EP1741875A1 - Circuits de refroidissement pour aube mobile de turbomachine - Google Patents

Circuits de refroidissement pour aube mobile de turbomachine Download PDF

Info

Publication number
EP1741875A1
EP1741875A1 EP06115023A EP06115023A EP1741875A1 EP 1741875 A1 EP1741875 A1 EP 1741875A1 EP 06115023 A EP06115023 A EP 06115023A EP 06115023 A EP06115023 A EP 06115023A EP 1741875 A1 EP1741875 A1 EP 1741875A1
Authority
EP
European Patent Office
Prior art keywords
cavity
blade
opening
extrados
intrados
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06115023A
Other languages
German (de)
English (en)
Other versions
EP1741875B1 (fr
Inventor
Jacques Boury
Patrice Eneau
Sylvain Paquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1741875A1 publication Critical patent/EP1741875A1/fr
Application granted granted Critical
Publication of EP1741875B1 publication Critical patent/EP1741875B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to the general field of cooling turbomachine moving blades, and in particular to the blades of the high-pressure turbine.
  • the main purpose of the present invention is therefore to overcome such drawbacks by proposing a cooling circuit for a mobile blade that allows efficient cooling of the blade without degrading the blades. aerodynamic performance of the turbine and which has a low manufacturing cost.
  • the blade according to the invention comprises in its central part a lower pressure cooling circuit and an extrados cooling circuit.
  • the intrados cooling circuit comprises at least first and second intrados cavities extending radially and in the direction of the thickness of the blade from the intrados of the blade to a radially extending central wall and in the direction of the skeleton of the dawn, a central cavity extending radially and in the direction of the thickness of the blade from the intrados to the extrados of the dawn, an opening of air at a radial end of the first intrados cavity to supply air to the intrados circuit, a first passage communicating the other radial end of the first intrados cavity with a radial end adjacent to the second intrados cavity, a second passage communicating the other radial end of the second intrados cavity with a radial end adjacent to the central cavity, and outlet orifices opening into the central cavity and opening on the intrados face of the dawn .
  • the extrados cooling circuit comprises at least a first and a second extrados cavity extending radially and in the direction of the thickness of the blade from the extrados of the blade to the central wall, a central cavity extending radially and in the direction of the thickness of the blade from the intrados to the extrados of the blade, an air inlet opening at a radial end of the first cavity extrados for supplying air to the extrados circuit, a first passage communicating the other radial end of the first extrados cavity with a radial end adjacent to the second extrados cavity, a second passage communicating the other radial end of the second extrados cavity with a radial end close to the central cavity, and outlet orifices opening into the central cavity and opening on the intrados face of the blade.
  • the blade further comprises a cooling circuit leading edge comprising at least one cavity extending radially in the vicinity of the leading edge of the blade, at least one orifice of air inlet opening into the leading edge cavity and outlet openings opening into said leading edge cavity and opening on the leading edge of the blade.
  • the blade further comprises a trailing edge cooling circuit comprising at least one cavity extending radially in the vicinity of the trailing edge of the blade, at least one inlet orifice. air opening into the cavity trailing edge and outlet openings opening in said cavity trailing edge and opening on the intrados face of the blade.
  • the internal walls of the cavities of the intrados and extrados cooling circuits are provided with flow interferers intended to increase the heat transfer along these walls.
  • Figures 1 to 3 show a moving blade 10 of a turbomachine, such as a moving blade of high pressure turbine.
  • a turbomachine such as a moving blade of high pressure turbine.
  • the invention can also be applied to other blades turbomachine, for example the blades of the low-pressure turbine thereof.
  • the blade 10 comprises an aerodynamic surface (or blade) which extends radially between a blade root 12 and a blade tip 14.
  • This aerodynamic surface consists of a leading edge 16 disposed opposite the blade. flow of the hot gases from the combustion chamber of the turbomachine, a trailing edge 18 opposite the leading edge 16, a lateral face 20 and an extrados lateral face 22, these lateral faces 20 , 22 connecting the leading edge 16 to the trailing edge 18.
  • the moving blade 10 of a turbomachine comprises in its central part C , that is to say in its part for which the distance between its intrados 20 and extrados faces 22 is the most important, a cooling circuit with a lower pressure and an extrados cooling circuit.
  • the intrados cooling circuit of the blade comprises in particular at least a first intrados cavity 24, a second intrados cavity 26 and a central cavity 28 (a larger number of intrados cavities is perfectly possible).
  • the cavities 24, 26 and 28 extend radially between the foot 12 and the top 14 of the blade.
  • the intrados cavities 24, 26 extend in the direction of the thickness of the blade (that is to say in the direction of its width defined between its faces intrados 20 and extrados 22) from the face intrados 20 of the blade to a wall (or partition) central 30 extending, firstly radially between the foot 12 and the top 14 of the blade, and secondly in the direction of the skeleton 32 of dawn.
  • the central cavity 28 it extends in the direction of the thickness of the blade from its intrados face 20 to its extrados face 22.
  • the intrados cooling circuit also comprises an air inlet opening 34 at a radial end of the first intrados cavity 24 (here at the foot 12 of the blade) in order to supply air the intrados circuit.
  • a first passage 36 communicates the other radial end of the first intrados cavity 24 (that is to say at the top 14 of the blade) with a radial end adjacent to the second cavity intrados 26.
  • a second passage 38 does communicate the other radial end of the second intrados cavity 26 (that is to say at the root 12 of the blade) with a radial end adjacent to the central cavity 28 of the intrados circuit.
  • the intrados cooling circuit also has outlet orifices 40 opening in the central cavity 28 and opening on the intrados face 20 of the blade. These orifices 40 are regularly distributed over the entire radial height of the blade.
  • the circulation of the cooling air which runs through this intrados circuit follows clearly from the foregoing.
  • the circuit is supplied with cooling air through the inlet opening 34.
  • the air first passes through the first intrados cavity 24 and then the second intrados cavity 26 and finally the central cavity 28 before being emitted on the underside 20 of the dawn through the outlet ports 40.
  • the extrados cooling circuit of the blade comprises in particular at least a first extrados cavity 42, a second extrados cavity 44 and a central cavity 46 (a larger number of extrados cavities is perfectly possible).
  • the cavities 42, 44 and 46 extend radially between the foot 12 and the top 14 of the blade.
  • the extrados cavities 42, 44 extend in the direction of the thickness of the blade from the extrados face 22 of the blade to the central wall 30 defined above in connection with the cooling system intrados of dawn.
  • the central cavity 46 it extends in the direction of the thickness of the blade from its intrados face 20 to its extrados face 22.
  • the extrados cooling circuit also comprises an air inlet opening 48 at a radial end of the first extrados cavity 42 (here at the level of the root 12 of the blade) in order to supply air the extrados circuit.
  • a first passage 50 communicates the other radial end of the first extrados cavity 42 (that is to say at the top 14 of the blade) with a radial end adjacent to the second extrados cavity 44.
  • a second passage 52 communicates the other radial end of the second extrados cavity 44 (that is to say at the root 12 of the blade) with a radial end adjacent to the central cavity 46 of the extrados circuit.
  • the extrados cooling circuit also has outlet orifices 54 opening in the central cavity 46 and opening on the intrados face 20 of the blade. These orifices 54 are regularly distributed over the entire radial height of the blade.
  • the circulation of the cooling air which runs through this extrados circuit derives evidently from the foregoing.
  • the circuit is supplied with cooling air through the inlet opening 48.
  • the air firstly travels through the first extrados cavity 42 and then the second extrados cavity 44 and finally the central cavity 46 before being emitted on the underside 20 of the dawn through the outlets 54.
  • the inner and outer cooling circuits each have their own air inlet opening and that there is no air communication from one circuit to the other so that these circuits are completely independent of each other. one of the other.
  • intrados cavities 24, 26 and the extrados cavities 42, 44 of the intrados and extrados cooling circuits are disposed on either side of the central wall 30.
  • the central cavity 28 of the intrados circuit is located the side of the leading edge 16 of the blade, while the central cavity 46 of the extrados circuit is disposed on the side of the trailing edge 18 of the blade.
  • the internal walls of the cavities 24, 26, 28, 42, 44 and 46 of the intrados and extrados cooling circuits may advantageously be equipped with flow disruptors 56 intended to increase heat transfer along of these walls.
  • These flow disruptors may be in the form of ribs which are straight or inclined relative to the axis of rotation of the blade or in the form of pins or in any other equivalent form.
  • Additional cooling circuits make it possible to cool the leading edge 16 and the trailing edge 18 of the blade.
  • the leading edge cooling circuit comprises at least one cavity 58 extending radially in the vicinity of the leading edge 16 of the blade, at least one air inlet opening 60, 60 'opening in the leading edge cavity 58 and orifices of output 62 opening in the leading edge cavity and opening on the leading edge of the blade.
  • the trailing edge cooling circuit comprises at least one cavity 64 extending radially in the vicinity of the trailing edge 18 of the blade, at least one air intake orifice 66, 66 'opening into the cavity trailing edge 64 and outlets 68 opening in the cavity trailing edge and opening on the underside face 20 of the blade.
  • the leading edge cooling circuit comprises a central cavity 70 which extends radially between the root 12 and the top 14 of the blade and in the direction of the thickness of the dawn from the intrados 20 to the extrados 22 of the dawn.
  • An air intake opening 72 is provided at a radial end of this central cavity 70 (here at the foot 12 of the blade).
  • the leading edge circuit also comprises a plurality of air intake orifices 60 distributed over the entire height of the blade. These orifices open into the central cavity 70 and open into the leading edge cavity 58.
  • cooling air travels through the central cavity 70 and the leading edge cavity 58 before being emitted to the leading edge 16 of the blade through the outlet orifices 62.
  • air emission can also be performed on the underside 20 and on the extrados 22 of the blade.
  • the trailing edge cooling circuit further comprises a central cavity 74 extending radially and in the direction of the thickness of the blade from the lower surface 20 the extrados 22 of the blade and an opening 76 at a radial end of the central cavity 74 (here at the foot 12 of the blade) for supplying air to the circuit.
  • the circulation of air in this trailing edge cooling circuit is similar to that of the leading edge circuit: the air travels through the cavity central 74 and the cavity trailing edge 64 before being emitted on the underside face 20 of the blade at the trailing edge 18 of the latter.
  • the air intake orifice of the leading edge and trailing edge circuits of the blade 10 ' are openings situated at the respective radial end of the edge cavities. 58 and trailing edge 64 (in this case at the foot 12 of the blade) and opening into them.
  • These air intake orifices are not shown in Figure 4 but they are of the same type as those feeding the cooling systems intrados and extrados of the blade.
  • the cooling air therefore flows through the leading edge 58 and trailing edge 64 cavities of the foot 12 towards the apex 14 of the blade before being emitted by the respective outlet orifices 62, 68.
  • the blade leading edge cooling circuit 10 "comprises a plurality of air intake orifices 60 'opening into the leading edge cavity 58 and opening into the central cavity 28 of the intrados cooling circuit.
  • the blade trailing edge cooling circuit 10 "has a plurality of air intake orifices 66 'opening into the trailing edge cavity 64 and opening into the central cavity 46 of the cooling circuit. extrados cooling.
  • the cooling air supplying the leading edge and trailing edge circuits respectively comes from the intrados and extrados circuits of the blade.
  • FIG. 5 Compared with the embodiment of FIG. 4, that of FIG. 5 is more specifically intended for a blade which is subjected to lower gas temperatures.
  • the cooling circuits according to the invention have many advantages.
  • the presence of a central wall that is located along the skeleton in the central part of the blade and which is cooled by the air flowing through the intrados and extrados cavities of the intrados and extrados circuits allows to ensure an efficient and homogeneous cooling of the blade. This results in a significant drop in the average temperature of the dawn which has the effect of significantly increasing the life of the dawn and thus delay their replacement.
  • the aerodynamic performance of the turbine equipped with such blades are also not degraded by the presence of these cooling circuits.
  • the manufacture by molding of a blade provided with such cooling circuits does not pose any particular problem.
  • the cooling mode of the blades according to the invention also has the advantage of being able to easily adapt to so-called "high torque master” blades.
  • the master-couple of a dawn corresponds to the most important area of a circle inscribed in the cup of a dawn. Also, a dawn with a strong master-torque has a larger diameter circle than a standard master-torque dawn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Aube mobile (10) de turbomachine, comportant dans sa partie centrale (C) un circuit de refroidissement intrados et un circuit de refroidissement extrados. Le circuit intrados comprend au moins une première (24) et une seconde cavités intrados (26) s'étendant depuis l'intrados (20) de l'aube jusqu'à une paroi centrale (30), une cavité centrale (28) s'étendant depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube, et des orifices de sortie (40) s'ouvrant dans la cavité centrale (28) et débouchant sur la face intrados (20) de l'aube. Le circuit extrados comprend au moins une première (42) et une seconde cavités extrados (44) s'étendant radialement depuis l'extrados (22) de l'aube jusqu'à la paroi centrale (30), une cavité centrale (46) s'étendant depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube, et des orifices de sortie (54) s'ouvrant dans la cavité centrale (46) et débouchant sur la face intrados (20) de l'aube.

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général du refroidissement des aubes mobiles de turbomachine, et notamment aux aubes de la turbine haute-pression.
  • Il est connu de munir les aubes mobiles d'une turbine à gaz de turbomachine, telles que les turbines haute et basse pression, de circuits internes de refroidissement leur permettant de supporter sans dommages les températures très élevées auxquelles elles sont soumises pendant le fonctionnement de la turbomachine. Ainsi, dans le cas d'une turbine haute-pression, les températures des gaz issus de la chambre de combustion atteignent des valeurs largement supérieures à celles que peuvent supporter sans dommages les aubes mobiles de la turbine, ce qui a pour conséquence de limiter leur durée de vie.
  • Grâce à de tels circuits de refroidissement, de l'air, qui est généralement introduit dans l'aube par son pied, traverse celle-ci en suivant un trajet formé par des cavités pratiquées dans l'aube avant d'être éjecté par des orifices s'ouvrant à la surface de l'aube.
  • Il existe de nombreuses réalisations différentes de ces circuits de refroidissement. Ainsi, certains circuits utilisent des cavités de refroidissement qui occupent toute la largeur de l'aube, ce qui présente l'inconvénient de limiter l'efficacité thermique du refroidissement. Dans le but de pallier ce défaut, d'autres circuits, tels que ceux décrits dans les documents EP 1 288 438 et EP 1 288 439 , proposent l'utilisation de cavités de refroidissement de bord n'occupant qu'un seul côté de l'aube (intrados ou extrados) ou les deux côtés avec l'adjonction d'une grande cavité centrale entre ces cavités de bord. Bien que de tels circuits soient efficaces d'un point de vue thermique, ils restent difficiles et coûteux à réaliser par moulage et le poids de l'aube obtenue est important.
  • Objet et résumé de l'invention
  • La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un circuit de refroidissement pour aube mobile permettant un refroidissement efficace de l'aube sans dégrader les performances aérodynamiques de la turbine et qui présente un faible coût de fabrication.
  • A cet effet, l'aube selon l'invention comporte dans sa partie centrale un circuit de refroidissement intrados et un circuit de refroidissement extrados. Le circuit de refroidissement intrados comprend au moins une première et une seconde cavités intrados s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados de l'aube jusqu'à une paroi centrale s'étendant radialement et selon la direction du squelette de l'aube, une cavité centrale s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados jusqu'à l'extrados de l'aube, une ouverture d'admission d'air à une extrémité radiale de la première cavité intrados pour alimenter en air le circuit intrados, un premier passage faisant communiquer l'autre extrémité radiale de la première cavité intrados avec une extrémité radiale voisine de la seconde cavité intrados, un second passage faisant communiquer l'autre extrémité radiale de la seconde cavité intrados avec une extrémité radiale voisine de la cavité centrale, et des orifices de sortie s'ouvrant dans la cavité centrale et débouchant sur la face intrados de l'aube. Quant au circuit de refroidissement extrados, il comprend au moins une première et une seconde cavités extrados s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'extrados de l'aube jusqu'à la paroi centrale, une cavité centrale s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados jusqu'à l'extrados de l'aube, une ouverture d'admission d'air à une extrémité radiale de la première cavité extrados pour alimenter en air le circuit extrados, un premier passage faisant communiquer l'autre extrémité radiale de la première cavité extrados avec une extrémité radiale voisine de la seconde cavité extrados, un second passage faisant communiquer l'autre extrémité radiale de la seconde cavité extrados avec une extrémité radiale voisine de la cavité centrale, et des orifices de sortie s'ouvrant dans la cavité centrale et débouchant sur la face intrados de l'aube.
  • Grâce à de tels circuits, il est possible d'obtenir un refroidissement homogène et efficace de l'aube. En effet, la paroi centrale séparant les cavités intrados des cavités extrados est refroidie par l'air circulant dans les circuits intrados et extrados. Il en résulte une chute de la température moyenne de l'aube ce qui a pour conséquence directe d'augmenter la durée de vie de l'aube. Par ailleurs, ces circuits de refroidissement ne posent aucun problème particulier de fabrication et d'implantation dans la turbine.
  • Selon une disposition avantageuse de l'invention, l'aube comporte en outre un circuit de refroidissement bord d'attaque comprenant au moins une cavité s'étendant radialement au voisinage du bord d'attaque de l'aube, au moins un orifice d'admission d'air débouchant dans la cavité bord d'attaque et des orifices de sortie s'ouvrant dans ladite cavité bord d'attaque et débouchant sur le bord d'attaque de l'aube.
  • Selon une autre disposition avantageuse de l'invention, l'aube comporte en outre un circuit de refroidissement bord de fuite comprenant au moins une cavité s'étendant radialement au voisinage du bord de fuite de l'aube, au moins un orifice d'admission d'air débouchant dans la cavité bord de fuite et des orifices de sortie s'ouvrant dans ladite cavité bord de fuite et débouchant sur la face intrados de l'aube.
  • De préférence, les parois internes des cavités des circuits de refroidissement intrados et extrados sont munies de perturbateurs d'écoulement destinés à accroître les transferts thermiques le long de ces parois.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
    • la figure 1 est une vue en coupe transversale d'une aube mobile selon un mode de réalisation de l'invention;
    • les figures 2 et 3 sont des vues en coupe de la figure 1 respectivement selon II-II et III-III ; et
    • les figures 4 et 5 sont des vues en coupe transversale d'aubes mobiles selon d'autres modes de réalisation de l'invention.
    Description détaillée d'un mode de réalisation
  • Les figures 1 à 3 représentent une aube mobile 10 de turbomachine, telle qu'une aube mobile de turbine haute-pression. Bien entendu, l'invention peut également s'appliquer à d'autres aubes mobiles de la turbomachine, par exemple aux aubes de la turbine basse-pression de celle-ci.
  • L'aube 10 comporte une surface aérodynamique (ou pale) qui s'étend radialement entre un pied d'aube 12 et un sommet d'aube 14. Cette surface aérodynamique se compose d'un bord d'attaque 16 disposé en regard de l'écoulement des gaz chauds issus de la chambre de combustion de la turbomachine, d'un bord de fuite 18 opposé au bord d'attaque 16, d'une face latérale intrados 20 et d'une face latérale extrados 22, ces faces latérales 20, 22 reliant le bord d'attaque 16 au bord de fuite 18.
  • L'aube mobile 10 de turbomachine selon l'invention comporte dans sa partie centrale C, c'est-à-dire dans sa partie pour laquelle la distance entre ses faces intrados 20 et extrados 22 est la plus importante, un circuit de refroidissement intrados et un circuit de refroidissement extrados.
  • Le circuit de refroidissement intrados de l'aube comporte notamment au moins une première cavité intrados 24, une seconde cavité intrados 26 et une cavité centrale 28 (un nombre plus important de cavités intrados est parfaitement envisageable). Les cavités 24, 26 et 28 s'étendent radialement entre le pied 12 et le sommet 14 de l'aube.
  • Par ailleurs, les cavités intrados 24, 26 s'étendent dans le sens de l'épaisseur de l'aube (c'est-à-dire dans le sens de sa largeur définie entre ses faces intrados 20 et extrados 22) depuis la face intrados 20 de l'aube jusqu'à une paroi (ou cloison) centrale 30 s'étendant, d'une part radialement entre le pied 12 et le sommet 14 de l'aube, et d'autre part selon la direction du squelette 32 de l'aube. Quant à la cavité centrale 28, elle s'étend dans le sens de l'épaisseur de l'aube depuis sa face intrados 20 jusqu'à sa face extrados 22.
  • En liaison avec la figure 2, le circuit de refroidissement intrados comporte également une ouverture d'admission d'air 34 à une extrémité radiale de la première cavité intrados 24 (ici au niveau du pied 12 de l'aube) afin d'alimenter en air le circuit intrados.
  • Un premier passage 36 fait communiquer l'autre extrémité radiale de la première cavité intrados 24 (c'est-à-dire au niveau du sommet 14 de l'aube) avec une extrémité radiale voisine de la seconde cavité intrados 26. Un second passage 38 fait communiquer l'autre extrémité radiale de la seconde cavité intrados 26 (c'est-à-dire au niveau du pied 12 de l'aube) avec une extrémité radiale voisine de la cavité centrale 28 du circuit intrados.
  • Le circuit de refroidissement intrados comporte aussi des orifices de sortie 40 s'ouvrant dans la cavité centrale 28 et débouchant sur la face intrados 20 de l'aube. Ces orifices 40 sont régulièrement répartis sur toute la hauteur radiale de l'aube.
  • La circulation de l'air de refroidissement qui parcourt ce circuit intrados découle de manière évidente de ce qui précède. Le circuit est alimenté en air de refroidissement par l'ouverture d'admission 34. L'air parcourt d'abord la première cavité intrados 24 puis la seconde cavité intrados 26 et enfin la cavité centrale 28 avant d'être émis à l'intrados 20 de l'aube par les orifices de sortie 40.
  • Le circuit de refroidissement extrados de l'aube comporte notamment au moins une première cavité extrados 42, une seconde cavité extrados 44 et une cavité centrale 46 (un nombre plus important de cavités extrados est parfaitement envisageable). Les cavités 42, 44 et 46 s'étendent radialement entre le pied 12 et le sommet 14 de l'aube.
  • De plus, les cavités extrados 42, 44 s'étendent dans le sens de l'épaisseur de l'aube depuis la face extrados 22 de l'aube jusqu'à la paroi centrale 30 définie précédemment en liaison avec le circuit de refroidissement intrados de l'aube. Quant à la cavité centrale 46, elle s'étend dans le sens de l'épaisseur de l'aube depuis sa face intrados 20 jusqu'à sa face extrados 22.
  • Comme représenté sur la figure 3, le circuit de refroidissement extrados comporte également une ouverture d'admission d'air 48 à une extrémité radiale de la première cavité extrados 42 (ici au niveau du pied 12 de l'aube) afin d'alimenter en air le circuit extrados.
  • Un premier passage 50 fait communiquer l'autre extrémité radiale de la première cavité extrados 42 (c'est-à-dire au niveau du sommet 14 de l'aube) avec une extrémité radiale voisine de la seconde cavité extrados 44. Un second passage 52 fait communiquer l'autre extrémité radiale de la seconde cavité extrados 44 (c'est-à-dire au niveau du pied 12 de l'aube) avec une extrémité radiale voisine de la cavité centrale 46 du circuit extrados.
  • Le circuit de refroidissement extrados comporte aussi des orifices de sortie 54 s'ouvrant dans la cavité centrale 46 et débouchant sur la face intrados 20 de l'aube. Ces orifices 54 sont régulièrement répartis sur toute la hauteur radiale de l'aube.
  • La circulation de l'air de refroidissement qui parcourt ce circuit extrados découle de manière évidente de ce qui précède. Le circuit est alimenté en air de refroidissement par l'ouverture d'admission 48. L'air parcourt d'abord la première cavité extrados 42 puis la seconde cavité extrados 44 et enfin la cavité centrale 46 avant d'être émis à l'intrados 20 de l'aube par les orifices de sortie 54.
  • On notera que les circuits de refroidissement intrados et extrados présentent chacun leur propre ouverture d'admission d'air et qu'il n'existe aucune communication d'air d'un circuit vers l'autre de sorte que ces circuits sont complètement indépendants l'un de l'autre.
  • On notera également que les cavités intrados 24, 26 et les cavités extrados 42, 44 des circuits de refroidissement intrados et extrados sont disposées de part et d'autre de la paroi centrale 30. De plus, la cavité centrale 28 du circuit intrados est située du côté du bord d'attaque 16 de l'aube, tandis que la cavité centrale 46 du circuit extrados est disposée du côté du bord de fuite 18 de l'aube.
  • Comme représenté sur les figures 1 à 3, les parois internes des cavités 24, 26, 28, 42, 44 et 46 des circuits de refroidissement intrados et extrados peuvent être avantageusement munies de perturbateurs d'écoulement 56 destinés à accroître les transferts thermiques le long de ces parois.
  • Ces perturbateurs d'écoulement peuvent se présenter sous la forme de nervures qui sont droites ou inclinées par rapport à l'axe de rotation de l'aube ou sous la forme de picots ou encore sous toutes autres formes équivalentes.
  • Des circuits de refroidissement supplémentaires permettent d'assurer le refroidissement du bord d'attaque 16 et du bord de fuite 18 de l'aube.
  • De manière générale, le circuit de refroidissement bord d'attaque comprend au moins une cavité 58 s'étendant radialement au voisinage du bord d'attaque 16 de l'aube, au moins un orifice d'admission d'air 60, 60' débouchant dans la cavité bord d'attaque 58 et des orifices de sortie 62 s'ouvrant dans la cavité bord d'attaque et débouchant sur le bord d'attaque de l'aube.
  • Quant au circuit de refroidissement bord de fuite, il comprend au moins une cavité 64 s'étendant radialement au voisinage du bord de fuite 18 de l'aube, au moins un orifice d'admission d'air 66, 66' débouchant dans la cavité bord de fuite 64 et des orifices de sortie 68 s'ouvrant dans la cavité bord de fuite et débouchant sur la face intrados 20 de l'aube.
  • On décrira maintenant différentes variantes de réalisation de ces circuits de refroidissement supplémentaires.
  • Dans le mode de réalisation des figures 1 à 3, le circuit de refroidissement bord d'attaque comporte une cavité centrale 70 qui s'étend radialement entre le pied 12 et le sommet 14 de l'aube et dans le sens de l'épaisseur de l'aube depuis l'intrados 20 jusqu'à l'extrados 22 de l'aube. Une ouverture d'admission d'air 72 est prévue à une extrémité radiale de cette cavité centrale 70 (ici au niveau du pied 12 de l'aube).
  • Le circuit bord d'attaque comporte également une pluralité d'orifices d'admission d'air 60 répartis sur toute la hauteur de l'aube. Ces orifices s'ouvrent dans la cavité centrale 70 et débouchent dans la cavité bord d'attaque 58.
  • Ainsi, l'air de refroidissement parcourt la cavité centrale 70 puis la cavité bord d'attaque 58 avant d'être émis au bord d'attaque 16 de l'aube par les orifices de sortie 62. Comme représenté sur la figure 1, l'émission de l'air peut aussi être réalisé à l'intrados 20 et à l'extrados 22 de l'aube.
  • Toujours dans le mode de réalisation des figures 1 à 3, le circuit de refroidissement bord de fuite comporte en outre une cavité centrale 74 s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados 20 jusqu'à l'extrados 22 de l'aube et une ouverture 76 à une extrémité radiale de la cavité centrale 74 (ici au niveau du pied 12 de l'aube) pour alimenter en air le circuit.
  • Une pluralité d'orifices d'admission d'air 66 répartis sur toute la hauteur de l'aube s'ouvrent dans la cavité centrale 74 de ce circuit et débouchent dans la cavité bord de fuite 64.
  • La circulation de l'air dans ce circuit de refroidissement bord de fuite est similaire à celle du circuit bord d'attaque : l'air parcourt la cavité centrale 74 puis la cavité bord de fuite 64 avant d'être émis sur la face intrados 20 de l'aube au niveau du bord de fuite 18 de cette dernière.
  • Selon un autre mode de réalisation représenté par la figure 4, l'orifice d'admission d'air des circuits bord d'attaque et bord de fuite de l'aube 10' sont des ouvertures situées à l'extrémité radiale respective des cavités bord d'attaque 58 et bord de fuite 64 (en l'occurrence au niveau du pied 12 de l'aube) et débouchant dans ces dernières. Ces orifices d'admission d'air ne sont pas représentés sur la figure 4 mais ils sont du même type que ceux alimentant les circuits de refroidissement intrados et extrados de l'aube.
  • L'air de refroidissement parcourt donc les cavités bord d'attaque 58 et bord de fuite 64 du pied 12 vers le sommet 14 de l'aube avant d'être émis par les orifices de sortie respectifs 62, 68.
  • Selon encore un autre mode de réalisation représenté par la figure 5, le circuit de refroidissement bord d'attaque de l'aube 10" comporte une pluralité d'orifices d'admission d'air 60' débouchant dans la cavité bord d'attaque 58 et s'ouvrant dans la cavité centrale 28 du circuit de refroidissement intrados.
  • De même, le circuit de refroidissement bord de fuite de l'aube 10" comporte une pluralité d'orifices d'admission d'air 66' débouchant dans la cavité bord de fuite 64 et s'ouvrant dans la cavité centrale 46 du circuit de refroidissement extrados.
  • Ainsi, l'air de refroidissement alimentant les circuits bord d'attaque et bord de fuite provient respectivement du circuit intrados et du circuit extrados de l'aube.
  • On notera que par rapport au mode de réalisation des figures 1 à 3, ces variantes de réalisation des aubes 10', 10" des figures 4 et 5 ne comportent pas de cavité centrale dans les circuits de refroidissement bord d'attaque et bord de fuite. Ces modes de réalisation sont donc plus particulièrement adaptés aux aubes ayant une corde plus courte que celle décrite en liaison avec les figures 1 à 3.
  • Par rapport au mode de réalisation de la figure 4, celui de la figure 5 est par ailleurs plus spécifiquement destiné à une aube qui est soumise à des températures de gaz plus faibles.
  • Les circuits de refroidissement selon l'invention présentent de nombreux avantages. En particulier, la présence d'une paroi centrale qui est située le long du squelette dans la partie centrale de l'aube et qui est refroidie par l'air parcourant les cavités intrados et extrados des circuits intrados et extrados permet d'assurer un refroidissement efficace et homogène de l'aube. Il en résulte une baisse importante de la température moyenne de l'aube ce qui a pour conséquence d'augmenter considérablement la durée de vie de l'aube et donc de retarder leur remplacement. Les performances aérodynamiques de la turbine équipée de telles aubes ne sont par ailleurs pas dégradées par la présence de ces circuits de refroidissement. La fabrication par moulage d'une aube munie de tels circuits de refroidissement ne pose en outre aucun problème particulier.
  • Le mode de refroidissement des aubes selon l'invention présente également l'avantage de pouvoir aisément s'adapter à des aubes mobiles dites « à fort maître-couple ». Le maître-couple d'une aube correspond à l'aire la plus importante d'un cercle inscrit dans la coupe d'une aube. Aussi, une aube à fort maître-couple présente un cercle de diamètre plus important qu'une aube à maître-couple standard.

Claims (10)

  1. Aube mobile (10, 10', 10") de turbomachine, caractérisée en ce qu'elle comporte dans sa partie centrale (C) un circuit de refroidissement intrados et un circuit de refroidissement extrados,
    ledit circuit de refroidissement intrados comprenant :
    au moins une première (24) et une seconde cavités intrados (26) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados (20) de l'aube jusqu'à une paroi centrale (30) s'étendant radialement et selon la direction (32) du squelette de l'aube ;
    une cavité centrale (28) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube ;
    une ouverture d'admission d'air (34) à une extrémité radiale de la première cavité intrados (24) pour alimenter en air le circuit intrados ;
    un premier passage (36) faisant communiquer l'autre extrémité radiale de la première cavité intrados (24) avec une extrémité radiale voisine de la seconde cavité intrados (26) ;
    un second passage (38) faisant communiquer l'autre extrémité radiale de la seconde cavité intrados (26) avec une extrémité radiale voisine de la cavité centrale (28) ; et
    des orifices de sortie (40) s'ouvrant dans la cavité centrale (28) et débouchant sur la face intrados (20) de l'aube ;
    ledit circuit de refroidissement extrados comprenant:
    au moins une première (42) et une seconde cavités extrados (44) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'extrados (22) de l'aube jusqu'à ladite paroi centrale (30) ;
    une cavité centrale (46) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube ;
    une ouverture d'admission d'air (48) à une extrémité radiale de la première cavité extrados (42) pour alimenter en air le circuit extrados ;
    un premier passage (50) faisant communiquer l'autre extrémité radiale de la première cavité extrados (42) avec une extrémité radiale voisine de la seconde cavité extrados (44) ;
    un second passage (52) faisant communiquer l'autre extrémité radiale de la seconde cavité extrados (44) avec une extrémité radiale voisine de la cavité centrale (46) ; et
    des orifices de sortie (54) s'ouvrant dans la cavité centrale (46) et débouchant sur la face intrados (20) de l'aube.
  2. Aube selon la revendication 1, comportant en outre un circuit de refroidissement bord d'attaque comprenant au moins une cavité (58) s'étendant radialement au voisinage du bord d'attaque (16) de l'aube, au moins un orifice d'admission d'air (60, 60') débouchant dans la cavité bord d'attaque (58) et des orifices de sortie (62) s'ouvrant dans ladite cavité bord d'attaque et débouchant sur le bord d'attaque (16) de l'aube.
  3. Aube selon la revendication 2, dans laquelle l'orifice d'admission d'air est une ouverture située à l'extrémité radiale de la cavité bord d'attaque (58).
  4. Aube selon la revendication 2, dans laquelle le circuit de refroidissement bord d'attaque comporte une pluralité d'orifices d'admission d'air (60') s'ouvrant dans la cavité centrale (28) du circuit de refroidissement intrados et débouchant dans la cavité bord d'attaque (58).
  5. Aube selon la revendication 2, dans laquelle le circuit de refroidissement bord d'attaque comporte en outre une cavité centrale (70) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube, une ouverture (72) à une extrémité radiale de la cavité centrale (70) pour alimenter en air le circuit et une pluralité d'orifices d'admission d'air (60) s'ouvrant dans ladite cavité centrale (70) et débouchant dans la cavité bord d'attaque (58).
  6. Aube selon l'une quelconque des revendications 1 à 5, comportant en outre un circuit de refroidissement bord de fuite comprenant au moins une cavité (64) s'étendant radialement au voisinage du bord de fuite (18) de l'aube, au moins un orifice d'admission d'air (66, 66') débouchant dans la cavité bord de fuite (64) et des orifices de sortie (68) s'ouvrant dans ladite cavité bord de fuite et débouchant sur la face intrados (20) de l'aube.
  7. Aube selon la revendication 6, dans laquelle l'orifice d'admission d'air est une ouverture située à l'extrémité radiale de la cavité bord de fuite (64).
  8. Aube selon la revendication 6, dans laquelle le circuit de refroidissement bord de fuite comporte une pluralité d'orifices d'admission d'air (66') s'ouvrant dans la cavité centrale (46) du circuit de refroidissement extrados et débouchant dans la cavité bord de fuite (64).
  9. Aube selon la revendication 6, dans laquelle le circuit de refroidissement bord de fuite comporte en outre une cavité centrale (74) s'étendant radialement et dans le sens de l'épaisseur de l'aube depuis l'intrados (20) jusqu'à l'extrados (22) de l'aube, une ouverture (76) à une extrémité radiale de la cavité centrale (74) pour alimenter en air le circuit et une pluralité d'orifices d'admission d'air (66) s'ouvrant dans ladite cavité centrale et débouchant dans la cavité bord de fuite (64).
  10. Aube selon l'une quelconque des revendications 1 à 9, dans laquelle les parois internes des cavités (24, 26, 28, 42, 44, 46) des circuits de refroidissement intrados et extrados sont munies de perturbateurs d'écoulement (56) destinés à accroître les transferts thermiques le long de ces parois.
EP06115023A 2005-06-21 2006-06-06 Circuits de refroidissement pour aube mobile de turbomachine Active EP1741875B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0506266A FR2887287B1 (fr) 2005-06-21 2005-06-21 Circuits de refroidissement pour aube mobile de turbomachine

Publications (2)

Publication Number Publication Date
EP1741875A1 true EP1741875A1 (fr) 2007-01-10
EP1741875B1 EP1741875B1 (fr) 2008-09-17

Family

ID=35923394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06115023A Active EP1741875B1 (fr) 2005-06-21 2006-06-06 Circuits de refroidissement pour aube mobile de turbomachine

Country Status (7)

Country Link
US (1) US7513739B2 (fr)
EP (1) EP1741875B1 (fr)
JP (1) JP4801513B2 (fr)
CA (1) CA2550442C (fr)
DE (1) DE602006002782D1 (fr)
FR (1) FR2887287B1 (fr)
RU (1) RU2403402C2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793084A3 (fr) * 2005-12-05 2009-06-10 General Electric Company Aube pourvue de canaux parallèles de refroidissement en serpentin
WO2016120561A1 (fr) * 2015-01-29 2016-08-04 Snecma Turbopropulseur
WO2018189434A2 (fr) 2017-04-10 2018-10-18 Safran Aube de turbine présentant une structure améliorée
WO2018189433A2 (fr) 2017-04-10 2018-10-18 Safran Aube de turbine présentant une structure améliorée
EP3828383A1 (fr) * 2019-11-27 2021-06-02 General Electric Company Profil d'aube avec circuit de refroidissement de bord de fuite

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893974B1 (fr) * 2005-11-28 2011-03-18 Snecma Circuit de refroidissement central pour aube mobile de turbomachine
US7862299B1 (en) * 2007-03-21 2011-01-04 Florida Turbine Technologies, Inc. Two piece hollow turbine blade with serpentine cooling circuits
US7985049B1 (en) * 2007-07-20 2011-07-26 Florida Turbine Technologies, Inc. Turbine blade with impingement cooling
WO2009016744A1 (fr) 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Pale pour turbine
US10156143B2 (en) * 2007-12-06 2018-12-18 United Technologies Corporation Gas turbine engines and related systems involving air-cooled vanes
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
JP5567180B1 (ja) * 2013-05-20 2014-08-06 川崎重工業株式会社 タービン翼の冷却構造
US9803500B2 (en) 2014-05-05 2017-10-31 United Technologies Corporation Gas turbine engine airfoil cooling passage configuration
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
CN106536859B (zh) * 2014-08-07 2018-06-26 西门子公司 具有中间翼弦的分叉冷却腔室的涡轮翼型冷却系统
US11280214B2 (en) * 2014-10-20 2022-03-22 Raytheon Technologies Corporation Gas turbine engine component
US10626734B2 (en) 2017-10-03 2020-04-21 United Technologies Corporation Airfoil having internal hybrid cooling cavities
US10704398B2 (en) * 2017-10-03 2020-07-07 Raytheon Technologies Corporation Airfoil having internal hybrid cooling cavities
US10633980B2 (en) 2017-10-03 2020-04-28 United Technologies Coproration Airfoil having internal hybrid cooling cavities
US10626733B2 (en) 2017-10-03 2020-04-21 United Technologies Corporation Airfoil having internal hybrid cooling cavities
US10815791B2 (en) * 2017-12-13 2020-10-27 Solar Turbines Incorporated Turbine blade cooling system with upper turning vane bank
FR3095834B1 (fr) * 2019-05-09 2021-06-04 Safran Aube de turbomachine à refroidissement amélioré
FR3107920B1 (fr) 2020-03-03 2023-11-10 Safran Aircraft Engines Aube creuse de turbomachine et plateforme inter-aubes équipées de saillies perturbatrices de flux de refroidissement
CN113090335A (zh) * 2021-05-14 2021-07-09 中国航发湖南动力机械研究所 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135606A (ja) * 1983-12-22 1985-07-19 Toshiba Corp ガスタ−ビン空冷翼
US5193980A (en) * 1991-02-06 1993-03-16 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Hollow turbine blade with internal cooling system
US5813835A (en) * 1991-08-19 1998-09-29 The United States Of America As Represented By The Secretary Of The Air Force Air-cooled turbine blade
EP1288438A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuits de refroidissement pour aube de turbine à gaz
EP1288439A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuit de refroidissement pour aube de turbine à gaz
EP1362982A1 (fr) * 2002-05-09 2003-11-19 General Electric Company Aube de turbine avec des canaux de refroidissement de serpentin triple dirigé vers l'arrière

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233843B2 (ja) * 1984-03-23 1990-07-31 Kogyo Gijutsuin Gasutaabindoyokunoreikyakukozo
US5165852A (en) * 1990-12-18 1992-11-24 General Electric Company Rotation enhanced rotor blade cooling using a double row of coolant passageways
US5356265A (en) * 1992-08-25 1994-10-18 General Electric Company Chordally bifurcated turbine blade
US5387085A (en) * 1994-01-07 1995-02-07 General Electric Company Turbine blade composite cooling circuit
US6126396A (en) * 1998-12-09 2000-10-03 General Electric Company AFT flowing serpentine airfoil cooling circuit with side wall impingement cooling chambers
FR2833298B1 (fr) 2001-12-10 2004-08-06 Snecma Moteurs Perfectionnements apportes au comportement thermique du bord de fuite d'une aube de turbine haute-pression
US6607356B2 (en) * 2002-01-11 2003-08-19 General Electric Company Crossover cooled airfoil trailing edge
US7097426B2 (en) * 2004-04-08 2006-08-29 General Electric Company Cascade impingement cooled airfoil
US7296972B2 (en) * 2005-12-02 2007-11-20 Siemens Power Generation, Inc. Turbine airfoil with counter-flow serpentine channels
US7296973B2 (en) * 2005-12-05 2007-11-20 General Electric Company Parallel serpentine cooled blade

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135606A (ja) * 1983-12-22 1985-07-19 Toshiba Corp ガスタ−ビン空冷翼
US5193980A (en) * 1991-02-06 1993-03-16 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Hollow turbine blade with internal cooling system
US5813835A (en) * 1991-08-19 1998-09-29 The United States Of America As Represented By The Secretary Of The Air Force Air-cooled turbine blade
EP1288438A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuits de refroidissement pour aube de turbine à gaz
EP1288439A1 (fr) * 2001-08-28 2003-03-05 Snecma Moteurs Circuit de refroidissement pour aube de turbine à gaz
EP1362982A1 (fr) * 2002-05-09 2003-11-19 General Electric Company Aube de turbine avec des canaux de refroidissement de serpentin triple dirigé vers l'arrière

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793084A3 (fr) * 2005-12-05 2009-06-10 General Electric Company Aube pourvue de canaux parallèles de refroidissement en serpentin
WO2016120561A1 (fr) * 2015-01-29 2016-08-04 Snecma Turbopropulseur
FR3032173A1 (fr) * 2015-01-29 2016-08-05 Snecma Pale d'helice de turbopropulseur a soufflage
GB2549235A (en) * 2015-01-29 2017-10-11 Safran Aircraft Engines Turboprop
US10518869B2 (en) 2015-01-29 2019-12-31 Safran Aircraft Engines Turboprop
GB2549235B (en) * 2015-01-29 2020-07-08 Safran Aircraft Engines Turboprop
WO2018189434A2 (fr) 2017-04-10 2018-10-18 Safran Aube de turbine présentant une structure améliorée
WO2018189433A2 (fr) 2017-04-10 2018-10-18 Safran Aube de turbine présentant une structure améliorée
US11073025B2 (en) 2017-04-10 2021-07-27 Safran Turbine blade having an improved structure
US11248468B2 (en) 2017-04-10 2022-02-15 Safran Turbine blade having an improved structure
EP3828383A1 (fr) * 2019-11-27 2021-06-02 General Electric Company Profil d'aube avec circuit de refroidissement de bord de fuite
US11732594B2 (en) 2019-11-27 2023-08-22 General Electric Company Cooling assembly for a turbine assembly

Also Published As

Publication number Publication date
FR2887287A1 (fr) 2006-12-22
US7513739B2 (en) 2009-04-07
CA2550442A1 (fr) 2006-12-21
DE602006002782D1 (de) 2008-10-30
FR2887287B1 (fr) 2007-09-21
JP2007002843A (ja) 2007-01-11
CA2550442C (fr) 2012-12-04
US20070116570A1 (en) 2007-05-24
RU2403402C2 (ru) 2010-11-10
EP1741875B1 (fr) 2008-09-17
JP4801513B2 (ja) 2011-10-26
RU2006122178A (ru) 2007-12-27

Similar Documents

Publication Publication Date Title
EP1741875B1 (fr) Circuits de refroidissement pour aube mobile de turbomachine
EP1790819B1 (fr) Aube mobile de turbomachine comprenant un circuit de refroidissement
EP0666406B1 (fr) Aube fixe ou mobile refroidie de turbine
EP1726783B1 (fr) Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz, équipée d'une baignoire
EP1288438B1 (fr) Circuits de refroidissement pour aube de turbine à gaz
CA2398663C (fr) Perfectionnements apportes aux circuits de refroidissement pour aube de turbine a gaz
EP2088286B1 (fr) Aube, roue à aube et turbomachine associées
CA2475083C (fr) Circuits de refroidissement pour aube de turbine a gaz
EP3519679B1 (fr) Aube de turbine comportant un circuit de refroidissement
CA2504168C (fr) Circuit de refroidissement a cavite a rapport de forme eleve pour aube de turbine a gaz
EP1793083B1 (fr) Aube de turbine à refroidissement et à durée de vie améliorés
FR3020402A1 (fr) Aube pour turbine de turbomachine comprenant un circuit de refroidissement a homogeneite amelioree
EP1630351B1 (fr) Aube de compresseur ou de turbine à gaz
CA2418241A1 (fr) Aube mobile de turbine haute pression munie d'un bord de fuite au comportement thermique ameliore
WO2020193913A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement optimise
FR3116857A1 (fr) composant de turbomachine comprenant une paroi pourvue de moyens de refroidissement
WO2018215718A1 (fr) Aube pour turbine de turbomachine comprenant des cavites internes de circulation d'air de refroidissement
FR3111661A1 (fr) Aube de turbine avec système de refroidissement
WO2020193912A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube
EP3867499A1 (fr) Aube de turbomachine à refroidissement amélioré

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006002782

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006002782

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240521

Year of fee payment: 19