EP1742567A1 - Skin potential measurement method and system - Google Patents
Skin potential measurement method and systemInfo
- Publication number
- EP1742567A1 EP1742567A1 EP05763726A EP05763726A EP1742567A1 EP 1742567 A1 EP1742567 A1 EP 1742567A1 EP 05763726 A EP05763726 A EP 05763726A EP 05763726 A EP05763726 A EP 05763726A EP 1742567 A1 EP1742567 A1 EP 1742567A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- code
- electronic module
- processing unit
- analog signal
- transceiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000691 measurement method Methods 0.000 title 1
- 238000012545 processing Methods 0.000 claims abstract description 42
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 238000004891 communication Methods 0.000 claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 16
- 238000007493 shaping process Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000005672 electromagnetic field Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002565 electrocardiography Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 244000245420 ail Species 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000537 electroencephalography Methods 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/18—Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/26—Network addressing or numbering for mobility support
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
Definitions
- the present invention relates to a system and method for measuring skin potential using a plurality of electrodes and a treatment unit.
- the measurement of skin potential is used to quantify neuromuscular depolarization in many physiological explorations: electrocardiography (ECG), electroencephalography (EGG), fixed or ambulatory electro-splanchnography (Hoiter ECG, EGG), etc. It is also used during surveillance of patients under monitoring. Skin potential is usually measured using multiple electrodes connected to recorders by cable systems. However, the use of cables is a significant constraint during ambulatory and / or prolonged examinations.
- Document US Pat. No. 4,441,747 is known, in which a protocol for wireless communication between electrodes and a base unit connected to a conventional EKG monitor is described.
- the present invention aims to simplify the conduct of electrophysiological examinations in general. Another object of the invention is to reduce the cost of the equipment used for recording. At least one of the abovementioned aims is achieved with a skin potential measurement system comprising a plurality of measurement electrodes and a data processing unit.
- each measurement electrode is associated with an electronic module comprising: - means for generating a potential difference between the potential measured by said measurement electrode and a reference electrode within said electronic module, - means for modulation to modulate at high frequency, 433 MHZ for example, said potential difference in an analog signal, - a first transceiver to wirelessly transmit this analog signal thus modulated to the data processing unit.
- the data processing unit comprises a second transceiver for digitally transmitting an identification code of each electronic module and receiving said analog signal; demodulation means for demodulating this analog signal; and shaping means for calibrating an analog-digital converter, the latter being able to convert said analog signal before processing.
- each electronic module includes a memory space containing a unique code. One can therefore identify an electrode among a group of electrodes.
- each electronic module comprises means for comparing said unique code with a code transmitted by the processing unit, and means for activating the transmission of the skin potential measured by the associated electrode when the code transmitted corresponds to said code unique.
- the processing unit interrogates each electrode in turn.
- This processing unit can be composed of a base carrying out communication operations with the electrodes and a microcomputer or a PDA electronic agenda for data processing, but it is also possible to have a dedicated microcomputer incorporating all the basic functions.
- the base can include a microcontroller to manage the communication with the electrodes and to communicate with the remote microcomputer or PDA.
- Communication between the processing unit and the remote element can be done wirelessly via the WIFI, Bluetooth or other protocol, or wired via the RS232, USB, TCP / IP or other protocol.
- the document of prior art US 4,441,747 proposes a proprietary communication protocol, which is incompatible with the use of robust and conventional protocols as mentioned above.
- the interrogation in turn is obtained by the fact that the processing unit comprises means for generating and transmitting cyclically a code associated with each electronic module.
- each electronic module comprises a time delay means for keeping the first transceiver in transmission mode for a predetermined duration when the transmission of the skin potential must be activated.
- the processing unit comprises timing means for keeping the second transceiver in transmit mode for a predetermined period of time when sending a code, and for keeping the second transceiver in receive mode during a predetermined time for receiving an analog signal from an electronic module.
- each electronic module comprises a supply coil for said electronic module, said coil being charged by electromagnetic field.
- the method comprises: - a calibration phase during which the processing unit interrogates each electronic module, each electronic module transmits an analog signal representative of a cutaneous potential measurement, the minimum is saved and the maximum of the analog signals received, then these minimum and maximum values are used to calibrate the analog-digital converter present in the processing unit, and - a measurement phase during which each analog signal representative of a potential measurement skin is digitized by said analog-digital converter.
- Each electronic module comprising a memory space containing a unique code, this unique code is compared to a code transmitted by the processing unit, and the transmission of the skin potential measured by the associated electrode is activated when the transmitted code corresponds to said unique code .
- a time delay is introduced to maintain the first transceiver in transmission mode for a predetermined period when the transmission of skin potential must be activated.
- a code associated with each electronic module is generated and transmitted cyclically.
- a time delay is introduced to keep the second transceiver in transmission mode for a predetermined period of time when sending a code, then a time delay is introduced to keep the second transceiver in mode reception for a predetermined period for the reception of an analog signal from an electronic module.
- FIG. 1 is a general view of an application of the system according to the invention
- - Figure 2 is a simplified diagram illustrating the main internal elements of a base according to the invention
- - Figure 3 is an electronic diagram illustrating the internal constitution of a code generation block according to the invention
- - Figure 4 is a simplified diagram illustrating some steps performed within an electronic module associated with an electrode according to the invention
- - Figure 5 is a more detailed electronic diagram illustrating the internal constitution of an electrode according to the invention
- - Figure 6 is another example illustrating the main components of a processing unit according to the invention
- - Figure 7 is another example illustrating the main components of an electronic module according to the invention
- FIG. 1 is a general view of an application of the system according to the invention
- - Figure 2 is a simplified diagram illustrating the main internal elements of a base according to the invention
- - Figure 3 is an electronic diagram illustrating the internal constitution of a code generation block according to the invention
- - Figure 4 is a simplified diagram illustrating some steps performed within an
- Electrode 8 is a block diagram illustrating an initialization mode according to the invention
- - Figure 9 is a block diagram illustrating a formatting mode according to the invention
- - Figure 10 is a block diagram illustrating an acquisition mode according to the invention
- a patient 1 on which are arranged several electrodes 3 according to the invention.
- electrode here is meant a measurement electrode (or skin sensor) associated with an electronic module according to the invention.
- Each electrode comprises means for transmitting, by radio wave, a measurement of the skin potential of patient 1 to a base 4.
- the latter may include means for storing the measurements received, but preferably, it transmits, by wire link 5 or link wirelessly, these measurements towards a microcomputer 2 acting as a recorder.
- each electrode comprises means for carrying out the following operations after reception of the initialization signal: - measurement of a potential difference representative of the skin potential, - modulation of the analog signal, and - transmission of this analog signal to the base 4.
- the electrode according to the present invention may consist of a conventional electrode to which a removable adapter (multiple-use system) is connected, having components necessary to assign the set of functions according to the present invention.
- the electrode according to the invention is preferably made in one piece.
- FIG. 2 we see a little more detail the main constituent elements of the base 4.
- the initialization signal from the base 4 to the electrodes 3 is a cyclic signal, each cycle of which comprises the transmission of a six-bit code and a time delay for receiving a measurement if necessary.
- Each electrode has a specific code.
- the base 4 successively and cyclically sends all the codes of the electrodes. More specifically, the base 4 comprises a transceiver 6 provided with an antenna 10 capable of transmitting a radio wave to the electrodes.
- the codes are developed within a code generation block 7. Once a code has been sent, the code generation block 7 places the transceiver 6 in the reception position and activates a time delay during which a measurement signal skin potential is expected. At the end of the reception time, the code generation block 7 repositions the transceiver in transmission and generates the code for the next electrode.
- the transceiver used can be a TR3100 transceiver ideal for short distance communication applications where robust use, small size, low consumption and low cost are required.
- the main constituent elements of the code generation block 7 are distinguished.
- the heart of this block is a programmable logic component 11, called PAL for "Programmable Array Logic" in English, associated with a four-bit counter 8 for generate a four-bit code for each of the electrodes, and a timer 9.
- the four-bit counter 8 is a component 74ALS163 making it possible to supply a four-bit code to the PAL 11 which is programmed to carry out the loading of this code into registers, the parallel-serial conversion of the code before sending, and management of the timer 9, of the transmitter / receiver 6 and of the incrementation of the counter 8.
- the timing is carried out by two monostables 9a and 9b which take into account the reception time of the measurement of the skin potential and the reception / emission changeover time of the transmitter / receiver 6.
- Each monostable 9a and 9b is produced by a component NE555 to which we pass in input the variable for launching the active delay on falling edge. At output, we recover the timing variable proper, which is active in the high state.
- the code generation block 7 is clocked by a clock 12 consisting of a quartz oscillator of frequency 1 MHz wired to a D-edge flip-flop MC14013 in order to obtain a clock signal at 500 kHz.
- the PAL 11 operates on the following principle: the clock 12 and the outputs of the counter 8 are addressed as inputs and the program performs the following logic functions: - parallel-serial loading with formatting of the code ( start bit and end bit); - issue of the code; - launch of the timer in the direction of the two monostables 9a and 9b, then activation of the transceiver 6 as a receiver; activation of the increment of counter 8; and - at the end of the first time delay, the transceiver 6 is activated as a transmitter; then at the end of the second time delay, a new cycle begins.
- An example of programming for PAL 11 is given in Annex 1. In Figure 4 we see the building blocks of an electrode 3.
- transceiver 13 associated with an antenna 14, these elements being identical to those used in the base 4.
- the transmitter -receiver 13 is in reception.
- the latter is transmitted to a code processing block 15 whose role is to perform a series-parallel conversion of the code received, a comparison of this code with the internal code of the electrode in question, then an activation (when the two codes are identical) of a block 16 for generating the skin potential measurement signal.
- an activation when the two codes are identical
- a time delay is triggered to place the transceiver in transmission mode for a predetermined period.
- Block 16 takes an analog signal from a skin sensor 19 and corresponds to the skin potential measurement.
- the code processing block 34 can comprise a PAL 17 clocked by a clock 22 similar to that used for base 4. The time delay is obtained by a monostable 18, a component NE555, for transmission.
- the PAL 17 receives, from the transceiver 13, the serial signal, that is to say the code transmitted by the base 4.
- the clock signal 22, the output of the monostable 18 and the received serial signal are addressed at the input of PAL 17 which performs the following logic functions: - serial-parallel loading in registers; - comparison between the loaded code and the internal code; during this time, the transceiver 13 is activated as a transmitter; - if the code does not match, the transceiver is repositioned as a receiver; - if the code corresponds, the monostable 18 is activated; - When the timeout is over, the transceiver 13 goes into reception mode; - when the monostable 18 is activated, the block 16 for generating the measurement signal is used to make the emission of the measurement possible.
- FIG. 6 An example of PAL 17 Dro ⁇ rammation is dnnn pn ann x 1
- Figure 6 is another embodiment of the processing unit.
- the base 23 can communicate with a PC, a PDA or a removable storage device.
- the base 23 comprises a transmitter / receiver 13 capable of receiving the analog signal coming from an electrode according to the invention.
- This analog signal is then demodulated by the demodulator 24.
- This signal is then shaped by a module 25.
- the measurement signal in order for the measurement signal to be able to be digitized subsequently, we need to format it, it i.e. the signal must be between 0 and 3V.
- An OFFSET of 1.5V is added to the signal to raise it, by means of an operational amplifier AOP (not shown).
- the AOP must not add OFFSET or noise to the signal, we then choose the AOP OP193.
- the measurement signal is digitized by an analog-digital converter CAN 26, ten bits serial, TLV 1549, making it possible to transmit the sampled signal.
- This CAN 26 is optimized during a calibration step so as to obtain an optimal digital resolution.
- a microcontroller 27 manages the set of components of the base. It allows among other things to carry out an initialization process 28 of the electrodes and a code generation process 29 (identical to that explained above).
- the function of the transmitter / receiver 30 is to receive an identification code transmitted by the digital base, and to transmit an analog signal representative of the skin potential measured on a patient. Seen from the inside, the transmitter / receiver 30 receives, as seen previously, an analog signal modulated by the modulator 31. This modulator receiving a signal representing a potential difference between a measurement electrode proper 32 and a reference 33.
- the microcontroller 34 has the function of managing all the components of the electronic module, of receiving and storing the identification code.
- an initialization mode is described with the following elements: • Switch: Allows the system to be started up, it is set up using a push button and positioned on a pin of one of the I / O ports of the microcontroller. In addition, a coil placed on the base allows each electrode to be started when the latter is approached from the coil. • Configuration of the base: A program (graphical interface) allows the configuration of the microcontroller, it is executed within a computer or a PDA and allows parameters to be sent to the base via one of these communication modules ( PC, PDA, ). • Configuration of the microcontroller: selection of the number of electrodes to be controlled, the frequency of communication, ...
- Identification code Codes generated by the microcontroller to the digital transmitter, each code corresponds to 1 electrode and so to be able to select the desired electrode for the following modes.
- Activation of the electrodes On receipt of their identification code, the electrodes are activated one after the other and go into reception mode (waiting for formatting mode). The formatting mode is briefly described in Figure 9: • Selection of the desired electrode: sending of the code corresponding to the desired electrode by the microcontroller via the digital transmitter, the latter is selected, goes into transmission mode and prepares to transmit the analog signal to the receiver for the desired duration. • Data transmission: the electrode sends the analog signal (potential difference with the reference electrode) via the base analog receiver to a "peak detector" block (demodulation).
- Signal processing the expected signal is sinusoidal, of low frequency and amplitude: to be able to process CP ⁇ i ⁇ nal at Using a microcontroller, it is necessary to digitize the signal (CAN of the microcontroller), it is therefore necessary that the signal is normalized (0-5V), so as to optimize the digitization. For this, an electronic stage is added allowing this function to be carried out.
- ⁇ System calibration allows the CAN of the microcontroller to be configured so as to correctly digitize the signal delivered by the electrodes (number of conversion points, etc.). The signal from each electrode is received so as to calibrate the base for data storage (acquisition mode).
- the acquisition mode is described in Figure 10: • This operating mode is similar to the formatting mode, a data processing and storage block is added. • Storage can be carried out in a PC, a PDA or, using the various communication modules.
- RFM digital transmitter / receiver
- VFC analog signal before transmission
- FVC demodulate after reception
- ANNEX 1 library ieee; read ieee.stdAogic_H64.all; use work.std_arith.all;
- ENTITY ambulatory IS PORT code: in std_logic_vector (5 dowttto 0); c ⁇ k, tempo, recept: in std_hgic; s, lancjempo, cntrO: outstd_logic); Ambulatory END;
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
A skin potential measurement system including a plurality of measurement electrodes (3) and a data processing unit (4, 2). The electrodes and the processing unit are in wireless communication. Each electrode receives a digital identification code and transmits an analog signal indicative of a patient's measured skin potential. The processing unit shapes the analog signal prior to digitization then processing thereof.
Description
Système et procédé de mesure de potentiel cutané." System and method for measuring skin potential. "
La présente invention se rapporte à un système et un procédé de mesure de potentiel cutané au moyen d'une pluralité d'électrodes et d'une unité de traitement. D'une façon générale, la mesure du potentiel cutané est utilisée pour quantifier la dépolarisation neuromusculaire dans de nombreuses explorations physiologiques : électrocardiographie (ECG), électroencéphalographie (EGG), électro-splanchnographie fixe ou ambulatoire (Hoiter ECG, EGG), etc. Elle est aussi utilisée lors de surveillance des malades sous monitoring. Le potentiel cutané est habituellement mesuré au moyen de plusieurs électrodes reliées à des enregistreurs par des systèmes à câbles. Or, l'utilisation de câbles est une contrainte non négligeable lors d'examens ambulatoires et/ou prolongés. On connaît le document US 4 441 747 dans lequel on décrit un protocole de communication sans fil entre des électrodes et une unité de base reliée à un moniteur conventionnel d'électrocardiogramme. Cette solution présente un inconvénient notamment du fait qu'elle nécessite des moyens d'adaptation entre à des moniteurs conventionnels d'électrocardiogramme. La présente invention a pour but de simplifier le déroulement des examens électrophysiologiques d'une façon générale. Un autre but de l'invention est de diminuer le coût des appareillages utilisés pour l'enregistrement. On atteint au moins l'un des buts précités avec un système de mesure de potentiel cutané comprenant une pluralité d'électrodes de mesure et une unité de traitement de données. Selon l'invention, chaque électrode de mesure est associée à un module électronique comprenant : - des moyens pour générer une différence de potentiel entre le potentiel mesuré par ladite électrode de mesure et une électrode de référence au sein dudit module électronique, - des moyens de modulation pour moduler à haute fréquence, 433 MHZ par exemple, ladite différence de potentiel en un signal analogique,
- un premier émetteur-récepteur pour transmettre sans fil ce signal analogique ainsi modulé vers l'unité de traitement de données. - En outre, l'unité de traitement de données comprend un second émetteur-récepteur pour émettre de façon numérique un code d'identification de chaque module électronique et recevoir ledit signal analogique; des moyens de démodulation pour démoduler ce signal analogique; et des moyens de mise en forme pour étalonner un convertisseur analogique- numérique, ce dernier étant apte à convertir ledit signal analogique avant traitement. Avec le système selon l'invention, la communication des électrodes vers l'unité de traitement (enregistreur) se fait sans fil en analogique, ce qui simplifie considérablement la mise en œuvre par rapport au système décrit dans le document US 4 441 747 où les électrodes sont complexes et coûteuses puisqu'elles intègrent un convertisseur analogique numérique. De plus, la conversion analogique numérique dans l'unité de traitement selon la présente invention obtient une meilleure résolution numérique, car le convertisseur est étalonné par une valeur minimum et une valeur maximum. En effet, comme l'amplitude du signal est variable selon les individus, il est plus que judicieux de réaliser une phase d'étalonnage.. Avantageusement, chaque module électronique comporte un espace mémoire renfermant un code unique. On peut donc identifier une électrode parmi un groupe d'électrodes. Selon l'invention, chaque module électronique comprend des moyens pour comparer ledit code unique à un code transmis par l'unité de traitement, et des moyens pour activer la transmission du potentiel cutané mesuré par l'électrode associé lorsque le code transmis correspond audit code unique. En fait, l'unité de traitement interroge tour à tour chaque électrode. Cette unité de traitement peut être composée d'une base réalisant les opérations de communication avec les électrodes et d'un micro-ordinateur ou d'un agenda électronique PDA pour le traitement des données, mais on peut aussi avoir un micro-ordinateur dédié incorporant l'ensemble des fonctions de la base. La base peut comprendre un microcontrôleur pour gérer la communication avec les électrodes et pour communiquer avec le microordinateur ou PDA distant.
La communication entre l'unité de traitement et l'élément distant peut s'effectuer de façon sans fil via le protocole WIFI, Bluetooth ou autre, ou de façon filaire via le protocole RS232, USB, TCP/IP ou autre. Le document de l'art antérieur US 4 441 747 propose un protocole de communication propriétaire, ce qui est incompatible avec l'utilisation de protocoles robustes et conventionnels tels que cités ci-dessus. L'interrogation tour à tour est obtenue par le fait que l'unité de traitement comprend des moyens pour générer et transmettre de façon cyclique un code associé à chaque module électronique. Avantageusement, chaque module électronique comprend un moyen de temporisation pour maintenir le premier émetteur-récepteur en mode émission pendant une durée prédéterminée lorsque la transmission du potentiel cutané doit être activée. De même, l'unité de traitement comprend des moyens de temporisation pour maintenir le second émetteur-récepteur en mode émission pendant une durée prédéterminée lors de l'envoi d'un code, et pour maintenir le second émetteur-récepteur en mode réception pendant une durée prédéterminée pour la réception d'un signal analogique provenant d'un module électronique. Selon une caractéristique avantageuse de l'invention, chaque module électronique comprend une bobine d'alimentation dudit module électronique, ladite bobine étant chargée par champ électromagnétique. Suivant un autre aspect de l'invention, il est proposé un procédé de mesure de potentiel cutané mis en œuvre dans un système tel que décrit ci- dessus. Selon l'invention, le procédé comprend : - une phase d'étalonnage au cours de laquelle l'unité de traitement interroge chaque module électronique, chaque module électronique transmet un signal analogique représentatif d'une mesure de potentiel cutané, on sauvegarde le minimum et le maximum des signaux analogiques reçus, puis on utilise ces valeurs minium et maximum pour étalonner le convertisseur analogique-numérique présent dans l'unité de traitement, et - une phase de mesure au cours de laquelle chaque signal analogique représentatif d'une mesure de potentiel cutané est numérisé par ledit convertisseur analogique-numérique .
Chaque module électronique comportant un espace mémoire renfermant un code unique, on compare ce code unique à un code transmis par l'unité de traitement, et on active la transmission du potentiel cutané mesuré par l'électrode associé lorsque le code transmis correspond audit code unique. On introduit une temporisation pour maintenir le premier émetteur- récepteur en mode émission pendant une durée prédéterminée lorsque la transmission du potentiel cutané doit être activée. Au sein de l'unité de traitement, on génère et transmet de façon cyclique un code associé à chaque module électronique. Avantageusement, pour chaque envoi de code, on introduit une temporisation pour maintenir le second émetteur-récepteur en mode émission pendant une durée prédéterminée lors de l'envoi d'un code, puis on introduit une temporisation pour maintenir le second émetteur- récepteur en mode réception pendant une durée prédéterminée pour la réception d'un signal analogique provenant d'un module électronique. D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés, sur lesquels : - La figure 1 est une vue générale d'une application du système selon l'invention; - La figure 2 est un schéma simplifié illustrant les principaux éléments internes d'une base selon l'invention; - La figure 3 est un schéma électronique illustrant la constitution interne d'un bloc de génération de code selon l'invention; - La figure 4 est un schéma simplifié illustrant quelques étapes réalisées au sein d'un module électronique associé à une électrode selon l'invention; - La figure 5 est un schéma électronique plus détaillé illustrant la constitution interne d'une électrode selon l'invention; - La figure 6 est un autre exemple illustrant les principaux composants d'une unité de traitement selon l'invention; - La figure 7 est un autre exemple illustrant les principaux composants d'un module électronique selon l'invention;
La figure 8 est un diagramme blocs illustrant un mode d'initialisation selon l'invention; - La figure 9 est un diagramme blocs illustrant un mode formatage selon l'invention; et - La figure 10 est un diagramme blocs illustrant un mode d'acquisition selon l'invention; Sur la figure 1 on voit un patient 1 sur lequel sont disposées plusieurs électrodes 3 selon l'invention. Par électrode, on entend ici une électrode de mesure (ou capteur cutané) associé à un module électronique selon l'invention. Chaque électrode comprend des moyens pour transmettre, par onde radio, une mesure du potentiel cutané du patient 1 vers une base 4. Cette dernière peut comporter des moyens de stockage des mesures reçues, mais de préférence, elle transmet, par liaison filaire 5 ou liaison sans fil, ces mesures vers un micro-ordinateur 2 faisant office d'enregistreur. On peut envisager d'avoir la base 4 intégrée dans le micro-ordinateur 2, l'ensemble constituant une unité de traitement. Comme on le verra plus en détail ci-dessous, la base 4 est apte à : - adresser de façon itérative à chaque électrode un signal d'initialisation, - recevoir un signal analogique, correspondant à une mesure de potentiel cutané, provenant d'une électrode, et - transmettre les mesures reçues vers le micro-ordinateur. De la même manière chaque électrode comprend des moyens pour effectuer les opérations suivantes après réception du signal d'initialisation : - mesure d'une différence de potentiel représentative du potentiel cutané, - modulation du signal analogique, et - transmission de ce signal analogique vers la base 4. Avantageusement, l'électrode selon la présente invention peut être constituée d'une électrode usuelle à laquelle on connecte un adaptateur amovible (système à usage multiple) doté de composants nécessaires pour attribuer à l'ensemble les fonctionnalités selon la présente invention. Mais, l'électrode selon l'invention est de préférence constituée en une seule pièce. Sur la figure 2, on voit un peu plus en détail les principaux éléments constitutifs de la base 4.
Le signal d'initialisation de la base 4 vers les électrodes 3 est un signal cyclique dont chaque cycle comprend l'émission d'un code de six bits et une temporisation pour la réception d'une mesure le cas échéant. Chaque électrode comporte un code spécifique. La base 4 envoie successivement et de façon cyclique l'ensemble des codes des électrodes. Plus précisément, la base 4 comporte un émetteur-récepteur 6 doté d'une antenne 10 apte à transmettre une onde radio vers les électrodes. Les codes sont élaborés au sein d'un bloc de génération de code 7. Une fois un code envoyé, le bloc de génération de code 7 place l'émetteur-récepteur 6 en position de réception et active une temporisation durant laquelle un signal de mesure de potentiel cutané est attendu. A la fin du temps de réception, le bloc de génération de code 7 repositionne l'émetteur-récepteur en émission et génère le code pour l'électrode suivante. Pratiquement, l'émetteur-récepteur utilisé peut être un émetteur/récepteur TR3100 idéal pour des applications de communication à faible distance où une utilisation robuste, une petite taille, une consommation faible et un faible coût sont requis. Ses principales caractéristiques sont : Alimentation comprise entre 2,2 et 3,7V ; Autres broches alimentées entre - 0,3 et 4,0V ; Consommation 7 mA dont 0,7uA en mode «SLEEP» ; Modulation ASK (Amplitude Shift Keying) et OOK, on utilise la modulation ASK ; Débit maximum : 576 kbps (on utilise 500 kbps) ; Dimensions : 10mm x 7mm x 2mm ; Temps de passage émission réception : 107,5 μs (max). Temps de passage réception émission : 12 μs (max). La table permettant de définir les modes du circuit intégré en fonction des broches CTRL0 et CNTRL1 est la suivante :The present invention relates to a system and method for measuring skin potential using a plurality of electrodes and a treatment unit. In general, the measurement of skin potential is used to quantify neuromuscular depolarization in many physiological explorations: electrocardiography (ECG), electroencephalography (EGG), fixed or ambulatory electro-splanchnography (Hoiter ECG, EGG), etc. It is also used during surveillance of patients under monitoring. Skin potential is usually measured using multiple electrodes connected to recorders by cable systems. However, the use of cables is a significant constraint during ambulatory and / or prolonged examinations. Document US Pat. No. 4,441,747 is known, in which a protocol for wireless communication between electrodes and a base unit connected to a conventional EKG monitor is described. This solution has a drawback in particular because it requires means of adaptation between conventional EKG monitors. The present invention aims to simplify the conduct of electrophysiological examinations in general. Another object of the invention is to reduce the cost of the equipment used for recording. At least one of the abovementioned aims is achieved with a skin potential measurement system comprising a plurality of measurement electrodes and a data processing unit. According to the invention, each measurement electrode is associated with an electronic module comprising: - means for generating a potential difference between the potential measured by said measurement electrode and a reference electrode within said electronic module, - means for modulation to modulate at high frequency, 433 MHZ for example, said potential difference in an analog signal, - a first transceiver to wirelessly transmit this analog signal thus modulated to the data processing unit. - In addition, the data processing unit comprises a second transceiver for digitally transmitting an identification code of each electronic module and receiving said analog signal; demodulation means for demodulating this analog signal; and shaping means for calibrating an analog-digital converter, the latter being able to convert said analog signal before processing. With the system according to the invention, the communication from the electrodes to the processing unit (recorder) is done wirelessly in analog, which considerably simplifies the implementation compared to the system described in document US 4,441,747 where the electrodes are complex and expensive since they incorporate an analog-to-digital converter. In addition, the analog to digital conversion in the processing unit according to the present invention obtains better digital resolution, since the converter is calibrated by a minimum value and a maximum value. Indeed, as the amplitude of the signal is variable depending on the individual, it is more than advisable to carry out a calibration phase. Advantageously, each electronic module includes a memory space containing a unique code. One can therefore identify an electrode among a group of electrodes. According to the invention, each electronic module comprises means for comparing said unique code with a code transmitted by the processing unit, and means for activating the transmission of the skin potential measured by the associated electrode when the code transmitted corresponds to said code unique. In fact, the processing unit interrogates each electrode in turn. This processing unit can be composed of a base carrying out communication operations with the electrodes and a microcomputer or a PDA electronic agenda for data processing, but it is also possible to have a dedicated microcomputer incorporating all the basic functions. The base can include a microcontroller to manage the communication with the electrodes and to communicate with the remote microcomputer or PDA. Communication between the processing unit and the remote element can be done wirelessly via the WIFI, Bluetooth or other protocol, or wired via the RS232, USB, TCP / IP or other protocol. The document of prior art US 4,441,747 proposes a proprietary communication protocol, which is incompatible with the use of robust and conventional protocols as mentioned above. The interrogation in turn is obtained by the fact that the processing unit comprises means for generating and transmitting cyclically a code associated with each electronic module. Advantageously, each electronic module comprises a time delay means for keeping the first transceiver in transmission mode for a predetermined duration when the transmission of the skin potential must be activated. Likewise, the processing unit comprises timing means for keeping the second transceiver in transmit mode for a predetermined period of time when sending a code, and for keeping the second transceiver in receive mode during a predetermined time for receiving an analog signal from an electronic module. According to an advantageous characteristic of the invention, each electronic module comprises a supply coil for said electronic module, said coil being charged by electromagnetic field. According to another aspect of the invention, there is provided a method for measuring skin potential implemented in a system as described above. According to the invention, the method comprises: - a calibration phase during which the processing unit interrogates each electronic module, each electronic module transmits an analog signal representative of a cutaneous potential measurement, the minimum is saved and the maximum of the analog signals received, then these minimum and maximum values are used to calibrate the analog-digital converter present in the processing unit, and - a measurement phase during which each analog signal representative of a potential measurement skin is digitized by said analog-digital converter. Each electronic module comprising a memory space containing a unique code, this unique code is compared to a code transmitted by the processing unit, and the transmission of the skin potential measured by the associated electrode is activated when the transmitted code corresponds to said unique code . A time delay is introduced to maintain the first transceiver in transmission mode for a predetermined period when the transmission of skin potential must be activated. Within the processing unit, a code associated with each electronic module is generated and transmitted cyclically. Advantageously, for each sending of code, a time delay is introduced to keep the second transceiver in transmission mode for a predetermined period of time when sending a code, then a time delay is introduced to keep the second transceiver in mode reception for a predetermined period for the reception of an analog signal from an electronic module. Other advantages and characteristics of the invention will appear on examining the detailed description of a mode of implementation which is in no way limitative, and the appended drawings, in which: - Figure 1 is a general view of an application of the system according to the invention; - Figure 2 is a simplified diagram illustrating the main internal elements of a base according to the invention; - Figure 3 is an electronic diagram illustrating the internal constitution of a code generation block according to the invention; - Figure 4 is a simplified diagram illustrating some steps performed within an electronic module associated with an electrode according to the invention; - Figure 5 is a more detailed electronic diagram illustrating the internal constitution of an electrode according to the invention; - Figure 6 is another example illustrating the main components of a processing unit according to the invention; - Figure 7 is another example illustrating the main components of an electronic module according to the invention; FIG. 8 is a block diagram illustrating an initialization mode according to the invention; - Figure 9 is a block diagram illustrating a formatting mode according to the invention; and - Figure 10 is a block diagram illustrating an acquisition mode according to the invention; In Figure 1 we see a patient 1 on which are arranged several electrodes 3 according to the invention. By electrode, here is meant a measurement electrode (or skin sensor) associated with an electronic module according to the invention. Each electrode comprises means for transmitting, by radio wave, a measurement of the skin potential of patient 1 to a base 4. The latter may include means for storing the measurements received, but preferably, it transmits, by wire link 5 or link wirelessly, these measurements towards a microcomputer 2 acting as a recorder. One can consider having the base 4 integrated in the microcomputer 2, the assembly constituting a processing unit. As will be seen in more detail below, the base 4 is able to: - iteratively send an initialization signal to each electrode, - receive an analog signal, corresponding to a cutaneous potential measurement, coming from a electrode, and - transmit the measurements received to the microcomputer. In the same way, each electrode comprises means for carrying out the following operations after reception of the initialization signal: - measurement of a potential difference representative of the skin potential, - modulation of the analog signal, and - transmission of this analog signal to the base 4. Advantageously, the electrode according to the present invention may consist of a conventional electrode to which a removable adapter (multiple-use system) is connected, having components necessary to assign the set of functions according to the present invention. However, the electrode according to the invention is preferably made in one piece. In FIG. 2, we see a little more detail the main constituent elements of the base 4. The initialization signal from the base 4 to the electrodes 3 is a cyclic signal, each cycle of which comprises the transmission of a six-bit code and a time delay for receiving a measurement if necessary. Each electrode has a specific code. The base 4 successively and cyclically sends all the codes of the electrodes. More specifically, the base 4 comprises a transceiver 6 provided with an antenna 10 capable of transmitting a radio wave to the electrodes. The codes are developed within a code generation block 7. Once a code has been sent, the code generation block 7 places the transceiver 6 in the reception position and activates a time delay during which a measurement signal skin potential is expected. At the end of the reception time, the code generation block 7 repositions the transceiver in transmission and generates the code for the next electrode. In practice, the transceiver used can be a TR3100 transceiver ideal for short distance communication applications where robust use, small size, low consumption and low cost are required. Its main characteristics are: Power supply between 2.2 and 3.7V; Other pins supplied between - 0.3 and 4.0V; Consumption 7 mA including 0.7uA in "SLEEP"mode; ASK modulation (Amplitude Shift Keying) and OOK, we use ASK modulation; Maximum bit rate: 576 kbps (500 kbps is used); Dimensions: 10mm x 7mm x 2mm; Passing transmission reception time: 107.5 μs (max). Transmission reception passage time: 12 μs (max). The table used to define the modes of the integrated circuit according to pins CTRL0 and CNTRL1 is as follows:
Sur la figure 3 on distingue les principaux éléments constitutifs du bloc de génération de code 7. Le cœur de ce bloc est un composant logique programmable 11, dit PAL pour "Programmable Array Logic" en langue anglaise, associé à un compteur quatre bits 8 pour générer un code quatre bits pour chacune des électrodes, et à un temporisateur 9. Le compteur quatre bits 8 est un composant 74ALS163 permettant de fournir un code quatre bits au PAL 11 qui est programmé pour effectuer le chargement de ce code dans des registres, la conversion parallèle-série du code avant envoi, et la gestion du temporisateur 9, de l'émetteur/récepteur 6 et de l'incrémentation du compteur 8. la temporisation est réalisée par deux monostables 9a et 9b qui prennent en considération le temps de réception de la mesure du potentiel cutané et le temps de basculement réception-émission de l'émetteur/récepteur 6. Chaque monostable 9a et 9b est réalisé par un composant NE555 auquel on passe en entrée la variable de lancement de la temporisation active sur front descendant. En sortie, on récupère la variable de temporisation proprement dite, laquelle est active à l'état haut. On joue sur la temporisation en changeant les valeurs de résistance et des condensateurs du NE555. Le bloc de génération de code 7 est cadencé par une horloge 12 constituée d'un oscillateur à quartz de fréquence 1 MHz câblé à une bascule D-edge MC14013 afin d'obtenir un signal d'horloge à 500 kHz. En d'autres termes, le PAL 11 fonctionne sur le principe suivant : l'horloge 12 et les sorties du compteur 8 sont adressées en entrée et le programme effectue les fonctions logiques suivantes : - chargement parallèle-série avec mise en forme du code (bit de début et bit de fin); - émission du code; - lancement de la temporisation en direction des deux monostables 9a et 9b, puis activation de l'émetteur-récepteur 6 en récepteur ; activation de l'incrémentation du compteur 8; et - à la fin de la première temporisation, l'émetteur-récepteur 6 est activé en émetteur; puis à la fin de la deuxième temporisation, un nouveau cycle commence. Un exemple de programmation du PAL 11 est donné en annexe 1.
Sur la figure 4 on voit les blocs constitutifs d'une électrode 3. On distingue un émetteur-récepteur 13 associé à une antenne 14, ces éléments étant identiques à ceux utilisés dans la base 4. En tant normal, de repos, l'émetteur-récepteur 13 est en réception. Lorsqu'un code est reçu, ce dernier est transmis vers un bloc de traitement de code 15 dont le rôle est de réaliser une conversion série-parallèle du code reçu, une comparaison de ce code avec le code interne de l'électrode en question, puis une activation (lorsque les deux codes sont identiques) d'un bloc 16 de génération du signal de mesure du potentiel cutané. En même temps que l'activation, une temporisation est déclenchée pour placer l'émetteur-récepteur en mode émission pendant une durée prédéterminée. Le bloc 16 prélève un signal analogique provenant d'un capteur cutané 19 et correspondant à la mesure de potentiel cutané. On en déduit une différence de potentiel 20 qui est ensuite modulée en 21 sur une porteuse à 433MHz par exemple. Ce signal analogique modulé est ensuite envoyé vers la base 4 via l'émetteur-récepteur 13. De façon plus détaillée sur la figure 5, le bloc de traitement de code 34 peut comprendre un PAL 17 cadencé par une horloge 22 semblable à celle utilisée pour la base 4. La temporisation est obtenue par un monostable 18, un composant NE555, pour l'émission. Le PAL 17 reçoit, depuis l'émetteur- récepteur 13, le signal série, c'est à dire le code émis par la base 4. Le signal de l'horloge 22, la sortie du monostable 18 et le signal série reçu sont adressés en entrée du PAL 17 qui effectue les fonctions logiques suivantes : - chargement série-parallèle dans des registres ; - comparaison entre le code chargé et le code interne; pendant ce temps, on active l'émetteur-récepteur 13 en émetteur ; - si le code ne correspond pas, l'émetteur-récepteur est repositionné en récepteur ; - si le code correspond, on active le monostable 18; - lorsque la temporisation est terminée, le transceiver 13 passe en mode de réception ; - lorsque le monostable 18 est activé, le bloc 16 de génération du signal de mesure est mis à contribution pour rendre l'émission de la mesure possible. Un exemole de Droαrammation du PAL 17 est dnnn pn ann x 1
La figure 6 est un autre exemple de réalisation de l'unité de traitement. La base 23 peut communiquer avec un PC, un PDA ou un dispositif de stockage amovible. La base 23 comprend un émetteur/récepteur 13 apte à recevoir le signal analogique provenant d'une électrode selon l'invention. Ce signal analogique est ensuite démodulé par le démodulateur 24, Ce signal est ensuite mis en forme par un module 25. En effet, pour que le signal de mesure puisse être numérisé par la suite, on a besoin de le mettre en forme, c'est à dire que le signal doit être compris entre 0 et 3V. On ajoute un OFFSET de 1,5V au signal pour le sur élever, par le biais d'un amplificateur opérationnel AOP (non représenté). On diminue également son amplitude pour qu'il ne sature pas l'AOP. De ce fait on utilise un AOP monté en différentiel. D'autre part, l'AOP ne doit pas rajouter d'OFFSET ou de bruit au signal, on choisit alors l'AOP OP193. A la sortie du module de mise en forme 25, sur la figure 6, le signal de mesure est numérisé par un convertisseur analogique-numérique CAN 26, dix bits série, TLV 1549, permettant de pouvoir transmettre le signal échantillonné. Ce CAN 26 est optimisé au cours d'une étape d'étalonnage de façon à obtenir une résolution numérique optimale. un microcontrôleur 27 gère l'ensemble de composants de la base. Il permet entre autre d'effectuer un processus d'initialisation 28 des électrodes et un processus de génération de code 29 (identique à celui expliciter plus haut). Sur la figure 7, on voit un autre exemple d'implémentation d'un module électronique selon l'invention. Vu de l'extérieur, l'émetteur/récepteur 30 a pour fonction de recevoir un code d'identification émit par la base en numérique, et d'émettre un signal analogique représentatif du potentiel cutané mesuré sur un patient. Vu de l'intérieur, l'émetteur/récepteur 30 reçoit, comme vu précédemment, un signal analogique modulé par le modulateur 31. Ce modulateur recevant un signal représentant une différence de potentiel entre une électrode de mesure proprement dit 32 et une référence 33. Le microcontrôleur 34 a pour fonction de gérer l'ensemble des composants du module électronique, de recevoir et de stocker le code d'identification. Sur la figure 8, on décrit un mode d'initialisation avec les éléments suivants :
• Interrupteur : Permet la mise en route du système, il est mis en place à l'aide d'un bouton poussoir et positionné sur une broche d'un des ports d'E/S du microcontrôleur. De plus une bobine placée sur la base permet la mise en marche de chaque électrode lorsque l'on approche cette dernière de la bobine. • Paramétrage de la base : Un programme (interface graphique) permet la configuration du microcontrôleur, il est exécuté au sein d'un ordinateur ou d'un PDA et permet d'envoyer des paramètres vers la base via un de ces modules de communication (PC, PDA,...). • Paramétrage du microcontrôleur : sélection du nombre d'électrodes à piloter, de la fréquence de communication,... • Code d'identification : Codes générés par le microcontrôleur vers l'émetteur numérique, chaque code correspond à 1 électrode et ce de manière à pouvoir sélectionner l'électrode souhaitée pour les modes suivants. • Activation des électrodes : A la réception de leur code d'identification, les électrodes s'activent l'une après l'autre et se mettent en mode réception (attente du mode formatage). Le mode de formatage est brièvement décrit sur la figure 9 : • Sélection de l'électrode voulue : envoi du code correspondant à l'électrode souhaitée par le microcontrôleur via l'émetteur numérique, cette dernière est sélectionnée, passe en mode émission et se prépare à transmettre le signal analogique au récepteur pendant la durée souhaitée. • Transmission des données : l'électrode envoi le signal analogique (différence de potentiel avec l'électrode de référence) via le récepteur analogique de la base vers un bloc "détecteur de crête" (démodulation). • Traitement du signal (normalisation) : le signal attendu est sinusoïdal, de fréquence et d'amplitude faible: pour pouvoir traiter CP ςiαnal à
l'aide d'un microcontrôleur, il est nécessaire de numériser le signal (CAN du microcontrôleur), il faut donc que le signal soit normalisé (0-5V), de manière à optimiser la numérisation. Pour cela on ajoute un étage électronique permettant de réaliser cette fonction. β Etalonnage du système : permet de configurer le CAN du microcontrôleur de façon à numériser correctement le signal délivré par les électrodes (nombre de points de conversions, ...). On reçoit le signal de chaque électrode de manière à calibrer la base pour le stockage des données (mode acquisition). In FIG. 3, the main constituent elements of the code generation block 7 are distinguished. The heart of this block is a programmable logic component 11, called PAL for "Programmable Array Logic" in English, associated with a four-bit counter 8 for generate a four-bit code for each of the electrodes, and a timer 9. The four-bit counter 8 is a component 74ALS163 making it possible to supply a four-bit code to the PAL 11 which is programmed to carry out the loading of this code into registers, the parallel-serial conversion of the code before sending, and management of the timer 9, of the transmitter / receiver 6 and of the incrementation of the counter 8. the timing is carried out by two monostables 9a and 9b which take into account the reception time of the measurement of the skin potential and the reception / emission changeover time of the transmitter / receiver 6. Each monostable 9a and 9b is produced by a component NE555 to which we pass in input the variable for launching the active delay on falling edge. At output, we recover the timing variable proper, which is active in the high state. We play on the time delay by changing the resistance and capacitor values of the NE555. The code generation block 7 is clocked by a clock 12 consisting of a quartz oscillator of frequency 1 MHz wired to a D-edge flip-flop MC14013 in order to obtain a clock signal at 500 kHz. In other words, the PAL 11 operates on the following principle: the clock 12 and the outputs of the counter 8 are addressed as inputs and the program performs the following logic functions: - parallel-serial loading with formatting of the code ( start bit and end bit); - issue of the code; - launch of the timer in the direction of the two monostables 9a and 9b, then activation of the transceiver 6 as a receiver; activation of the increment of counter 8; and - at the end of the first time delay, the transceiver 6 is activated as a transmitter; then at the end of the second time delay, a new cycle begins. An example of programming for PAL 11 is given in Annex 1. In Figure 4 we see the building blocks of an electrode 3. There is a transceiver 13 associated with an antenna 14, these elements being identical to those used in the base 4. As normal, at rest, the transmitter -receiver 13 is in reception. When a code is received, the latter is transmitted to a code processing block 15 whose role is to perform a series-parallel conversion of the code received, a comparison of this code with the internal code of the electrode in question, then an activation (when the two codes are identical) of a block 16 for generating the skin potential measurement signal. At the same time as activation, a time delay is triggered to place the transceiver in transmission mode for a predetermined period. Block 16 takes an analog signal from a skin sensor 19 and corresponds to the skin potential measurement. We deduce a potential difference 20 which is then modulated at 21 on a carrier at 433 MHz for example. This modulated analog signal is then sent to the base 4 via the transceiver 13. In more detail in FIG. 5, the code processing block 34 can comprise a PAL 17 clocked by a clock 22 similar to that used for base 4. The time delay is obtained by a monostable 18, a component NE555, for transmission. The PAL 17 receives, from the transceiver 13, the serial signal, that is to say the code transmitted by the base 4. The clock signal 22, the output of the monostable 18 and the received serial signal are addressed at the input of PAL 17 which performs the following logic functions: - serial-parallel loading in registers; - comparison between the loaded code and the internal code; during this time, the transceiver 13 is activated as a transmitter; - if the code does not match, the transceiver is repositioned as a receiver; - if the code corresponds, the monostable 18 is activated; - When the timeout is over, the transceiver 13 goes into reception mode; - when the monostable 18 is activated, the block 16 for generating the measurement signal is used to make the emission of the measurement possible. An example of PAL 17 Droαrammation is dnnn pn ann x 1 Figure 6 is another embodiment of the processing unit. The base 23 can communicate with a PC, a PDA or a removable storage device. The base 23 comprises a transmitter / receiver 13 capable of receiving the analog signal coming from an electrode according to the invention. This analog signal is then demodulated by the demodulator 24. This signal is then shaped by a module 25. In fact, in order for the measurement signal to be able to be digitized subsequently, we need to format it, it i.e. the signal must be between 0 and 3V. An OFFSET of 1.5V is added to the signal to raise it, by means of an operational amplifier AOP (not shown). Its amplitude is also reduced so that it does not saturate the PDO. Therefore we use a PDO mounted in differential. On the other hand, the AOP must not add OFFSET or noise to the signal, we then choose the AOP OP193. At the output of the shaping module 25, in FIG. 6, the measurement signal is digitized by an analog-digital converter CAN 26, ten bits serial, TLV 1549, making it possible to transmit the sampled signal. This CAN 26 is optimized during a calibration step so as to obtain an optimal digital resolution. a microcontroller 27 manages the set of components of the base. It allows among other things to carry out an initialization process 28 of the electrodes and a code generation process 29 (identical to that explained above). In Figure 7, we see another example of implementation of an electronic module according to the invention. Seen from the outside, the function of the transmitter / receiver 30 is to receive an identification code transmitted by the digital base, and to transmit an analog signal representative of the skin potential measured on a patient. Seen from the inside, the transmitter / receiver 30 receives, as seen previously, an analog signal modulated by the modulator 31. This modulator receiving a signal representing a potential difference between a measurement electrode proper 32 and a reference 33. The microcontroller 34 has the function of managing all the components of the electronic module, of receiving and storing the identification code. In FIG. 8, an initialization mode is described with the following elements: • Switch: Allows the system to be started up, it is set up using a push button and positioned on a pin of one of the I / O ports of the microcontroller. In addition, a coil placed on the base allows each electrode to be started when the latter is approached from the coil. • Configuration of the base: A program (graphical interface) allows the configuration of the microcontroller, it is executed within a computer or a PDA and allows parameters to be sent to the base via one of these communication modules ( PC, PDA, ...). • Configuration of the microcontroller: selection of the number of electrodes to be controlled, the frequency of communication, ... • Identification code: Codes generated by the microcontroller to the digital transmitter, each code corresponds to 1 electrode and so to be able to select the desired electrode for the following modes. • Activation of the electrodes: On receipt of their identification code, the electrodes are activated one after the other and go into reception mode (waiting for formatting mode). The formatting mode is briefly described in Figure 9: • Selection of the desired electrode: sending of the code corresponding to the desired electrode by the microcontroller via the digital transmitter, the latter is selected, goes into transmission mode and prepares to transmit the analog signal to the receiver for the desired duration. • Data transmission: the electrode sends the analog signal (potential difference with the reference electrode) via the base analog receiver to a "peak detector" block (demodulation). • Signal processing (normalization): the expected signal is sinusoidal, of low frequency and amplitude: to be able to process CP ςiαnal at Using a microcontroller, it is necessary to digitize the signal (CAN of the microcontroller), it is therefore necessary that the signal is normalized (0-5V), so as to optimize the digitization. For this, an electronic stage is added allowing this function to be carried out. β System calibration: allows the CAN of the microcontroller to be configured so as to correctly digitize the signal delivered by the electrodes (number of conversion points, etc.). The signal from each electrode is received so as to calibrate the base for data storage (acquisition mode).
Le mode d'acquisition est décrit sur la figure 10 : • Ce mode de fonctionnement est similaire au mode formatage, on ajoute un bloc de traitement et de stockage des données. • Le stockage peut être effectué dans un PC, un PDA ou, à l'aide des différents modules de communication. Afin de simplifier le fonctionnement on utilise les mêmes émetteur/récepteur numérique (RFM) pour les signaux analogique et numérique, il faut donc moduler le signal analogique avant l'émission (VFC) et démoduler après réception (FVC). On choisi, pour la base, un microcontrôieur qui possède un CAN intégré, pour cela, on se propose d'utiliser un microcontrôleur PIC (16F877) Pour gérer les électrodes, on a besoins de quelques broches d'entrée/sortie et d'une petite mémoire, on utilise un microcontrôleur PIC correspondant à ces caractéristiques par électrode (16F873). Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.
ANNEXE 1 library ieee; lise ieee.stdAogic_H64.all; use work.std_arith.all;The acquisition mode is described in Figure 10: • This operating mode is similar to the formatting mode, a data processing and storage block is added. • Storage can be carried out in a PC, a PDA or, using the various communication modules. In order to simplify the operation, the same digital transmitter / receiver (RFM) is used for the analog and digital signals, it is therefore necessary to modulate the analog signal before transmission (VFC) and demodulate after reception (FVC). We chose, for the base, a microcontroller which has an integrated CAN, for that, we propose to use a PIC microcontroller (16F877) To manage the electrodes, we need some input / output pins and a small memory, we use a PIC microcontroller corresponding to these characteristics by electrode (16F873). Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention. ANNEX 1 library ieee; read ieee.stdAogic_H64.all; use work.std_arith.all;
ENTITY ambulatoire IS PORT (code : in std_logic_vector(5 dowttto 0); cïk, tempo, recept : in std_hgic ; s, lancjempo, cntrO : outstd_logic); END ambulatoire;ENTITY ambulatory IS PORT (code: in std_logic_vector (5 dowttto 0); cïk, tempo, recept: in std_hgic; s, lancjempo, cntrO: outstd_logic); Ambulatory END;
ARCHITECTURE archi OF ambulatoire IS signal bascule : std_logic_yector(5 downto 0);ARCHITECTURE archi OF ambulatory IS toggle signal: std_logic_yector (5 downto 0);
BEGIN s<=bascule(0); PROCESS(clk) BEGIN if (clk'event and clk = T) then if (hascule>="000000" and recept-'O' and tempo— 0)' then — chargement du code bascule<=code; cntrO<- 0'; lanc_tempo<= '1 '; elsif (tempo-'O' and recept-'O)' then if(bascule= "000001 ") then — lancement de tempo bascule(0)<=bascule(l); cntrO<=T; lanc_tempo <='0 '; else — chargement parallèle/série bascule(O) < =bascule(l); bascule(l)<=bascule(2); bascule(2) < -basculeβ) basculeβ) < =bascule(4). bascule(4) < =bascule(5); bascule(5)<='0'; lanc_tempo<='l '; cntrO<='0'; end if; elsif (bascule^ "000000" and tempo-' 1 ' and recept= '1) ' then— réception pdt tempo cntrO<='V; lanc_tempo <='!'; elsif (bascule= "000000 " and tempo = ' and recept≈ '0) ' then cntrO<='0'; lanc_tempo<—' 1 '; end if; end if; END PROCESS; END archi;
ANNEXE 2 library ieee; use ieee.std ogicj 164. ail; use work.std_arith.all;BEGIN s <= toggle (0); PROCESS (clk) BEGIN if (clk'event and clk = T) then if (hascule> = "000000" and recept-'O 'and tempo— 0)' then - load code toggle <= code; cntrO <- 0 '; lanc_tempo <= '1'; elsif (tempo-'O 'and recept-'O)' then if (toggle = "000001") then - launch of tempo toggle (0) <= toggle (l); Cntro <= T; lanc_tempo <= '0'; else - parallel / series load toggle (O) <= toggle (l); rocker (l) <= flip-flop (2); toggle (2) <-basculeβ) toggleβ) <= toggle (4). toggle (4) <= toggle (5); rocker (5) <= '0'; lanc_tempo <= 'l'; Cntro <= '0'; end if; elsif (toggle ^ "000000" and tempo- '1' and recept = '1)' then— reception pdt tempo cntrO <= 'V; lanc_tempo <= '!'; elsif (toggle = "000000" and tempo = 'and recept≈' 0) 'then cntrO <=' 0 '; lanc_tempo <- '1'; end if; end if; END PROCESS; END archi; APPENDIX 2 library ieee; use ieee.std ogicj 164. garlic; use work.std_arith.all;
ENTITY électrode ISENTITY IS electrode
PORT (clk, s, tempo, reset: in std_ gic ;cntrO, lancjempo : out stdjogic; out std_logic_vector(5 downtoPORT (clk, s, tempo, reset: in std_ gic; cntrO, lancjempo: out stdjogic; out std_logic_vector (5 downto
0));0));
END électrode;END electrode;
ARCHITECTURE archi OF électrode IS signal bascule : std ogic_yector(5 downto 0);ARCHITECTURE archi OF electrode IS toggle signal: std ogic_yector (5 downto 0);
BEGIN bascule(O) <= s; q <= bascule;BEGIN toggle (O) <= s; q <= toggle;
PROCESSPROCESS
BEGIN if (reset— 0)' then wait until clk = 7 '• bascule(l) <= bascule(O); bascule(2) <≈ bascule(l); basculeβ) <= basculeβ); bascule(4) <= basculeβ); basculeβ) <= bascule(4); if(bascule="111011" and tempo='0') then lanc tempo <- '0'; cntrO <= 7 '; elsif (tempo— V) then lancjempo <— 7 '; cntrO <= '0'; elsif (tempo ='0)' then lanc_tempo <= 7'; cntrO <^ 'V; end if; elsif (reset=T) then basculeβ) <= '0'; basculeβ) <= '0'; basculeβ) <= '0'; bascule(4) <= '0'; basculeβ) <= '0'; lancjempo <= 'V; cntr0 <= T; end if; END PROCESS; END archi;
BEGIN if (reset— 0) 'then wait until clk = 7' • toggle (l) <= toggle (O); toggle (2) <≈ toggle (l); toggleβ) <= toggleβ); toggle (4) <= toggleβ); β flip-flop) <= flip-flop (4); if (toggle = "111011" and tempo = '0') then launch tempo <- '0'; cntrO <= 7 '; elsif (tempo— V) then lancjempo <- 7 '; cntrO <= '0'; elsif (tempo = '0)' then lanc_tempo <= 7 '; cntrO <^ 'V; end if; elsif (reset = T) then basculeβ) <= '0'; toggleβ) <= '0'; toggleβ) <= '0'; toggle (4) <= '0'; toggleβ) <= '0'; lancjempo <= 'V; cntr0 <= T; end if; END PROCESS; END archi;
Claims
1. Système de mesure de potentiel cutané comprenant une pluralité d'électrodes (3) de mesure et une unité (4, 2) de traitement de données, caractérisé en ce que chaque électrode de mesure est associée à un module électronique comprenant : - des moyens pour générer une différence de potentiel entre le potentiel mesuré par ladite électrode de mesure et une électrode de référence au sein dudit module électronique, - des moyens de modulation pour moduler ladite différence de potentiel en un signa! analogique, - un premier émetteur-récepteur (13) pour transmettre sans fil ce signal analogique ainsi modulé vers l'unité de traitement de données (4, 2), - et en ce que l'unité de traitement de données comprend un second émetteur-récepteur (10) pour émettre de façon numérique un code d'identification de chaque module électronique et recevoir ledit signal analogique; des moyens de démodulation pour démoduler ce signal analogique; et des moyens de mise en forme pour étalonner un convertisseur analogique-numérique, ce dernier étant apte à convertir ledit signal analogique avant traitement.1. Skin potential measurement system comprising a plurality of measurement electrodes (3) and a data processing unit (4, 2), characterized in that each measurement electrode is associated with an electronic module comprising: - means for generating a potential difference between the potential measured by said measurement electrode and a reference electrode within said electronic module, - modulation means for modulating said potential difference into a signal! analog, - a first transceiver (13) for wirelessly transmitting this thus modulated analog signal to the data processing unit (4, 2), - and in that the data processing unit comprises a second transmitter -receiver (10) for digitally transmitting an identification code of each electronic module and receiving said analog signal; demodulation means for demodulating this analog signal; and shaping means for calibrating an analog-digital converter, the latter being able to convert said analog signal before processing.
2. Système selon la revendication 1, caractérisé en ce que chaque module électronique comporte un espace mémoire renfermant un code unique.2. System according to claim 1, characterized in that each electronic module comprises a memory space containing a unique code.
3. Système selon la revendication 2, caractérisé en ce que chaque module électronique comprend des moyens pour comparer ledit code unique à un code transmis par l'unité de traitement, et des moyens pour activer la transmission du potentiel cutané mesuré par l'électrode associé lorsque le code transmis correspond audit code unique.3. System according to claim 2, characterized in that each electronic module comprises means for comparing said unique code with a code transmitted by the processing unit, and means for activating the transmission of the skin potential measured by the associated electrode when the code transmitted corresponds to said unique code.
4. Système selon la revendication 3, caractérisé en ce que chaque module électronique comprend un moyen de temporisation pour maintenir le premier émetteur-récepteur en mode émission pendant une durée prédéterminée lorsque la transmission du potentiel cutané doit être activée. 4. System according to claim 3, characterized in that each electronic module comprises a delay means for maintaining the first transceiver in transmission mode for a predetermined period when the transmission of the skin potential must be activated.
5. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de traitement comprend des moyens pour générer et transmettre de façon cyclique le code associé à chaque module électronique.5. System according to any one of the preceding claims, characterized in that the processing unit comprises means for generating and transmitting cyclically the code associated with each electronic module.
6. Système selon la revendication 5, caractérisé en ce que l'unité de traitement comprend des moyens de temporisation pour maintenir le second émetteur-récepteur en mode émission pendant une durée prédéterminée lors de l'envoi d'un code, et pour maintenir le second émetteur-récepteur en mode réception pendant une durée prédéterminée pour la réception d'un signal analogique provenant d'un module électronique.6. System according to claim 5, characterized in that the processing unit comprises timing means for maintaining the second transceiver in transmission mode for a predetermined period when sending a code, and for maintaining the second transceiver in reception mode for a predetermined period for the reception of an analog signal from an electronic module.
7. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de traitement comprend un microcontrôleur pour gérer la communication avec les électrodes et pour communiquer avec un micro-ordinateur distant.7. System according to any one of the preceding claims, characterized in that the processing unit comprises a microcontroller for managing communication with the electrodes and for communicating with a remote microcomputer.
8. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de traitement comprend un microcontrôleur pour gérer la communication avec les électrodes et pour communiquer avec un agenda électronique PDA distant.8. System according to any one of the preceding claims, characterized in that the processing unit comprises a microcontroller for managing communication with the electrodes and for communicating with a remote PDA electronic organizer.
9. Système selon la revendication 7 ou 8, caractérisé en ce que la communication entre l'unité de traitement et l'élément distant s'effectue de façon sans fil via le protocole WIFI.9. System according to claim 7 or 8, characterized in that the communication between the processing unit and the remote element is carried out wirelessly via the WIFI protocol.
10. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque module électronique comprend une bobine d'alimentation dudit module électronique, ladite bobine étant chargée par champ électromagnétique.10. System according to any one of the preceding claims, characterized in that each electronic module comprises a supply coil for said electronic module, said coil being charged by electromagnetic field.
11. Procédé de mesure de potentiel cutané mis en œuvre dans un système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend : - une phase d'étalonnage au cours de laquelle l'unité de traitement interroge chaque module électronique, chaque module électronique transmet un signal analogique représentatif d'une mesure de potentiel cutané, on sauvegarde le minimum et le maximum des signaux analogiques reçus, puis on utilise ces valeurs minium et maximum pour étalonner le convertisseur analogique-numérique présent dans l'unité de traitement, et - une phase de mesure au cours de laquelle chaque signal analogique représentatif d'une mesure de potentiel cutané est numérisé par ledit convertisseur analogique-numérique. .11. Method for measuring skin potential implemented in a system according to any one of the preceding claims, characterized in that it comprises: - a calibration phase during which the processing unit interrogates each electronic module, each electronic module transmits an analog signal representative of a cutaneous potential measurement, the minimum and the maximum of the analog signals received are saved, then uses these minimum and maximum values to calibrate the analog-digital converter present in the processing unit, and - a measurement phase during which each analog signal representative of a cutaneous potential measurement is digitized by said analog-digital converter . .
12. Procédé selon la revendication 11, caractérisé en ce que, chaque module électronique comportant un espace mémoire renfermant un code unique, on compare ce code unique à un code transmis par l'unité de traitement, et on active la transmission du potentiel cutané mesuré par l'électrode associé lorsque le code transmis correspond audit code unique.12. Method according to claim 11, characterized in that, each electronic module comprising a memory space containing a unique code, this unique code is compared to a code transmitted by the processing unit, and the transmission of the measured skin potential is activated by the associated electrode when the transmitted code corresponds to said unique code.
13. Procédé selon la revendication 12, caractérisé en ce qu'on introduit une temporisation pour maintenir le premier émetteur-récepteur en mode émission pendant une durée prédéterminée lorsque la transmission du potentiel cutané doit être activée.13. Method according to claim 12, characterized in that a delay is introduced to maintain the first transceiver in transmission mode for a predetermined period when the transmission of the skin potential must be activated.
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'au sein de l'unité de traitement, on génère et transmet de façon cyclique un code associé à chaque module électronique.14. Method according to any one of claims 11 to 13, characterized in that within the processing unit, a code associated with each electronic module is generated and transmitted cyclically.
15. Procédé selon la revendication 14, caractérisé en ce que pour chaque envoi de code, on introduit une temporisation pour maintenir le second émetteur- récepteur en mode émission pendant une durée prédéterminée lors de l'envoi d'un code, puis on introduit une temporisation pour maintenir le second émetteur-récepteur en mode réception pendant une durée prédéterminée pour la réception d'un signal analogique provenant d'un module électronique. 15. Method according to claim 14, characterized in that for each sending of code, a time delay is introduced to keep the second transceiver in transmission mode for a predetermined period when sending a code, then a time delay to keep the second transceiver in reception mode for a predetermined period for the reception of an analog signal from an electronic module.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0404483 | 2004-04-28 | ||
PCT/FR2005/001059 WO2005104931A1 (en) | 2004-04-28 | 2005-04-28 | Skin potential measurement method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1742567A1 true EP1742567A1 (en) | 2007-01-17 |
Family
ID=34944678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05763726A Withdrawn EP1742567A1 (en) | 2004-04-28 | 2005-04-28 | Skin potential measurement method and system |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080064978A1 (en) |
EP (1) | EP1742567A1 (en) |
JP (1) | JP2007534399A (en) |
WO (1) | WO2005104931A1 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186749A (en) * | 1977-05-12 | 1980-02-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Induction powered biological radiosonde |
US4441747A (en) * | 1982-05-21 | 1984-04-10 | Bryington Ii Clayton W | Separable tool |
MA20406A1 (en) * | 1985-04-09 | 1985-12-31 | Majeste Hassan Ii Roi Du Maroc | DEVICE FOR THE DETECTION, STUDY AND MONITORING OF DISEASES, ESPECIALLY CARDIAC, TRANSLATED BY ELECTRICALLY RECORDABLE MANIFESTATIONS |
US5166887A (en) * | 1988-03-31 | 1992-11-24 | Square D Company | Microcomputer-controlled circuit breaker system |
ATE145120T1 (en) * | 1989-02-15 | 1996-11-15 | Jacob Segalowitz | WIRELESS ELECTROCARDIOGRAPHIC MONITORING SYSTEM |
US6615074B2 (en) * | 1998-12-22 | 2003-09-02 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US6474341B1 (en) * | 1999-10-28 | 2002-11-05 | Surgical Navigation Technologies, Inc. | Surgical communication and power system |
US6816266B2 (en) * | 2000-02-08 | 2004-11-09 | Deepak Varshneya | Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital |
US6497656B1 (en) * | 2000-02-08 | 2002-12-24 | General Electric Company | Integrated wireless broadband communications network |
US6441747B1 (en) * | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US6611705B2 (en) * | 2000-07-18 | 2003-08-26 | Motorola, Inc. | Wireless electrocardiograph system and method |
US20020045836A1 (en) * | 2000-10-16 | 2002-04-18 | Dima Alkawwas | Operation of wireless biopotential monitoring system |
US20040127802A1 (en) * | 2001-07-17 | 2004-07-01 | Gmp Companies, Inc. | Wireless ECG system |
US6856291B2 (en) * | 2002-08-15 | 2005-02-15 | University Of Pittsburgh- Of The Commonwealth System Of Higher Education | Energy harvesting circuits and associated methods |
-
2005
- 2005-04-28 US US11/587,657 patent/US20080064978A1/en not_active Abandoned
- 2005-04-28 WO PCT/FR2005/001059 patent/WO2005104931A1/en not_active Application Discontinuation
- 2005-04-28 EP EP05763726A patent/EP1742567A1/en not_active Withdrawn
- 2005-04-28 JP JP2007510078A patent/JP2007534399A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2005104931A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2007534399A (en) | 2007-11-29 |
WO2005104931A1 (en) | 2005-11-10 |
US20080064978A1 (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2486953B1 (en) | Method for quantifying the desynchronisation between the clocks of two active HBC implants | |
EP2537555B1 (en) | Leadless autonomous intracardiac implant with disengageable attachment element | |
EP2441491A1 (en) | Standalone active medical implant, with a circuit for awakening the input on receiving pulses transmitted via the interstitial tissue of the body | |
FR2780224A1 (en) | Communication system for linking medical implant circuit to external control | |
EP1459240A1 (en) | Non-contact integrated circuit reader comprising a low power consumption active standby mode | |
FR2965485A3 (en) | DETECTION OF RADIO FREQUENCY EMISSIONS | |
FR2788895A1 (en) | METHOD AND DEVICE FOR REDUCING POWER CONSUMPTION IN MEDICAL DEVICES USING MULTIPLE DIGITAL SIGNAL PROCESSORS AND DIFFERENT SUPPLY VOLTAGES | |
EP3223695A1 (en) | Device and method for stimulating slow brain waves | |
JP2009516886A (en) | Method and apparatus for remote measurement of specimen data | |
EP0586286A1 (en) | Wireless transmission system for medical data | |
EP2541782B1 (en) | RF telemetry receiver circuit for active medical implant | |
EP2500840B1 (en) | Data-transfer system and related management method | |
EP2510974A1 (en) | Active medical device, in particular an implantable defibrillator, with detection of QRS complexes in a signal with a lot of interference | |
EP2857912B1 (en) | Configuration device for ethernet equipment and configuration method for configuring ethernet devices using that device | |
EP0735694A1 (en) | Low price device for the aquisition of electrical signals according to ARINC 429 standard | |
EP0714627B1 (en) | Programmable interface for Holter type apparatus for recording physiological signals, especially cardiac activity | |
EP0262205A1 (en) | Warning device for monitoring discrete moving elements, monitoring system comprising such devices and their use for the management of stalling | |
EP1742567A1 (en) | Skin potential measurement method and system | |
FR2989240A1 (en) | DATA SYNCHRONIZATION METHOD AND DATA TRANSMISSION SYSTEM USING SUCH A METHOD. | |
EP2388043B1 (en) | Method for searching and selecting an RF telemetry channel to establish a link with an active medical device | |
EP3111991B1 (en) | Stimulation therapy system, in particular for vagus nerve stimulation, by implementing a state transition model that is self-adaptable in accordance with physical or physiological levels | |
FR2873298A1 (en) | IMPLANTABLE CARDIAC STIMULATOR WITH AUTOMATIC SENSOR PLACEMENT DETECTION AND HOUSING IMPLANTATION | |
EP1962678A1 (en) | Device for transmitting physiological signals of a wearer | |
FR3046676B1 (en) | MULTIFUNCTIONAL SYSTEM IMPLANTABLE AND COMMUNICATING WIRELESS. | |
FR2779847A1 (en) | PORTABLE OBJECT FOR CONTACTLESS COMMUNICATION FOLLOWING TWO WAYS OF COMMUNICATION, INDUCTIVE AND HERTZIAN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070711 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080122 |