTD, Chichester, W. Sussex, England, 2003. [7.] Aczel A. D., «ENTANGLEMENT: The Unlikely Story of How Scientists, Mathématiciens, and Philosophers Proved Einstein's Spookiest Theory», A Plume Book, Sept. 2003. [8.] Shimony A., «The Reality of the Quantum World", Scientific American, p. 46, Jan 1998. [9.] Greestein G., Zajonc A. G., «7Λe Quantum Challenge: Modem Research on the Foundations of Quantum Mechanics», Jones and Barlett, Sudbury, MA, USA, 1997. [10.] Herbert Nick, "Quantum Reality", Anchor Book, NY, 1985. [11.] Carroll M. J., Bird, D. G., et al., « Photoexcitation of nuclear Isomers by (ytf) reactions », Physical Review C, 43, 3, p. 1238-1245. [12.] Magniez F. « Cryptographie Quantique », Mémoire magistère, ENS-Cachan, mai 1993. [13.] Muller, A., Breguet J., Gisin N., "Expérimental Démonstration of Quantum Cryptography using Polarized Photons in Optical-Fiber over more than 1 KM", Europhysics Letters.V. 23, p. 383, 1993. [14.] Sudbury Tony, « Instant Teleportation », Nature, V. 362, pp. 586-587, 1993. [15.] Nairz O., Arndt M., Zeilinger A., « Expérimental Nonlocality Proof of Quantum Teleportation and Entanglement Swapping », Physical Review Letters, V.88, p; 017903, 2002. [16.] Julsgaard B., Kozhekin A., and Polzik E; S., « Expérimental long-lived entanglement of two macroscopic objects », Nature, 413, 400-403,, (2001). [17.] Olariu S. et Olaπ'u A., « Induced émission of γ radiation from isomeric nuclei », Physical Review C, 58, 1, (July 1998).It is known to those skilled in the art that the de-excitation of the isomer can be accelerated by X or gamma irradiation. In this invention this property will be used. The invention, the implementation of which will be detailed below, exploits properties anticipated by Quantum Mechanics according to which two or more entangled particles retain a quantum bond when they are separated by any distance, a quantum bond which is instantaneous in the same repository. Many articles and books exist on the subject of intricatioπ. Below are listed the main ones [1. Einstein A., Podolski B., Rosen N., "Can Quantum Mechanical Description of Physical Reality Be Considered Complète", Physical Review, 47, (1935), pp. 777-780. [2.] Bell JS, “Speakable and Unspeakable in Quantum Méchantes”, New York, Cambridge University Press, 1993. [3.] Aspect A., “Three experimental tests of Bell inequalities by measuring correlation of photon polarization” , thesis State, University of Paris Orsay, February 1, 1983. [4.] PD Townsend, JG Rarity, PR Tapster, "Single-Photon Interference in 10 km Long-Optical FibβD> lectronics Etters, V; 29, p. 634, 1993. [5.] Le Bellac M., “Quantum Physics”, EDP / Sciences / CNRS, 2003, see “Intriques States”, p. 165-201. [6.] Aczel AD, “ENTANGLEMENT: The Greatest Mystery in Physics”, John Wiley & Sons, LTD, Chichester, W. Sussex, England, 2003. [7.] Aczel AD, “ENTANGLEMENT: The Unlikely Story of How Scientists , Mathematicians, and Philosophers Proved Einstein's Spookiest Theory ", A Plume Book, Sept. 2003. [8.] Shimony A.," The Reality of the Quantum World ", Scientific American, p. 46, Jan 1998. [9.] Greestein G., Zajonc AG, "7th Quantum Challenge: Modem Research on the Foundations of Quantum Mechanics", Jones and Barlett, Sudbury, MA, USA, 1997. [10.] Herbert Nick, "Quantum Reality", Anchor Book, NY , 1985. [11.] Carroll MJ, Bird, DG, et al., “Photoexcitation of nuclear Isomers by (ytf) reactions”, Physical Review C, 43, 3, p. 1238-1245. [12.] Magniez F . "Quantum Cryptography", Magisterial Memory, ENS-Cachan, May 1993. [13.] Muller, A., Breguet J., Gisin N., "Experimental Demonstration of Quantum Cryptography using Polarized Photons in Optical-Fiber over more than 1 KM ", Europhysi cs Letters. V. 23, p. 383, 1993. [14.] Sudbury Tony, "Instant Teleportation", Nature, V. 362, pp. 586-587, 1993. [15.] Nairz O., Arndt M., Zeilinger A., “Experimental Nonlocality Proof of Quantum Teleportation and Entanglement Swapping”, Physical Review Letters, V.88, p; 017903, 2002. [16.] Julsgaard B., Kozhekin A., and Polzik E; S., "Experimental long-lived entanglement of two macroscopic objects", Nature, 413, 400-403 ,, (2001). [17.] Olariu S. and Olaπ ' u A., “Induced emission of γ radiation from isomeric nuclei”, Physical Review C, 58, 1, (July 1998).
Technique antérieure :Prior art:
La technique d'intrication de photons est utilisée en cryptographie. Celle-ci permet de transmettre des messages entre deux correspondants. La détection des messages par une tierce personne est immédiatement connue des correspondants, Une liaison classique reste cependant nécessaire pour décoder les messages. La technique d'intrication des nucléides contenus des objets macroscopiques qui est utilisée dans cette invention pour la communication à distance n'est pas connue de l'homme de l'art.The photon entanglement technique is used in cryptography. This allows messages to be transmitted between two correspondents. The detection of the messages by a third person is immediately known to the correspondents. A conventional link is however necessary to decode the messages. The technique of entangling nuclides contained in macroscopic objects which is used in this invention for remote communication is not known to those skilled in the art.
Exposé de l'invention :Statement of the invention:
La présente invention consiste à irradier par la méthode décrite ci-dessous et simultanément, deux ou plusieurs échantillons d'un même élément et susceptibles d'avoir un état métastable. Lorsque cette irradiation est causée par des rayons gamma émis par le même noyau et en cascade, la demi-vie varie avec le temps au lieu d'être constante. Un phénomène analogue mais encore plus important est obtenu avec les gamma produits par Bremstrahlung par des accélérateurs de particules. Ce phénomène est attribué à l'intrication des noyaux métastables irradiés. On considérera d'abord deux échantillons : Après irradiation ; les deux échantillons sont alors séparés dans l'espace.The present invention consists in irradiating by the method described below and simultaneously, two or more samples of the same element and capable of having a metastable state. When this irradiation is caused by gamma rays emitted by the same nucleus and in cascade, the half-life varies with time instead of being constant. A similar but even more important phenomenon is obtained with the gamma rays produced by Bremstrahlung by particle accelerators. This phenomenon is attributed to the entanglement of irradiated metastable nuclei. We will first consider two samples: After irradiation; the two samples are then separated in space.
L'un des échantillons que nous appellerons « maître » est excité à l'aide de rayons X ou gamma alors que l'autre, l'« esclave », est placé sur un détecteur de rayons gamma. La stimulation du « maître » provoque la désexcitation de l'« esclave » qui est mesurée par le détecteur de rayons gamma.One of the samples that we will call "master" is excited using X or gamma rays while the other, the "slave", is placed on a gamma ray detector. The stimulation of the "master" causes the "slave" to be de-energized, which is measured by the gamma ray detector.
Cette invention est généralisée à une pluralité d'échantillons irradiés ensembles, chaque échantillon pouvant être « maître » et / ou « esclave » dans des mises en œuvre successives de l'invention. La stimulation d'au moins un échantillon « maître » provoque les désexcitions de un ou plusieurs échantillons « esclaves » qui sont mesurées par des détecteurs de rayons gamma associés aux échantillons « esclaves ». Compte tenue de la nature quantique de la transmission, il n'y a pas de procédé connu d'interférence entre le ou les échantillons « maîtres » et le ou les échantillons « esclaves ». Le ou les échantillons irradiés ensembles sont les seuls à pouvoir recevoir instantanément le ou les signaux d'un ou des échantillons « maîtres » quelles que soient les distances séparant les échantillons.This invention is generalized to a plurality of samples irradiated together, each sample being able to be "master" and / or "slave" in successive implementations of the invention. Stimulation of at least one “master” sample causes the deexcitions of one or more "slave" samples which are measured by gamma ray detectors associated with the "slave" samples. Given the quantum nature of the transmission, there is no known method of interference between the “master” sample (s) and the “slave” sample (s). The sample (s) irradiated together are the only ones that can instantly receive the signal (s) from one or more "master" samples, whatever the distances separating the samples.
Des mises en œuvre de l'invention ont été faites avec une source de cobalt 60 dont chaque noyau a la caractéristique d'émettre en cascade deux rayons gamma avec l'énergie suffisante pour exciter l'indium 115. D'autres mises en œuvre de l'invention ont été faites en excitant l'indium 115 avec des rayons gamma en provenance d'un accélérateur linéaire compact. Le spectre gamma s'étend de 0 à 6 MeV, mais est centré sur 1 ,5 MeV, c'est à dire que, en majorité, deux, trois ou quatre rayons gamma sont émis en cascade par le même électron, lorsque l'accélérateur utilise des électrons. Lors des cascades certains des rayons gamma, X ou optiques émis sont intriqués. La présente invention fait usage de rayons gamma intriqués pour exciter les noyaux isomères. Ces rayons gamma proviennent, comme indiqué précédemment, de réactions nucléaires telles que la désintégration du cobalt 60 ou du phénomène de Bremsstrahlung dans les accélérateurs de particules. On mesure l'activité gamma en particulier pour l'énergie de la transition isomérique sur l'échantillon esclave. Un schéma de cette mise en œuvre est illustré sur la figure 1. Une enceinte (1) de 3 mm de cuivre, 15 cm de plomb et 12 mm d'acier contient le compteur de gamma (10) et l'échantillon esclave (8) qui émet des gamma (9) naturellement. A une distance de 12 m (7), l'échantillon maître (4) est irradié par la source de fer 55 (2) qui émet des rayons gamma et des rayons X (3). La stimulation bien connue des hommes de l'art se produit et des rayons gamma supplémentaires (5) sont émis par l'échantillon maître (4). Simultanément, la stimulation de l'échantillon maître provoque une émission supplémentaire de l'échantillon esclave (8) bien qu'il soit à l'intérieur de son épais blindage et à 12 m de l'échantillon maître. La figure 2 est un exemple de mesures faites sur des feuilles d'indium à 99,999% de pureté, irradiées préalablement et simultanément pendant 20 minutes avec un accélérateur linéaire compact. La source de rayon X et gamma, du fer 55, a été placée pendant 5 minutes sur l'échantillon maître, noté « OUI » puis retirée pendant 5 minutes, noté « NON » et ainsi de suite. Les mesures de la figure 2 représentent le comptage total pendant les 5 minutes d'irradiation du maître, les 5 minutes sans irradiation et ainsi de suite. Un important signal sur l'esclave est obtenu pendant les périodes d'irradiation du maître, sauf la dernière période pour laquelle pas de signal a été obtenu. Les mêmes expériences faites avec la source de cobalt 60 donnent des résultats identiques mais à peine supérieurs au bruit.Implementations of the invention have been made with a source of cobalt 60, each nucleus of which has the characteristic of cascading two gamma rays with sufficient energy to excite indium 115. Other implementations of the invention were made by exciting indium 115 with gamma rays from a compact linear accelerator. The gamma spectrum extends from 0 to 6 MeV, but is centered on 1, 5 MeV, that is to say that, in majority, two, three or four gamma rays are emitted in cascade by the same electron, when the accelerator uses electrons. During the cascades, some of the gamma, X or optical rays emitted are entangled. The present invention makes use of entangled gamma rays to excite isomeric nuclei. These gamma rays come, as indicated above, from nuclear reactions such as the disintegration of cobalt 60 or the Bremsstrahlung phenomenon in particle accelerators. The gamma activity is measured in particular for the energy of the isomeric transition on the slave sample. A diagram of this implementation is illustrated in FIG. 1. An enclosure (1) of 3 mm of copper, 15 cm of lead and 12 mm of steel contains the gamma counter (10) and the slave sample (8 ) which emits gamma (9) naturally. At a distance of 12 m (7), the master sample (4) is irradiated by the source of iron 55 (2) which emits gamma rays and X-rays (3). The well-known stimulation of those skilled in the art occurs and additional gamma rays (5) are emitted from the master sample (4). Simultaneously, stimulation of the master sample causes an additional emission of the slave sample (8) although it is inside its thick shielding and 12 m from the master sample. FIG. 2 is an example of measurements made on indium sheets at 99.999% purity, irradiated beforehand and simultaneously for 20 minutes with a compact linear accelerator. The X-ray and gamma source of iron 55 was placed for 5 minutes on the master sample, noted "YES" and then removed for 5 minutes, noted "NO" and so on. The measurements in Figure 2 represent the count total during the 5 minutes of irradiation from the master, the 5 minutes without irradiation and so on. An important signal on the slave is obtained during the master's irradiation periods, except the last period for which no signal was obtained. The same experiments made with the cobalt 60 source give identical results but barely superior to noise.
Description sommaire des dessins et tableau:Brief description of the drawings and table:
La figure 1 représente schématiquement le principe de la méthode utilisée dans l'invention pour communiquer à distance. La figure 2 représente un exemple de résultat expérimental obtenu avec deux échantillons d'Indium 115 irradiés avec les rayons gamma d'un accélérateur linéaire compact. Dans cet essai, les échantillons sont séparés de 12 m.FIG. 1 schematically represents the principle of the method used in the invention for communicating remotely. FIG. 2 represents an example of an experimental result obtained with two samples of Indium 115 irradiated with the gamma rays of a compact linear accelerator. In this test, the samples are separated by 12 m.
La figure 3 illustre un mode de mise en oeuvre de l'invention avec une source radioactive et une pluralité de pairs d'échantillons. La figure 4 illustre un mode de mise en œuvre de l'invention avec un accélérateur de particules et une pluralité de pairs d'échantillons placés sur un seul disque.FIG. 3 illustrates an embodiment of the invention with a radioactive source and a plurality of pairs of samples. FIG. 4 illustrates an embodiment of the invention with a particle accelerator and a plurality of pairs of samples placed on a single disc.
La figure 5 illustre un mode de mise en œuvre de l'invention avec un accélérateur de particules et une pluralité de pairs d'échantillons placés sur deux disques superposés.FIG. 5 illustrates an embodiment of the invention with a particle accelerator and a plurality of pairs of samples placed on two superimposed discs.
Le tableau 1 énumère une liste des principaux noyaux nucléaires ayant un état métastable avec leur symbole, abondance, demi-vie et émission de rayons gamma.Table 1 lists a list of the main nuclear nuclei having a metastable state with their symbol, abundance, half-life and emission of gamma rays.
Manières de réaliser l'invention :Ways to realize the invention:
Des manières de réaliser l'invention sont décrites ci-dessous. Cependant il est précisé que la présente invention peut être réalisée de différentes façons. Ainsi, les détails spécifiques mentionnés ci-dessous ne doivent pas être compris comme limitant la réalisation, mais plutôt comme une base descriptive pour supporter les revendications et pour apprendre à l'homme du métier l'usage de l'invention présente, dans pratiquement la totalité des systèmes, structures ou manières détaillés appropriés La présente invention peut être mise en œuvre avec des nucléides de différentes demi- vies. En effet, les demi-vies des nucléides métastables utilisables pour cette invention s'étendent de 1 microseconde à 50 ans. Le tableau 1 donne une liste des principaux nucléides qui ont un état métastable. Leur symbole, abondance, demi-vie en excitation ordinaire et énergie de transition isomérique sont mentionnés. Les échantillons excités peuvent être transportés sur de larges distances et attendre de longues périodes, si leur demi-vie le permet, en étant toujours susceptibles d'être désexcités. Les mises en œuvre de l'invention qui sont rapportées concernent un maître et un esclave, mais un maître peut désexciter une pluralité d'esclaves si une pluralité d'échantillons ont été excités ensemble. De même, un esclave peut recevoir un signal de n'importe quel maître. L'action se produit quelle que soit la distance ou les matériaux qui séparent maître et esclave.Ways of carrying out the invention are described below. However, it is specified that the present invention can be carried out in different ways. Thus, the specific details mentioned below should not be understood as limiting the implementation, but rather as a descriptive basis for supporting the claims and for teaching those skilled in the art the use of the present invention, in practically the all appropriate detailed systems, structures or manners The present invention can be practiced with nuclides of different half-lives. In fact, the half-lives of metastable nuclides which can be used for this invention range from 1 microsecond to 50 years. Table 1 gives a list of the main nuclides which have a metastable state. Their symbol, abundance, half-life in ordinary excitation and isomeric transition energy are mentioned. Excited samples can be transported over long distances and wait for long periods, if their half-life allows, being still likely to be de-energized. The implementations of the invention which are reported relate to a master and a slave, but a master can deactivate a plurality of slaves if a plurality of samples have been excited together. Likewise, a slave can receive a signal from any master. The action occurs regardless of the distance or the materials that separate master and slave.
Le procédé selon l'invention consiste à irradier à l'aide de rayons gamma deux ou plusieurs échantillons d'un élément possédant un état métastable d'une durée de demi- vie allant moins d'une seconde à plusieurs années. Les rayons gamma utilisés pour l'excitation des échantillons doivent provenir soit d'une désintégration en cascade dans le cas d'un isotope radioactif, soit d'un effet de Bremstrahlung dans lequel la même particule émet plusieurs gamma.The method according to the invention consists in irradiating with gamma rays two or more samples of an element having a metastable state with a half-life duration ranging from less than a second to several years. The gamma rays used for excitation of the samples must come either from a cascade decay in the case of a radioactive isotope, or from a Bremstrahlung effect in which the same particle emits several gamma rays.
Par exemple, une émission en cascade est fournie par le cobalt 60. Les rayons gamma émis doivent avoir une énergie suffisante pour effectuer une transition isomérique inverse, c'est à dire de faire passer le noyau de son état fondamental à l'état métastable. Dans le cas de l'indium 115, par exemple, l'énergie nécessaire du seuil d'excitation est de 1080 keV, condition qui est remplie par les deux rayons gamma du cobalt 60. L'un des gamma a une énergie de 1173 keV avec 99,90% chance de se produire, et l'autre 1332 keV 99,98% chance de se produire. Nous avons bien une cascade car les deux gamma sont émis à 0,713 picoseconde (1012 s) d'intervalle en moyenne.For example, a cascade emission is provided by cobalt 60. The gamma rays emitted must have sufficient energy to effect an inverse isomeric transition, that is to say to bring the nucleus from its ground state to the metastable state. In the case of indium 115, for example, the necessary energy of the excitation threshold is 1080 keV, a condition which is fulfilled by the two gamma rays of cobalt 60. One of the gamma has an energy of 1173 keV with 99.90% chance of happening, and the other 1332 keV 99.98% chance of happening. We do have a cascade because the two gamma rays are emitted at 0.713 picoseconds (10 12 s) apart on average.
Dans le cas d'une irradiation par les rayons gamma de Bremstrahlung d'un accélérateur linéaire de particules, par exemple d'électrons, l'énergie des gamma doit à nouveau être supérieure au seuil d'excitation de l'élément choisi. Par exemple, un accélérateur linéaire compact peut émettre un rayonnement gamma très focalisé avec un spectre d'énergie gamma de 0 à 6 MeV. Si l'énergie de tous les électrons avant de rencontrer la cible de tungstène est de 6 MeV, chaque électron émet en moyenne quatre gamma de 1,5 MeV (1500 keV) dans une très rapide succession comparable à une cascade. La cascade de gamma de l'accélérateur est, comme le montre l'expérience, plus efficace pour effectuer les travaux décrits dans cette invention.In the case of irradiation with gamma rays from Bremstrahlung of a linear accelerator of particles, for example of electrons, the energy of the gamma must again be greater than the excitation threshold of the chosen element. For example, a compact linear accelerator can emit highly focused gamma radiation with a gamma energy spectrum of 0 to 6 MeV. If the energy of all the electrons before meeting the tungsten target is 6 MeV, each electron emits on average four gamma rays of 1.5 MeV (1500 keV) in a very rapid succession comparable to a cascade. The gamma cascade of the accelerator is, as experience shows, more efficient in carrying out the work described in this invention.
Selon un mode particulier de l'invention représenté sur la figure 3 qui concerne une irradiation par source radioactive émettant des gamma en cascade, les échantillons à irradier sont placés par couple ou plusieurs sur un plateau (11) qui présente les groupes d'échantillons (12) en succession devant un piston (16) qui les introduit en face d'une source radioactive (14) par l'orifice (15) à l'aide du piston. La source est placée dans un épais blindage de plomb et d'acier (17). Un axe (18) connecte le plateau à un moteur pas à pas (19) commandé par une minuterie (20). Le temps d'irradiation est réglé pour chaque groupe d'échantillons à l'aide d'une minuterie (21) qui actionne une vanne pneumatique (22) pour obtenir la réponse optimale d'activation. Dans le cas de l'indium 115, avec une source de 111000 GBq (3000 Ci), plusieurs heures d'excitation sont nécessaires. Selon un autre mode de réalisation de l'invention, schématisé sur la figure 4, les groupes d'échantillons (23) sont placés sur un plateau tournant(24). Ce plateau est supporté par un axe (25) et connecté à un moteur pas à pas (26), lui-même commandé par une minuterie (27). Les groupes d'échantillons sont présentés l'un après l'autre devant le faisceau de rayons X d'un accélérateur linéaire compact (28) par exemple. Un « fantôme » (29) rempli d'eau arrête les rayons gamma non absorbés. En général les accélérateurs ne peuvent pas fonctionner en permanence. Un certain nombre d'unités de temps d'irradiation, par exemple de 5 minutes, sera appliqué à chaque échantillon pour obtenir l'excitation optimale à l'aide d'une minuterie (30). Dans le cas de l'indium 115, une excitation de 20 minutes avec un accélérateur linéaire compact suffit pour avoir un rapport signal sur bruit satisfaisant. Un ensemble ordonné de couples indépendants d'échantillons peuvent également être irradiés, comme le montre la figure 5. Sur cette figure, les couples d'échantillons sont disposés sur deux disques, le disque maître (31) et le disque esclave (32), lors des irradiations. Les autres éléments de la figure 5 sont identiques à ceux de la figure 4. Ces disques peuvent alors être éloignés à n'importe quelle distance et exploités par stimulation de désexcitation modulée de chaque échantillon ordonné du disque maître et la réception de cette modulation par l'échantillon correspondant du disque esclave, permet ainsi la transmission d'un message complexe. Si plusieurs échantillons, placés dans plusieurs disques, sont excités ensembles au lieu d'un simple couple de disques, le message peut être transmis simultanément à plusieurs disques esclaves. D'autres supports que des disques peuvent être utilisés. Par exemple des plaquettes présentées en translation devant le générateur de gamma émis en cascade. Les appareillages décrits précédemment sont des exemples de réalisation. D'autres moyens pour présenter les échantillons à l'irradiation peuvent être employés sans sortir du cadre de l'invention. Les groupes d'échantillons maîtres-esclaves à irradier sont des solides en feuille ou en poudre, des liquides ou des gaz (cas du Xénon par exemple) qui contiennent une proportion d'un ou de plusieurs isotopes par exemple mentionnés sur le tableau 1. Les échantillons peuvent être aussi des alliages, des mélanges ou des composés de chimiques incorporant une proportion d'un ou de plusieurs isotopes du tableau 1. Les échantillons d'un même groupe peuvent être de nature différente, par exemple l'un en poudre et l'autre en feuille. Un ou plusieurs des échantillons d'un même groupe peuvent également être transformés physiquement ou chimiquement après irradiation, l'échantillon esclave sous forme de poudre ou de gaz peut être incorporé dans une molécule porteuse injectable par exemple. L'isomère, un sel ou une molécule contenant l'isomère peut également être mis en solution dans l'échantillon. Une pluralité d'isomères peut être employée dans cette solution.According to a particular embodiment of the invention represented in FIG. 3 which relates to irradiation by radioactive source emitting gamma in cascade, the samples to be irradiated are placed in pairs or more on a tray (11) which presents the groups samples (12) in succession in front of a piston (16) which introduces them opposite a radioactive source (14) through the orifice (15) using the piston. The source is placed in a thick shield of lead and steel (17). An axis (18) connects the plate to a stepping motor (19) controlled by a timer (20). The irradiation time is adjusted for each group of samples using a timer (21) which actuates a pneumatic valve (22) to obtain the optimal activation response. In the case of indium 115, with a source of 111,000 GBq (3000 Ci), several hours of excitation are necessary. According to another embodiment of the invention, shown diagrammatically in FIG. 4, the groups of samples (23) are placed on a turntable (24). This plate is supported by an axis (25) and connected to a stepping motor (26), itself controlled by a timer (27). The groups of samples are presented one after the other in front of the X-ray beam of a compact linear accelerator (28) for example. A "ghost" (29) filled with water stops the non absorbed gamma rays. In general, accelerators cannot operate continuously. A number of irradiation time units, for example 5 minutes, will be applied to each sample to obtain optimal excitation using a timer (30). In the case of indium 115, an excitation of 20 minutes with a compact linear accelerator is sufficient to have a satisfactory signal-to-noise ratio. An ordered set of independent pairs of samples can also be irradiated, as shown in FIG. 5. In this figure, the pairs of samples are arranged on two discs, the master disc (31) and the slave disc (32), during irradiation. The other elements of FIG. 5 are identical to those of FIG. 4. These discs can then be moved away at any distance and exploited by stimulation of modulated de-excitation of each ordered sample of the master disc and the reception of this modulation by the 'corresponding sample of the slave disk, thus allows the transmission of a complex message. If several samples, placed in several disks, are excited together instead of a simple pair of disks, the message can be transmitted simultaneously to several slave disks. Other media than discs can be used. For example, wafers presented in translation in front of the gamma generator emitted in cascade. The devices described above are examples of embodiment. Other means for presenting the samples to irradiation can be used without departing from the scope of the invention. The groups of master-slave samples to be irradiated are sheet or powder solids, liquids or gases (in the case of Xenon for example) which contain a proportion of one or more isotopes, for example mentioned in Table 1. The samples can also be alloys, mixtures or chemical compounds incorporating a proportion of one or more isotopes from Table 1. The samples of the same group can be of different nature, for example one in powder and the other in sheet form. One or more of the samples of the same group can also be transformed physically or chemically after irradiation, the slave sample in the form of powder or gas can be incorporated into a carrier molecule for injection, for example. The isomer, a salt or a molecule containing the isomer can also be dissolved in the sample. A plurality of isomers can be used in this solution.
Les mesures de gamma dus à la transition isomérique de l'esclave lors de la stimulation du maître peuvent être effectuées avec les instruments classiques de l'homme de l'art. Un instrument courant est le détecteur à cristaux de germanium fonctionnant à basse température. Afin de minimiser les effets des rayons cosmiques, du radon et des parasites ambiants, l'échantillon esclave peut être placé dans un containeur avec des parois de cuivre, plomb et acier, localisé à une grande distance de l'échantillon maître (12 m dans la mise en oeuvre rapportée). Un analyseur multi-canal doit pouvoir se caler sur la radiation caractéristique de l'isomère choisi. Par exemple, dans le cas de l'indium 115m, les gamma dans la raie 336,2 keV sont comptés. Il est également possible que les progrès de la technique permettent de mesurer la radiation de 336,2 keV sans avoir un containeur spécial. Une modulation temporelle des stimulations de désexcitation, comme le montre l'exemple de la figure 2, peut être utilisée pour envoyer un message composé de « oui » et de « non », c'est à dire de 1 et de 0 en langage binaire, sur un ou une pluralité d'échantillons. Des mises en œuvre de l'invention avec des modulations plus complexes telles qu'une modulation en amplitude ou en fréquence des stimulations de désexcitation peuvent également être utilisées. Selon les techniques de stimulation des isomères connues, on peut choisir le rayonnement optimal pour stimuler un isomère particulier. En conséquence, l'échantillon maître contenant un mélange d'isomères peut être excité sélectivement. Chaque isomère représente donc dans ce cas un « canal » particulier de transmission. Lorsque l'isomère émet, naturellement ou lors de la stimulation à distance, des gamma de plusieurs énergie, les mesures faites pour chaque énergie permettent d'améliorer le niveau signal sur bruit.The gamma measurements due to the isomeric transition of the slave during stimulation of the master can be carried out with the conventional instruments of those skilled in the art. A common instrument is the germanium crystal detector operating at low temperatures. In order to minimize the effects of cosmic rays, radon and ambient parasites, the slave sample can be placed in a container with walls of copper, lead and steel, located at a great distance from the master sample (12 m in reported implementation). A multi-channel analyzer must be able to calibrate on the characteristic radiation of the chosen isomer. For example, in the case of 115 m indium, the gamma rays in the 336.2 keV line are counted. It is also possible that advances in technology allow the radiation of 336.2 keV to be measured without having a special container. A temporal modulation of the stimulation of de-excitation, as shown in the example of FIG. 2, can be used to send a message composed of "yes" and "no", that is to say 1 and 0 in binary language , on one or a plurality of samples. Implementations of the invention with more complex modulations such as an amplitude or frequency modulation of de-excitation stimulations can also be used. According to the known isomer stimulation techniques, the optimal radiation can be chosen to stimulate a particular isomer. As a result, the master sample containing a mixture of isomers can be selectively excited. Each isomer therefore represents in this case a particular "channel" of transmission. When the isomer emits, naturally or during remote stimulation, gamma of several energies, the measurements made for each energy improve the signal-to-noise level.
Possibilités d'applications industrielles : Cette invention résout donc un problème technique de transmission d'information, pour l'instant très sommaire, mais néanmoins de grande nouveauté. Différentes applications industrielles sont immédiatement envisageables, signaux de secours, de télécommandes, d'acquisition de données, dans les mines, les fonds marins (robots et sous-marins), dans les forages, dans le domaine spatial en particulier à très grandes distances, etc.Possibilities of industrial applications: This invention therefore solves a technical problem of information transmission, for the moment very summary, but nevertheless of great novelty. Different industrial applications are immediately conceivable, emergency signals, remote controls, data acquisition, in mines, the seabed (robots and submarines), in boreholes, in the space sector in particular at very long distances, etc.
Des applications médicales sont également possibles en stimulant à distance le produit selon l'invention, dont un échantillon esclave a été disposé près ou dans l'organe à traiter. Medical applications are also possible by remotely stimulating the product according to the invention, a slave sample of which has been placed near or in the organ to be treated.

Claims

REVENDICATIONS
1) Procédé pour communiquer ou commander une désexcitation à distance en utilisant des nucléides isomères, dans lequel: - on prépare deux ou plusieurs échantillons contenant au moins un nucléide isomère ayant un état métastable par irradiation au moyen soit d'une source de rayons gamma émis en cascade, soit d'un générateur de rayons gamma provenant du Bremstrahlung de particules accélérées, avec une énergie suffisante pour exciter ledit nucléide isomère à son état métastable, - on provoque la stimulation modulée de la désexcitation par irradiation X ou gamma de l'un ou plusieurs des échantillons précédant, le ou les maîtres, caractérisé en ce que l'on obtient une désexcitation modulée supplémentaire des autres échantillons, les esclaves, lors de la stimulation modulée de la désexcitation du ou des échantillons maîtres, indépendamment des distances séparant les échantillons, et des milieux séparant ces échantillons ou dans lesquels ils sont placés.1) Method for communicating or controlling a remote de-excitation using isomeric nuclides, in which: - two or more samples are prepared containing at least one isomeric nuclide having a metastable state by irradiation by means of either an emitted gamma ray source in cascade, either from a gamma ray generator from the Bremstrahlung of accelerated particles, with sufficient energy to excite said isomeric nuclide in its metastable state, - one modulates stimulation of the deexcitation by X or gamma irradiation or more of the preceding samples, the master (s), characterized in that an additional modulated de-excitation of the other samples, the slaves, is obtained during the modulated stimulation of the de-excitation of the master sample (s), regardless of the distances separating the samples , and media separating these samples or in which they are p laced.
2) Procédé selon la revendication 1 caractérisé en ce que l'on utilise des échantillons contenant au moins un nucléide isomère ayant un état métastable d'une durée de demi- vie de moins d'une seconde à plusieurs années, par exemple: Niobium (93Nb41m), Cadmium (111Cd48m), Cadmium (113Cd48m), Césium (135Ce55m), Indium (115ln49m), Etain (117Sn50m), Etain (119Sn50m), Tellure (125Te52m), Xénon (129Xe54m), Xénon (131Xe54m), Hafnium (178Hf72m), Hafnium (179Hf72m), Iridium (193lr77m), Platine (195Pt78m).2) Method according to claim 1 characterized in that samples are used containing at least one isomer nuclide having a metastable state with a half-life of less than a second to several years, for example: Niobium ( 93Nb41m), Cadmium (111Cd48m), Cadmium (113Cd48m), Cesium (135Ce55m), Indium (115ln49m), Tin (117Sn50m), Tin (119Sn50m), Tellurium (125Te52m), Xenon (129Xe54m), Xenon (Hexafn) 178Hf72m), Hafnium (179Hf72m), Iridium (193lr77m), Platinum (195Pt78m).
3) Procédé selon l'une des revendications 1 ou 2 caractérisé en ce que l'on utilise des échantillons contenant plusieurs nucléides isomères excités dont la réponse gamma de chacun d'eux est mesurée simultanément.3) Method according to one of claims 1 or 2 characterized in that samples are used containing several excited isomeric nuclides whose gamma response of each of them is measured simultaneously.
4) Procédé selon l'une des revendications 1, 2 ou 3 caractérisé en ce que l'on utilise des échantillons contenant au moins un nucléide isomère excité dont la réponse gamma est composée d'une pluralité de raies mesurées simultanément.4) Method according to one of claims 1, 2 or 3 characterized in that samples are used containing at least one excited isomer nuclide whose gamma response is composed of a plurality of lines measured simultaneously.
5) Procédé selon l'une des revendications 1 , 2, 3 ou 4 caractérisé en ce que l'on utilise des échantillons sous différentes formes physiques ou sous différentes formes chimiques. 6) Procédé selon l'une des revendications 1, 2, 3, 4 ou 5 caractérisé en ce que l'on utilise un groupe d'échantillons dont l'un au moins a subi une transformation physique ou chimique après irradiation.5) Method according to one of claims 1, 2, 3 or 4 characterized in that samples are used in different physical forms or in different chemical forms. 6) Method according to one of claims 1, 2, 3, 4 or 5 characterized in that a group of samples is used, at least one of which has undergone physical or chemical transformation after irradiation.
7) Procédé selon l'une des revendications 1 , 2, 3, 4, 5 ou 6 caractérisé en ce que l'on utilise une stimulation modulée en amplitude d'au moins un échantillon maître.7) Method according to one of claims 1, 2, 3, 4, 5 or 6 characterized in that one uses an amplitude modulated stimulation of at least one master sample.
8) Procédé selon l'une des revendications 1 , 2, 3, 4, 5, 6 ou 7 caractérisé en ce que l'on utilise une stimulation modulée dans le temps d'au moins un échantillon maître.8) Method according to one of claims 1, 2, 3, 4, 5, 6 or 7 characterized in that one uses stimulation modulated over time of at least one master sample.
9) Dispositif de mise en œuvre du procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'il comprend : - Un appareillage d'excitation irradiant deux ou plusieurs échantillons contenant au moins un nucléide isomère ayant un état métastable au moyen soit d'une source de rayons gamma émis en cascade, soit d'un générateur de rayons gamma provenant du Bremstrahlung de particules accélérées, avec une énergie suffisante pour exciter ledit nucléide isomère à son état métastable, - un ou des appareillages de stimulation modulée désexcitant par irradiation X ou gamma l'un ou plusieurs des échantillons irradiés précédemment, le ou les maîtres, - un ou des appareillages de détection mesurant les rayons gamma émis par un ou plusieurs des autres échantillons irradiés précédemment, le ou les esclaves. 10) Dispositif selon la revendication 9 caractérisé en ce que les échantillons de chaque groupe sont disposés sur un seul support dans l'appareillage d'excitation, étant par la suite séparés et positionnés en relation entre eux dans le ou les appareillages de stimulation modulée et dans le ou les appareillages de détection.9) Device for implementing the method according to any one of claims 1 to 8 characterized in that it comprises: - An excitation apparatus irradiating two or more samples containing at least one isomer nuclide having a metastable state by means either from a source of gamma rays emitted in cascade, or from a generator of gamma rays coming from the Bremstrahlung of accelerated particles, with sufficient energy to excite said isomeric nuclide in its metastable state, - one or more de-exciting modulating stimulation devices by X or gamma irradiation one or more of the samples previously irradiated, the master (s), - one or more detection devices measuring the gamma rays emitted by one or more of the other samples previously irradiated, the slave (s). 10) Device according to claim 9 characterized in that the samples of each group are arranged on a single support in the excitation apparatus, being subsequently separated and positioned in relation to one another in the modulation stimulation apparatus or apparatus and in the detection device (s).
11 ) Dispositif selon la revendication 9 caractérisé en ce que les échantillons de chaque groupe sont disposés sur une pluralité de supports dans l'appareillage d'excitation, les supports étant par la suite séparés et positionnés en relation synchrone entre eux dans le ou les appareillages de stimulation modulée et dans le ou les appareillages de détection.11) Device according to claim 9 characterized in that the samples of each group are arranged on a plurality of supports in the excitation apparatus, the supports being subsequently separated and positioned in synchronous relationship with each other in the apparatus or apparatus of modulated stimulation and in the detection device (s).
12) Dispositif selon l'une des revendications 9, 10 ou 11 caractérisé en ce que les grou- pes d'échantillons sont agencés selon un ordonnancement défini permettant la transmission de messages complexes. 13) Utilisation du procédé selon l'une quelconque des revendications 1 à 8 pour transmettre à distance des informations, notamment des signaux de secours. 12) Device according to one of claims 9, 10 or 11 characterized in that the sample groups are arranged according to a defined scheduling allowing the transmission of complex messages. 13) Use of the method according to any one of claims 1 to 8 for remotely transmitting information, in particular emergency signals.
EP05733600A 2004-04-13 2005-03-28 Remote communication method and device using nuclear isomers Not-in-force EP1743344B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403904A FR2868868A1 (en) 2004-04-13 2004-04-13 METHOD AND APPARATUS FOR REMOTE COMMUNICATION USING ISOMERIC NUCLEIDS
PCT/EP2005/051405 WO2005112041A2 (en) 2004-04-13 2005-03-28 Remote communication method and device using nuclear isomers

Publications (2)

Publication Number Publication Date
EP1743344A2 true EP1743344A2 (en) 2007-01-17
EP1743344B1 EP1743344B1 (en) 2009-12-23

Family

ID=34947607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05733600A Not-in-force EP1743344B1 (en) 2004-04-13 2005-03-28 Remote communication method and device using nuclear isomers

Country Status (6)

Country Link
US (1) US20080317207A1 (en)
EP (1) EP1743344B1 (en)
AT (1) ATE453197T1 (en)
DE (1) DE602005018472D1 (en)
FR (1) FR2868868A1 (en)
WO (1) WO2005112041A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1779561T3 (en) * 2004-05-26 2012-12-31 Saquant Method and device for remotely communicating by using photoluminescence or thermoluminescence
FR2913834B1 (en) * 2007-03-12 2014-04-04 Quantic Comm E PRODUCT, METHOD AND APPARATUS FOR REMOTE COMMUNICATION USING CHROMOGENIC MATERIALS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1457434A (en) * 1965-07-30 1966-01-24 Commissariat Energie Atomique Irradiation device
SU1137901A1 (en) * 1983-06-07 1985-08-15 Предприятие П/Я В-8851 Method of determining energy and intensity of beam of particles at activation measurements
DE4315002C1 (en) * 1993-05-06 1994-08-18 Kernforschungsz Karlsruhe Vascular implant
US5855546A (en) * 1996-02-29 1999-01-05 Sci-Med Life Systems Perfusion balloon and radioactive wire delivery system
US5782742A (en) * 1997-01-31 1998-07-21 Cardiovascular Dynamics, Inc. Radiation delivery balloon
US5802439A (en) * 1997-02-19 1998-09-01 Lockheed Martin Idaho Technologies Company Method for the production of 99m Tc compositions from 99 Mo-containing materials
US6019718A (en) * 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6553355B1 (en) * 1998-05-29 2003-04-22 Indranet Technologies Limited Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services
FR2868869B1 (en) * 2004-04-13 2013-08-30 Robert Desbrandes METHOD AND APPARATUS FOR MODIFYING THE PROBABILITY OF ISOMERIC NUCLEID DESEXCITATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005112041A2 *

Also Published As

Publication number Publication date
EP1743344B1 (en) 2009-12-23
WO2005112041A2 (en) 2005-11-24
ATE453197T1 (en) 2010-01-15
US20080317207A1 (en) 2008-12-25
WO2005112041B1 (en) 2006-06-01
DE602005018472D1 (en) 2010-02-04
WO2005112041A3 (en) 2006-01-05
FR2868868A1 (en) 2005-10-14

Similar Documents

Publication Publication Date Title
Ahmed Physics and engineering of radiation detection
Wei et al. The deep and transient universe in the SVOM era: new challenges and opportunities-scientific prospects of the SVOM mission
Bernardini et al. Daily multiwavelength Swift monitoring of the neutron star low-mass X-ray binary Cen X-4: evidence for accretion and reprocessing during quiescence
Kushwaha et al. The ever-surprising blazar OJ 287: multiwavelength study and appearance of a new component in X-rays
Güver et al. A magnetar strength surface magnetic field for the slowly spinning down SGR 0418+ 5729
Oruru et al. X-ray characteristics and the spectral energy distribution of AE Aquarii
Paudel et al. K 2 Ultracool Dwarfs Survey–V. High superflare rates on rapidly rotating late-M dwarfs
Gridin et al. Kinetic model of energy relaxation in CsI: A (A= Tl and In) scintillators
Hermes et al. Insights into internal effects of common-envelope evolution using the extended Kepler mission
Shah et al. Study on temporal and spectral behaviour of 3C 279 during 2018 January flare
Singh et al. Long-term multiwavelength view of the blazar 1ES 1218+ 304
EP1779561B1 (en) Method and device for remotely communicating by using photoluminescence or thermoluminescence
EP1743344B1 (en) Remote communication method and device using nuclear isomers
Kaur et al. A Multiwavelength Study of Flaring Activity in the High-energy Peaked BL Lac Object 1ES 1959+ 650 During 2015–2016
Mandal et al. The study of thermonuclear X-ray bursts in accreting millisecond pulsar MAXI J1816− 195 with NuSTAR and NICER
Bernardini et al. The true nature of Swift J0746. 3-1608: a possible Intermediate Polar showing accretion state changes
CA2662750A1 (en) Method and apparatus for remote communication using the interpretation of thermoluminescence or photoluminescence signals
Tavani Space-based gamma-ray astrophysics
Prince Multi-wavelength Data Analysis and Theoretical Modeling of Blazar Flares
Hawley-Herrera et al. SBC-SNOLAB scintillation system and SiPM implementation for dark matter searches
Ryde On the origin of gamma-ray bursts
Guo et al. Effects of Annihilation with Low-Energy Neutrinos on High-Energy Neutrinos from Binary Neutron Star Mergers and Rare Core-Collapse Supernovae
Wyrwoll Unique particle beams and energies at CERN applied to radiation testing of electronics
Dixson The theoretical. gamma.-ray spectrum of quasars.[3C 273]
Ryan et al. COMPTEL solar flare measurements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005018472

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140310

Year of fee payment: 10

Ref country code: IE

Payment date: 20140307

Year of fee payment: 10

Ref country code: LU

Payment date: 20140311

Year of fee payment: 10

Ref country code: NL

Payment date: 20140310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140709

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005018472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170124

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200329

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328